JP2005180822A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2005180822A
JP2005180822A JP2003423368A JP2003423368A JP2005180822A JP 2005180822 A JP2005180822 A JP 2005180822A JP 2003423368 A JP2003423368 A JP 2003423368A JP 2003423368 A JP2003423368 A JP 2003423368A JP 2005180822 A JP2005180822 A JP 2005180822A
Authority
JP
Japan
Prior art keywords
temperature
flow rate
water
expansion valve
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003423368A
Other languages
Japanese (ja)
Inventor
Yuji Iwakiri
勇二 岩切
Hiroshi Ishizaka
洋 石坂
Junro Morioka
淳郎 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryonetsu Kogyou Co Ltd
Original Assignee
Ryonetsu Kogyou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryonetsu Kogyou Co Ltd filed Critical Ryonetsu Kogyou Co Ltd
Priority to JP2003423368A priority Critical patent/JP2005180822A/en
Publication of JP2005180822A publication Critical patent/JP2005180822A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device capable of producing cold water, without providing a water storage tank, by cooling water whose flow rate and temperature can vary widely. <P>SOLUTION: The cooling device has a refrigerant cycle 20 to which a compressor 12, a condenser 15, expansion valves 16 and an evaporator 18 are connected to allow circulation of refrigerant therein. Heat exchange occurs between the evaporator 18 of the refrigerant cycle 20 and water to cool the water. The expansion valves 16 include a plurality of expansion valves 16-1, 16-2, 16-3 provided in parallel. Further, the device is provided with a temperature sensor 32 for sensing the temperature of water at the entrance side, a flow rate sensor 34 for detecting the flow rate of water, and a controller 50 that effects selective control over the expansion valves used among the plurality of expansion valves as detection signals from the temperature sensor 32 and the flow rate sensor 34 are inputted thereto. Depending on the temperature and flow rate of water at the entrance side, the expansion valves to be used are switched from one to another. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水等の液体または空気等の気体といった負荷媒体を冷却する冷却装置に関する。   The present invention relates to a cooling device that cools a load medium such as a liquid such as water or a gas such as air.

従来、この種の冷却装置としては、例えば、特許文献1(実願昭62−171744号(実開平1−75769号)のマイクロフィルム)や、特許文献2(特開平7−4816号公報)に記載されたものが知られている。   Conventionally, as this type of cooling device, for example, Patent Document 1 (Japanese Utility Model Publication No. 62-171744 (Japanese Utility Model Publication No. 1-75769) microfilm) and Patent Document 2 (Japanese Patent Application Laid-Open No. 7-4816) are disclosed. What has been described is known.

特許文献1に記載された構成は、圧縮機、凝縮器と、膨張弁とが接続されて、冷媒が循環する冷媒サイクルを有し、蒸発器において冷媒と負荷媒体とが熱交換を行い、水を冷却するようになったものにおいて、圧縮機モータをインバータによって制御すると共に蒸発器の出口側に冷却負荷の冷却温度を検出して蒸発器の蒸発圧力を制御する蒸発圧力調整弁を設けている。通常は、熱交換後圧縮機に送り込まれる冷媒の圧力を検出し、その圧力に基づいてインバータによって圧縮機の運転が制御されて、蒸発器に送り込まれる冷媒量が調節されるが、冷却前の水の温度が低温であったり、流量が少なくなったりして、圧縮機モータの負荷制御の下限以下となると、蒸発圧力調整弁によって圧縮機への冷媒流入量を絞り、蒸発器の蒸発圧力を高めて蒸発器による熱交換を抑制するようにしている。   The configuration described in Patent Document 1 includes a refrigerant cycle in which a compressor, a condenser, and an expansion valve are connected to circulate the refrigerant. In the evaporator, the refrigerant and the load medium exchange heat, The compressor motor is controlled by an inverter, and an evaporation pressure adjusting valve for detecting the cooling temperature of the cooling load and controlling the evaporation pressure of the evaporator is provided on the outlet side of the evaporator. . Normally, the pressure of the refrigerant sent to the compressor after heat exchange is detected, and the operation of the compressor is controlled by the inverter based on the pressure, and the amount of refrigerant sent to the evaporator is adjusted. When the temperature of the water is low or the flow rate is reduced and the load is below the lower limit of the load control of the compressor motor, the refrigerant flow into the compressor is reduced by the evaporation pressure adjustment valve, and the evaporation pressure of the evaporator is reduced. It is designed to suppress heat exchange by the evaporator.

