JP2007003080A - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
JP2007003080A
JP2007003080A JP2005183099A JP2005183099A JP2007003080A JP 2007003080 A JP2007003080 A JP 2007003080A JP 2005183099 A JP2005183099 A JP 2005183099A JP 2005183099 A JP2005183099 A JP 2005183099A JP 2007003080 A JP2007003080 A JP 2007003080A
Authority
JP
Japan
Prior art keywords
refrigerant
tank
inlet
tube
inlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005183099A
Other languages
Japanese (ja)
Inventor
Shiro Ikuta
四郎 生田
Koji Maeda
耕児 前田
Michiro Matsushita
理郎 松下
Shigeru Koyama
繁 小山
Ken Kuwabara
憲 桑原
Hiroaki Miyazaki
浩明 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2005183099A priority Critical patent/JP2007003080A/en
Publication of JP2007003080A publication Critical patent/JP2007003080A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To equalize inflow amounts of refrigerant to each of tubes from an inlet side to a depth side of a tank to equalize a temperature of heat exchanged-air in the entire evaporator. <P>SOLUTION: In this evaporator 1 comprising the plurality of tubes 2A-2F, the inlet-side tank 4 in which one end side of each of the tubes 2A-2F is inserted to be communicated therewith, an outlet-side tank 5 in which the other end of each of the tubes 2A-2F is inserted to be communicated therewith, a refrigerant inlet pipe 6 connected with the inlet-side tank 4 for supplying a refrigerant 11 into the inlet-side tank 4, and a refrigerant outlet pipe 7 connected with the outlet-side tank 5 and discharging the refrigerant 11 flowing in the tubes 2A-2F to the external, SC/SA=0.3-0.6 is satisfied, when a tank internal cross-sectional area at a position where the tube 2 is inserted into the inlet-side tank 4 is SA, and a refrigerant passing cross-sectional area through which the refrigerant 11 can be passed at that position is SC. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば自動車用空気調和装置等に用いられる蒸発器に関する。   The present invention relates to an evaporator used, for example, in an automobile air conditioner.

従来、この種の蒸発器としては、例えば図5及び図6に示すような構造の蒸発器101が開示されている(例えば、特許文献1参照)。   Conventionally, as this type of evaporator, for example, an evaporator 101 having a structure as shown in FIGS. 5 and 6 has been disclosed (see, for example, Patent Document 1).

かかる蒸発器101は、図5に示すように、内部に平行で独立した複数列の分岐流路102が形成された偏平通液管103を、一端の入口部104から他端の出口部105に至るまで蛇行させると共に、この蛇行部106における通液管103の相互間にコルゲートフィン107を介装させた構造としている。   As shown in FIG. 5, the evaporator 101 has a flat liquid passage tube 103 in which a plurality of parallel and independent branching flow passages 102 are formed, connected from an inlet portion 104 at one end to an outlet portion 105 at the other end. In this structure, the corrugated fins 107 are interposed between the liquid passing pipes 103 in the meandering portion 106.

そして、この蒸発器101では、図6に示すように、入口部104に設けた流体供給用導管108及び出口部105に設けた流体排出用導管109の空気の流れ方向Aにおける下流側端部より上流側端部の方を、各導管108、109の内壁108a、109aとの間隔が広くなるように構成している。すなわち、空気流れ方向Aの上流側端部では、各導管108、109の内周壁108a、109aと分岐流路102の開口端110、111との間隔を大きく取り、下流側ではこれを小さくするように構成し、これにより流入空気と接触する側の分岐流路には流体(冷媒)が流れ難くしている。   In this evaporator 101, as shown in FIG. 6, from the downstream end in the air flow direction A of the fluid supply conduit 108 provided at the inlet 104 and the fluid discharge conduit 109 provided at the outlet 105. The upstream end portion is configured so that the distance between the conduits 108 and 109 and the inner walls 108a and 109a becomes wider. That is, at the upstream end portion in the air flow direction A, the interval between the inner peripheral walls 108a and 109a of the respective conduits 108 and 109 and the opening ends 110 and 111 of the branch flow path 102 is set large, and this is reduced on the downstream side. This makes it difficult for fluid (refrigerant) to flow through the branch channel on the side in contact with the inflowing air.

