JP2011163729A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2011163729A
JP2011163729A JP2010030020A JP2010030020A JP2011163729A JP 2011163729 A JP2011163729 A JP 2011163729A JP 2010030020 A JP2010030020 A JP 2010030020A JP 2010030020 A JP2010030020 A JP 2010030020A JP 2011163729 A JP2011163729 A JP 2011163729A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
freezing
cooled
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010030020A
Other languages
Japanese (ja)
Other versions
JP5220045B2 (en
Inventor
Takashi Fukui
孝史 福井
Koyu Tanaka
航祐 田中
Takuya Ito
拓也 伊藤
Yoshihiro Sumida
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010030020A priority Critical patent/JP5220045B2/en
Publication of JP2011163729A publication Critical patent/JP2011163729A/en
Application granted granted Critical
Publication of JP5220045B2 publication Critical patent/JP5220045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a cooling device with improved determination accuracy of a water freezing condition for operating antifreezing control. <P>SOLUTION: A refrigerating cycle circuit is configured by sequentially connecting a compressor 1 for compressing a refrigerant, a condenser 2 for condensing the refrigerant compressed by the compressor 1, a throttle means 4 for decompressing the refrigerant condensed by the condenser 2, and an evaporator 5 for evaporating the refrigerant decompressed by the throttle means 4 and cooling a cooling fluid by piping to circulate the refrigerant. The cooling device includes a calculating part 21 for correcting freezing determination state quantity being a threshold value of freezing state determination calculated with respect to the entire evaporator 5 based on distribution of the state quantity of the cooling fluid inside the evaporator 5, a determination part 23 for determining the state regarding freezing based on the freezing determination state quantity regarding the correction by the calculating part 21, and a control part 24 for performing processing for preventing freezing of the cooling fluid based on the determination result of the determination part 23. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水などの被冷却流体を所望の温度に冷却して供給する冷却装置に係るものである。特に液体の被冷却流体を、液体が凍結する温度付近まで冷却する冷却装置に関するものである。   The present invention relates to a cooling device that cools and supplies a fluid to be cooled such as water to a desired temperature. In particular, the present invention relates to a cooling device that cools a liquid to be cooled to a temperature near a temperature at which the liquid freezes.

従来の技術においては、圧縮機、凝縮器、減圧手段、および蒸発器からなる冷凍サイクルにおいて、蒸発器の低圧側の冷媒の温度、蒸発器に流入する被冷却流体の温度を検出する温度検出手段が設置される。そして、これらの検出に係る温度の値を基に「凍結の有無」または「凍結の可能性」を判定する冷却装置がある。そして判定結果に基づいて被冷却流体の凍結を防止するため、圧縮機、凝縮器に空気を送る送風機、絞り手段、ポンプとを制御する冷却装置が提案されている(例えば、特許文献1参照)。
また、従来の技術においては、プレート式熱交換器の端板の表面温度を検出することができる温度検出手段を設け、これによって検出された温度が基準温度以下になった場合に、冷凍サイクル装置を停止させ、凍結異常を発報する冷凍検知装置を備えた冷凍サイクル装置が開示されている(例えば、特許文献2参照)。
また、従来の技術においては、高沸点冷媒と低沸点冷媒とからなる非共沸混合冷媒を用いた空気調和機の着霜検知方法において、熱交換器で冷媒の温度が低くなる複数箇所の温度の平均値を、熱交換器の着霜判断の条件として用いることにより、熱交換器の着霜を確実に判断できる着霜検知方法が開示されている(例えば、特許文献3参照)。
In the prior art, in a refrigeration cycle comprising a compressor, a condenser, a decompression means, and an evaporator, a temperature detection means for detecting the temperature of the refrigerant on the low pressure side of the evaporator and the temperature of the fluid to be cooled flowing into the evaporator Is installed. There is a cooling device that determines “presence / absence of freezing” or “possibility of freezing” based on the value of the temperature related to these detections. And in order to prevent the to-be-cooled fluid from freezing based on a determination result, the cooling device which controls a compressor, the air blower which sends air to a condenser, a throttle means, and a pump is proposed (for example, refer patent document 1). .
Further, in the prior art, there is provided a temperature detecting means capable of detecting the surface temperature of the end plate of the plate heat exchanger, and when the temperature detected thereby falls below the reference temperature, the refrigeration cycle apparatus Has been disclosed, and a refrigeration cycle apparatus including a refrigeration detection apparatus that issues a freezing abnormality is disclosed (see, for example, Patent Document 2).
Further, in the conventional technology, in the frosting detection method for an air conditioner using a non-azeotropic refrigerant mixture composed of a high-boiling refrigerant and a low-boiling refrigerant, the temperature at a plurality of locations where the temperature of the refrigerant is lowered in the heat exchanger. Is used as a condition for determining the frost formation of the heat exchanger, and a frost detection method that can reliably determine the frost formation of the heat exchanger is disclosed (for example, see Patent Document 3).

特開2009−243828号公報JP 2009-243828 A 特開2005−315498号公報JP 2005-315498 A 特開平8−75326号公報JP-A-8-75326

しかしながら、蒸発器内部において、被冷却流体の流量が不均一な状態であると、温度にバラツキが生じることがある。上記の方法において、被冷却流体の温度のバラツキがあった場合には、検出した温度の値から算出した凍結判定に用いる状態量の値が実際のものと誤差が生じ、判定が異なってしまう可能性がある。このため、例えば、実際には水が凍結しない条件でも凍結防止する制御を作動させてしまったり、水が凍結する条件にも関わらず凍結防止する制御が作動しなかったり、凍結防止制御が適切に動作しない可能性があった。
また、熱交換器におけるある特定の1箇所の計測値や、複数箇所の計測値の平均値を基にそのまま用いて熱交換器の着霜・凍結を判定する方法では、被冷却流体の流路内で温度や流速バラツキが生じ、局所的に温度が低い、流速が遅い等の要因により最も凍結しやすい条件の箇所において、部分的に凍結する状態(部分凍結)が発生するような場合に正確な凍結判定がなされない可能性があった。
However, if the flow rate of the fluid to be cooled is uneven in the evaporator, the temperature may vary. In the above method, when there is a variation in the temperature of the fluid to be cooled, the value of the state quantity used for the freezing determination calculated from the detected temperature value may be different from the actual value, and the determination may be different. There is sex. For this reason, for example, the control for preventing freezing is activated even under conditions where water does not freeze, the control for preventing freezing does not operate despite the conditions for freezing water, or the antifreezing control is appropriately performed. It might not work.
Further, in the method of determining frost / freezing of the heat exchanger using the measured value of one specific place in the heat exchanger or the average value of the measured values of a plurality of places, the flow path of the fluid to be cooled is used. Accurate when a partial freezing condition (partial freezing) occurs at a location where the temperature is most likely to freeze due to factors such as local variations in temperature and flow velocity, and local low temperatures and slow flow rates. There was a possibility that the freezing judgment was not made.

本発明は、上記のような課題を解決するためになされたもので、凍結防止制御を動作させる水凍結条件の判定精度を向上させるようにした冷却装置を実現することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to realize a cooling device that improves the determination accuracy of water freezing conditions for operating antifreezing control.

この発明に係る冷却装置は、冷媒を圧縮する圧縮機と、圧縮機により圧縮された冷媒を凝縮させる凝縮器と、凝縮器によって凝縮された冷媒を減圧させる絞り手段と、絞り手段によって減圧された冷媒を熱交換により蒸発させて被冷却流体を冷却する蒸発器とを配管接続して冷媒を循環させる冷凍サイクル回路を構成し、蒸発器内部における被冷却流体の状態量の分布に基づいて、蒸発器全体に対して算出した凍結状況判定の閾値となる凍結判定状態量を補正する演算部と、演算部の補正に係る凍結判定状態量に基づいて凍結に係る状況を判定する判定部と、判定部による判定結果に基づいて、被冷却流体の凍結を防止するための処理を行う制御部とを備える。   The cooling device according to the present invention includes a compressor that compresses the refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a throttle unit that depressurizes the refrigerant condensed by the condenser, and a pressure reduced by the throttle unit A refrigerant circuit is circulated by connecting pipes to an evaporator that evaporates the refrigerant by heat exchange and cools the fluid to be cooled, and the refrigerant is circulated and evaporated based on the distribution of the state quantity of the fluid to be cooled inside the evaporator. A calculation unit that corrects the freezing determination state amount that is a threshold for determining the freezing state calculated for the entire vessel, a determination unit that determines a state related to freezing based on the freezing determination state amount related to the correction of the calculation unit, and a determination And a control unit that performs processing for preventing freezing of the fluid to be cooled based on a determination result by the unit.

本発明によれば、演算部が蒸発器内部の状態量の分布に基づいて補正した凍結判定状態量に基づいて、判定部が凍結に係る状況を判定し、判定結果に基づいて制御部が制御を行うようにしたので、適切な凍結判定状態量を決定することができ、被冷却流体の凍結を防止するとともに、冷却装置の冷凍能力を最大限に利用可能であり、凍結に起因する蒸発器の熱交性能劣化を事前に検知し、確実に凍結による破壊を防止し機器の安全を図ることができる。
また、温度や流速のバラツキを推測又は計測して被冷却流体の凍結判定をすることで、熱交換器が部分的に凍結する状態(部分凍結)を防ぐことができる。
According to the present invention, the determination unit determines a state related to freezing based on the freezing determination state quantity corrected by the arithmetic unit based on the distribution of the state quantity inside the evaporator, and the control unit controls based on the determination result Therefore, it is possible to determine an appropriate freezing judgment state quantity, prevent freezing of the fluid to be cooled, and to maximize the refrigeration capacity of the cooling device. It is possible to detect the deterioration of the heat exchange performance in advance, and to prevent the destruction due to freezing and to ensure the safety of the equipment.
Moreover, the state (partial freezing) in which a heat exchanger partially freezes can be prevented by estimating or measuring the variation in temperature and flow velocity to determine whether the fluid to be cooled is frozen.

この発明の実施の形態1を示す冷却装置の構成図である。It is a block diagram of the cooling device which shows Embodiment 1 of this invention. 定常時における被冷却流体の凍結現象を説明するための図である。It is a figure for demonstrating the freezing phenomenon of the to-be-cooled fluid in regular time. 過渡時における被冷却流体の凍結現象を説明するための図である。It is a figure for demonstrating the freezing phenomenon of the to-be-cooled fluid at the time of a transition. 過渡から定常に至るまでの凍結壁面温度θwfの関係を表す図である。It is a figure showing the relationship of frozen wall surface temperature (theta) wf from transient to steady state. 被冷却流体と蒸発器5内における流路との関係を説明するための図である。It is a figure for demonstrating the relationship between a to-be-cooled fluid and the flow path in the evaporator. 各流路の流量バラツキを表す図である。It is a figure showing the flow volume variation of each flow path. 平均水流量バラツキεと蒸発器5内の各流路の温度の関係を表す図である。FIG. 6 is a diagram showing the relationship between the average water flow rate variation ε and the temperature of each flow path in the evaporator 5. 平均水流量バラツキεと蒸発器5内の各流路の温度の関係を表す図である。FIG. 6 is a diagram showing the relationship between the average water flow rate variation ε and the temperature of each flow path in the evaporator 5. 凍結壁面温度θwfと補正前後の凍結判定閾値との関係を表す図である。It is a figure showing the relationship between freezing wall surface temperature (theta) wf and the freezing determination threshold value before and behind correction | amendment. この発明の実施の形態1の冷却装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the cooling device of Embodiment 1 of this invention. 蒸発器5内の各流路の熱交換量とAK値との関係を説明するための図である。It is a figure for demonstrating the relationship between the heat exchange amount of each flow path in the evaporator 5, and AK value.