しかしながら、特許文献1のようなインバータで圧縮機の制御を行う場合には、圧縮機のタイプによっては圧縮効率が落ちたり故障の原因になったりすることがあり、また、コストの上昇を招くという問題がある。特許文献2においても同様の問題がある。   However, when the compressor is controlled by an inverter as in Patent Document 1, depending on the type of the compressor, the compression efficiency may decrease or cause a failure, and the cost may increase. There's a problem. In Patent Document 2, there is a similar problem.

実願昭62−171744号(実開平1−75769号)のマイクロフィルム)No. 62-171744 (Japanese Utility Model Application No. 1-75769) microfilm) 特開平7−4816号公報Japanese Patent Laid-Open No. 7-4816

本発明はかかる課題に鑑みなされたもので、その目的は、圧縮機を低コストで安定的に使用することができ、流量及び温度が大きく変動し得る負荷媒体を冷却することができる冷却装置を提供することである。また、本発明の他の目的は、負荷媒体を所望の温度に精度良く冷却することができる冷却装置を提供することである。   The present invention has been made in view of such problems, and an object of the present invention is to provide a cooling device that can stably use a compressor at a low cost and can cool a load medium whose flow rate and temperature can fluctuate greatly. Is to provide. Another object of the present invention is to provide a cooling device capable of accurately cooling a load medium to a desired temperature.

上記目的を達成するために、本発明のうち請求項1記載の発明は、圧縮機と、凝縮器と、膨張弁と、蒸発器とが接続されて、冷媒が循環する冷媒サイクルを有し、該冷媒サイクルの蒸発器において冷媒と負荷媒体とが熱交換を行い、負荷媒体を冷却する冷却装置において、
前記膨張弁として複数の膨張弁が設けられ、さらに、
入口側の負荷媒体の温度を検出する温度センサと、
負荷媒体の流量を検出する流量センサと、
温度センサ及び流量センサからの検出信号が入力されて前記複数の膨張弁のうちで使用する膨張弁の選択制御を行うコントローラと、が設けられ、
前記温度センサによって検出される入口側の負荷媒体の温度と前記流量センサによって検出される負荷媒体の流量に応じて、使用する膨張弁が切り替えられることを特徴とする。
In order to achieve the above object, the invention according to claim 1 of the present invention includes a refrigerant cycle in which a compressor, a condenser, an expansion valve, and an evaporator are connected to circulate refrigerant, In the cooling device for performing heat exchange between the refrigerant and the load medium in the evaporator of the refrigerant cycle and cooling the load medium,
A plurality of expansion valves are provided as the expansion valve, and
A temperature sensor for detecting the temperature of the load medium on the inlet side;
A flow sensor for detecting the flow rate of the load medium;
A controller that receives detection signals from the temperature sensor and the flow rate sensor and performs selection control of an expansion valve to be used among the plurality of expansion valves; and
The expansion valve to be used is switched in accordance with the temperature of the load medium on the inlet side detected by the temperature sensor and the flow rate of the load medium detected by the flow sensor.

複数の膨張弁の切り替えは、同じ絞り能力を持つ膨張弁を複数設けて使用数の切り替えを行ってもよいし、または、異なる絞り能力を持つ膨張弁をそれぞれ設けて使用する能力を切り替えてもよい。   Switching between multiple expansion valves may be done by switching the number of use by providing multiple expansion valves with the same throttling capacity, or by switching the capacity of using expansion valves with different throttling capacities. Good.