このように構成すれば、流体供給用導管108から流入した流体は、通液管103に流入する際に手前側に位置する分岐流路102の開口端110aには流入し難く、間隔の広い奥部分の分岐流路102の開口端110aから多量に流入することになる。各導管108、109に突出する偏平通液管103をこのように傾斜させることなく、平らにすると、流体入口に近い分岐流路102に多く流体が流れ込み、奥の分岐流路102には流体の流れ込みが減り、流量ばらつきにより蒸発器の部位によって熱交換される空気温度にばらつきが生じてしまう。しかしながら、本構造にすれば、蒸発器全域に亘って熱交換作用の均質化がなされ、熱交換効率が向上する。
実公昭59−3251号公報(第2頁、第4図〜第6図参照)
With this configuration, the fluid that has flowed in from the fluid supply conduit 108 does not easily flow into the open end 110a of the branch flow channel 102 that is positioned on the near side when flowing into the liquid passage tube 103, and has a wide back space. A large amount will flow from the open end 110a of the partial branch flow path 102. If the flat fluid passage 103 protruding to the respective conduits 108 and 109 is flattened without being inclined in this way, a large amount of fluid flows into the branch channel 102 near the fluid inlet, and the fluid flows into the rear branch channel 102. The inflow is reduced, and the air temperature that is heat-exchanged by the part of the evaporator varies due to the flow rate variation. However, with this structure, the heat exchange effect is homogenized over the entire evaporator, and the heat exchange efficiency is improved.
Japanese Utility Model Publication No. 59-3251 (see page 2, FIGS. 4 to 6)

しかし、かかる特許文献1に記載の蒸発器101では、図7に示すように、偏平通液管103と導管108、109との間には、その偏平通液管103の側面を流体112が流通する隙間113A、113Bが存在している。   However, in the evaporator 101 described in Patent Document 1, as shown in FIG. 7, the fluid 112 flows between the flat liquid passage 103 and the conduits 108 and 109 through the side surface of the flat liquid pipe 103. There are gaps 113A and 113B.

そのため、折角、流体入口側の偏平通液管103の突出量を多くして入口側の分岐流路102に流体112を流入し難くしても、その偏平通液管103の側面と導管108、109と間の隙間113A、113Bから流体112が流れてしまい、結果として入口近傍の分岐流路102に流体112が多く流れ込んでしまう。   Therefore, even if the amount of protrusion of the flat liquid passage 103 on the fluid inlet side is increased to make it difficult for the fluid 112 to flow into the branch flow path 102 on the inlet side, the side surface of the flat liquid passage 103 and the conduit 108, The fluid 112 flows from the gaps 113 </ b> A and 113 </ b> B with respect to 109, and as a result, a large amount of the fluid 112 flows into the branch channel 102 near the inlet.

そこで、本発明は、上述した課題に鑑みてなされたものであり、タンクの入口側から奥側に至る各チューブへの冷媒の流入量を均一化し、そこで熱交換される空気の温度を蒸発器全体で均一化することのできる蒸発器を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems, and uniformizes the inflow amount of refrigerant into each tube from the inlet side to the back side of the tank, and the temperature of the air to be heat-exchanged there is an evaporator. An object is to provide an evaporator that can be uniformized as a whole.

請求項1に記載の発明は、複数本のチューブと、各チューブの一端側がそれぞれ挿入されて連通された入口側タンクと、各チューブの他端側がそれぞれ挿入されて連通された出口側タンクと、上記入口側タンクに接続され当該入口側タンク内に冷媒を供給する冷媒入口パイプと、上記出口側タンクに接続され上記各チューブ内を流通した冷媒を外部へ排出させる冷媒出口パイプとを備えた蒸発器において、前記チューブが前記入口側タンクに挿入された位置でのタンク内断面積をSAとし、その位置での冷媒が通過可能な冷媒通過断面積をSCとしたときに、SC/SA=0.3〜0.6としたことを特徴とする。   The invention described in claim 1 includes a plurality of tubes, an inlet side tank in which one end side of each tube is inserted and communicated, an outlet side tank in which the other end side of each tube is inserted and communicated, and Evaporation comprising a refrigerant inlet pipe connected to the inlet side tank for supplying refrigerant into the inlet side tank, and a refrigerant outlet pipe connected to the outlet side tank for discharging the refrigerant flowing through the tubes. SC / SA = 0 where SA is the cross-sectional area in the tank where the tube is inserted into the inlet side tank, and SC is the cross-sectional area through which the refrigerant can pass at that position. .3 to 0.6.