実施の形態1.
図1は、本発明の実施の形態1における冷却装置の構成を示した図である。以下、本発明の実施の形態1に係る冷却装置について説明する。ここで、以下の各図において同じ機器、手段等には同じ符号を付すものとする。図1において、圧縮機1、凝縮器2、絞り手段4および蒸発器5により冷凍サイクル回路(冷媒回路)を構成している。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a cooling device according to Embodiment 1 of the present invention. Hereinafter, the cooling apparatus according to Embodiment 1 of the present invention will be described. Here, in the following drawings, the same reference numerals are assigned to the same devices and means. In FIG. 1, a compressor 1, a condenser 2, a throttle means 4 and an evaporator 5 constitute a refrigeration cycle circuit (refrigerant circuit).

圧縮機1で圧縮された高温高圧の冷媒は、凝縮器2に導かれて、送風機3からの流体と熱交換し、放熱して凝縮し、例えば液体の冷媒となる。凝縮器2で凝縮した冷媒は、絞り手段4を介して低温低圧の冷媒となり蒸発器5に導かれる。そして、蒸発器5において被冷却流体と熱交換し、吸熱して蒸発し、気体の冷媒となって圧縮機1へ戻される。   The high-temperature and high-pressure refrigerant compressed by the compressor 1 is guided to the condenser 2, exchanges heat with the fluid from the blower 3, dissipates heat, condenses, and becomes, for example, a liquid refrigerant. The refrigerant condensed in the condenser 2 becomes a low-temperature and low-pressure refrigerant through the throttle means 4 and is led to the evaporator 5. Then, the evaporator 5 exchanges heat with the fluid to be cooled, absorbs heat, evaporates, and returns to the compressor 1 as a gaseous refrigerant.

(圧縮機)
圧縮機1は、例えばインバータ回路により制御されるモータ(図示せず)によって運転容量を変化させて駆動することが可能な容積式圧縮機である。本実施の形態では圧縮機1を1台のみで構成するが、これに限定されず、2台以上の圧縮機を並列または直列に接続するようにしてもよい。
(Compressor)
The compressor 1 is a positive displacement compressor that can be driven by changing an operation capacity by a motor (not shown) controlled by an inverter circuit, for example. In the present embodiment, the compressor 1 is constituted by only one unit, but the present invention is not limited to this, and two or more compressors may be connected in parallel or in series.

(凝縮器)
凝縮器2は、空気などの流体との熱交換により、冷媒を放熱させ、凝縮させる。特に限定するものではないが、本実施の形態の凝縮器2は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であるものとする。
(Condenser)
The condenser 2 dissipates and condenses the refrigerant by heat exchange with a fluid such as air. Although it does not specifically limit, the condenser 2 of this Embodiment shall be a cross fin type fin and tube type heat exchanger comprised by the heat exchanger tube and many fins.

(送風機)
送風機3は、冷媒と熱交換するための流体を凝縮器2に供給する。本実施の形態では、DCファンモータなどのモータによって駆動される遠心ファンや多翼ファン等であり、流体の流量を変化させることができるものとする。
(Blower)
The blower 3 supplies a fluid for exchanging heat with the refrigerant to the condenser 2. In this embodiment, it is a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor, and the flow rate of the fluid can be changed.

(絞り手段)
絞り手段4は、冷媒回路内を流れる冷媒の流量の調節等を行う。例えばステッピングモータ(図示せず)により絞りの開度を調整することが可能な電子膨張弁または受圧部にダイアフラムを採用した機械式膨張弁またはキャピラリーチューブである。
(Aperture means)
The throttle means 4 adjusts the flow rate of the refrigerant flowing in the refrigerant circuit. For example, it is an electronic expansion valve capable of adjusting the opening of a throttle by a stepping motor (not shown), or a mechanical expansion valve or a capillary tube employing a diaphragm as a pressure receiving portion.

(蒸発器)
蒸発器5は、間隔をおいて薄板(フィン)を多数並べて、周縁部をシールし、各薄板間に形成された空間を交互に冷媒と被冷却流体との流路としてなるプレート式熱交換器もしくは二重になった管の内外で熱交換を行う二重管式熱交換器である。本実施の形態では、蒸発器5は、1台のみで構成するが、これに限定されず、2台以上の蒸発器を並列または直列に接続するようにしてもよい。
(Evaporator)
The evaporator 5 is a plate heat exchanger in which a large number of thin plates (fins) are arranged at intervals, the peripheral edge is sealed, and the space formed between the thin plates is alternately used as a flow path between the refrigerant and the fluid to be cooled. Alternatively, it is a double pipe heat exchanger that exchanges heat inside and outside the double pipe. In the present embodiment, the evaporator 5 is composed of only one unit, but is not limited to this, and two or more evaporators may be connected in parallel or in series.

(被冷却流体、冷媒)
被冷却流体としては、例えば、凝固点を降下させる添加物を混ぜた水が用いられる。ただし、単なる水であってもよい。被冷却流体が水であるため、蒸発器5は水熱交換器となる。また、本実施の形態の冷却装置に用いられる冷媒としては、例えば、R410A、R407C、R404AなどのHFC冷媒、R22、R134aなどのHCFC冷媒、もしくは炭化水素、ヘリウムのような自然冷媒などが用いられる。
(Cooled fluid, refrigerant)
As the fluid to be cooled, for example, water mixed with an additive that lowers the freezing point is used. However, it may be just water. Since the fluid to be cooled is water, the evaporator 5 serves as a water heat exchanger. Further, as the refrigerant used in the cooling device of the present embodiment, for example, HFC refrigerants such as R410A, R407C, and R404A, HCFC refrigerants such as R22 and R134a, or natural refrigerants such as hydrocarbon and helium are used. .

また、ポンプ6を設けた配管を介して蒸発器5に被冷却流体を供給するようになっている。被冷却流体は、例えば配管により、循環している。例えば、冷蔵庫や室内機など(図示せず)の冷熱負荷と蒸発器5との間を循環している。   Further, the fluid to be cooled is supplied to the evaporator 5 through a pipe provided with the pump 6. The fluid to be cooled is circulated by piping, for example. For example, it circulates between the cold load of a refrigerator, an indoor unit, etc. (not shown) and the evaporator 5.

低圧冷媒温度検出手段10は蒸発器5に流入する低温低圧の冷媒の温度の検出に係る信号を送信する。また、被冷却流体流入温度検出手段11、被冷却流体流出温度検出手段12は、蒸発器5に流入出する被冷却流体の温度の検出に係る信号を送信する。   The low-pressure refrigerant temperature detection means 10 transmits a signal related to the detection of the temperature of the low-temperature and low-pressure refrigerant flowing into the evaporator 5. The cooled fluid inflow temperature detecting means 11 and the cooled fluid outflow temperature detecting means 12 transmit signals relating to the detection of the temperature of the cooled fluid flowing into and out of the evaporator 5.

測定部20は、低圧冷媒温度検出手段10、被冷却流体流入温度検出手段11、被冷却流体流出温度検出手段12からの信号に基づいて、それぞれの検出手段により検出された温度を数値化とする(以下、数値化したデータを測定値という)。ここで、低圧冷媒温度検出手段10、被冷却流体流入温度検出手段11、被冷却流体流出温度検出手段12の検出に係る測定値は、それぞれ低圧冷媒温度Tin、被冷却流体流入温度θin、被冷却流体流出温度θoutとなる。また、他の検出手段からの信号により得られる物理量に基づいて、演算等を行い、演算部21が演算を行うために必要な測定値を導き出す。   Based on the signals from the low-pressure refrigerant temperature detecting means 10, the cooled fluid inflow temperature detecting means 11, and the cooled fluid outflow temperature detecting means 12, the measuring unit 20 converts the temperature detected by each detecting means into a numerical value. (Hereinafter, the digitized data is referred to as the measured value). Here, the measurement values relating to the detection by the low-pressure refrigerant temperature detecting means 10, the cooled fluid inflow temperature detecting means 11, and the cooled fluid outflow temperature detecting means 12 are the low-pressure refrigerant temperature Tin, the cooled fluid inflow temperature θin, and the cooled object, respectively. It becomes the fluid outflow temperature θout. Further, based on a physical quantity obtained from a signal from another detection means, a calculation or the like is performed, and a measurement value necessary for the calculation unit 21 to perform the calculation is derived.

ここで、低圧冷媒温度検出手段10の代わりに、絞り手段4の冷媒流出口から圧縮機1の吸入側に到る冷媒の流路のいずれかの位置に低圧圧力検出手段(図示せず)を設けるようにしてもよい。そして、蒸発器5に流入する低温低圧の冷媒の温度については、低圧圧力検出手段からの信号に基づいて、測定部20が冷媒の蒸発温度に換算することで推測するようにしてもよい。   Here, instead of the low-pressure refrigerant temperature detection means 10, low-pressure pressure detection means (not shown) is provided at any position in the refrigerant flow path from the refrigerant outlet of the throttle means 4 to the suction side of the compressor 1. You may make it provide. Then, the temperature of the low-temperature and low-pressure refrigerant flowing into the evaporator 5 may be estimated by the measurement unit 20 converting it into the refrigerant evaporation temperature based on a signal from the low-pressure detection means.

また、壁面が凍結する温度を演算する際に用いる被冷却流体の流速Uwについて、例えば、流量計(図示せず)を設けることにより、流量計の検出に係る信号から直接測定値を導き出すようにするとよい。しかし、流量計を設けることができない場合は、冷却装置の最低周波数から求まる、冷却装置の運転使用上の被冷却流体の流速の下限値(固定値)を設定してもよい。さらに、冷媒回路および被冷却流体の運転状態量から推測するようにしてもよい。   Further, with respect to the flow velocity Uw of the fluid to be cooled used for calculating the temperature at which the wall surface freezes, for example, by providing a flow meter (not shown), the measured value is directly derived from the signal related to the detection of the flow meter. Good. However, when a flow meter cannot be provided, a lower limit value (fixed value) of the flow rate of the fluid to be cooled for operation use of the cooling device, which is obtained from the lowest frequency of the cooling device, may be set. Furthermore, it may be estimated from the operating state quantities of the refrigerant circuit and the fluid to be cooled.

演算部21は、測定部20の処理による測定値等に基づいて、例えば判定部23が判定を行うための数値演算を行う。記憶部22は、測定部20の測定値、演算部21による演算結果の値等をデータとして記憶する。判定部23は、演算部21の演算結果等に基づいて判定処理を行う。本実施の形態では、特に被冷却流体の凍結の有無または凍結の可能性について判定処理する。制御部24は冷却装置の制御を行う。本実施の形態においては、特に被冷却流体の凍結を防止するため、判定部23の判定結果に基づいて、圧縮機1、送風機3、絞り手段4およびポンプ6の制御処理を行う。また、凍結に至る場合等は、報知部25に警報を発報させる処理を行う。   The calculation unit 21 performs numerical calculation for the determination unit 23 to perform determination, for example, based on a measurement value or the like obtained by processing of the measurement unit 20. The storage unit 22 stores the measurement value of the measurement unit 20, the value of the calculation result by the calculation unit 21, and the like as data. The determination unit 23 performs determination processing based on the calculation result of the calculation unit 21 and the like. In the present embodiment, in particular, determination processing is performed regarding the presence or absence of freezing of the fluid to be cooled or the possibility of freezing. The control unit 24 controls the cooling device. In the present embodiment, in particular, in order to prevent freezing of the fluid to be cooled, control processing of the compressor 1, the blower 3, the throttle means 4, and the pump 6 is performed based on the determination result of the determination unit 23. Further, in the case of freezing, a process for causing the notification unit 25 to issue an alarm is performed.

ここで、本実施の形態の測定部20、演算部21、判定部23、制御部24は、例えばマイクロコンピュータ等のデータ処理手段で構成する。また、記憶部22は、例えば半導体メモリ等の記憶手段によって構成する。   Here, the measurement unit 20, the calculation unit 21, the determination unit 23, and the control unit 24 of the present embodiment are configured by data processing means such as a microcomputer. The storage unit 22 is configured by storage means such as a semiconductor memory.