請求項2記載の発明は、請求項1記載の前記膨張弁が定圧膨張弁であり、且つ前記冷媒サイクルには蒸発器内の蒸発圧力の調整を行う蒸発圧力調整弁が設けられることを特徴とする。   The invention according to claim 2 is characterized in that the expansion valve according to claim 1 is a constant pressure expansion valve, and the refrigerant cycle is provided with an evaporation pressure adjusting valve for adjusting an evaporation pressure in an evaporator. To do.

請求項3記載の発明は、請求項2記載の蒸発圧力調整弁の調整圧力が、出口側の負荷媒体の温度に応じて制御されることを特徴とする。   The invention described in claim 3 is characterized in that the adjustment pressure of the evaporation pressure adjusting valve described in claim 2 is controlled in accordance with the temperature of the load medium on the outlet side.

請求項4記載の発明は、請求項1ないし3のいずれか1項に記載のものにおいて、前記コントローラには、前記入口側の負荷媒体の温度と負荷媒体の流量の2つのパラメータに対して選択する膨張弁を決定するシーケンサが設けられることを特徴とする。   According to a fourth aspect of the present invention, in the controller according to any one of the first to third aspects, the controller selects the two parameters of the load medium temperature and the load medium flow rate on the inlet side. A sequencer for determining an expansion valve to be operated is provided.

本発明によれば、負荷媒体の入口側の温度と負荷媒体の流量とによって、複数の膨張弁の中から使用する膨張弁を切り替えて、冷媒サイクルを流れる冷媒流量を調整することによって、負荷媒体の温度または流量の大きな変動にも対応して、負荷媒体を所望の温度に冷却することができるようになる。
また、請求項2記載の発明によれば、蒸発圧力調整弁を用いることにより蒸発器内の冷媒圧力を一定に保持し、定圧膨張弁を用いて一定量の冷媒を蒸発器に流すようにすることにより、蒸発器内の冷媒の温度を一定に保ち、よって、負荷媒体の冷却温度を一定にすることができる。
According to the present invention, the load medium is controlled by switching the expansion valve to be used from among the plurality of expansion valves according to the temperature on the inlet side of the load medium and the flow rate of the load medium, and adjusting the flow rate of the refrigerant flowing through the refrigerant cycle. The load medium can be cooled to a desired temperature in response to large fluctuations in the temperature or flow rate.
According to the second aspect of the present invention, the refrigerant pressure in the evaporator is kept constant by using the evaporation pressure adjusting valve, and a constant amount of refrigerant is caused to flow to the evaporator using the constant pressure expansion valve. Thus, the temperature of the refrigerant in the evaporator can be kept constant, and thus the cooling temperature of the load medium can be made constant.

また、請求項3記載の発明によれば、蒸発圧力調整弁の調整圧力を変化させることで、負荷媒体を所望の温度に冷却することができるようになる。   According to the third aspect of the invention, the load medium can be cooled to a desired temperature by changing the adjustment pressure of the evaporation pressure adjustment valve.

また、請求項4記載の発明によれば、入口側の負荷媒体の温度と負荷媒体の流量の2つのパラメータの変動に対してシーケンサによって迅速に選択するべき膨張弁の決定を行うことができる。   According to the fourth aspect of the present invention, the expansion valve to be quickly selected can be determined by the sequencer with respect to fluctuations in two parameters, the temperature of the load medium on the inlet side and the flow rate of the load medium.

以下、図面を用いて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る冷却装置の回路図である。図において、冷却装置10は、圧縮機12と、凝縮器14と、膨張弁16と、蒸発器18とが接続されて、冷媒が循環する冷媒サイクル20を有している。   FIG. 1 is a circuit diagram of a cooling device according to an embodiment of the present invention. In the figure, the cooling device 10 has a refrigerant cycle 20 in which a compressor 12, a condenser 14, an expansion valve 16, and an evaporator 18 are connected to circulate refrigerant.

また、負荷媒体が流れる水配管22が設けられ、水配管22の入口側は給水源に連結され、出口側は蛇口、バルブ等に連結されており、水配管22を流れる水が、冷媒サイクル20の蒸発器18において、冷媒と熱交換されるようになっている。   A water pipe 22 through which the load medium flows is provided, the inlet side of the water pipe 22 is connected to a water supply source, the outlet side is connected to a faucet, a valve, and the like, and the water flowing through the water pipe 22 is supplied to the refrigerant cycle 20. In the evaporator 18, heat is exchanged with the refrigerant.

