WO2019093065A1 - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
WO2019093065A1
WO2019093065A1 PCT/JP2018/037945 JP2018037945W WO2019093065A1 WO 2019093065 A1 WO2019093065 A1 WO 2019093065A1 JP 2018037945 W JP2018037945 W JP 2018037945W WO 2019093065 A1 WO2019093065 A1 WO 2019093065A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
liquid supply
fluid
tube
supply tank
Prior art date
Application number
PCT/JP2018/037945
Other languages
French (fr)
Japanese (ja)
Inventor
康光 大見
功嗣 三浦
義則 毅
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019093065A1 publication Critical patent/WO2019093065A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • H01M10/652Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations characterised by gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an evaporator that is applied to a thermosiphon-type cooling device to evaporate a working fluid.
  • thermo-siphon type cooling device Conventionally, a thermo-siphon type cooling device is known.
  • This type of thermosiphon-type cooling device includes an evaporator for evaporating a liquid phase working fluid and a condenser for condensing a vapor phase working fluid evaporated by the evaporator. Then, the heat of the object to be cooled is absorbed by the working fluid in the evaporator to cool the object to be cooled. Further, in the condenser, the heat absorbed by the working fluid from the object to be cooled is dissipated to the outside.
  • the condenser is disposed on the upper side of the evaporator so that the working fluid in the liquid phase, which is denser than the working fluid in the gaseous phase, flows from the condenser to the evaporator by the action of gravity. Thereby, the working fluid is naturally circulated to enable continuous cooling of the object to be cooled.
  • Patent Document 1 discloses a thermosiphon-type cooling device used for cooling a battery assembly formed by stacking a plurality of battery cells.
  • the cooling device of Patent Document 1 includes an evaporator provided with a fluid passage in contact with the side surface of the assembled battery and extending in the stacking direction of the battery cells.
  • the working fluid in the liquid phase is allowed to flow in from the fluid inlet provided at one longitudinal end side of the fluid passage. Then, when flowing through the fluid passage, the gas phase working fluid which has absorbed heat and evaporated from the assembled battery is made to flow out from the fluid outlet provided on the other end side in the longitudinal direction of the fluid passage.
  • Patent No. 5942943 gazette
  • the battery cells in the evaporator having a fluid passage extending in the stacking direction of the battery cells, the battery cells can be sufficiently cooled by the latent heat of vaporization of the working fluid at a location where there is a large amount of working fluid in liquid phase. it can.
  • the battery cells since it is not possible to evaporate the working fluid at a portion of the fluid passage where the working fluid in the gas phase is unevenly distributed, so-called dry out that cooling of the battery cell in contact with the portion becomes insufficient. It can occur.
  • the present disclosure is an evaporator applied to a thermosiphon-type cooling device, and an object of the present disclosure is to provide an evaporator that can uniformly cool the entire object to be cooled.
  • the evaporator comprises a working fluid tube for circulating the working fluid, and a liquid supply unit connected to the lower end of the working fluid tube to distribute the working fluid in the liquid phase to the working fluid tube.
  • the working fluid tube forms an evaporation unit that evaporates the working fluid by absorbing the heat of the object to be cooled by the liquid phase working fluid flowing therethrough.
  • the inside of the working fluid tube is divided into a plurality of fluid passages for passing the working fluid from the lower side to the upper side. In the inlets of the plurality of fluid passages, at least a part of the inlets is opened inside the liquid supply unit, and the opening positions of the respective inlets are different in the vertical direction.
  • the opening positions of at least a part of the inlets of the plurality of fluid passages through which the working fluid flows from the lower side to the upper side are different in the vertical direction. For this reason, the working fluid in the liquid phase in the liquid supply portion is easily supplied to the fluid passage in which the inlet portion is opened at the lower side among the plurality of fluid passages.
  • the working fluid in the liquid phase can be supplied from the liquid supply unit to the entire region of the evaporating unit. It can be distributed almost evenly. As a result, the whole of the object to be cooled can be uniformly cooled by the latent heat of evaporation of the working fluid in the entire area of the evaporation section.
  • thermosiphon type cooling device of 1st Embodiment It is a block diagram of the thermosiphon type cooling device of 1st Embodiment. It is a disassembled perspective view of the evaporator of 1st Embodiment. It is a schematic cross section which shows the inside of the liquid supply tank of the evaporator of 1st Embodiment. It is explanatory drawing which shows the arrangement
  • FIG. 21 is a schematic enlarged view corresponding to FIG. 10 of another modified example of the fifth embodiment.
  • It is a schematic cross section which shows the inside of the liquid supply tank of the evaporator of 6th Embodiment. It is XIV-XIV sectional drawing of FIG. It is a disassembled perspective view of the evaporator of other embodiment.
  • thermosiphon cooling device 1 to which the evaporator 2 according to the present disclosure is applied is used to cool the battery pack BP mounted on the electric vehicle. Therefore, the thermosiphon cooling device 1 is mounted on the vehicle together with the battery pack BP. Furthermore, the object to be cooled in the evaporator 2 is the battery pack BP.
  • the battery pack BP has a function of storing electric power and a function of supplying the stored electric power to on-vehicle equipment such as a traveling electric motor.
  • the battery pack BP is obtained by electrically connecting a plurality of battery cells BC in series.
  • the battery cell BC is a chargeable / dischargeable secondary battery (for example, a lithium ion battery, a lead storage battery).
  • This type of battery cell BC involves heat generation during charge and discharge. Furthermore, the battery cell BC is likely to be deteriorated due to temperature rise due to self-heating or the like. For this reason, it is desirable that each battery cell BC be cooled so as not to exceed a predetermined reference temperature. That is, it is desirable that the entire assembled battery BP be uniformly cooled so that all the battery cells BC are cooled.