請求項2に記載の発明は、請求項1に記載の蒸発器であって、前記SC/SA=0.3〜0.6とされるチューブは、少なくとも前記入口側タンクの入口側近傍部に設けることを特徴とする。   A second aspect of the present invention is the evaporator according to the first aspect, wherein the tube with SC / SA = 0.3 to 0.6 is at least near the inlet side of the inlet side tank. It is characterized by providing.

請求項3に記載の発明は、請求項1または請求項2に記載の蒸発器であって、前記入口側タンク内に挿入されたチューブの挿入部分が、タンク内流路を閉塞していることを特徴とする。   Invention of Claim 3 is an evaporator of Claim 1 or Claim 2, Comprising: The insertion part of the tube inserted in the said inlet side tank has obstruct | occluded the flow path in a tank. It is characterized by.

請求項1に記載の発明によれば、チューブが入口側タンクに挿入された位置でのタンク内断面積をSAとし、その位置での冷媒が通過可能な冷媒通過断面積をSCとしたときに、SC/SA=0.3〜0.6とすると、タンク内に突き出たチューブによって冷媒が通過可能な冷媒通過断面積が狭まることになるから、そこを流れる冷媒の流速が速まり入口から奥へと冷媒がより多く流れるようになる。したがって、タンクの奥側よりも入口側で冷媒が多く流れ込み易い状態から各チューブへ均等に冷媒が流れるようになり、タンク入口から奥に至る各チューブへの冷媒の流入量が均一化され、そこで熱交換される空気の温度を蒸発器全体で均一なものとすることができる。   According to the first aspect of the present invention, when the cross-sectional area in the tank at the position where the tube is inserted into the inlet side tank is SA, and the refrigerant passing cross-sectional area through which the refrigerant can pass at that position is SC. , SC / SA = 0.3 to 0.6, the refrigerant passage cross-sectional area through which the refrigerant can pass is narrowed by the tube protruding into the tank, so that the flow velocity of the refrigerant flowing therethrough increases and the depth from the inlet increases. More refrigerant flows into the Therefore, the refrigerant flows evenly to each tube from the state where more refrigerant flows more easily on the inlet side than on the back side of the tank, and the amount of refrigerant flowing into each tube from the tank inlet to the back is made uniform. The temperature of the air to be heat exchanged can be made uniform throughout the evaporator.

請求項2に記載の発明によれば、SC/SA=0.3〜0.6とされるチューブを、少なくとも入口側タンクの入口側近傍部に設ければ、入口側タンクに挿入された各チューブへ流れる冷媒の流量を均一なものとすることができる。   According to the second aspect of the present invention, each tube inserted into the inlet side tank is provided at least in the vicinity of the inlet side of the inlet side tank with a tube having SC / SA = 0.3 to 0.6. The flow rate of the refrigerant flowing to the tube can be made uniform.

請求項3に記載の発明によれば、入口側タンク内に挿入されたチューブの挿入部分が、タンク内流路を閉塞しているので、チューブ側面とタンクとの間から冷媒が流れるのを防止できる。   According to the invention described in claim 3, since the insertion portion of the tube inserted into the inlet side tank closes the tank flow path, the refrigerant is prevented from flowing from between the tube side surface and the tank. it can.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。なお、本実施の形態は、自動車用空気調和装置の蒸発器に、本発明を適用した例である。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In addition, this Embodiment is an example which applied this invention to the evaporator of the air conditioning apparatus for motor vehicles.

図1は本実施の形態の蒸発器の斜視図、図2は図1のA−A線位置における要部拡大断面図、図3(A)は図2のB−B線位置における要部拡大断面図、図3(B)は図2のC−C線位置における要部拡大断面図、図4は各チューブに流入する冷媒流量分布を示す特性図である。   FIG. 1 is a perspective view of the evaporator according to the present embodiment, FIG. 2 is an enlarged cross-sectional view of the main part at the position AA in FIG. 1, and FIG. 3A is an enlarged main part at the position BB in FIG. FIG. 3B is a cross-sectional view, FIG. 3B is an enlarged cross-sectional view of a main part at the position of line CC in FIG. 2, and FIG.