水配管22には、貯水タンクなどは設けられておらず、蒸発器18に対して入口側に、温度センサ32及び流量センサ34が設けられており、蒸発器18に対して出口側に、温度センサ36が設けられている。温度センサ32は、蒸発器18で熱交換する前の水の温度(入口温度という)を逐次検出するもので、流量センサ34は、水配管22を流れる水の流量を逐次検出するものである。また、温度センサ36は、蒸発器18で熱交換した後の水の温度(出口温度という)を逐次検出するものである。温度センサ32及び流量センサ34からの検出信号はコントローラ50へ、温度センサ36からの検出信号はコントローラ52へと入力される。   The water pipe 22 is not provided with a water storage tank or the like, and is provided with a temperature sensor 32 and a flow rate sensor 34 on the inlet side with respect to the evaporator 18. A sensor 36 is provided. The temperature sensor 32 sequentially detects the temperature of water before the heat exchange in the evaporator 18 (referred to as the inlet temperature), and the flow rate sensor 34 sequentially detects the flow rate of the water flowing through the water pipe 22. The temperature sensor 36 sequentially detects the temperature of water after the heat exchange in the evaporator 18 (referred to as outlet temperature). Detection signals from the temperature sensor 32 and the flow sensor 34 are input to the controller 50, and detection signals from the temperature sensor 36 are input to the controller 52.

冷媒サイクル20には、その蒸発器18の出口側に蒸発圧力調整弁40が設けられている。該蒸発圧力調整弁40は、コントローラ52からの設定制御信号によって、その調整圧力が制御される。   The refrigerant cycle 20 is provided with an evaporation pressure adjusting valve 40 on the outlet side of the evaporator 18. The adjustment pressure of the evaporation pressure adjusting valve 40 is controlled by a setting control signal from the controller 52.

前記膨張弁16は、複数個の膨張弁16−1、16−2、16−3からなる。これらの複数個の膨張弁16−1、16−2、16−3は並列に接続されており、各膨張弁16−1、16−2、16−3には、電磁弁42−1、42−2、42−3が直列に接続されている。電磁弁42−1、42−2、42−3はコントローラ50からの指令信号によって開閉制御される開閉弁である。膨張弁16−1、16−2、16−3は、それぞれその処理能力、即ち通過させる冷媒の流量が異なるものとなっており、後述のように、水の流量の低下、給水温度の低下によって、過熱度が低下することを防ぐべく、切り替えて使用され、その能力としては、膨張弁16−1<膨張弁16−2<膨張弁16−3となっている。   The expansion valve 16 includes a plurality of expansion valves 16-1, 16-2, and 16-3. The plurality of expansion valves 16-1, 16-2, 16-3 are connected in parallel, and each expansion valve 16-1, 16-2, 16-3 has an electromagnetic valve 42-1, 42. -2 and 42-3 are connected in series. The electromagnetic valves 42-1, 42-2, and 42-3 are on-off valves that are controlled to open and close by a command signal from the controller 50. The expansion valves 16-1, 16-2, and 16-3 have different processing capacities, that is, the flow rates of the refrigerant to be passed, respectively. In order to prevent the degree of superheat from being lowered, it is used by switching, and the capacity is expansion valve 16-1 <expansion valve 16-2 <expansion valve 16-3.