(動作)
次に、本実施の形態における冷却装置の基本的な動作について図1を用いて説明する。圧縮機1、送風機3およびポンプ6を起動する。冷媒回路における冷媒は、圧縮機1に吸入され、圧縮されて高圧のガス冷媒となる。その後、高圧のガス冷媒は、凝縮器2に送られて、送風機3によって供給される流体と熱交換を行って凝縮し、放熱して凝縮し、例えば高圧液体冷媒となる。
(Operation)
Next, the basic operation of the cooling device in the present embodiment will be described with reference to FIG. The compressor 1, the blower 3, and the pump 6 are started. The refrigerant in the refrigerant circuit is sucked into the compressor 1 and compressed to become a high-pressure gas refrigerant. Thereafter, the high-pressure gas refrigerant is sent to the condenser 2, performs heat exchange with the fluid supplied by the blower 3, condenses, dissipates heat, condenses, and becomes a high-pressure liquid refrigerant, for example.

そして、この高圧液体冷媒は、絞り手段4によって減圧されて、低温低圧の気液二相冷媒となり蒸発器5に導かれる。そして、ポンプ6により供給される被冷却流体と熱交換を行って吸熱して蒸発し、低圧気体冷媒となって圧縮機1へ戻される。ここで、絞り手段4は、圧縮機1の吸入側における過熱度が所定値になるように蒸発器5を流れる冷媒の流量を制御しているため、蒸発器5から流出する気体の冷媒は、所定の過熱度を有する状態となる。   Then, the high-pressure liquid refrigerant is decompressed by the throttle means 4 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and led to the evaporator 5. Then, heat exchange is performed with the fluid to be cooled supplied by the pump 6 to absorb heat and evaporate, and the low-pressure gas refrigerant is returned to the compressor 1. Here, since the throttle means 4 controls the flow rate of the refrigerant flowing through the evaporator 5 so that the degree of superheat on the suction side of the compressor 1 becomes a predetermined value, the gaseous refrigerant flowing out of the evaporator 5 is It will be in the state which has predetermined | prescribed superheat degree.

一方、ポンプ6により蒸発器5に送られ、冷却された被冷却流体は、配管を介して要求される冷熱負荷へ導かれる。ここで、蒸発器5内は冷熱負荷における要求に応じ、かつ被冷却流体が凍結しない範囲での流量の冷媒が流れるように制御部24にて圧縮機1の運転容量が制御される。   On the other hand, the fluid to be cooled which is sent to the evaporator 5 by the pump 6 and cooled is led to a required cooling load through the pipe. Here, the operation capacity of the compressor 1 is controlled by the control unit 24 so that the refrigerant flows in the evaporator 5 in accordance with the demands of the cooling load and in a range where the fluid to be cooled does not freeze.

図2は定常時における被冷却流体の凍結現象を説明するための図である。図2において、横軸は被冷却流体流入温度θin[℃]、縦軸は蒸発器5の被冷却流体と冷媒との伝熱面の壁面温度θw[℃]である。そして、被冷却流体流入温度θin[℃]に対する被冷却流体が凍結する限界の壁面温度θw[℃](以下、凍結壁面温度θwf[℃]と称する)の関係を被冷却流体の流速Uw[m/s]毎にグラフ化し、凍結壁面温度曲線として表している。   FIG. 2 is a diagram for explaining the freezing phenomenon of the fluid to be cooled in a steady state. In FIG. 2, the horizontal axis represents the cooled fluid inflow temperature θin [° C.], and the vertical axis represents the wall surface temperature θw [° C.] of the heat transfer surface between the cooled fluid and the refrigerant in the evaporator 5. The relationship between the limit wall surface temperature θw [° C.] (hereinafter referred to as the frozen wall temperature θwf [° C.]) and the flow rate Uw [m] of the fluid to be cooled is related to the inflow temperature θin [° C.] / S] and graphed as a frozen wall surface temperature curve.

ここで、凍結判定状態量となる凍結壁面温度θwfは、被冷却流体が凍結する限界の壁面温度θwであることから、被冷却流体流入温度θin、被冷却流体の流速Uwおよび凝固点である凍結温度θf[℃]に応じて変化することが知られている。凍結壁面温度θwfと被冷却流体流入温度θin、被冷却流体の流速Uwおよび凍結温度θfの関係は、例えば、シミュレーションや実験等により求めることができる。   Here, the frozen wall surface temperature θwf that is the freezing determination state quantity is the limit wall surface temperature θw at which the fluid to be cooled freezes. Therefore, the fluid inlet temperature θin, the flow velocity Uw of the fluid to be cooled, and the freezing temperature that is the freezing point. It is known to change according to θf [° C.]. The relationship between the frozen wall surface temperature θwf, the cooled fluid inflow temperature θin, the flow velocity Uw of the cooled fluid, and the frozen temperature θf can be obtained by, for example, simulation or experiment.

図2より、被冷却流体は、被冷却流体流入温度θinが低く、被冷却流体の流速Uwが低いほど凍結しやすいことがわかる。また、図2において、凍結壁面温度曲線より壁温度θwの低い領域は、被冷却流体が凍結することによって蒸発器5の流路が閉塞する閉塞領域であり、壁温度θwの高い領域は被冷却流体が凍結しない非閉塞領域となる。   FIG. 2 shows that the cooled fluid is more likely to freeze as the cooled fluid inflow temperature θin is lower and the flow velocity Uw of the cooled fluid is lower. In FIG. 2, the region where the wall temperature θw is lower than the frozen wall temperature curve is a closed region where the flow path of the evaporator 5 is closed when the fluid to be cooled freezes, and the region where the wall temperature θw is high is cooled. This is a non-occluding region where the fluid does not freeze.

図3は過渡時における被冷却流体の凍結現象を説明するための図である。図3において、横軸は冷却時間t[sec]、縦軸は壁面温度θw[℃]である。そして、被冷却流体流入温度θinまたは被冷却流体の流速Uwによって冷却開始から被冷却流体が凍結する凍結壁面温度θwfの関係をグラフ化し、凍結壁面温度曲線として表している。   FIG. 3 is a diagram for explaining the freezing phenomenon of the fluid to be cooled during the transition. In FIG. 3, the horizontal axis represents the cooling time t [sec], and the vertical axis represents the wall surface temperature θw [° C.]. Then, the relationship of the frozen wall surface temperature θwf at which the cooled fluid freezes from the start of cooling according to the cooled fluid inflow temperature θin or the flow velocity Uw of the cooled fluid is graphed and expressed as a frozen wall surface temperature curve.

ここで、凍結壁面温度θwfは、冷却時間t、被冷却流体流入温度θin、被冷却流体の流速Uwおよび凝固点である凍結温度θfに応じて変化することが知られている。凍結壁面温度θwfと冷却時間t、被冷却流体流入温度θin、被冷却流体の流速Uwおよび凝固点である凍結温度θfとの関係は、例えば、シミュレーションや実験等により求めることができる。   Here, it is known that the frozen wall surface temperature θwf changes in accordance with the cooling time t, the cooled fluid inflow temperature θin, the flow velocity Uw of the cooled fluid, and the freezing temperature θf that is a freezing point. The relationship between the frozen wall surface temperature θwf and the cooling time t, the fluid to be cooled inflow temperature θin, the flow velocity Uw of the fluid to be cooled, and the freezing temperature θf that is the freezing point can be obtained by, for example, simulation or experiment.

図3より、被冷却流体は、被冷却流体流入温度θinが低く、被冷却流体の流速Uwが低く、冷却時間tが長いほど凍結しやすいことがわかる。また、図3においても図2と同様に、凍結壁面温度曲線より壁温度θwの低い領域は閉塞領域であり、壁温度θwの高い領域は非閉塞領域となる。   3 that the fluid to be cooled is more likely to freeze as the fluid inlet temperature θin is lower, the flow velocity Uw of the fluid to be cooled is lower, and the cooling time t is longer. Also in FIG. 3, as in FIG. 2, the region where the wall temperature θw is lower than the frozen wall temperature curve is a closed region, and the region where the wall temperature θw is high is a non-closed region.

図4は過渡から定常に至るまでの被冷却流体が凍結する凍結壁面温度θwfの関係を表す図である。図4については、図3と同様に横軸は冷却時間t[sec]、縦軸は壁面温度θw[℃]である。また、被冷却流体流入温度θinおよび被冷却流体の流速Uwの値を固定している。   FIG. 4 is a diagram showing the relationship of the frozen wall surface temperature θwf at which the fluid to be cooled freezes from transient to steady state. 4, the horizontal axis is the cooling time t [sec] and the vertical axis is the wall surface temperature θw [° C.] as in FIG. 3. Further, the values of the fluid to be cooled inflow temperature θin and the flow velocity Uw of the fluid to be cooled are fixed.

図4において、過渡時凍結壁面温度θwft[℃]は冷却時間t、被冷却流体流入温度θinおよび被冷却流体の流速Uwより演算可能である。また、定常時凍結壁面温度θwfs[℃]は、被冷却流体流入温度θinおよび被冷却流体の流速Uwより算出可能である。このため、冷却装置の運転状態から時々刻々低圧冷媒温度検出手段10の検出に係る温度が、演算される凍結壁面温度θwfに対して、図4に示すように所定のマージンの値αθ[℃]以上になるように、冷却装置の各種アクチュエータを制御すれば被冷却流体の凍結を回避することが可能である。   In FIG. 4, the transient frozen wall surface temperature θwft [° C.] can be calculated from the cooling time t, the cooled fluid inflow temperature θin, and the flow velocity Uw of the cooled fluid. Further, the stationary frozen wall temperature θwfs [° C.] can be calculated from the cooled fluid inflow temperature θin and the flow velocity Uw of the cooled fluid. For this reason, the temperature related to the detection by the low-pressure refrigerant temperature detecting means 10 from the operating state of the cooling device is a predetermined margin value αθ [° C.] as shown in FIG. 4 with respect to the calculated frozen wall surface temperature θwf. As described above, it is possible to avoid freezing of the fluid to be cooled by controlling various actuators of the cooling device.

(蒸発器内被冷却流体の流量不均一の推測)
図5は被冷却流体と蒸発器5内における流路との関係を説明するための図である。本実施の形態では、水熱交換器である蒸発器5に流入した被冷却流体は、蒸発器5内でn本の流路に分岐した後、各流路において冷却され、再度合流して蒸発器5から流出するものとする。
(Estimation of uneven flow rate of fluid to be cooled in the evaporator)
FIG. 5 is a diagram for explaining the relationship between the fluid to be cooled and the flow path in the evaporator 5. In the present embodiment, the fluid to be cooled that has flowed into the evaporator 5 that is a water heat exchanger is branched into n channels in the evaporator 5, then cooled in each channel, and merged again to evaporate. It shall flow out of the vessel 5.

図6は各流路の流量バラツキを表す図である。図6のように、蒸発器5のような水熱交換器内における各流路に流れる被冷却流体の流量は均一ではない。そこで、蒸発器5の流入出側から見て奥側の流路ほど流量が比例して大きくなると仮定し、最も手前側の流路と最も奥側の流路において、平均水流量(Gw/n)に対して±ε%のバラツキがあるものとして考える。   FIG. 6 is a diagram showing the flow rate variation of each flow path. As shown in FIG. 6, the flow rate of the fluid to be cooled flowing in each flow path in the water heat exchanger such as the evaporator 5 is not uniform. Therefore, it is assumed that the flow rate increases in proportion to the flow path on the back side when viewed from the inflow / outflow side of the evaporator 5, and the average water flow rate (Gw / n) in the flow path on the front side and the flow path on the deepest side. )) With a variation of ± ε%.