蒸発器1は、図1及び図2に示すように、複数本のチューブ2(2A〜2F)と、これらチューブ2間に配置された波型形状のアウターフィン3と、各チューブ2の一端側がそれぞれ挿入されて連通された入口側タンク4と、各チューブ2の他端側がそれぞれ挿入されて連通された出口側タンク5と、上記入口側タンク4に接続され当該入口側タンク4内に冷媒を供給する冷媒入口パイプ6と、上記出口側タンク5に接続され上記各チューブ2内を流通した冷媒を外部へ排出させる冷媒出口パイプ7とを備えている。   As shown in FIGS. 1 and 2, the evaporator 1 includes a plurality of tubes 2 (2 </ b> A to 2 </ b> F), a corrugated outer fin 3 disposed between the tubes 2, and one end side of each tube 2. The inlet side tank 4 inserted and communicated with each other, the outlet side tank 5 inserted and communicated with the other end side of each tube 2, and the inlet side tank 4 connected to the inlet side tank 4 receive the refrigerant in the inlet side tank 4. A refrigerant inlet pipe 6 to be supplied and a refrigerant outlet pipe 7 that is connected to the outlet side tank 5 and discharges the refrigerant circulated through the tubes 2 to the outside are provided.

チューブ2は、内部に冷媒を流通させる冷媒流通孔8を有した偏平チューブとして形成されている。本実施の形態では、6本のチューブ2が使用される。アウターフィン3は、波型形状とされ、所定間隔を置いて配置されるチューブ2間に接して設けられている。   The tube 2 is formed as a flat tube having a refrigerant flow hole 8 through which a refrigerant flows. In the present embodiment, six tubes 2 are used. The outer fin 3 has a corrugated shape and is provided in contact with the tubes 2 arranged at a predetermined interval.

入口側タンク4は、チューブ2の一端側を所定間隔を置いて挿入保持させる座板4Aと、この座板4Aに取り付けられるタンク部材4Bとからなり、それら座板4Aとタンク部材4Bとで形成される空間を冷媒流入用のタンク内流路9としている。   The inlet side tank 4 includes a seat plate 4A for inserting and holding one end side of the tube 2 at a predetermined interval, and a tank member 4B attached to the seat plate 4A, and is formed by the seat plate 4A and the tank member 4B. This space is used as the in-tank flow path 9 for refrigerant inflow.

出口側タンク5は、やはり入口側タンク4と同様、チューブ2の他端側を所定間隔を置いて挿入保持させる座板5Aと、この座板5Aに取り付けられるタンク部材5Bとからなり、それら座板5Aとタンク部材5Bとで形成される空間を冷媒流出用のタンク内流路(図示は省略する)としている。   Similarly to the inlet side tank 4, the outlet side tank 5 includes a seat plate 5A for inserting and holding the other end of the tube 2 at a predetermined interval, and a tank member 5B attached to the seat plate 5A. A space formed by the plate 5A and the tank member 5B is used as an in-tank flow path for refrigerant outflow (not shown).

冷媒入口パイプ6は、入口側タンク4におけるタンク部材4Bの一側面に取り付けられ、冷媒を入口側タンク4内へと流入させる。冷媒出口パイプ7は、出口側タンク5におけるタンク部材5Bの一側面に取り付けられ、出口側タンク5から冷媒を蒸発器1外へと流出させる。   The refrigerant inlet pipe 6 is attached to one side surface of the tank member 4 </ b> B in the inlet side tank 4 and allows the refrigerant to flow into the inlet side tank 4. The refrigerant outlet pipe 7 is attached to one side surface of the tank member 5 </ b> B in the outlet side tank 5, and causes the refrigerant to flow out of the evaporator 1 from the outlet side tank 5.

そして特に本実施の形態では、入口側タンク4とチューブ2とは、図3に示すように、入口側タンク4内に挿入されたチューブ2(2A)の挿入部分2aがタンク部材4Bの内壁面4bとの間に隙間が生じないように接して設けられ、タンク内流路9の下端側を塞ぐようになっている。出口側タンク5とチューブ2も同様の構造とされている。   In the present embodiment, the inlet side tank 4 and the tube 2 are, as shown in FIG. 3, the insertion portion 2a of the tube 2 (2A) inserted into the inlet side tank 4 being the inner wall surface of the tank member 4B. 4b is provided in contact with the gap so as not to occur, and the lower end side of the in-tank flow path 9 is closed. The outlet side tank 5 and the tube 2 have the same structure.