ここで、膨張弁16−1、16−2、16−3は好ましくは定圧膨張弁であり、蒸発器18出口である蒸発圧力調整弁40出口に接続された均圧管17の圧力を設定圧力になるように動作する。この設定圧力は、蒸発圧力調整弁40で設定される調整圧力程度に設定されるとよいが、厳密に一致させる必要はない。膨張弁16−1、16−2、16−3として温度膨張弁を使用することも可能ではあるが、その場合には、蒸発器18出口の過熱度を一定に保持するように動作するために、蒸発器18入口における冷媒温度の変動が大きくなり、熱交換する水を所定の温度に冷却することが難しいため、定圧膨張弁とすることが望ましい。   Here, the expansion valves 16-1, 16-2, 16-3 are preferably constant pressure expansion valves, and the pressure of the pressure equalizing pipe 17 connected to the outlet of the evaporation pressure adjusting valve 40, which is the outlet of the evaporator 18, is set to the set pressure. It works to be. This set pressure may be set to about the adjustment pressure set by the evaporation pressure adjustment valve 40, but it is not necessary to exactly match the set pressure. Although it is possible to use temperature expansion valves as the expansion valves 16-1, 16-2, 16-3, in that case, in order to operate to keep the superheat degree of the outlet of the evaporator 18 constant. Since the refrigerant temperature fluctuation at the inlet of the evaporator 18 becomes large and it is difficult to cool the water for heat exchange to a predetermined temperature, it is desirable to use a constant pressure expansion valve.

また、符号44はアキュムレータである。   Reference numeral 44 denotes an accumulator.

コントローラ50は、水配管22に設けられた温度センサ32及び流量センサ34からの逐次の検出信号を受け取り、電磁弁42−1、42−2、42−3の開閉のための切替信号を出力するものである。   The controller 50 receives sequential detection signals from the temperature sensor 32 and the flow rate sensor 34 provided in the water pipe 22, and outputs switching signals for opening and closing the electromagnetic valves 42-1, 42-2, and 42-3. Is.

また、コントローラ52は、水配管22に設けられた温度センサ36からの逐次の検出信号を受け取り、蒸発圧力調整弁40への設定制御信号を出力するものである。所望の水の出口温度である設定温度は、コントローラ52で設定される。   The controller 52 receives sequential detection signals from the temperature sensor 36 provided in the water pipe 22 and outputs a setting control signal to the evaporation pressure adjusting valve 40. A set temperature that is a desired water outlet temperature is set by the controller 52.

以上のように構成される冷却装置10の作用を説明する。水配管22には、給水源からの水が流れ、該水は蒸発器18において冷媒と熱交換を行う。温度センサ32によって、蒸発器18手前の温度が逐次検出され、流量センサ34によって水配管22を流れる水の流量が逐次検出される。   The operation of the cooling device 10 configured as described above will be described. Water from the water supply source flows through the water pipe 22, and the water exchanges heat with the refrigerant in the evaporator 18. The temperature sensor 32 sequentially detects the temperature before the evaporator 18, and the flow rate sensor 34 sequentially detects the flow rate of the water flowing through the water pipe 22.

これらの温度センサ32及び流量センサ34からの検出信号は、コントローラ50へ入力されて、アナログ・ディジタル変換された後、この温度及び流量のディジタル値に対応して、シーケンサで設定されたディジタルマッピングに基づき、電磁弁42−1、42−2、42−3の開閉の切替信号が出力される。このディジタルマッピングの一例を図2に示す。一般的には、流量Qが多く、温度Tが高くなるに従って、能力が高く多くの冷媒を流すことができる膨張弁16が選択される。このようなディジタルマッピングを利用して、水の流量及び入口温度の2つのパラメータに応じて膨張弁16を逐次、切り替えることで、例えば、水の流量が低い場合または水の温度が低い場合に、蒸発器18出口における過熱度が不足となって圧縮機12における液圧縮が発生することを防ぐ。   The detection signals from the temperature sensor 32 and the flow rate sensor 34 are input to the controller 50, converted into analog and digital, and then converted into a digital mapping set by the sequencer corresponding to the digital values of the temperature and flow rate. Based on this, an open / close switching signal for the solenoid valves 42-1, 42-2, 42-3 is output. An example of this digital mapping is shown in FIG. In general, as the flow rate Q increases and the temperature T increases, the expansion valve 16 that has a high capacity and can flow a large amount of refrigerant is selected. By using such digital mapping, the expansion valve 16 is sequentially switched according to two parameters of the water flow rate and the inlet temperature, for example, when the water flow rate is low or the water temperature is low. The degree of superheat at the outlet of the evaporator 18 is insufficient, and liquid compression in the compressor 12 is prevented from occurring.