本実施の形態における蒸発器5が例えば水熱交換器であった場合、水熱交換器全体での交換に係る熱交換量(熱収支)は(1)式で表すことができる。ここで、Cpは被冷却流体の定圧比熱[J/kg・K]である。また、Gwは被冷却流体の流量[kg/s]、ρは被冷却流体の密度[kg/m3 ]である。
Q=Gw×Cp×ρ×(θin−θout) …(1)
When the evaporator 5 in the present embodiment is, for example, a water heat exchanger, the heat exchange amount (heat balance) related to the exchange in the entire water heat exchanger can be expressed by the equation (1). Here, Cp is the constant pressure specific heat [J / kg · K] of the fluid to be cooled. Gw is the flow rate [kg / s] of the fluid to be cooled, and ρ is the density [kg / m 3 ] of the fluid to be cooled.
Q = Gw × Cp × ρ × (θin−θout) (1)

また、水熱交換器である蒸発器5内のk番目の流路での熱交換量は(2)式で表すことができる。ここで、θout(k)は、蒸発器内部被冷却流体温度[℃]とする。
Q(k)=Gw(k)×Cp×ρ×(θin−θout(k)) …(2)
Moreover, the heat exchange amount in the k-th flow path in the evaporator 5 which is a water heat exchanger can be expressed by equation (2). Here, θout (k) is an evaporator internal cooled fluid temperature [° C.].
Q (k) = Gw (k) × Cp × ρ × (θin−θout (k)) (2)

ここで、k番目の流路における被冷却流体の流量Gw(k)は(3)式で表すことができる。ここで、式における平均水流量に対するバラツキ(平均水流量バラツキ)εはε[%]/100であるものとする。
Gw(k)=(1+(2ε/n−1)×(k−1)−ε)×Gw …(3)
Here, the flow rate Gw (k) of the fluid to be cooled in the k-th flow path can be expressed by Equation (3). Here, the variation with respect to the average water flow rate in the equation (average water flow rate variation) ε is assumed to be ε [%] / 100.
Gw (k) = (1+ (2ε / n−1) × (k−1) −ε) × Gw (3)

各流路での熱交換量が等しいと仮定すると、各熱交換量の合計が、全体の熱交換量となるので(4)式が成り立つ。
Q=ΣQ(k)=n×Q(k) …(4)
Assuming that the heat exchange amount in each flow path is equal, the sum of the heat exchange amounts is the total heat exchange amount, so that equation (4) holds.
Q = ΣQ (k) = n × Q (k) (4)

(1)式〜(4)式より(5)式が成り立つ。
θin−θout=(1+(2ε/n−1)×(k−1)−ε)
×(θin−θout(k)) …(5)
Equation (5) is established from Equations (1) to (4).
θin−θout = (1+ (2ε / n−1) × (k−1) −ε)
× (θin−θout (k)) (5)

(5)式を変形すると、(6)式のようになる。
θout(k)=(θin×((2ε/n−1)×(k−1)−ε)+θout)
/(1+(2ε/n−1)×(k−1)−ε) …(6)
When formula (5) is modified, formula (6) is obtained.
θout (k) = (θin × ((2ε / n−1) × (k−1) −ε) + θout)
/ (1+ (2ε / n−1) × (k−1) −ε) (6)

(6)式において、流路数nは水熱交換器のスペック(プレート枚数)で決まる。したがって、図1に示す冷却装置において、被冷却流体流入温度検出手段11の検出に係る被冷却流体流入温度θinと、被冷却流体流出温度検出手段12の検出に係る被冷却流体流出温度θoutと、平均水流量バラツキεに基づいて、蒸発器内部被冷却流体温度θout(k)を(6)式から演算して温度分布(バラツキ)を推測することができる。また、同様にして、(2)式から蒸発器内部の被冷却流体流量Gw(k)にて流量分布(バラツキ)を推測することができるため、ここから被冷却流体流量Gw、つまりは被冷却流体の流速Uwを推測することも可能である。   In equation (6), the number n of flow paths is determined by the specifications (number of plates) of the water heat exchanger. Therefore, in the cooling device shown in FIG. 1, the cooled fluid inflow temperature θin according to the detection by the cooled fluid inflow temperature detecting means 11, the cooled fluid outflow temperature θout according to the detection by the cooled fluid outflow temperature detecting means 12, Based on the average water flow variation ε, the evaporator internal cooled fluid temperature θout (k) can be calculated from the equation (6) to estimate the temperature distribution (variation). Similarly, since the flow distribution (variation) can be estimated from the equation (2) based on the fluid flow rate Gw (k) inside the evaporator, the fluid flow rate Gw to be cooled, that is, It is also possible to estimate the flow velocity Uw of the fluid.

図7および図8は平均水流量バラツキεと蒸発器5内の各流路の温度の関係を表す図である。図7は圧縮機1の運転容量を100%とした場合、図8は圧縮機1の運転容量を20%とした場合における例を表している。例えば図1のような冷却装置において、被冷却流体流入温度θinを固定の条件で、横軸に平均水流量バラツキε[%]、縦軸に温度[℃]をとったグラフである。図7、8中の点線は被冷却流体流出温度θoutを表し、蒸発器5の被冷却流体の流出口合流部分における被冷却流体の温度を示す。また、θout(1)は蒸発器5内部において流入出口に最も近い手前側の流路を流れる被冷却流体の温度、実線のθout(n)は蒸発器5内部において流入出口に最も遠い奥側の流路を流れる被冷却流体の温度を示している。   7 and 8 are diagrams showing the relationship between the average water flow rate variation ε and the temperature of each flow path in the evaporator 5. FIG. 7 shows an example when the operating capacity of the compressor 1 is 100%, and FIG. 8 shows an example when the operating capacity of the compressor 1 is 20%. For example, in the cooling apparatus as shown in FIG. 1, the horizontal axis represents the average water flow rate variation ε [%] and the vertical axis represents the temperature [° C.], with the fluid inflow temperature θin being fixed. The dotted line in FIGS. 7 and 8 represents the cooled fluid outflow temperature θout, and indicates the temperature of the cooled fluid at the outlet confluence portion of the cooled fluid in the evaporator 5. In addition, θout (1) is the temperature of the fluid to be cooled flowing in the flow path on the near side closest to the inflow / outlet in the evaporator 5, and the solid line θout (n) is on the farthest side farthest from the inflow / outlet in the evaporator 5. The temperature of the to-be-cooled fluid which flows through a flow path is shown.

図7、図8から分かるように、θout(1)は被冷却流体流出温度θoutに対して、相対的に低い温度となり、平均水流量バラツキεが大きくなると低下していく傾向となる。それに対して、θout(n)は被冷却流体流出温度θoutに対して、相対的に高い温度となり、平均水流量バラツキεが大きくなると上昇していく傾向となる。この差は図6に示す平均水流量バラツキεによるものであり、流量が少ないところは蒸発器5内部で相対的に被冷却流体の温度が低くなり、流量が多いところは相対的に流体温度が高くなることを意味している。また、被冷却流体の温度は流入出口に最も近いθout(1)が最も低くなる。   As can be seen from FIGS. 7 and 8, θout (1) becomes a relatively low temperature with respect to the cooled fluid outflow temperature θout, and tends to decrease as the average water flow rate variation ε increases. On the other hand, θout (n) becomes a relatively high temperature with respect to the cooled fluid outflow temperature θout, and tends to increase as the average water flow variation ε increases. This difference is due to the average water flow variation ε shown in FIG. 6, where the temperature of the fluid to be cooled is relatively low in the evaporator 5 where the flow rate is small, and the fluid temperature is relatively high where the flow rate is high. It means to be higher. In addition, the temperature of the fluid to be cooled is lowest at θout (1) closest to the inlet / outlet.

また、図7と図8を比較すると分かるように、図7に示すような圧縮機1が運転容量100%の場合の被冷却流体温度の変化傾向に対して、図8に示すような圧縮機1が運転容量20%の場合の被冷却流体温度の変化傾向は相対的に小さくなる。例えば、図7および図8において、平均水流量バラツキεが30%の場合、被冷却流体流出温度θoutとθout(1)の差は、運転容量100%の場合が2.1℃、運転容量20%の場合は0.43℃となる。   Further, as can be seen by comparing FIG. 7 and FIG. 8, the compressor as shown in FIG. 8 with respect to the change tendency of the fluid temperature to be cooled when the compressor 1 as shown in FIG. 7 has an operating capacity of 100%. The change tendency of the temperature of the cooled fluid when 1 is 20% of the operating capacity is relatively small. For example, in FIG. 7 and FIG. 8, when the average water flow rate variation ε is 30%, the difference between the cooled fluid outflow temperatures θout and θout (1) is 2.1 ° C. when the operating capacity is 100%, and the operating capacity is 20 In the case of%, it becomes 0.43 ° C.

従来の凍結判定方法では、凍結判定に用いる凍結壁面温度θwfの演算値は、被冷却流体流入温度θin、被冷却流体の流速Uwおよび凝固点である凍結温度θfから演算していた。このとき、蒸発器5内部における被冷却流体の流量、温度のバラツキを考慮せずに演算を行っていたため、演算に係る凍結壁面温度θwfと実際の温度との乖離があった。   In the conventional freezing determination method, the calculation value of the frozen wall surface temperature θwf used for the freezing determination is calculated from the cooling fluid inflow temperature θin, the flow velocity Uw of the cooling fluid, and the freezing temperature θf that is a freezing point. At this time, since the calculation was performed without considering the flow rate and temperature variation of the fluid to be cooled in the evaporator 5, there was a difference between the frozen wall surface temperature θwf related to the calculation and the actual temperature.

そこで、本発明の実施形態では演算部21において平均水流量のバラツキεの概念を適用した演算を行い、前述したように、蒸発器5内部における被冷却流体の流速と温度のバラツキを定量化する。そして、蒸発器5内部における各流路のうち、流量や温度が最も低くなる流路の被冷却流体の温度を抽出し、被冷却流体流出温度検出手段12の検出に係る被冷却流体流出温度θoutとの差分について、凍結壁面温度θwfの演算値を補正する。また、その補正に係る凍結壁面温度θwfの値を記憶部22に記憶させる。そして、判定部23は、記憶部22に記憶された値に基づいて被冷却流体の「凍結の有無」または「凍結の可能性」があるか否かを判定する。   Therefore, in the embodiment of the present invention, the calculation unit 21 performs calculation applying the concept of the average water flow rate variation ε, and quantifies the flow rate and temperature variations of the fluid to be cooled in the evaporator 5 as described above. . Then, the temperature of the fluid to be cooled in the flow channel having the lowest flow rate and temperature is extracted from each flow channel in the evaporator 5, and the cooled fluid outflow temperature θout related to the detection by the cooled fluid outflow temperature detection means 12. The calculated value of the frozen wall temperature θwf is corrected with respect to the difference. Further, the value of the frozen wall surface temperature θwf related to the correction is stored in the storage unit 22. Then, the determination unit 23 determines whether there is “freezing” or “possibility of freezing” of the fluid to be cooled based on the value stored in the storage unit 22.

図9は凍結壁面温度θwfと補正前後における凍結判定閾値との関係を表す図である。蒸発器5内部における被冷却流体の温度が最も低くなる流路に合わせて補正することで、補正後の凍結判定閾値となる温度は、図9に示すように補正前に比べて上がる(凍結判定基準が厳しくなる)ことになる。   FIG. 9 is a diagram illustrating the relationship between the frozen wall surface temperature θwf and the freezing determination threshold value before and after correction. By correcting according to the flow path in which the temperature of the fluid to be cooled in the evaporator 5 is the lowest, the temperature serving as the corrected freezing determination threshold is higher than before the correction (freezing determination) as shown in FIG. The standard will be stricter).

図10は、実施の形態1における冷却装置の凍結防止制御手順を示したフローチャートを表す図である。次に、本実施の形態の特徴である、凍結防止制御に係る各部の処理と機器(アクチュエータ等)の動作について説明する。   FIG. 10 is a diagram illustrating a flowchart illustrating a freeze prevention control procedure of the cooling device according to the first embodiment. Next, the processing of each part and the operation of an apparatus (actuator or the like) relating to the freeze prevention control, which are features of the present embodiment, will be described.

まず、冷却装置が運転されると、判定部23は圧縮機1が稼動しているかを判定する(ステップS10)。圧縮機1が稼動していると判定すると、例えば演算部21が計測間隔Δt毎に積算運転時間カウンタ値tをインクリメント(増加)する(ステップS11)。圧縮機1が稼動していないと判定すると、積算運転時間カウンタ値tを0にリセットする(ステップS12)。この積算運転時間カウンタ値tは圧縮機1稼働の経過時間を表すことになる。   First, when the cooling device is operated, the determination unit 23 determines whether the compressor 1 is operating (step S10). If it is determined that the compressor 1 is operating, for example, the calculation unit 21 increments (increases) the integrated operation time counter value t at every measurement interval Δt (step S11). If it is determined that the compressor 1 is not operating, the accumulated operation time counter value t is reset to 0 (step S12). This accumulated operation time counter value t represents the elapsed time of the compressor 1 operation.