また、本実施の形態では、図2に示すように、入口側タンク4の入口側から奥に向かって3本のチューブ2A、2B、2Cは、その挿入部分2aがタンク内高さHの約半分位の位置まで突き出ている。残りの3本のチューブ2D、2E、2Fは、入口側近傍のチューブ2A、2B、2Cとは異なり、その挿入部分2aがタンク内に僅かに突き出している。   In the present embodiment, as shown in FIG. 2, the three tubes 2 </ b> A, 2 </ b> B, and 2 </ b> C from the inlet side of the inlet side tank 4 toward the back have an insertion portion 2 a of about H in the tank. It protrudes to half the position. The remaining three tubes 2D, 2E, and 2F differ from the tubes 2A, 2B, and 2C in the vicinity of the inlet side, and their insertion portions 2a slightly protrude into the tank.

また、本実施の形態では、前記入口側近傍部に設けられた3本のチューブ2A、2B、2Cは、チューブ挿入位置でのタンク内断面積をSAとし、その位置での冷媒11が通過可能な冷媒通過断面積をSCとしたときに、SC/SA=0.3〜0.6とされている。   Further, in the present embodiment, the three tubes 2A, 2B, 2C provided in the vicinity of the inlet side have a tank cross-sectional area SA at the tube insertion position, and the refrigerant 11 can pass therethrough. SC / SA = 0.3 to 0.6 when the refrigerant cross-sectional area is SC.

このように、タンク内流路9の約下半分をチューブ2の挿入部分2aで閉塞する構造としたことで、冷媒入口パイプ6から入口側タンク4内へと流入する冷媒11は、入口側のチューブ2Aから順次奥のチューブ2B、2C・・・へと乗り越えながらタンク奥方向へ流入する。このとき、入口側近傍部に設けられた3本のチューブ2A、2B、2Cが配置される部分では、奥側に設けられた3本のチューブ2D、2E、2Fに比べて前記した冷媒通過断面積SCが狭くされているため、冷媒11が各チューブ2A、2B、2Cを乗り越える際のスピードが速くなり、入口側タンク4の入口側から奥へとより多く冷媒11が流れることになる。   As described above, the structure in which the lower half of the in-tank flow path 9 is closed by the insertion portion 2a of the tube 2 allows the refrigerant 11 flowing from the refrigerant inlet pipe 6 into the inlet side tank 4 to flow into the inlet side. It flows in from the tube 2A to the back tube 2B, 2C,. At this time, in the portion where the three tubes 2A, 2B, and 2C provided in the vicinity of the inlet side are disposed, the refrigerant passage interruption described above compared to the three tubes 2D, 2E, and 2F provided on the back side. Since the area SC is narrowed, the speed at which the refrigerant 11 gets over each of the tubes 2A, 2B, 2C is increased, and more refrigerant 11 flows from the inlet side of the inlet side tank 4 to the back.

その結果、タンクの奥側よりも入口側で冷媒11がより多く流れ込み易い状態から各チューブ2A〜2Fへ均等に冷媒11が流れるようになり、タンク入口から奥に至る各チューブ2A〜2Fへの冷媒11の流入量が均一化され、そこで熱交換される空気の温度を蒸発器全体で均一なものとすることができる。   As a result, the refrigerant 11 flows evenly to the tubes 2A to 2F from the state in which the refrigerant 11 more easily flows on the inlet side than on the back side of the tank, and reaches the tubes 2A to 2F extending from the tank inlet to the back. The inflow amount of the refrigerant 11 is made uniform, and the temperature of the air exchanged therewith can be made uniform throughout the evaporator.

本発明者等は、入口側近傍部に設けた3本のチューブ2A、2B、2Cの入口側タンク4内への突き出し量を多くして(冷媒通過断面積SCを狭めて)、冷媒11が各チューブ2A、2B、2Cを乗り越える際のスピードを速め、通過冷媒量が多くなることを実験で確認した。実験は、6本のチューブ2A〜2Fのうち、入口側の3本のチューブ2A、2B、2Cのタンク内への突き出し量を変化させ、そのときの各チューブ2A〜2F内に流入する冷媒流量を測定した。その結果を図4に示す。   The inventors increase the amount of projection of the three tubes 2A, 2B, 2C provided in the vicinity of the inlet side into the inlet side tank 4 (narrow the refrigerant passage cross-sectional area SC), and the refrigerant 11 It was confirmed by experiments that the speed at which the tubes 2A, 2B and 2C were moved over was increased and the amount of refrigerant passing through was increased. In the experiment, among the six tubes 2A to 2F, the amount of protrusion of the three tubes 2A, 2B and 2C on the inlet side into the tank is changed, and the flow rate of the refrigerant flowing into each tube 2A to 2F at that time Was measured. The result is shown in FIG.