蒸発圧力調整弁40は、蒸発器18内の蒸発圧力を所定の圧力に調整して、蒸発器18内の温度を一定温度に調整する。温度センサ36で検出された水の出口温度の検出信号は、コントローラ52へと入力されて、コントローラ52において、温度センサ36で検出された出口温度と設定温度とが比較され、PID制御等の制御に基き、設定制御信号を出力し蒸発圧力調整弁40で調整する圧力を変化させる。こうして、出口温度が設定温度となるように制御される。   The evaporation pressure adjustment valve 40 adjusts the evaporation pressure in the evaporator 18 to a predetermined pressure and adjusts the temperature in the evaporator 18 to a constant temperature. The detection signal of the water outlet temperature detected by the temperature sensor 36 is input to the controller 52, and the controller 52 compares the outlet temperature detected by the temperature sensor 36 with the set temperature, and performs control such as PID control. Based on this, a setting control signal is output, and the pressure adjusted by the evaporation pressure adjusting valve 40 is changed. In this way, the outlet temperature is controlled to be the set temperature.

膨張弁16として定圧膨張弁を用いており、均圧管17付近の圧力は蒸発圧力調整弁40によって所定の圧力に調整されているので、前記コントローラ50によって選択された膨張弁16は定流量を流し、蒸発圧力調整弁40出口における過熱度とは無関係に冷媒を流す。このために、蒸発器18において、熱交換された水を0℃に近い温度まで凍結させずに冷却することができるようになる。一方、膨張弁として温度膨張弁を用いた場合には、蒸発器18出口における過熱度が一定になるように絞り動作をするために、蒸発器18を流れる冷媒が減少し、結果として水と熱交換する熱源の量が減るため、所望の温度の水を取り出すことは困難となる。この効果の相違を図3のグラフにより表す。グラフにおいて、(a)の部分は、温度膨張弁を用いた場合、(b)の部分は同じ条件で定圧膨張弁を用いて設定温度を2℃とした場合の、水の入口温度(25℃付近)と出口温度との推移を表している。このグラフから分かるように、温度膨張弁を用いた場合は、温度の変動が大きく、さらに水の温度を設定温度に近づけることが困難であるのに対して、定圧膨張弁を用いた場合は、温度の変動が小さく、水の温度を0℃に近い設定温度2℃の近傍に制御することができる。   Since the constant pressure expansion valve is used as the expansion valve 16 and the pressure in the vicinity of the pressure equalizing pipe 17 is adjusted to a predetermined pressure by the evaporation pressure adjusting valve 40, the expansion valve 16 selected by the controller 50 flows a constant flow rate. The refrigerant is allowed to flow regardless of the degree of superheat at the outlet of the evaporation pressure adjusting valve 40. For this reason, in the evaporator 18, the heat-exchanged water can be cooled to a temperature close to 0 ° C. without being frozen. On the other hand, when a temperature expansion valve is used as the expansion valve, the refrigerant flowing through the evaporator 18 is reduced in order to perform a throttling operation so that the degree of superheat at the outlet of the evaporator 18 becomes constant, resulting in water and heat. Since the amount of heat source to be exchanged is reduced, it becomes difficult to take out water at a desired temperature. This difference in effect is represented by the graph of FIG. In the graph, when the temperature expansion valve is used for the portion (a), the water inlet temperature (25 ° C.) when the set temperature is 2 ° C. using the constant pressure expansion valve under the same conditions for the portion (b) Near) and the outlet temperature. As can be seen from this graph, when the temperature expansion valve is used, the temperature fluctuation is large and it is difficult to bring the temperature of the water closer to the set temperature, whereas when the constant pressure expansion valve is used, The temperature fluctuation is small, and the temperature of water can be controlled in the vicinity of the set temperature 2 ° C. close to 0 ° C.