圧縮機1が稼動している場合は、測定部20は、各検出手段からの信号に基づいて蒸発器5の壁面温度θw、被冷却流体流入温度θin、被冷却流体流出温度θoutの測定値を得る処理を行う(ステップS13)。ここで、本実施の形態では、低圧冷媒温度検出手段10の検出に係る低圧冷媒温度Tinを壁面温度θwと仮定する。次に、被冷却流体の流速Uwの測定値を得るための処理を行う(ステップS14)。被冷却流体の流速Uwの測定値については、前述したように流量計等による検出、被冷却流体の流速の下限値に基づく設定等がある。   When the compressor 1 is in operation, the measuring unit 20 obtains measured values of the wall surface temperature θw, the cooled fluid inflow temperature θin, and the cooled fluid outflow temperature θout of the evaporator 5 based on signals from the respective detection means. The process to obtain is performed (step S13). Here, in the present embodiment, it is assumed that the low-pressure refrigerant temperature Tin related to the detection by the low-pressure refrigerant temperature detection means 10 is the wall surface temperature θw. Next, a process for obtaining a measured value of the flow velocity Uw of the fluid to be cooled is performed (step S14). As described above, the measured value of the flow velocity Uw of the fluid to be cooled includes detection by a flow meter or the like, setting based on the lower limit value of the flow velocity of the fluid to be cooled, and the like.

次に、被冷却流体の凝固点である凍結温度θf、被冷却流体流入温度θinおよび被冷却流体の流速Uwに基づいて、定常運転における蒸発器5の定常運転時閉塞壁面温度θwfsを算出する。また、凝固点である凍結温度θf、被冷却流体流入温度θin、被冷却流体の流速Uwおよび積算運転時間カウンタ値tに基づいて冷却開始時点での過渡運転時の蒸発器5の過渡運転時閉塞壁面温度θwftを算出する(ステップS15)。   Next, based on the freezing temperature θf that is the freezing point of the fluid to be cooled, the fluid inlet temperature θin and the flow velocity Uw of the fluid to be cooled, the closed wall temperature θwfs during steady operation of the evaporator 5 in steady operation is calculated. Further, the blocked wall surface during transient operation of the evaporator 5 during transient operation at the start of cooling based on the freezing temperature θf, the inflow temperature θin of the fluid to be cooled, the flow rate Uw of the fluid to be cooled, and the accumulated operation time counter value t. The temperature θwft is calculated (step S15).

次に、演算部21は流路カウンタ値kを0にリセットした上で(ステップS16)、流路カウンタ値kの値を1増加させる(ステップS17)。そして、流路カウンタ値kに基づいて、蒸発器5内の流路kについて、被冷却流体流入温度θin、被冷却流体流出温度θout、平均水流量バラツキεに基づいて、蒸発器内部被冷却流体温度θout(k)、被冷却流体の速度Uw(k)を算出する(ステップS18)。流路カウンタ値kがn/2+1であると判定するまで続ける(ステップS19)。ここで、nは蒸発器5内の流路数である。また、演算量を減らすため、被冷却流体の流出温度が平均よりも低くなるn/2+1までの蒸発器内部被冷却流体温度θout(k)、被冷却流体の速度Uw(k)を算出するようにしている。   Next, the calculation unit 21 resets the flow channel counter value k to 0 (step S16), and then increments the flow channel counter value k by 1 (step S17). Then, based on the flow channel counter value k, for the flow channel k in the evaporator 5, based on the cooled fluid inflow temperature θin, the cooled fluid outflow temperature θout, and the average water flow rate variation ε, the evaporator internal cooled fluid The temperature θout (k) and the speed Uw (k) of the fluid to be cooled are calculated (step S18). The process is continued until it is determined that the flow channel counter value k is n / 2 + 1 (step S19). Here, n is the number of flow paths in the evaporator 5. Further, in order to reduce the amount of calculation, the evaporator internal cooled fluid temperature θout (k) and the cooled fluid speed Uw (k) up to n / 2 + 1 where the outflow temperature of the cooled fluid is lower than the average are calculated. I have to.

次に、ステップS15において算出した定常運転時閉塞壁面温度θwfsおよび過渡運転時閉塞壁面温度θwftについて、被冷却流体流出温度θoutと蒸発器内部被冷却流体温度θout(k)の最小値とから(7)式、(8)式に基づく補正を行う(ステップS19)。ここで、θwfs1は補正定常運転時閉塞壁面温度、θwft1は補正過渡運転時閉塞壁面温度である。補正定常運転時閉塞壁面温度θwfs1と補正過渡運転時閉塞壁面温度θwft1とを記憶部22に記憶させる。
θwfs1=θwfs+(θout−MIN(θout(k))) …(7)
θwft1=θwft+(θout−MIN(θout(k))) …(8)
Next, with respect to the closed wall temperature θwfs during steady operation and the closed wall temperature θwft during transient operation calculated in step S15, from the minimum value of the cooled fluid outflow temperature θout and the evaporator internal cooled fluid temperature θout (k) (7 ) And correction based on the equation (8) are performed (step S19). Here, θwfs1 is the closed wall temperature during the corrected steady operation, and θwft1 is the closed wall temperature during the corrected transient operation. The storage unit 22 stores the corrected closed wall temperature θwfs1 during normal operation and the corrected closed wall temperature θwft1 during transient operation.
θwfs1 = θwfs + (θout−MIN (θout (k))) (7)
θwft1 = θwft + (θout−MIN (θout (k))) (8)

次に判定部23が、補正定常運転時閉塞壁面温度θwfs1と補正過渡運転時閉塞壁面温度θwft1とを比較する(ステップS21)。補正過渡運転時閉塞壁面温度θwft1の方が補正定常運転時閉塞壁面温度θwfs1の方より低ければ、補正過渡運転時閉塞壁面温度θwft1を凍結閉塞壁面温度θwfとする(ステップS22)。逆に補正過渡運転時閉塞壁面温度θwft1の方が補正定常運転時閉塞壁面温度θwfs1の方より低くなければ、補正定常運転時閉塞壁面温度θwfs1を凍結閉塞壁面温度θwfとする(ステップS23)。   Next, the determination unit 23 compares the closed wall temperature θwfs1 during the corrected steady operation with the closed wall temperature θwft1 during the corrected transient operation (step S21). If the corrected transient operation closed wall temperature θwft1 is lower than the corrected steady operation closed wall temperature θwfs1, the corrected transient operation closed wall temperature θwft1 is set as the frozen closed wall temperature θwf (step S22). Conversely, if the closed wall temperature θwft1 during the corrected transient operation is not lower than the closed wall temperature θwfs1 during the corrected steady operation, the closed wall temperature θwfs1 during the corrected steady operation is set as the frozen closed wall temperature θwf (step S23).

判定部23は、以上のようにして得られた凍結壁面温度θwfと壁面温度θw(低圧冷媒温度検出手段10の検出に係る低圧冷媒温度Tin)と比較する(ステップS24)。壁面温度θwが凍結壁面温度θwfと所定のマージン温度αθとの和より高いと判定すると、凍結による流路の閉塞は発生しないとして、ステップS1に戻って凍結防止制御に係る処理を続ける。壁面温度θwが凍結壁面温度θwfと所定のマージン温度αθとの和以下であると判定すると、制御部24は凍結を防止するための冷却装置における機器の制御を行う(ステップS25)。   The determination unit 23 compares the frozen wall surface temperature θwf and the wall surface temperature θw (low-pressure refrigerant temperature Tin according to detection by the low-pressure refrigerant temperature detecting means 10) obtained as described above (step S24). If it is determined that the wall surface temperature θw is higher than the sum of the frozen wall surface temperature θwf and the predetermined margin temperature αθ, the flow path is blocked by freezing, and the process returns to step S1 to continue the process related to the freeze prevention control. If it is determined that the wall surface temperature θw is equal to or lower than the sum of the frozen wall surface temperature θwf and the predetermined margin temperature αθ, the control unit 24 controls the devices in the cooling device to prevent freezing (step S25).

ここで、凍結を防止するための機器の制御について説明する。ステップS25では、制御部25は、圧縮機1の現在の運転周波数Fに対して、ある一定の比率であるアンロード比率fdだけ圧縮機1の運転周波数を低下させる制御を行っている。このような制御を行うことで、圧縮機1の吸入側における低圧圧力が上昇し、蒸発器5へ流入する冷媒の温度が上昇して冷却能力が低下する。その結果、被冷却流体の凍結を防止することができる。また、低い冷媒の流入温度を維持できるため、冷却能力を最大限に利用できるので、効率の高い運転が実現できる。   Here, control of a device for preventing freezing will be described. In step S <b> 25, the control unit 25 performs control to reduce the operation frequency of the compressor 1 by an unload ratio fd that is a certain ratio with respect to the current operation frequency F of the compressor 1. By performing such control, the low-pressure pressure on the suction side of the compressor 1 increases, the temperature of the refrigerant flowing into the evaporator 5 increases, and the cooling capacity decreases. As a result, freezing of the fluid to be cooled can be prevented. In addition, since the low refrigerant inflow temperature can be maintained, the cooling capacity can be utilized to the maximum, so that highly efficient operation can be realized.

以上のように、実施の形態1の冷却装置によれば、演算部21が被冷却流体の流量・温度バラツキを推測し、それに対して凍結判定に用いる凍結壁面温度θwfによる補正を追加して適用し、判定部23が凍結に係る判定を行うようにしたので、適切な凍結状態判定量を閾値として決定することができる。このため、凍結壁面温度θwfが実際よりも高く演算されることで、本来、被冷却流体が凍結する条件にも関わらず、適切に凍結防止手段が作動することもない。また、実際よりも低く演算されることで、被冷却流体が凍結しない条件にも関わらず、圧縮機1の運転容量を低下させてしまうこともない。このため、より高精度に水熱交換器の凍結を防止することが可能となる。   As described above, according to the cooling device of the first embodiment, the calculation unit 21 estimates the flow rate / temperature variation of the fluid to be cooled, and additionally applies correction based on the frozen wall surface temperature θwf used for freezing determination. In addition, since the determination unit 23 performs the determination related to freezing, an appropriate frozen state determination amount can be determined as a threshold value. For this reason, the freezing wall temperature θwf is calculated to be higher than the actual value, so that the freezing prevention means does not operate properly regardless of the conditions under which the fluid to be cooled originally freezes. Further, by calculating lower than the actual value, the operating capacity of the compressor 1 is not reduced regardless of the condition that the fluid to be cooled does not freeze. For this reason, it becomes possible to prevent freezing of the water heat exchanger with higher accuracy.

特に、被冷却流体の流量・温度バラツキにより、水熱交換器である蒸発器5内部において、部分的に流速が低く、凍結壁面温度θwfが高くなることがあるため、部分凍結の恐れがある。本実施の形態のように、バラツキを考慮して凍結判定に用いる凍結壁面温度θwfを補正することにより、蒸発器5内における部分凍結を回避することができる。   In particular, due to variations in the flow rate and temperature of the fluid to be cooled, the flow velocity is partially low and the freezing wall temperature θwf may be high inside the evaporator 5 that is a hydrothermal exchanger, so there is a risk of partial freezing. As in the present embodiment, partial freezing in the evaporator 5 can be avoided by correcting the frozen wall surface temperature θwf used for freezing determination in consideration of variations.

以上より、被冷却流体の凍結を防止するとともに、冷却装置の冷凍能力を最大限に利用可能であり、凍結に起因する蒸発器の熱交性能劣化を事前に検知し、確実に凍結による破壊を防止し機器の安全を図ることができる。   As described above, it is possible to prevent freezing of the fluid to be cooled and to maximize the refrigeration capacity of the cooling device, detect in advance the heat exchange performance deterioration of the evaporator due to freezing, and reliably destroy it by freezing. Can prevent the safety of the equipment.