  • Each battery cell BC is formed in a substantially rectangular parallelepiped shape.
  • the assembled battery BP is formed by stacking the battery cells BC in two rows in a predetermined direction. For this reason, the external shape of the battery pack BP is also substantially rectangular.
  • thermosiphon cooling device 1 As shown in FIG. 1, the thermosiphon cooling device 1 includes an evaporator 2, a gas phase fluid pipe 3, a condenser 4, and a liquid phase fluid pipe 5.
  • the thermosiphon cooling device 1 is configured by connecting these components in an annular manner (ie, in a closed loop).
  • the evaporator 2 absorbs the heat of the battery pack BP to the working fluid in the liquid phase to evaporate the working fluid.
  • a fluorocarbon-based refrigerant specifically, R134a
  • R134a fluorocarbon-based refrigerant used in a vapor compression refrigeration cycle
  • a gas phase fluid pipe 3 is connected to the fluid outlet 23 a of the evaporator 2.
  • the gas phase fluid piping 3 is a fluid piping that leads the gas phase working fluid evaporated in the evaporator 2 to the fluid inlet of the condenser 4.
  • the gas phase fluid piping 3 is preferably a piping having a passage cross-sectional area larger than that of the liquid phase fluid piping 5 in order to reduce the pressure loss that occurs when the working fluid in the gas phase flows.
  • the condenser 4 dissipates heat and condenses the working fluid of the gas phase which has flowed in via the gas phase fluid piping 3.
  • a heat exchanger for exchanging heat between the gas phase working fluid and the low pressure refrigerant of the vapor compression refrigeration cycle is adopted as the condenser 4.
  • the condenser 4 is disposed above the evaporator 2.
  • a liquid phase fluid pipe 5 is connected to the fluid outlet of the condenser 4.
  • the liquid-phase fluid piping 5 is a fluid piping that leads the working fluid of the liquid phase condensed by the condenser 4 to the fluid inlet 22 a of the evaporator 2.
  • each arrow of the upper and lower sides in each drawing has shown each direction of the upper and lower sides in the state which mounted the thermosiphon type cooling device 1 in the vehicle.
  • a part of battery cells BC forming the assembled battery BP is drawn by a two-dot chain line for the sake of clarification of the illustration.
  • the evaporator 2 includes a plurality of flat multi-hole tubes 21, a liquid supply tank 22, and a fluid outflow tank 23.
  • the plurality of flat multi-hole tubes 21 form an evaporation unit that evaporates the working fluid by absorbing the heat of the battery pack BP by the working fluid in the liquid phase flowing therethrough.
  • Each flat multi hole tube 21 is a working fluid tube which forms a refrigerant passage which distributes a working fluid.
  • the flat multi-hole tube 21 is formed of a metal (in the present embodiment, an aluminum alloy) which is excellent in heat conductivity.
  • the flat multi-hole tube 21 is formed to have a flat cross-sectional shape perpendicular to the longitudinal direction.
  • the flat shape in the present embodiment is a shape in which the ends of two parallel line segments are connected by a curve or a straight line, and the thickness dimension which is the distance between the two line segments is two. It can be defined as a horizontally elongated shape which is shorter than the width dimension of the direction in which the line segment extends (hereinafter referred to as the width direction).
  • the part which becomes two line segments parallel in cross-sectional shape is a part which forms the flat surface (henceforth flat surface) of the back and front of flat multi hole tube 21.
  • the flat multi-hole tube 21 is formed with a plurality of through holes extending in the longitudinal direction. These through holes are arranged in a line in the width direction. For this reason, the inside of the flat multi-hole tube 21 is divided by the plurality of through holes into a plurality of fluid passages for circulating the working fluid.
  • the inside of the flat multi-hole tube 21 of the present embodiment is a first fluid passage 211a, a second fluid passage 211b, a third fluid passage 211c, a fourth fluid passage 211d, and a fifth fluid passage 211e ( Hereinafter, it is divided into five fluid passages of “first fluid passage 211 a to fifth fluid passage 211 e”.
  • the flat multi-hole tube 21 is disposed such that the longitudinal direction is the vertical direction. Therefore, in the first fluid passage 211a to the fifth fluid passage 211e of the present embodiment, the working fluid is circulated in parallel from the lower side to the upper side.
  • the lower end of the flat multi-hole tube 21 has a first inlet 212a, a second inlet 212b, and a third inlet 212c, which allow the working fluid to flow into the first fluid passage 211a to the fifth fluid passage 211e, respectively.
  • a fourth inlet 212d and a fifth inlet 212e (hereinafter, referred to as "first inlet 212a to fifth inlet 212e") are formed.
  • the first inlet portion 212 a to the fifth inlet portion 212 e are opened inside the liquid supply tank 22.
  • the lower end surface of the flat multi-hole tube 21 is inclined with respect to the horizontal plane. For this reason, the opening positions of the first inlet portion 212a to the fifth inlet portion 212e are different in the vertical direction.
  • the opening positions of the first inlet portion 212 a to the fifth inlet portion 212 e are sequentially changed in the width direction of the flat multi-hole tube 21. That is, as shown in FIG. 3, from the right side to the left side as viewed in the drawing, the opening positions are in the order of first inlet 212a ⁇ second inlet 212b ⁇ third inlet 212c ⁇ fourth inlet 212d ⁇ fifth inlet 212e. Is high. Therefore, the first inlet 212a is a bottom inlet which is opened at a position closest to the bottom of the liquid supply tank 22 among the first inlet 212a to the fifth inlet 212e.