以上のような構成によって、水の流量の大きな変動に対して複数の膨張弁16−1、16−2、16−3の切替によって対応することができ、さらには、蒸発圧力調整弁40で蒸発圧力を調整し、膨張弁16として定圧膨張弁を使用することによって、過熱度にかかわらず一定温度の冷媒を流すために、負荷媒体を所望の温度に冷却することができる。   With the configuration as described above, it is possible to cope with large fluctuations in the flow rate of water by switching between the plurality of expansion valves 16-1, 16-2, 16-3, and further, the evaporation pressure adjusting valve 40 evaporates. By adjusting the pressure and using a constant pressure expansion valve as the expansion valve 16, the load medium can be cooled to a desired temperature in order to flow a constant temperature refrigerant regardless of the degree of superheat.

尚、以上の実施形態では、複数個設けられた膨張弁16−1、16−2、16−3のうちの中から、常に、1つの膨張弁を選択して使用するようになっていたが、これに限るものではなく、1つ以上の任意の組み合わせの膨張弁を同時に使用することも可能である。   In the above embodiment, one expansion valve is always selected and used from among the plurality of expansion valves 16-1, 16-2, 16-3. However, the present invention is not limited to this, and one or more arbitrary combinations of expansion valves can be used at the same time.

本発明の実施形態に係る冷却装置の回路図である。It is a circuit diagram of the cooling device concerning the embodiment of the present invention. シーケンサで設定されたディジタルマッピングの一例である。It is an example of the digital mapping set by the sequencer. 水の入口温度と出口温度との推移を表すグラフである。It is a graph showing transition of the inlet temperature and outlet temperature of water.

符号の説明Explanation of symbols

10 冷却装置
12 圧縮機
14 凝縮器
16 膨張弁
16−1、16−2、16−3 膨張弁
18 蒸発器
20 冷媒サイクル
22 水配管
32 温度センサ
34 流量センサ
40 蒸発圧力調整弁
50 コントローラ
DESCRIPTION OF SYMBOLS 10 Cooling device 12 Compressor 14 Condenser 16 Expansion valve 16-1, 16-2, 16-3 Expansion valve 18 Evaporator 20 Refrigerant cycle 22 Water piping 32 Temperature sensor 34 Flow rate sensor 40 Evaporation pressure adjustment valve 50 Controller

Claims (4)

圧縮機と、凝縮器と、膨張弁と、蒸発器とが接続されて、冷媒が循環する冷媒サイクルを有し、該冷媒サイクルの蒸発器において冷媒と負荷媒体とが熱交換を行い、負荷媒体を冷却する冷却装置において、
前記膨張弁として複数の膨張弁が設けられ、さらに、
入口側の負荷媒体の温度を検出する温度センサと、
負荷媒体の流量を検出する流量センサと、
温度センサ及び流量センサからの検出信号が入力されて前記複数の膨張弁のうちで使用する膨張弁の選択制御を行うコントローラと、が設けられ、
前記温度センサによって検出される入口側の負荷媒体の温度と前記流量センサによって検出される負荷媒体の流量に応じて、使用する膨張弁が切り替えられることを特徴とする冷却装置。
A compressor, a condenser, an expansion valve, and an evaporator are connected to each other to have a refrigerant cycle in which the refrigerant circulates. The refrigerant and the load medium exchange heat in the evaporator of the refrigerant cycle, In the cooling device for cooling
A plurality of expansion valves are provided as the expansion valve, and
A temperature sensor for detecting the temperature of the load medium on the inlet side;
A flow sensor for detecting the flow rate of the load medium;
A controller that receives detection signals from the temperature sensor and the flow rate sensor and performs selection control of an expansion valve to be used among the plurality of expansion valves; and
The cooling apparatus according to claim 1, wherein the expansion valve to be used is switched according to the temperature of the load medium on the inlet side detected by the temperature sensor and the flow rate of the load medium detected by the flow sensor.
前記膨張弁は定圧膨張弁であり、且つ前記冷媒サイクルには蒸発器内の蒸発圧力の調整を行う蒸発圧力調整弁が設けられることを特徴とする請求項1記載の冷却装置。   The cooling device according to claim 1, wherein the expansion valve is a constant pressure expansion valve, and the refrigerant cycle is provided with an evaporation pressure adjusting valve for adjusting an evaporation pressure in an evaporator. 前記蒸発圧力調整弁の調整圧力は、出口側の負荷媒体の温度に応じて制御されることを特徴とする請求項2記載の冷却装置。   The cooling device according to claim 2, wherein the adjustment pressure of the evaporation pressure adjustment valve is controlled according to the temperature of the load medium on the outlet side. 前記コントローラには、前記入口側の負荷媒体の温度と負荷媒体の流量の2つのパラメータに対して選択する膨張弁を決定するシーケンサが設けられることを特徴とする請求項1ないし3のいずれか1項に記載の冷却装置。   4. The controller according to claim 1, further comprising a sequencer for determining an expansion valve to be selected for two parameters, the temperature of the load medium on the inlet side and the flow rate of the load medium. The cooling device according to item.
JP2003423368A 2003-12-19 2003-12-19 Cooling device Pending JP2005180822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423368A JP2005180822A (en) 2003-12-19 2003-12-19 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003423368A JP2005180822A (en) 2003-12-19 2003-12-19 Cooling device