実施の形態2.
前述した実施の形態1では、圧縮機1の運転周波数を制御して被冷却流体の凍結を防止するようにしたが、これに限るものではない。例えば、送風機3が凝縮器2に供給する流体の量を低下させるようにしてもよい。送風量を低下させると、凝縮器2において、冷媒と流体との熱交換量が低下し、冷媒圧力の上昇とともに、圧縮機1の吐出冷媒圧力が上昇する。圧縮機1の吐出冷媒圧力が上昇すると、圧縮効率が低下し、冷媒循環量が低下し、冷却能力が低下するので、被冷却流体の凍結を防止することができる。
Embodiment 2. FIG.
In the first embodiment described above, the operation frequency of the compressor 1 is controlled to prevent the fluid to be cooled from freezing, but the present invention is not limited to this. For example, you may make it reduce the quantity of the fluid which the air blower 3 supplies to the condenser 2. FIG. When the air flow rate is reduced, the heat exchange amount between the refrigerant and the fluid is reduced in the condenser 2, and the discharge refrigerant pressure of the compressor 1 is increased as the refrigerant pressure is increased. When the discharge refrigerant pressure of the compressor 1 increases, the compression efficiency decreases, the refrigerant circulation amount decreases, and the cooling capacity decreases, so that the fluid to be cooled can be prevented from freezing.

また、被冷却流体の凍結を防止する際に、絞り手段4の開口面積を段階的もしくは連続的に増加させてもよく、このようにすることで圧縮機1の吐出冷媒圧力と吸入圧力の差が小さくなり、低圧が上昇するため、蒸発器5の流入冷媒温度が上昇し、被冷却流体の凍結を防止することができる。   In addition, when preventing the fluid to be cooled from freezing, the opening area of the throttle means 4 may be increased stepwise or continuously, and in this way, the difference between the discharge refrigerant pressure and the suction pressure of the compressor 1. Since the pressure decreases and the low pressure rises, the temperature of the refrigerant flowing into the evaporator 5 rises, and the fluid to be cooled can be prevented from freezing.

さらに、凍結を防止する際に、ポンプ6による被冷却流体の送出量を段階的もしくは連続的に増加させてもよく、このようにすることで蒸発器5内の被冷却流体の流速が増加するため、凍結する閉塞壁面温度θwfが増加し、被冷却流体の凍結を防止することができる。   Further, when the freezing is prevented, the delivery amount of the fluid to be cooled by the pump 6 may be increased stepwise or continuously, and in this way, the flow velocity of the fluid to be cooled in the evaporator 5 is increased. For this reason, the frozen wall surface temperature θwf increases, and the fluid to be cooled can be prevented from freezing.

ここで、実施の形態1において説明した、凍結防止制御の実行有無にかかわるマージン温度αθの値について、一定値である必要はない。例えば、冷却装置運転開始時(圧縮機1稼働開始時)からの経過時間に基づいて段階的にマージン温度αθの値を設定するようにしてもよい。そして、設定した値に応じて、制御部24の制御方法もしくは操作量等を変更してもよい。また、壁面温度θwと凍結壁面温度θwfとの温度差に応じて、制御方法もしくは操作量を変更するようにしてもよい。   Here, the value of the margin temperature αθ related to the execution / non-execution of the freeze prevention control described in the first embodiment does not have to be a constant value. For example, the value of the margin temperature αθ may be set in a stepwise manner based on the elapsed time from the start of cooling device operation (at the start of compressor 1 operation). And according to the set value, you may change the control method of the control part 24, or the operation amount. Further, the control method or the operation amount may be changed according to the temperature difference between the wall surface temperature θw and the frozen wall surface temperature θwf.

さらに、壁面温度θwが凍結壁面温度θwfに対して所定の設定値以下に低下したと判定部23が判定したときに、制御部24は、報知部25により警報を出力する信号を出力し、圧縮機1を停止させる停止信号を出力してもよい。これにより、圧縮機1の容量を低下させる制御を行ったにもかかわらず被冷却流体が凍結するおそれが解消しない場合に、報知部25による警報を発し、圧縮機1を停止することにより安全を図ることができる。 この場合、制御部24は、圧縮機1の停止信号を解除する手段を備えていることが好ましい。これにより、例えば、冷媒回収運転等、圧縮機の停止させる必要がない運転を行っているときに、制御部24が凍結防止に係る制御の処理を行わないようにすることができる。   Further, when the determination unit 23 determines that the wall surface temperature θw has decreased below a predetermined set value with respect to the frozen wall surface temperature θwf, the control unit 24 outputs a signal for outputting an alarm by the notification unit 25 and compresses the signal. A stop signal for stopping the machine 1 may be output. As a result, when the control of reducing the capacity of the compressor 1 has been performed and the possibility that the fluid to be cooled will freeze will not be resolved, a warning is given by the notification unit 25, and the compressor 1 is stopped to ensure safety. Can be planned. In this case, it is preferable that the control unit 24 includes means for canceling the stop signal of the compressor 1. Thereby, for example, when an operation that does not require the compressor to be stopped, such as a refrigerant recovery operation, is performed, it is possible to prevent the control unit 24 from performing control processing related to freeze prevention.

また、一度、凍結防止制御より圧縮機1を停止させた場合は、蒸発器5が凍結しやすい状態となっていることが想定される。そこで、再度圧縮機1を起動する際、前回の起動周波数(起動回転数)よりも低い周波数(回転数)で運転を開始すれば、すぐに停止してしまう可能性を低くすることができ、より安全な運転を行うことができる。   Moreover, once the compressor 1 is stopped by the freeze prevention control, it is assumed that the evaporator 5 is easily frozen. Therefore, when starting the compressor 1 again, if the operation is started at a frequency (rotational speed) lower than the previous startup frequency (starting rotational speed), the possibility of stopping immediately can be reduced. Safer driving can be performed.

また、判定部23が蒸発器5の凍結に係る状態を判定する際に、実施の形態1では判定に係る閾値を1回でも超えた場合に、すぐに凍結防止に係る制御を行うようにしたが、例えば、検出手段(センサー)等の誤差を考慮して判定に猶予を設けるようにしてもよい。例えば、所定の時間内に所定の回数判定条件を満たした場合または制御部24によって制御が行われた回数から異常と判定するようにしてもよい。このようにすることで、一過性の状態変動を変別することができると同時に、徐々に悪化する異常に対しても迅速に対応することができる。更に、異常の兆候を判別することができ、予知精度の向上を図ることができる。   Further, when the determination unit 23 determines the state related to the freezing of the evaporator 5, in the first embodiment, when the threshold value related to the determination is exceeded even once, the control related to freezing prevention is immediately performed. However, for example, a delay may be provided in the determination in consideration of errors such as detection means (sensor). For example, an abnormality may be determined when a predetermined number of times determination condition is satisfied within a predetermined time or from the number of times control is performed by the control unit 24. By doing so, it is possible to change transient state fluctuations, and at the same time, it is possible to quickly cope with abnormalities that gradually deteriorate. Furthermore, the sign of abnormality can be determined, and the prediction accuracy can be improved.

実施の形態3.
前述した実施の形態1においては、被冷却流体流出温度検出手段12の検出に基づいて被冷却流体流出温度θoutを測定値として得るようにしていた。例えば被冷却流体流出温度検出手段12を設けることができないような場合には、被冷却流体流入温度検出手段11の検出に係る被冷却流体流入温度θinと、あらかじめ仮定した所定の値となる平均水流量バラツキεとから被冷却流体流出温度θoutを推定するようにしてもよい。そして、凍結壁面温度θwfを補正推算して凍結判定に適用してもよい。
Embodiment 3 FIG.
In the first embodiment described above, the cooled fluid outflow temperature θout is obtained as a measured value based on the detection by the cooled fluid outflow temperature detecting means 12. For example, in the case where the cooled fluid outflow temperature detecting means 12 cannot be provided, the cooled fluid inflow temperature θin related to the detection by the cooled fluid inflow temperature detecting means 11 and the average water having a predetermined value assumed in advance. The cooled fluid outflow temperature θout may be estimated from the flow rate variation ε. Then, the frozen wall surface temperature θwf may be corrected and estimated and applied to the freezing determination.

また、蒸発器内部被冷却流体温度θout(k)の分布(バラツキ)を推測するのではなく、例えば図5に示すように蒸発器内部に蒸発器内部被冷却流体温度検出手段13を複数設置するようにしてもよい。例えば、蒸発器内部被冷却流体温度検出手段13の検出に係る測定値に基づいて、蒸発器5内部の平均水流量バラツキεを定量化し、凍結壁面温度θwfを補正推算して凍結判定に適用してもよい。   Further, instead of estimating the distribution (variation) of the evaporator internal cooled fluid temperature θout (k), for example, as shown in FIG. 5, a plurality of evaporator internal cooled fluid temperature detecting means 13 are installed in the evaporator. You may do it. For example, the average water flow variation ε inside the evaporator 5 is quantified based on the measurement value related to the detection by the evaporator internal cooled fluid temperature detecting means 13, and the frozen wall surface temperature θwf is corrected and applied to freeze determination. May be.

また、蒸発器内部被冷却流体温度検出手段13の代わりに、蒸発器内部被冷却流体流量検出手段(図示せず)を用いて、その検出値から水熱交換器内部の平均水流量バラツキεを定量化し、凍結壁面温度θwfを補正推算して凍結判定に適用してもよい。   Further, instead of the evaporator internal cooled fluid temperature detecting means 13, an evaporator internal cooled fluid flow rate detecting means (not shown) is used, and the average water flow variation ε inside the water heat exchanger is calculated from the detected value. It may be quantified and the frozen wall surface temperature θwf may be corrected and estimated and applied to the freezing determination.

また、平均水流量バラツキεに基づいて、水熱交換器内部の各流路のうち、流量が最小となる流路の被冷却流体の流速Uwの最小値を抽出し、被冷却流体の流速Uwの計測値、もしくは推測値を補正して、凍結壁面温度θwfを演算するようにしてもよい。   Further, based on the average water flow variation ε, the minimum value of the flow rate Uw of the fluid to be cooled in the flow channel having the minimum flow rate is extracted from each flow channel in the water heat exchanger, and the flow rate Uw of the fluid to be cooled is extracted. The frozen wall temperature θwf may be calculated by correcting the measured value or the estimated value.

また、蒸発器5の熱交換量Q[W]は(9)式のように表すこともできる。ここで、Kは蒸発器5の熱通過率[J/s・m2 ・K]、Aは蒸発器の伝熱面積[m2 ]、Tinは低圧冷媒温度(冷媒蒸発温度)[℃]である。
Q=A×K×((θin+θout)/2−Tin+273) …(9)
Further, the heat exchange amount Q [W] of the evaporator 5 can also be expressed as in equation (9). Here, K is the heat transfer rate [J / s · m 2 · K] of the evaporator 5, A is the heat transfer area [m 2 ] of the evaporator, and Tin is the low-pressure refrigerant temperature (refrigerant evaporation temperature) [° C.]. is there.
Q = A × K × ((θin + θout) / 2−Tin + 273) (9)

例えば図1に示す冷却装置において、被冷却流体流入温度θinは被冷却流体流入温度検出手段11にて検出され、被冷却流体流出温度θoutは被冷却流体流出温度検出手段12にて検出され、低圧冷媒温度Tinは低圧冷媒温度検出手段10にて検出される。よって、(7)式より熱交換量Qは伝熱面積Aと熱通過率Kとの積(以下、AK値と称す)から推測することができる。   For example, in the cooling device shown in FIG. 1, the cooled fluid inflow temperature θin is detected by the cooled fluid inflow temperature detecting means 11, and the cooled fluid outflow temperature θout is detected by the cooled fluid outflow temperature detecting means 12. The refrigerant temperature Tin is detected by the low-pressure refrigerant temperature detection means 10. Therefore, the heat exchange amount Q can be estimated from the product of the heat transfer area A and the heat transfer rate K (hereinafter referred to as AK value) from the equation (7).