  • Such a flat multi-hole tube 21 can be manufactured by forming a plurality of through holes in one metal member by extrusion molding or the like and cutting its end obliquely with respect to the longitudinal direction.
  • the liquid supply tank 22 is a liquid supply unit that distributes and supplies a working fluid of a liquid phase to each fluid passage of the flat multi-hole tube 21.
  • the liquid supply tank 22 is formed of a metal similar to the flat multi-hole tube 21 and has a bottomed cylindrical shape extending in the horizontal direction. At one end in the longitudinal direction of the liquid supply tank 22, a fluid inflow port 22a is provided to which the working fluid of the liquid phase condensed by the condenser 4 flows.
  • a plurality of insertion holes 22b to which the lower end of the flat multi-hole tube 21 is inserted and connected are formed on the side surface of the liquid supply tank 22 .
  • the insertion holes 22 b of the liquid supply tank 22 are formed in a line in the longitudinal direction of the liquid supply tank 22 so that the flat surfaces on both sides of the flat multi-hole tube 21 are arranged on the same plane.
  • the plurality of flat multi-hole tubes 21 are arranged in line in the longitudinal direction of the liquid supply tank 22. Furthermore, the width direction of the plurality of flat multi-hole tubes 21 coincides with the longitudinal direction of the liquid supply tank 22.
  • the flat multi-hole tube 21 is connected to the liquid supply tank 22 in a state where the lowermost end is in contact with the bottom surface side of the inner wall surface of the liquid supply tank 22. Therefore, at least the first inlet 212a to the fifth inlet 212e at the position closest to the bottom surface of the liquid supply tank 22 among the first inlet 212a to the fifth inlet 212e is lower than the center line CL of the liquid supply tank 22. It is open.
  • the fifth inlet 212e which opens at a position farthest from the bottom of the liquid supply tank 22 among at least the first inlet 212a to the fifth inlet 212e is opened above the center line CL.
  • the lower end surface of the flat multi-hole tube 21 is inclined so that
  • the center line CL of the liquid supply tank 22 is the central portion of the liquid supply tank 22 in the vertical direction.
  • a plurality of flat multi-hole tubes 21 having the same shape are employed. Furthermore, the plurality of flat multi-hole tubes 21 are arranged such that the lower end faces are inclined in the same direction. For this reason, the opening positions of all the inlets opening into the interior of the liquid supply tank 22 regularly change in the longitudinal direction of the liquid supply tank 22.
  • a plurality of predetermined fluid passages among the plurality of fluid passages formed in the plurality of flat multi-hole tubes 21 are defined as a reference fluid passage group.
  • the first fluid passage 211a to the fifth fluid passage 211e formed in one flat multi-hole tube 21 are defined as a reference fluid passage group.
  • the change in the opening position of the inlet in the longitudinal direction of the liquid supply tank 22 of the reference fluid passage group is defined as a reference change pattern.
  • the reference change pattern is a change in which the opening position becomes higher in the order of the first inlet 212a, the second inlet 212b, the third inlet 212c, the fourth inlet 212d, and the fifth inlet 212e.
  • the opening positions of all the inlets opening into the interior of the liquid supply tank 22 regularly change the reference change pattern repeatedly in the longitudinal direction of the liquid supply tank 22. ing. Furthermore, the reference change pattern is repeated by the number of flat multi-hole tubes 21.
  • first inlets 212 a which are bottom side inlets, are provided for the number of flat multi-hole tubes 21. Further, the adjacent first inlets 212a are arranged at a constant interval (in the present embodiment, an arrangement interval in the width direction of the flat multi-hole tube 21).
  • the fluid outflow tank 23 is a fluid outflow portion for collecting and flowing out the gas phase working fluid that has evaporated when flowing through the flat multi-hole tube 21.
  • the fluid outflow tank 23 is formed of a metal similar to the flat multi-hole tube 21 and has a bottomed cylindrical shape extending in the horizontal direction. At one longitudinal end of the fluid outflow tank 23, there is provided a fluid outlet 23a through which the working fluid in the gas phase flows out.
  • the fluid outflow tank 23 be larger in diameter than the liquid supply tank 22 in order to reduce the pressure loss that occurs when the working fluid in the gas phase flows.
  • a plurality of insertion holes 23b to which the upper end side of the flat multi-hole tube 21 is inserted and connected are formed on the side surface of the fluid outflow tank 23 .
  • the insertion holes 23 b of the fluid outflow tank 23 are formed in line in the longitudinal direction of the fluid outflow tank 23 so that flat surfaces on both sides of the flat multi-hole tube 21 are disposed on the same plane.
  • the plurality of flat multi-hole tubes 21 are arranged in line in the longitudinal direction of the fluid outflow tank 23. Furthermore, the width direction of the plurality of flat multi-hole tubes 21 coincides with the longitudinal direction of the fluid outflow tank 23. Accordingly, the longitudinal direction of the liquid supply tank 22 and the longitudinal direction of the fluid outflow tank 23 also coincide.
  • the evaporator 2 of this embodiment is manufactured by integrating each component, such as several flat multi hole tubes 21, the liquid supply tank 22, and the fluid outflow tank 23, by brazing joining.
  • FIG. 2 is a view of the evaporator 2 and the battery pack BP as viewed from the stacking direction of the battery pack BP.
  • the assembled battery BP is disposed such that the side surfaces of the battery cells BC forming one row are thermally connected to one flat surface of the plurality of flat multi-hole tubes 21.
  • the heat of the battery cells BC forming one row flows through the flat multi-hole tube 21 via the flat surface of the flat multi-hole tube 21 The heat transfer to the working fluid is arranged.