この結果から分かるように、チューブ2の突き出しによって冷媒通過断面積SCを一定の範囲で狭めれば、各チューブ2内に流入する冷媒11の流量ばらつきを無視できる程度まで無くすことができる。具体的には、SC/SA=0.3〜0.6の範囲とすれば、実用上、各チューブ2A〜2Fに流入する冷媒流量のばらつきを無視することができる。   As can be seen from this result, if the refrigerant passage cross-sectional area SC is narrowed within a certain range by the protrusion of the tube 2, the flow rate variation of the refrigerant 11 flowing into each tube 2 can be eliminated to a negligible level. Specifically, if SC / SA is in the range of 0.3 to 0.6, the variation in the refrigerant flow rate flowing into the tubes 2A to 2F can be ignored in practice.

以上、本実施の形態の蒸発器1によれば、チューブ2が入口側タンク4に挿入された位置でのタンク内断面積をSAとし、その位置での冷媒11が通過可能な冷媒通過断面積をSCとしたときに、SC/SA=0.3〜0.6とすると、タンク内に突き出たチューブ2によって冷媒11が通過可能な冷媒通過断面積SCが狭まることになるから、そこを流れる冷媒11の流速が速まり入口から奥へと冷媒11がより多く流れるようになる。したがって、入口側タンク4の奥側よりも入口側で冷媒11が多く流れ込み易い状態から各チューブ2A〜2Fへ均等に冷媒11が流れるようになり、タンク入口から奥に至る各チューブ2A〜2Fへの冷媒11の流量が均一化され、そこで熱交換される空気の温度を蒸発器1全体で均一なものとすることができる。   As described above, according to the evaporator 1 of the present embodiment, the cross-sectional area in the tank at the position where the tube 2 is inserted into the inlet side tank 4 is SA, and the cross-sectional area through which the refrigerant 11 can pass at that position. If SC / SA = 0.3-0.6, the refrigerant passage cross-sectional area SC through which the refrigerant 11 can pass is narrowed by the tube 2 protruding into the tank, and flows therethrough. The flow rate of the refrigerant 11 increases and more refrigerant 11 flows from the inlet to the back. Accordingly, the refrigerant 11 flows evenly from the state where the refrigerant 11 flows more easily on the inlet side than the rear side of the inlet side tank 4 to the tubes 2A to 2F, and to the tubes 2A to 2F extending from the tank inlet to the back. The flow rate of the refrigerant 11 is made uniform, and the temperature of the air exchanged therewith can be made uniform throughout the evaporator 1.

また、本実施の形態の蒸発器1によれば、SC/SA=0.3〜0.6とされるチューブ2A〜2Cを、少なくとも入口側タンク4の入口側近傍部に設ければ、入口側タンク4に挿入された各チューブ2A〜2Fへ流れる冷媒11の流量を均一なものとすることができる。   Further, according to the evaporator 1 of the present embodiment, if the tubes 2A to 2C with SC / SA = 0.3 to 0.6 are provided at least in the vicinity of the inlet side of the inlet side tank 4, the inlet The flow rate of the refrigerant 11 flowing to the tubes 2A to 2F inserted in the side tank 4 can be made uniform.

また、本実施の形態の蒸発器1によれば、入口側タンク4内に挿入されたチューブ2A〜2Fの挿入部分2aが、タンク内流路9を閉塞しているので、チューブ側面とタンクとの間から冷媒11が流れるのを防止できる。   Moreover, according to the evaporator 1 of this Embodiment, since the insertion part 2a of the tubes 2A-2F inserted in the inlet side tank 4 has block | closed the flow path 9 in a tank, a tube side surface, a tank, It can prevent that the refrigerant | coolant 11 flows from between.

以上、本発明を適用した具体的な実施の形態について説明したが、上述の実施の形態は、本発明の一例に過ぎないからこれら実施の形態に本発明が制限されることはない。   Although specific embodiments to which the present invention is applied have been described above, the above-described embodiments are merely examples of the present invention, and the present invention is not limited to these embodiments.