図11は蒸発器5内における各流路の熱交換量とAK値との関係を説明するための図である。蒸発器5のk番目における流路での熱交換量を(10)式で表すことができる。ここで、AK(k)はk番目の流路におけるAK値である。
Q(k)=AK(k)×((θin+θout)/2−Tin+273)…(10)
FIG. 11 is a diagram for explaining the relationship between the heat exchange amount of each flow path in the evaporator 5 and the AK value. The amount of heat exchange in the k-th flow path of the evaporator 5 can be expressed by equation (10). Here, AK (k) is an AK value in the k-th flow path.
Q (k) = AK (k) × ((θin + θout) / 2−Tin + 273) (10)

(2)式が示すように、水熱交換器である蒸発器5内の流量・温度のバラツキが生じると熱交換量にもバラツキが生じることになる。そこで、図11に示すように各流路における熱交換量Q(k)のバラツキを、AK(k)を用いて(10)式より推算することによって平均水流量バラツキεを推測し、定量化することができる。これにより、流量・温度バラツキは蒸発器5(水熱交換器)の熱交換性能(熱交換量、AK値)から推測できる。   As shown in the equation (2), when the flow rate / temperature varies in the evaporator 5 which is a water heat exchanger, the heat exchange amount also varies. Therefore, as shown in FIG. 11, the average water flow variation ε is estimated and quantified by estimating the variation of the heat exchange amount Q (k) in each flow path from the equation (10) using AK (k). can do. Thereby, flow volume and temperature variation can be estimated from the heat exchange performance (heat exchange amount, AK value) of the evaporator 5 (water heat exchanger).

このように、平均水流量バラツキεの推測方法として、本実施の形態における蒸発器(水熱交換器)の熱交換性能(熱交換量、AK値)から推算してもよい。実施の形態1においては、前述のバラツキ推測方法では、蒸発器5における各流路の熱交換量が等しいと仮定した上で平均水流量バラツキεを規定したが、本実施の形態の推測方法では、前提を与えない場合でもバラツキを定量化することが可能となる。   Thus, as an estimation method of the average water flow variation ε, it may be estimated from the heat exchange performance (heat exchange amount, AK value) of the evaporator (water heat exchanger) in the present embodiment. In the first embodiment, in the above-described variation estimation method, the average water flow rate variation ε is defined on the assumption that the heat exchange amount of each flow path in the evaporator 5 is equal. However, in the estimation method of the present embodiment, Even when no premise is given, the variation can be quantified.

実施の形態4.
図1の測定部20、演算部21、記憶部22、判定部23、制御部24、報知部25は、例えばこれら全部あるいはこれらのうち一部が冷却装置の外部に設置されていても構わないし、これらのうち一部あるいは全部を具備していない構成であっても、何らかの代替手段、例えば遠隔地点の遠隔監視室にて通信手段で接続されたコンピュータが設置されている場合など、があれば構わない。
Embodiment 4 FIG.
The measurement unit 20, the calculation unit 21, the storage unit 22, the determination unit 23, the control unit 24, and the notification unit 25 in FIG. 1 may be all or a part of them, for example, installed outside the cooling device. Even if the configuration does not include some or all of these, if there is any alternative means, such as when a computer connected by communication means is installed in a remote monitoring room at a remote location, etc. I do not care.

また、遠隔監視室は冷却装置の複数の設備を監視するものであっても、個別の設備を監視するものであってもよい。また、戸建ての建築物の監視用コンピュータもしくは監視装置に接続されていてもよい。   Further, the remote monitoring room may monitor a plurality of facilities of the cooling device or may monitor individual facilities. Moreover, you may be connected to the monitoring computer or monitoring apparatus of a detached building.

本発明を利用すれば、被冷却流体を冷却する冷却装置において、被冷却流体の凍結を防止するとともに、冷却装置の冷凍能力を最大限に利用可能である。そして、凍結に起因する蒸発器の熱交性能劣化を事前に検知し、確実に凍結による破壊を防止し、機器の安全を図ることができる。   By using the present invention, in the cooling device that cools the fluid to be cooled, the fluid to be cooled can be prevented from freezing and the refrigeration capacity of the cooling device can be utilized to the maximum. And the heat exchanger performance degradation of the evaporator resulting from freezing can be detected in advance, and destruction by freezing can be surely prevented, and the safety of the equipment can be achieved.

1 圧縮機、2 凝縮器、3 送風機、4 絞り手段、5 蒸発器、6 ポンプ、10 低圧冷媒温度検出手段、11 被冷却流体流入温度検出手段、12 被冷却流体流出温度検出手段、13 蒸発器内部被冷却流体温度検出手段、20 測定部、21 演算部、22 記憶部、23 判定部、24 制御部、25 報知部。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 3 Blower, 4 Throttling means, 5 Evaporator, 6 Pump, 10 Low-pressure refrigerant temperature detection means, 11 Cooled fluid inflow temperature detection means, 12 Cooled fluid outflow temperature detection means, 13 Evaporator Internal cooling fluid temperature detection means, 20 measurement unit, 21 calculation unit, 22 storage unit, 23 determination unit, 24 control unit, 25 notification unit.

Claims (11)

冷媒を圧縮する圧縮機と、
該圧縮機により圧縮された冷媒を凝縮させる凝縮器と、
該凝縮器によって凝縮された冷媒を減圧させる絞り手段と、
該絞り手段によって減圧された冷媒を熱交換により蒸発させて被冷却流体を冷却する蒸発器とを配管接続して冷媒を循環させる冷凍サイクル回路を構成し、
前記蒸発器内部における前記被冷却流体の状態量の分布に基づいて、前記蒸発器全体に対して算出した凍結状況判定の閾値となる凍結判定状態量を補正する演算部と、
該演算部の補正に係る凍結判定状態量に基づいて凍結に係る状況を判定する判定部と、
該判定部による判定結果に基づいて、前記被冷却流体の凍結を防止するための処理を行う制御部と
を備えることを特徴とする冷却装置。
A compressor for compressing the refrigerant;
A condenser for condensing the refrigerant compressed by the compressor;
Throttle means for depressurizing the refrigerant condensed by the condenser;
A refrigerant circuit that evaporates the refrigerant decompressed by the throttling means by heat exchange and connects an evaporator that cools the fluid to be cooled to circulate the refrigerant is configured.
An arithmetic unit that corrects a freezing determination state amount serving as a freezing state determination threshold value calculated for the entire evaporator based on the state amount distribution of the fluid to be cooled inside the evaporator;
A determination unit for determining a situation related to freezing based on the freezing determination state quantity related to the correction of the calculation unit;
A cooling device comprising: a control unit that performs processing for preventing freezing of the fluid to be cooled based on a determination result by the determination unit.
前記蒸発器において前記冷媒の蒸発温度である低圧冷媒温度を検出するための低圧冷媒温度検出手段と、
前記蒸発器に流入する前記被冷却流体の温度である被冷却流体流入温度を検出するための被冷却流体流入温度検出手段と、
前記蒸発器から流出する前記被冷却流体の温度である被冷却流体流出温度を検出するための被冷却流体流出温度検出手段と
をさらに備え、
前記演算部は、前記被冷却流体流入温度と、前記被冷却流体流出温度とに基づいて、前記蒸発器内部における前記被冷却流体の状態量の分布を推測し、前記状態量の分布に基づいて、前記蒸発器全体に対して算出した凍結状況判定の閾値となる凍結判定状態量を補正し、
前記判定部は、前記低圧冷媒温度と該演算部の補正に係る凍結判定状態量とに基づいて凍結に係る状況を判定する
ことを特徴とする請求項1に記載の冷却装置。
Low-pressure refrigerant temperature detecting means for detecting a low-pressure refrigerant temperature that is an evaporation temperature of the refrigerant in the evaporator;
A to-be-cooled fluid inflow temperature detecting means for detecting a to-be-cooled fluid inflow temperature that is the temperature of the to-be-cooled fluid flowing into the evaporator;
A cooled fluid outflow temperature detecting means for detecting a cooled fluid outflow temperature that is a temperature of the cooled fluid flowing out of the evaporator;
The calculation unit estimates a state quantity distribution of the cooled fluid in the evaporator based on the cooled fluid inflow temperature and the cooled fluid outflow temperature, and based on the state quantity distribution. , To correct the freezing determination state amount as a freezing condition determination threshold calculated for the entire evaporator,
The cooling device according to claim 1, wherein the determination unit determines a state related to freezing based on the low-pressure refrigerant temperature and a freezing determination state amount related to correction of the calculation unit.
前記蒸発器において前記冷媒の蒸発温度である低圧冷媒温度を検出するための低圧冷媒温度検出手段と、
前記蒸発器に流入する前記被冷却流体の温度である被冷却流体流入温度を検出するための被冷却流体流入温度検出手段と
をさらに備え、
前記演算部は、前記蒸発器内部における前記被冷却流体の状態量のバラツキを仮定した値に基づいて、前記蒸発器全体に対して算出した凍結状況判定の閾値となる凍結判定状態量を補正し、
前記判定部は、前記低圧冷媒温度と該演算部の補正に係る凍結判定状態量とに基づいて凍結に係る状況を判定する
ことを特徴とする請求項1に記載の冷却装置。
Low-pressure refrigerant temperature detecting means for detecting a low-pressure refrigerant temperature that is an evaporation temperature of the refrigerant in the evaporator;
A cooled fluid inflow temperature detecting means for detecting a cooled fluid inflow temperature that is a temperature of the cooled fluid flowing into the evaporator;
The calculation unit corrects the freezing determination state amount that is a threshold for the freezing state determination calculated for the entire evaporator based on a value that assumes a variation in the state amount of the fluid to be cooled inside the evaporator. ,
The cooling device according to claim 1, wherein the determination unit determines a state related to freezing based on the low-pressure refrigerant temperature and a freezing determination state amount related to correction of the calculation unit.
前記蒸発器において前記冷媒の蒸発温度である低圧冷媒温度を検出するための低圧冷媒温度検出手段と、
前記蒸発器に流入する前記被冷却流体の温度である被冷却流体流入温度を検出するための被冷却流体流入温度検出手段と、
前記蒸発器内部における複数の流路をそれぞれ流れる前記被冷却流体の温度を検出するための蒸発器内部被冷却流体温度検出手段と
をさらに備え、
前記演算部は、前記蒸発器内部の各流路における前記被冷却流体の温度分布に基づいて、前記蒸発器全体に対して算出した凍結状況判定の閾値となる凍結判定状態量を補正し、
前記判定部は、前記低圧冷媒温度と該演算部の補正に係る凍結判定状態量とに基づいて凍結に係る状況を判定する
ことを特徴とする請求項1に記載の冷却装置。
Low-pressure refrigerant temperature detecting means for detecting a low-pressure refrigerant temperature that is an evaporation temperature of the refrigerant in the evaporator;
A to-be-cooled fluid inflow temperature detecting means for detecting a to-be-cooled fluid inflow temperature that is the temperature of the to-be-cooled fluid flowing into the evaporator;
An evaporator internal cooled fluid temperature detecting means for detecting the temperature of the cooled fluid flowing through each of the plurality of flow paths inside the evaporator;
The calculation unit corrects a freezing determination state amount serving as a freezing state determination threshold value calculated for the entire evaporator based on a temperature distribution of the fluid to be cooled in each flow path inside the evaporator,
The cooling device according to claim 1, wherein the determination unit determines a state related to freezing based on the low-pressure refrigerant temperature and a freezing determination state amount related to correction of the calculation unit.
前記蒸発器において前記冷媒の蒸発温度である低圧冷媒温度を検出するための低圧冷媒温度検出手段と、
前記蒸発器に流入する前記被冷却流体の温度である被冷却流体流入温度を検出するための被冷却流体流入温度検出手段と、
前記蒸発器内部における複数の流路をそれぞれ流れる前記被冷却流体の流量を検出するための蒸発器内部被冷却流体流量検出手段と
をさらに備え、
前記演算部は、前記蒸発器内部の各流路における前記被冷却流体の流量分布に基づいて、前記蒸発器全体に対して算出した凍結状況判定の閾値となる凍結判定状態量を補正し、
前記判定部は、前記低圧冷媒温度と該演算部の補正に係る凍結判定状態量とに基づいて凍結に係る状況を判定する
ことを特徴とする請求項1に記載の冷却装置。
Low-pressure refrigerant temperature detecting means for detecting a low-pressure refrigerant temperature that is an evaporation temperature of the refrigerant in the evaporator;
A to-be-cooled fluid inflow temperature detecting means for detecting a to-be-cooled fluid inflow temperature that is the temperature of the to-be-cooled fluid flowing into the evaporator;
An evaporator internal cooled fluid flow rate detecting means for detecting the flow rate of the cooled fluid flowing through each of the plurality of flow paths inside the evaporator;
The calculation unit corrects the freezing determination state amount serving as a freezing state determination threshold calculated for the entire evaporator based on the flow rate distribution of the fluid to be cooled in each flow path inside the evaporator,
The cooling device according to claim 1, wherein the determination unit determines a state related to freezing based on the low-pressure refrigerant temperature and a freezing determination state amount related to correction of the calculation unit.
前記蒸発器において前記冷媒の蒸発温度である低圧冷媒温度を検出するための低圧冷媒温度検出手段と、
前記蒸発器に流入する前記被冷却流体の温度である被冷却流体流入温度を検出するための被冷却流体流入温度検出手段と、
前記蒸発器から流出する前記被冷却流体の温度である被冷却流体流出温度を検出するための被冷却流体流出温度検出手段と
をさらに備え、
前記演算部は、前記蒸発器の熱交換性能、低圧冷媒温度、被冷却流体流入温度および被冷却流体流出温度に基づいて、前記蒸発器内部における前記被冷却流体の状態量の分布を推測し、前記状態量の分布に基づいて、前記蒸発器全体に対して算出した凍結状況判定の閾値となる凍結判定状態量を補正し、
前記判定部は、前記低圧冷媒温度と該演算部の補正に係る凍結判定状態量とに基づいて凍結に係る状況を判定する
ことを特徴とする請求項1に記載の冷却装置。
Low-pressure refrigerant temperature detecting means for detecting a low-pressure refrigerant temperature that is an evaporation temperature of the refrigerant in the evaporator;
A to-be-cooled fluid inflow temperature detecting means for detecting a to-be-cooled fluid inflow temperature that is the temperature of the to-be-cooled fluid flowing into the evaporator;
A cooled fluid outflow temperature detecting means for detecting a cooled fluid outflow temperature that is a temperature of the cooled fluid flowing out of the evaporator;
The calculation unit estimates the distribution of the state quantity of the cooled fluid in the evaporator based on the heat exchange performance of the evaporator, the low-pressure refrigerant temperature, the cooled fluid inflow temperature, and the cooled fluid outflow temperature, Based on the distribution of the state quantity, correct the freezing determination state quantity serving as a freezing condition determination threshold calculated for the entire evaporator,
The cooling device according to claim 1, wherein the determination unit determines a state related to freezing based on the low-pressure refrigerant temperature and a freezing determination state amount related to correction of the calculation unit.
前記蒸発器における前記被冷却流体の冷却開始からの経過時間である冷却運転時間を計測する冷却運転時間計測手段をさらに備え、
前記判定部は、前記冷却運転時間に伴って変化する前記凍結判定状態量とに基づいて、前記被冷却流体の凍結の状況を判定することを特徴とする請求項1〜6のいずれかに記載の冷却装置。
A cooling operation time measuring means for measuring a cooling operation time that is an elapsed time from the start of cooling of the cooled fluid in the evaporator;
The said determination part determines the condition of the freezing of the said to-be-cooled fluid based on the said freezing determination state quantity which changes with the said cooling operation time, The any one of Claims 1-6 characterized by the above-mentioned. Cooling system.
前記低圧冷媒温度が前記被冷却流体の凝固点または融点よりも低い状態でありながら、前記判定部が凍結しないものと判定すると、前記制御部は、前記圧縮機の運転を継続させることを特徴とする請求項1〜7のいずれかに記載の冷却装置。   If the determination unit determines that the low-pressure refrigerant temperature is lower than the freezing point or the melting point of the fluid to be cooled and the determination unit does not freeze, the control unit continues the operation of the compressor. The cooling device according to claim 1. 前記制御部は、
前記圧縮機の回転数を連続的にまたは段階的に低下させる制御、流体を前記凝縮器に送り込む流体送出手段の流体送出量を連続的にまたは段階的に低下する制御、前記絞り手段の開口面積を連続的にまたは段階的に増加させる制御、前記被冷却流体の流体送出量を連続的にまたは段階的に増加させる制御、のいずれか少なくとも1つ以上の制御に係る処理を行うことを特徴とする請求項1〜8のいずれかに記載の冷却装置。
The controller is
Control for reducing the rotational speed of the compressor continuously or stepwise, Control for reducing the fluid delivery amount of the fluid delivery means for feeding fluid into the condenser continuously or stepwise, Opening area of the throttle means At least one of the control for increasing the flow rate of the fluid to be cooled continuously or in a stepwise manner. The cooling device according to any one of claims 1 to 8.
前記制御部は、前記判定部の判定結果に基づいて、前記圧縮機の運転を停止させる運転停止指令を前記圧縮機に発することを特徴とする請求項1〜9のいずれかに記載の冷却装置。   The cooling device according to any one of claims 1 to 9, wherein the control unit issues an operation stop command to stop the operation of the compressor to the compressor based on a determination result of the determination unit. . 前記制御は、前記運転停止指令を発した後に再起動する際、前記圧縮機の起動回転数を前記運転停止指令が発せられる前の起動回転数よりも低い回転数にすることを特徴とする請求項10に記載の冷却装置。   The control is characterized in that, when the operation is restarted after issuing the operation stop command, the start-up rotation number of the compressor is set to be lower than the start rotation number before the operation stop command is issued. Item 11. The cooling device according to Item 10.
JP2010030020A 2010-02-15 2010-02-15 Cooling system Active JP5220045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030020A JP5220045B2 (en) 2010-02-15 2010-02-15 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030020A JP5220045B2 (en) 2010-02-15 2010-02-15 Cooling system