  • the side surfaces of the battery cells BC forming the other row are disposed so as to be thermally connected to the other flat surfaces of the plurality of flat multi-hole tubes 21.
  • the heat of the battery cell BC forming the other row flows through the flat multi-hole tube 21 via the other flat surface of the flat multi-hole tube 21 The heat transfer to the working fluid is arranged.
  • the heat of each battery cell BC (that is, the assembled battery BP) can be transferred to the working fluid so that the working fluid is evaporated in the plurality of flat multi-hole tubes 21.
  • the evaporation portion is formed by a portion of the working fluid tube (in the present embodiment, a plurality of flat multi-hole tubes 21) to which the heat of the battery cell BC is transferred to the working fluid.
  • a heat diffusion plate 24 and a heat conductive material 25 are disposed between the battery cell BC and the flat multi-hole tube 21 forming the evaporation portion.
  • the heat diffusion plate 24 diffuses the heat of the battery cell BC to a wide area of the evaporation portion.
  • a plate-like member made of a metal (specifically, an aluminum alloy) excellent in heat conductivity is adopted as the heat diffusion plate 24.
  • the heat transfer material 25 promotes heat transfer from the battery cell BC to the working fluid.
  • a resin sheet having electrical insulation and high thermal conductivity is adopted as the heat conductive material 25.
  • a clearance is provided between the flat multi-hole tube 21, the heat diffusion plate 24, the heat conductive material 25, and the battery cell BC for the sake of clarity of the illustration, but in fact The hole tube 21 and the heat conductive material 25, the heat diffusion plate 24 and the heat conductive material 25, and the battery cell BC and the heat conductive material 25 are in contact with each other.
  • the arrangement interval in the width direction of the flat multi-hole tube 21 of the present embodiment is set to be equal to the width dimension in the stacking direction of the battery cells BC. Furthermore, the number of flat multi-hole tubes 21 is the same as the number of battery cells BC.
  • the reference change pattern of the opening position of each inlet portion of the flat multi-hole tube 21 described above is regularly repeated by the number of the flat multi-hole tube 21 for each width dimension of the battery cell BC. Therefore, when viewed in the horizontal direction perpendicular to the stacking direction of the battery cells BC, the respective battery cells BC are arranged to overlap with the first fluid passage 211a.
  • thermosiphon cooling device 1 When the assembled battery BP generates heat by charge and discharge, the working fluid in the liquid phase absorbs heat of the assembled battery BP and evaporates in the flat multi-hole tube 21 forming the evaporation portion. Thereby, the battery pack BP is cooled, and the temperature rise of the battery pack BP is suppressed.
  • the working fluid in the gas phase evaporated in the flat multi-hole tube 21 moves upward through the respective fluid passages of the flat multi-hole tube 21 and gathers in the fluid outflow tank 23 due to the density difference between the liquid phase and the working fluid. Do.
  • the gas-phase working fluid collected in the fluid outflow tank 23 flows out of the fluid outlet 23 a and flows into the condenser 4 through the gas-phase fluid piping 3.
  • the gas phase working fluid that has flowed into the condenser 4 is absorbed by the low pressure refrigerant of the refrigeration cycle and cooled.
  • the working fluid flowing into the condenser 4 is condensed.
  • the exhaust heat of the battery pack BP is dissipated to the refrigerant of the refrigeration cycle via the working fluid.
  • the working fluid in the liquid phase condensed in the condenser 4 moves downward by the action of gravity. Then, the fluid flows from the fluid inlet 22 a of the evaporator 2 to the liquid supply tank 22 through the liquid phase fluid piping 5. The working fluid in the liquid phase that has flowed into the liquid supply tank 22 is distributed to each fluid passage of the flat multi-hole tube 21 again.
  • thermosiphon type cooling device 1 the working fluid is naturally circulated without the need for a working fluid transfer device such as a compressor or a pump to discharge the battery pack BP which is the object to be cooled. Heat can be continuously dissipated to the outside. That is, according to the thermosiphon cooling device 1, the battery assembly BP can be cooled efficiently and continuously.
  • thermosiphon cooling device 1 By the way, the operation of the thermosiphon cooling device 1 described above is based on the premise that the liquid supply tank 22 is filled with the working fluid of the liquid phase. However, when the cooling of the working fluid in the condenser 4 becomes insufficient, or when the working fluid in the liquid phase in the liquid phase fluid piping 5 or the liquid supply tank 22 receives heat from the outside, the inside of the liquid supply tank 22 In some cases, the working fluid in the gas phase may be mixed.
  • the working fluid in the gas phase is mixed into the liquid supply tank 22, the working fluid in the liquid phase can not be uniformly supplied from the liquid supply tank 22 to all the flat multi-hole tubes 21. Furthermore, in the flat multi-hole tube 21 to which the working fluid in the liquid phase is not supplied, the working fluid can not be evaporated, so that the dryout may occur that the cooling of the battery cell BC becomes insufficient.
  • the entire assembled battery BP can not be cooled uniformly, which may lower the performance of the assembled battery BP.
  • the opening positions of the first inlet portion 212a to the fifth inlet portion 212e of the first fluid passage 211a to the fifth fluid passage 211e formed in the flat multi-hole tube 21 It is different in the vertical direction. For this reason, even if the working fluid of the liquid phase in the liquid supply tank 22 is mixed with the working fluid of the gas phase, the inlet portion is lower on the lower side among the first fluid passage 211a to the fifth fluid passage 211e. It becomes easy to be supplied to the open fluid passage.