Publications (1)

Publication Number Publication Date
JP2005180822A true JP2005180822A (en) 2005-07-07

Family

ID=34783930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423368A Pending JP2005180822A (en) 2003-12-19 2003-12-19 Cooling device

Country Status (1)

Country Link
JP (1) JP2005180822A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163729A (en) * 2010-02-15 2011-08-25 Mitsubishi Electric Corp Cooling device
CN102422109A (en) * 2009-09-30 2012-04-18 三菱重工压缩机有限公司 Gas treatment device
CN104266398A (en) * 2014-10-20 2015-01-07 深圳麦克维尔空调有限公司 Air handling unit and high temperature and low temperature switching system thereof
CN110434351A (en) * 2019-08-06 2019-11-12 西部超导材料科技股份有限公司 A kind of rotation electrode powder manufacturing apparatus and its gas cooling circulatory system
JP2019207088A (en) * 2018-05-30 2019-12-05 株式会社前川製作所 Heat pump system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422109A (en) * 2009-09-30 2012-04-18 三菱重工压缩机有限公司 Gas treatment device
JP2011163729A (en) * 2010-02-15 2011-08-25 Mitsubishi Electric Corp Cooling device
CN104266398A (en) * 2014-10-20 2015-01-07 深圳麦克维尔空调有限公司 Air handling unit and high temperature and low temperature switching system thereof
JP2019207088A (en) * 2018-05-30 2019-12-05 株式会社前川製作所 Heat pump system
CN110434351A (en) * 2019-08-06 2019-11-12 西部超导材料科技股份有限公司 A kind of rotation electrode powder manufacturing apparatus and its gas cooling circulatory system

Similar Documents

Publication Publication Date Title
RU2362096C2 (en) Withdrawal of instantly releasing gas from cooling system header
JP5045524B2 (en) Refrigeration equipment
CN100520225C (en) Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
JP2019002683A (en) Cooling device
WO2017203655A1 (en) Heat pump type air conditioning and hot water supplying device
JP4248099B2 (en) Control method of refrigerator or hot and cold water machine
JP2006292204A (en) Constant temperature maintenance device
JP2007093100A (en) Control method of heat pump water heater, and heat pump water heater
JP2013194975A (en) Heat pump type heater
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
JP2008075919A (en) Chiller device
WO2006074572A1 (en) Hot and cold water dispenser and method of controlling same
JP2009243832A (en) Air conditioner
JP2015152266A (en) air-cooled heat pump unit
JP2005180822A (en) Cooling device
JP2005106318A (en) Refrigeration cycle
JP2008196775A (en) Air conditioner
JP2009168403A (en) Chiller device
US20240167741A1 (en) Refrigeration apparatus, control method of refrigeration apparatus, and temperature control system
JP2003214682A (en) Brine temperature control apparatus using proportional control valve
JP4871800B2 (en) Chiller device
KR100927391B1 (en) Chiller device for semiconductor process equipment and its control method
WO2021214931A1 (en) Air conditioning system and control method
JP4929519B2 (en) Chilling refrigeration system
KR100839956B1 (en) Operating method of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929