Publications (2)

Publication Number Publication Date
JP2011163729A true JP2011163729A (en) 2011-08-25
JP5220045B2 JP5220045B2 (en) 2013-06-26

Family

ID=44594626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030020A Active JP5220045B2 (en) 2010-02-15 2010-02-15 Cooling system

Country Status (1)

Country Link
JP (1) JP5220045B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079749A (en) * 2011-10-03 2013-05-02 Mitsubishi Electric Corp Cooling device
JP2013124836A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle device
JP2015132444A (en) * 2014-01-15 2015-07-23 三菱電機株式会社 liquid circuit device
JP2016508590A (en) * 2013-02-28 2016-03-22 三菱電機株式会社 Air conditioner
JP5984965B2 (en) * 2012-12-11 2016-09-06 三菱電機株式会社 Air conditioning and hot water supply complex system
EP3205954A1 (en) * 2016-02-12 2017-08-16 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigeration cycle device
CN107300277A (en) * 2017-06-13 2017-10-27 珠海格力电器股份有限公司 A kind of anti-freeze control method, device and generator
CN114585869A (en) * 2020-09-16 2022-06-03 伸和控制工业股份有限公司 Temperature control system and control method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247731B2 (en) * 1983-09-14 1987-10-09 Matsushita Electric Ind Co Ltd
JPH03282164A (en) * 1990-03-30 1991-12-12 Toshiba Corp Air conditioner
JPH06174286A (en) * 1992-12-03 1994-06-24 Toshiba Corp Air-conditioning machine
JPH07151429A (en) * 1993-11-30 1995-06-16 Toshiba Corp Air conditioner
JP2001263835A (en) * 2000-03-24 2001-09-26 Mitsubishi Electric Corp Air conditioning system
JP2005180822A (en) * 2003-12-19 2005-07-07 Ryonetsu Kogyo Kk Cooling device
JP2007003080A (en) * 2005-06-23 2007-01-11 Calsonic Kansei Corp Evaporator
JP2007024320A (en) * 2005-07-12 2007-02-01 Hitachi Ltd Refrigerating device
JP2009243828A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp Cooling device and cooling device monitoring system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247731B2 (en) * 1983-09-14 1987-10-09 Matsushita Electric Ind Co Ltd
JPH03282164A (en) * 1990-03-30 1991-12-12 Toshiba Corp Air conditioner
JPH06174286A (en) * 1992-12-03 1994-06-24 Toshiba Corp Air-conditioning machine
JPH07151429A (en) * 1993-11-30 1995-06-16 Toshiba Corp Air conditioner
JP2001263835A (en) * 2000-03-24 2001-09-26 Mitsubishi Electric Corp Air conditioning system
JP2005180822A (en) * 2003-12-19 2005-07-07 Ryonetsu Kogyo Kk Cooling device
JP2007003080A (en) * 2005-06-23 2007-01-11 Calsonic Kansei Corp Evaporator
JP2007024320A (en) * 2005-07-12 2007-02-01 Hitachi Ltd Refrigerating device
JP2009243828A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp Cooling device and cooling device monitoring system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079749A (en) * 2011-10-03 2013-05-02 Mitsubishi Electric Corp Cooling device
JP2013124836A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle device
JP5984965B2 (en) * 2012-12-11 2016-09-06 三菱電機株式会社 Air conditioning and hot water supply complex system
US9631826B2 (en) 2012-12-11 2017-04-25 Mistubishi Electric Corporation Combined air-conditioning and hot-water supply system
JP2016508590A (en) * 2013-02-28 2016-03-22 三菱電機株式会社 Air conditioner
JP2015132444A (en) * 2014-01-15 2015-07-23 三菱電機株式会社 liquid circuit device
EP3205954A1 (en) * 2016-02-12 2017-08-16 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigeration cycle device
CN107300277A (en) * 2017-06-13 2017-10-27 珠海格力电器股份有限公司 A kind of anti-freeze control method, device and generator
CN107300277B (en) * 2017-06-13 2020-02-04 珠海格力电器股份有限公司 Anti-icing control method and device and generator
CN114585869A (en) * 2020-09-16 2022-06-03 伸和控制工业股份有限公司 Temperature control system and control method thereof
CN114585869B (en) * 2020-09-16 2023-11-14 伸和控制工业股份有限公司 Temperature control system and control method thereof

Also Published As

Publication number Publication date
JP5220045B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP4823264B2 (en) Cooling device and cooling device monitoring system
JP5220045B2 (en) Cooling system
JP5334909B2 (en) Refrigeration air conditioner and refrigeration air conditioning system
JP5058324B2 (en) Refrigeration cycle equipment
JP4864110B2 (en) Refrigeration air conditioner
JP5409743B2 (en) Cooling system
US20230134047A1 (en) Refrigeration cycle apparatus and refrigeration apparatus
JP2010127568A (en) Abnormality detection device and refrigerating cycle device including the same
JP2009079842A (en) Refrigerating cycle device and its control method
JP5289475B2 (en) Refrigeration cycle apparatus, flow rate calculation method and program
JP2011047552A (en) Refrigerating cycle device and air conditioner
JP6588626B2 (en) Refrigeration equipment
JP2011012958A (en) Method for controlling refrigeration cycle apparatus
JP5484503B2 (en) Cooling system
JP2010164270A (en) Multiple chamber type air conditioner
JP2013061115A (en) Refrigeration cycle system
JP6410935B2 (en) Air conditioner
JP5340348B2 (en) Refrigeration equipment
JP6111692B2 (en) Refrigeration equipment
JPWO2017094172A1 (en) Air conditioner
JP2010007997A (en) Refrigerant amount determining method of air conditioning device, and air conditioning device
JPWO2016135904A1 (en) Refrigeration equipment
KR20100062117A (en) Air conditioner having plate heat exchanger and controlling method of the same of
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
JP2005326131A (en) Liquid refrigerant pressurization device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5220045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250