  • the working fluid in the liquid phase in the liquid supply tank 22 is easily supplied to the first fluid passage 211a having the first inlet 212a which is the bottom side inlet.
  • the first fluid passage 211a is fixed in the longitudinal direction of the liquid supply tank 22. It can be spaced apart. In other words, the fluid passages to which the liquid phase working fluid is likely to be supplied can be arranged at regular intervals in the working fluid tube forming the evaporation portion.
  • the working fluid in the liquid phase can be evenly distributed from the liquid supply tank 22 to the entire region of the evaporation section.
  • the whole of the assembled battery BP can be uniformly cooled by the latent heat of vaporization of the working fluid in the entire region of the evaporating unit.
  • any battery cell BC can be cooled by the latent heat of vaporization of the working fluid in the liquid phase that has flowed into the first fluid passage 211a. As a result, it is possible to suppress deterioration in the overall performance of the battery pack BP.
  • the several flat multi hole tube 21 is employ
  • the flat multi-hole tube 21 can be manufactured by obliquely cutting the end of a long metal member formed by extrusion molding or the like with respect to the longitudinal direction. Therefore, the flat multi-hole tube 21 whose end face is a cut surface can be cut out from the remaining metal members that have been cut. As a result, the yield rate at the time of manufacturing the flat multi-hole tube 21 can be improved without wasting the raw material of the flat multi-hole tube 21.
  • the lowermost end portion of the flat multi-hole tube 21 is in contact with the inner wall surface of the liquid supply tank 22. According to this, the flat multi-hole tube 21 can be easily positioned inside the liquid supply tank 22. That is, the vertical alignment of the first inlet 212 a serving as the bottom side inlet in each flat multi-hole tube 21 can be easily performed.
  • At least the first inlet 212 a is opened below the center line CL of the liquid supply tank 22, and at least the fifth inlet 212 e is the center line of the liquid supply tank 22. It is opened above CL.
  • FIG. 5 is a drawing corresponding to FIG. 3 described in the first embodiment.
  • the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
  • the first inlet 212a, the second inlet 212b, the fourth inlet 212d, and the fifth inlet 212e have the same height and are lower than the center line CL of the liquid supply tank 22. It is open at the side.
  • the third inlet 212 c opens above the center line CL of the liquid supply tank 22. Therefore, in the present embodiment, the first inlet 212a, the second inlet 212b, the fourth inlet 212d, and the fifth inlet 212e are bottom side inlets.
  • thermosiphon cooling device 1 The configuration and operation of the other evaporator 2 and the thermosiphon cooling device 1 are the same as in the first embodiment. Therefore, also in the evaporator 2 of this embodiment, the same effect as that of the first embodiment can be obtained.
  • each flat multi-hole tube 21 is provided with at least one or more bottom side inlets. It is done. According to this, the working fluid in the liquid phase can be distributed from the liquid supply tank 22 to the flat multi-hole tubes 21.
  • the part of the bottom side inlet part when focusing on a part of the bottom side inlet part (for example, the fifth inlet part 212e), the part of the bottom side inlet part extends over the entire area of the evaporation part. It is arranged at regular intervals. Therefore, the working fluid in the liquid phase can be distributed from the liquid supply tank 22 to the entire region of the evaporation section.
  • the evaporator 2 of the present embodiment is provided with a flat multi-hole tube 26 formed in a plate shape as a working fluid tube.
  • the flat multi-hole tube 26 is formed with a plurality of through holes extending in the vertical direction.
  • the plurality of through holes are arranged in a line along the plate surface (i.e., flat surface). Therefore, the inside of the flat multi-hole tube 26 is divided into a plurality of fluid passages by a plurality of through holes as in the first embodiment.
  • Such a flat multi-hole tube 26 can be manufactured by extrusion molding or the like in the same manner as the flat multi-hole tube 21 described in the first embodiment.
  • one insertion hole 22b is formed, to which the lower end of the flat multi-hole tube 26 is inserted and connected.
  • the insertion hole 22 b of the liquid supply tank 22 is formed in a flat shape extending in the longitudinal direction of the liquid supply tank 22.
  • one flat insertion hole 23 b is formed on the side surface of the fluid outflow tank 23 to which the upper end of the flat multi-hole tube 26 is inserted and connected.
  • the lower end surface of the flat multi-hole tube 26 is inclined so that a pointed head 26 a pointed downward may be formed at a plurality of locations when viewed from the horizontal direction. There is.
  • each inlet portion of the reference fluid passage group corresponds to that of the liquid supply tank 22.
  • the half first half opening positions are sequentially lowered in the longitudinal direction, and the second half half opening positions are sequentially polygonal. That is, in the reference fluid passage group, the sharp head 26 a is formed at the longitudinal center of the liquid supply tank 22.
  • the opening positions of all the inlets of the flat multi-hole tube 26 opened inside the liquid supply tank 22 regularly change the reference change pattern in the longitudinal direction of the liquid supply tank 22. .
  • the flat multi-hole tube 26 is connected with the pointed head 26 a in contact with the inner wall surface of the liquid supply tank 22. Therefore, in the present embodiment, the inlet portion overlapping with or adjacent to the pointed portion 26a is the bottom side inlet portion 212f.
  • the bottom side inlet portion 212f is arranged to be able to uniformly cool the battery cells BC, as in the second embodiment.
  • the dimension of the height direction is expanding toward the longitudinal direction one end side in which the fluid outflow port 23a was formed of the fluid outflow tank 23 of this embodiment. That is, in the fluid outflow tank 23 of the present embodiment, the passage cross-sectional area perpendicular to the longitudinal direction is enlarged as it goes to the one end side in the longitudinal direction.