本実施の形態の蒸発器の斜視図である。It is a perspective view of the evaporator of this Embodiment. 図1のA−A線位置における要部拡大断面図である。It is a principal part expanded sectional view in the AA line position of FIG. 図3(A)は図2のB−B線位置における要部拡大断面図、図3(B)は図2のC−C線位置における要部拡大断面図である。3A is an enlarged cross-sectional view of the main part at the position of the line BB in FIG. 2, and FIG. 3B is an enlarged cross-sectional view of the main part at the position of the line CC in FIG. 各チューブに流入する冷媒流量分布を示す特性図である。It is a characteristic view which shows the refrigerant | coolant flow volume distribution which flows in into each tube. 従来の蒸発器の斜視図である。It is a perspective view of the conventional evaporator. 図6(A)は図5の流体入口側の要部断面図、図6(B)は図5の流体出口側の要部断面図である。6A is a cross-sectional view of the main part on the fluid inlet side in FIG. 5, and FIG. 6B is a cross-sectional view of the main part on the fluid outlet side in FIG. 図5の蒸発器の導管に通液管が挿入された状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the state by which the liquid penetration pipe was inserted in the conduit | pipe of the evaporator of FIG.

符号の説明Explanation of symbols

1…蒸発器
2(2A〜2F)…チューブ
3…アウターフィン
4…入口側タンク
4A…座板
4B…タンク部材
5…出口側タンク
5A…座板
5B…タンク部材
6…冷媒入口パイプ
7…冷媒出口パイプ
8…冷媒流通路
9…タンク内流路
11…冷媒
DESCRIPTION OF SYMBOLS 1 ... Evaporator 2 (2A-2F) ... Tube 3 ... Outer fin 4 ... Inlet side tank 4A ... Seat plate 4B ... Tank member 5 ... Outlet side tank 5A ... Seat plate 5B ... Tank member 6 ... Refrigerant inlet pipe 7 ... Refrigerant Outlet pipe 8 ... Refrigerant flow passage 9 ... Tank passage 11 ... Refrigerant

Claims (3)

複数本のチューブ(2)と、各チューブ(2)の一端側がそれぞれ挿入されて連通された入口側タンク(4)と、各チューブ(2)の他端側がそれぞれ挿入されて連通された出口側タンク(5)と、上記入口側タンク(4)に接続され当該入口側タンク(4)内に冷媒を供給する冷媒入口パイプ(6)と、上記出口側タンク(5)に接続され上記各チューブ(2)内を流通した冷媒(11)を外部へ排出させる冷媒出口パイプ(7)とを備えた蒸発器(1)において、
前記チューブ(2)が前記入口側タンク(4)に挿入された位置でのタンク内断面積をSAとし、その位置での冷媒(11)が通過可能な冷媒通過断面積をSCとしたときに、SC/SA=0.3〜0.6とした
ことを特徴とする蒸発器。
Multiple tubes (2), an inlet side tank (4) in which one end side of each tube (2) is inserted and communicated, and an outlet side in which the other end side of each tube (2) is inserted and communicated A tank (5), a refrigerant inlet pipe (6) connected to the inlet side tank (4) and supplying refrigerant into the inlet side tank (4), and each tube connected to the outlet side tank (5) (2) In the evaporator (1) provided with the refrigerant outlet pipe (7) for discharging the refrigerant (11) circulated inside to the outside,
When the sectional area in the tank at the position where the tube (2) is inserted into the inlet side tank (4) is SA and the sectional area through which the refrigerant (11) can pass at that position is SC. SC / SA = 0.3-0.6 The evaporator characterized by the above-mentioned.
請求項1に記載の蒸発器であって、
前記SC/SA=0.3〜0.6とされるチューブ(2A〜2C)は、少なくとも前記入口側タンク(4)の入口側近傍部に設ける
ことを特徴とする蒸発器。
The evaporator according to claim 1, comprising:
The tubes (2A to 2C) having SC / SA = 0.3 to 0.6 are provided at least in the vicinity of the inlet side of the inlet side tank (4).
請求項1または請求項2に記載の蒸発器であって、
前記入口側タンク(4)内に挿入されたチューブ(2)の挿入部分(2a)が、タンク内流路(9)を閉塞している
ことを特徴とする蒸発器。
An evaporator according to claim 1 or claim 2, wherein
The evaporator, wherein the insertion portion (2a) of the tube (2) inserted into the inlet side tank (4) closes the tank flow path (9).
JP2005183099A 2005-06-23 2005-06-23 Evaporator Pending JP2007003080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183099A JP2007003080A (en) 2005-06-23 2005-06-23 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183099A JP2007003080A (en) 2005-06-23 2005-06-23 Evaporator