  • thermosiphon cooling device 1 The configuration and operation of the other evaporator 2 and the thermosiphon cooling device 1 are the same as in the first embodiment. Therefore, also in the evaporator 2 of the present embodiment, as in the second embodiment, even if the working fluid of the gas phase is mixed in the liquid supply tank 22, the latent heat of vaporization of the working fluid in the entire region of the evaporating unit The entire battery BP can be cooled evenly.
  • the fluid outflow tank 23 one in which the passage cross-sectional area is expanded along with the longitudinal direction one end side where the fluid outlet 23 a is formed is adopted. According to this, it is possible to reduce the pressure loss when the gas phase working fluid flows through the fluid outflow tank 23, and it is easy to naturally circulate the working fluid.
  • the inlet portion is the same as the one opened at the same height below the center line CL of the liquid supply tank 22, and the liquid supply A reference change pattern is provided in which two types are provided: one opening at the same height on the upper side of the center line CL of the tank 22.
  • thermosiphon cooling device 1 The configuration and operation of the other evaporator 2 and the thermosiphon cooling device 1 are the same as in the first embodiment. Therefore, also in the evaporator 2 of the present embodiment, as in the third embodiment, even if the working fluid of the gas phase is mixed in the liquid supply tank 22, the latent heat of vaporization of the working fluid in the entire region of the evaporating unit The entire battery BP can be cooled evenly.
  • an evaporator 20 is described in which projections and depressions are formed on a plate surface, and a pair of first plate members 271 and a second plate member 272 are pasted together.
  • a first liquid supply forming portion 271a recessed toward the side away from the second plate member 272 is formed on the lower side of the first plate member 271.
  • the first liquid supply forming portion 271a is formed in a shape extending in the horizontal direction.
  • a first fluid outflow forming portion 271 b recessed on the side away from the second plate member 272 is formed on the upper side of the first plate member 271.
  • the first fluid outflow formation portion 271b is formed in a shape extending in the horizontal direction.
  • a plurality of first concave portions of the first plate member 271 in the vertical direction and between the first liquid supply forming portion 271 a and the first fluid outflow forming portion 271 b are separated from the second plate member 272.
  • the tube forming portion 271c is formed.
  • Each first tube forming portion 271c is recessed in a vertically extending shape so as to connect the first liquid supply forming portion 271a and the first fluid outflow forming portion 271b.
  • the respective first tube forming portions 271c are arranged at equal intervals in the horizontal direction.
  • the second liquid supply forming portion 272a recessed on the side away from the first plate member 271 is located below the second plate member 272 and at a position where it overlaps with the first liquid supply forming portion 271a in the horizontal direction. It is formed.
  • a second fluid outflow forming portion 272b recessed on the side away from the first plate member 271 is formed at a position above the second plate member 272 and in a position horizontally overlapping with the first fluid outflow forming portion 271b. ing.
  • a plurality of first tube forming portions 271 c of the first plate member 271 are provided at the central portion in the vertical direction of the second plate member 272 and between the second liquid supply forming portion 272 a and the second fluid outflow forming portion 272 b.
  • a flat surface portion 272c to which the formed portion is bonded is formed.
  • a fluid inflow port 22a is provided to which the working fluid of the liquid phase condensed by the condenser 4 flows.
  • a fluid outflow port 23a which causes the working fluid of the gas phase to flow out is provided.
  • the first liquid supply forming portion 271a and the second liquid supply forming portion 272a correspond to the liquid supply tank 22 described in the first embodiment.
  • a liquid supply tank portion 221 as a configuration to be formed is formed.
  • the liquid supply tank portion 221 is formed in a bottomed cylindrical shape having a rectangular cross section.
  • the first fluid outflow formation portion 271b and the second fluid outflow formation portion 272b form a fluid outflow tank portion 231 corresponding to the fluid outflow tank 23 described in the first embodiment.
  • the fluid outflow tank portion 231 goes to the one end side in the longitudinal direction, the passage cross-sectional area perpendicular to the longitudinal direction is enlarged.
  • the first tube forming portion 271c and the flat surface portion 272c form a plate tube 211 which causes the working fluid to flow from the lower side to the upper side. Furthermore, in the present embodiment, a sub-tube 273 for dividing the inside of the first tube forming portion 271c into a plurality of fluid passages is disposed inside the first tube forming portion 271c. Therefore, the working fluid tube of the present embodiment includes the plate tube 211 and the sub tube 273.
  • the sub tube 273 is a flat multi-hole tube in which a plurality of through holes are formed.
  • the inside of the sub-tube 273 is a first fluid passage 211g, a second fluid passage 211h, and a third fluid passage 211i (hereinafter referred to as "first fluid passage 211g to third fluid passage 211i") Are divided into three fluid passages.
  • first fluid passage 211g to third fluid passage 211i are divided into three fluid passages.
  • the joint surface at the time of bonding together the 1st plate member 271 and the 2nd plate member 272 is shown by hatching hatching for clarification of illustration. The same applies to FIGS. 11 and 12 described later.
  • the width dimension of the sub-tube 273 is set smaller than the width dimension of the first tube forming portion 271c. For this reason, the fourth fluid passage 211j and the fifth fluid passage 211k are formed in the gap between both sides in the width direction of the sub-tube 273 and the inner wall surface of the first tube forming portion 271c.
  • the lower end portion of the sub tube 273 extends into the liquid supply tank portion 221. Therefore, the first inlet 212g, the second inlet 212h, and the third inlet 212i (hereinafter referred to as "the first inlet 212g to the third inlet”) open at the lower end of the first fluid passage 211g to the third fluid passage 211i.
  • the portion 212i ′ ′ is opened inside the liquid supply tank portion 221.
  • the first inlet portion 212g to the third inlet portion 212i are opened below the fourth inlet portion 212j and the fifth inlet portion 212k which open at the lower end portions of the fourth fluid passage 211j and the fifth fluid passage 211k. ing.
  • the first inlet portion 212g to the third inlet portion 212i are opened at the same height below the center in the vertical direction of the liquid supply tank portion 221. Therefore, in the present embodiment, the first inlet portion 212g to the third inlet portion 212i are the bottom side inlet portion.
  • thermosiphon cooling device 1 The configuration and operation of the other thermosiphon cooling device 1 are the same as in the first embodiment.
  • the evaporator 20 has substantially the same configuration as the evaporator 2 described in the first embodiment. Therefore, also in the evaporator 20 of the present embodiment, as in the first embodiment, even if the working fluid of the gas phase mixes in the liquid supply tank portion 221, the latent heat of vaporization of the working fluid in the entire region of the evaporating portion The entire assembled battery BP can be cooled uniformly.
  • the opening positions of the first inlet 212 g to the third inlet 212 i opening at the lower end of the sub tube 273 are similar to the first embodiment. It may be changed in the direction.
  • any one of the fourth fluid passage 211 j and the fifth fluid passage 211 k may be provided.
  • the fourth fluid passage 211j and the fifth fluid passage 211k are not formed.
  • the opening positions of the first inlet portion 212g to the third inlet portion 212i are changed in the vertical direction, and any one (in the present embodiment, the first inlet portion 212g) is on the bottom side
  • the straightening vane 28 is a plate-like member that suppresses the concentration of the working fluid in the gas phase at a high position in the liquid supply tank 22 when the vehicle is inclined or the like. That is, the straightening vane 28 has a function of suppressing the working fluid from moving inside the liquid supply tank 22 when the vehicle is inclined or the like.
  • the current plate 28 is made of the same metal as the liquid supply tank 22 and is brazed to the upper side of the inner wall surface of the liquid supply tank 22. As shown in FIG. 13, the straightening vanes 28 are disposed between adjacent flat multi-hole tubes 21. Therefore, the thickness of the flow straightening plate 28 is thinner than the distance between adjacent flat multi-hole tubes 21.
  • the straightening vanes 28 are formed in a semicircular shape when viewed from the longitudinal direction of the liquid supply tank 22 as shown in FIG. Therefore, the baffle plate 28 closes the upper half of the liquid supply tank 22.
  • thermosiphon cooling device 1 The configuration and operation of the other evaporator 2 and the thermosiphon cooling device 1 are the same as in the first embodiment. Accordingly, in the evaporator 2 of the present embodiment, as in the first embodiment, even if the working fluid of the gas phase is mixed in the liquid supply tank 22, the latent heat of vaporization of the working fluid in the entire region of the evaporating unit The entire battery BP can be cooled evenly.
  • the center line CL of the liquid supply tank 22 and the liquid level in the liquid supply tank 22 are determined by acceleration and deceleration of the electric vehicle and inclination of the vehicle body. Even when tilted from the horizontal direction, movement of the working fluid in the liquid phase inside the liquid supply tank 22 is suppressed.
  • the working fluid in the liquid phase is not supplied to some of the first fluid passages 211a. It can be suppressed. Thereby, the entire assembled battery BP can be cooled uniformly. Furthermore, according to the straightening vanes 28, it is possible to suppress the generation of abnormal noise that occurs when the working fluid in the liquid phase mixes with the working fluid in the gas phase and moves in the liquid supply tank 22.
  • thermosiphon-type cooling device 1 including the evaporators 2 and 20 of the present embodiment is suitably used to cool an object to be cooled which is desirably uniformly cooled throughout.
  • the battery pack BP as the object to be cooled is not limited to one mounted on an electric vehicle.
  • it may be mounted on a hybrid vehicle or the like which obtains driving power for traveling from an internal combustion engine (engine) and a traveling electric motor.
  • the battery pack BP may include battery cells BC electrically connected in parallel.
  • the above-mentioned embodiment demonstrated the example which laminated
  • the number of rows in which the battery cells BC are stacked is not limited to two, and the number of evaporators 2 is not limited to one.
  • the battery cells BC may be stacked in one row and disposed so as to be thermally connected to one surface of the evaporation portion of the evaporator 2 or 20.
  • the battery cells BC may be stacked in four rows, and one row may be arranged on both sides of the evaporators of the two evaporators 2 and 20.
  • the two evaporators 2 may be connected in parallel to the working fluid flow in the thermosiphon cooling device 1.
  • Each component which comprises evaporator 2 and 20 is not limited to what was indicated by the above-mentioned embodiment.
  • the liquid supply tank 22 of the evaporator 2 is not limited to one formed in a circular cross-sectional shape, and is formed in a polygonal cross-sectional shape like the liquid supply tank portion 221 of the evaporator 20 described in the fifth embodiment. It may be done. The same applies to the fluid outflow tank 23.
  • a line connecting the center of gravity of the cross section may be defined as a central portion in the upper limit direction.
  • the central portion in the vertical direction of the liquid supply tank 22 in which the cross-sectional shape changes may be defined as a line connecting the central portions in the vertical direction of the internal space of the liquid supply tank 22 when viewed from the horizontal direction.
  • the heat diffusion plate 24 may be made of another metal (for example, copper). Furthermore, it is not limited to a metal, You may be formed with the carbon material (for example, carbon fiber, a carbon nanotube) which is excellent in heat conductivity.