Publications (1)

Publication Number Publication Date
JP2007003080A true JP2007003080A (en) 2007-01-11

Family

ID=37688884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183099A Pending JP2007003080A (en) 2005-06-23 2005-06-23 Evaporator

Country Status (1)

Country Link
JP (1) JP2007003080A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106738A (en) * 2009-11-17 2011-06-02 Mitsubishi Electric Corp Heat exchanger and heat pump system
JP2011163729A (en) * 2010-02-15 2011-08-25 Mitsubishi Electric Corp Cooling device
JP2013019581A (en) * 2011-07-11 2013-01-31 Hitachi Appliances Inc Refrigeration cycle apparatus
WO2018051611A1 (en) * 2016-09-16 2018-03-22 株式会社日立製作所 Heat exchanger and heat pump system using same
WO2019093065A1 (en) * 2017-11-09 2019-05-16 株式会社デンソー Evaporator
CN110030859A (en) * 2019-05-09 2019-07-19 南京工业大学 Passive flag form heat pipe exchanger and spentnuclear fuel pool device for spentnuclear fuel pond
CN110418935A (en) * 2017-03-24 2019-11-05 三菱电机株式会社 Air-conditioning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177761A (en) * 1989-12-06 1991-08-01 Matsushita Electric Ind Co Ltd Heat exchanger
JP2003106793A (en) * 2001-09-28 2003-04-09 Zexel Valeo Climate Control Corp Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177761A (en) * 1989-12-06 1991-08-01 Matsushita Electric Ind Co Ltd Heat exchanger
JP2003106793A (en) * 2001-09-28 2003-04-09 Zexel Valeo Climate Control Corp Heat exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106738A (en) * 2009-11-17 2011-06-02 Mitsubishi Electric Corp Heat exchanger and heat pump system
JP2011163729A (en) * 2010-02-15 2011-08-25 Mitsubishi Electric Corp Cooling device
JP2013019581A (en) * 2011-07-11 2013-01-31 Hitachi Appliances Inc Refrigeration cycle apparatus
WO2018051611A1 (en) * 2016-09-16 2018-03-22 株式会社日立製作所 Heat exchanger and heat pump system using same
CN110418935A (en) * 2017-03-24 2019-11-05 三菱电机株式会社 Air-conditioning device
EP3605000A4 (en) * 2017-03-24 2020-07-29 Mitsubishi Electric Corporation Air conditioning device
CN110418935B (en) * 2017-03-24 2021-03-26 三菱电机株式会社 Air conditioner
WO2019093065A1 (en) * 2017-11-09 2019-05-16 株式会社デンソー Evaporator
JP2019086254A (en) * 2017-11-09 2019-06-06 株式会社デンソー Evaporator
CN110030859A (en) * 2019-05-09 2019-07-19 南京工业大学 Passive flag form heat pipe exchanger and spentnuclear fuel pool device for spentnuclear fuel pond

Similar Documents

Publication Publication Date Title
JP5087549B2 (en) Heat exchanger
JP2007003080A (en) Evaporator
JP2006250412A (en) Heat exchanger
JP2007078298A (en) Heat exchanger
JP2001304775A (en) Air conditioner for vehicle
JP2000105097A (en) Heat exchanger
JP2008070026A (en) Heat exchanger
EP1703245B1 (en) Heat exchanger
WO2016175193A1 (en) Heat exchanger
JP2006200861A (en) Multi-fluid heat exchanger
JPH10325646A (en) Heat exchanger
JP2010223464A (en) Evaporator
JP2010209878A (en) Egr cooler
JP2008151415A (en) Heat exchanger
KR101372303B1 (en) Heat Exchanger
JPH11351786A (en) Heat exchanger
US20080230215A1 (en) Heat Exchanger with Ventilation
JP2017203609A (en) Evaporator
JP2005300072A (en) Evaporator
JP2006266521A (en) Heat exchanger
JP2009180444A (en) Coolant distributor
JP2007232354A (en) Laminated heat exchanger
JP2006317098A (en) Flow divider
JP4095818B2 (en) Heat exchanger
JP2020091056A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831