  • the heat conductive material 25 may be in the form of grease. Furthermore, if the electrical insulation between the evaporator 2 and the battery pack BP can be secured, the heat conductive material 25 may be eliminated and the evaporator 2 may be in direct contact with the battery pack BP.
  • a subtube is not limited to this.
  • a welded tube manufactured by bending and joining plate members may be employed.
  • the sub-tube may be formed by arranging one or more single-hole pipes thinner than the width direction of the first tube forming portion 271c.
  • positioning of the subtube 273 is not limited to this. As long as the entire object to be cooled can be cooled uniformly, for example, as shown in FIG. 15, a first tube forming portion 271 c in which the sub tube 273 is not disposed may be provided.
  • the first tube forming portion in which the sub tube 273 is disposed such as alternately arranging the first tube forming portion 271 c in which the sub tube 273 is disposed and the first tube forming portion 271 c in which the sub tube 273 is not disposed It is desirable that the first tube forming portion 271 c in which the sub tube 271 c is not disposed is regularly disposed in the longitudinal direction of the liquid supply tank portion 221.
  • the straightening vane 28 formed in a semicircular shape when viewed from the longitudinal direction of the liquid supply tank 22, the example has been described in which the straightening vane 28 formed in a semicircular shape is adopted, but the shape of the straightening vane 28 is not limited thereto. If it can be joined to the inner wall surface of the liquid supply tank 22, it may be formed in a rectangular shape. Furthermore, as long as the working fluid in the liquid phase can be prevented from moving inside the liquid supply tank 22, it may be arranged to close any part of the liquid supply tank 22.
  • thermosiphon type cooling device 1 Each component apparatus which comprises the thermosiphon type cooling device 1 is not limited to what was disclosed by the above-mentioned embodiment.
  • the condenser 4 is not limited to the heat exchanger disclosed in the above-described embodiment as long as it can condense the working fluid in the gas phase, and various types of condensers can be adopted. .
  • a heat exchanger may be adopted as the condenser 4 for exchanging heat between the gas phase working fluid and the outside air or LLC (cooling water).
  • a cooling device may be adopted which cools the working fluid in the gas phase with the cold heat generated by a Peltier element or the like.
  • a plurality of condensers 4 may be provided and connected in parallel or in series to the flow of the working fluid.
  • one working fluid pipe may be used except the evaporator 2. That is, in the working fluid piping, the portion that cools and condenses the working fluid is the condensation portion that functions as a condenser, the portion on the working fluid flow upstream side of the condensation portion is the gas phase fluid piping 3, and the operation of the condensation portion The portion on the downstream side of the fluid flow may be used as the liquid-phase fluid piping 5.
  • a working fluid is not limited to this.
  • Another fluorocarbon-based refrigerant eg, R1234yf
  • the heat medium such as propane, carbon dioxide and alcohol may be employed without being limited to the fluorocarbon refrigerant.

Abstract

Provided is an evaporator applied to a thermosyphon type cooling device. The inside of a flat multi-hole tube (21) forming an evaporation section for evaporating an operating fluid is divided into first to fifth fluid passages (211a-211e) through which the operating fluid flows upward from below. The openings of first to fifth inlets (212a-212e) of the fluid passages are arranged at vertically different positions. A plurality of such flat multi-hole tubes are arranged next to each other in the longitudinal direction of a liquid supply tank (22), and the first inlets open at the lowermost ends are arranged at a certain distance from the evaporation section. As a result, even if a gas-phase operating fluid enters the liquid supply tank, a liquid-phase operating fluid can be uniformly distributed to the entire region of the liquid supply tank, and the entire battery pack (BP) can be uniformly cooled.

Description

蒸発器Evaporator 関連出願の相互参照Cross-reference to related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2017年11月9日に出願された日本特許出願2017-216528号を基にしている。 This application is based on Japanese Patent Application No. 2017-216528 filed on Nov. 9, 2017, the disclosure of which is incorporated by reference into the present application.
 本開示は、サーモサイフォン式の冷却装置に適用されて、作動流体を蒸発させる蒸発器に関する。 The present disclosure relates to an evaporator that is applied to a thermosiphon-type cooling device to evaporate a working fluid.
 従来、サーモサイフォン式の冷却装置が知られている。この種のサーモサイフォン式の冷却装置は、液相の作動流体を蒸発させる蒸発器、および蒸発器にて蒸発させた気相の作動流体を凝縮させる凝縮器を有している。そして、蒸発器にて、冷却対象物の有する熱を作動流体に吸熱させて冷却対象物を冷却している。また、凝縮器にて、作動流体が冷却対象物から吸熱した熱を外部に放熱させている。 Conventionally, a thermo-siphon type cooling device is known. This type of thermosiphon-type cooling device includes an evaporator for evaporating a liquid phase working fluid and a condenser for condensing a vapor phase working fluid evaporated by the evaporator. Then, the heat of the object to be cooled is absorbed by the working fluid in the evaporator to cool the object to be cooled. Further, in the condenser, the heat absorbed by the working fluid from the object to be cooled is dissipated to the outside.
 さらに、凝縮器を蒸発器の上方側に配置して、気相の作動流体よりも密度の高い液相の作動流体を重力の作用によって凝縮器から蒸発器へ流入させている。これにより、作動流体を自然循環させて、冷却対象物を連続的に冷却できるようにしている。 Further, the condenser is disposed on the upper side of the evaporator so that the working fluid in the liquid phase, which is denser than the working fluid in the gaseous phase, flows from the condenser to the evaporator by the action of gravity. Thereby, the working fluid is naturally circulated to enable continuous cooling of the object to be cooled.
 例えば、特許文献1には、複数の電池セルを積層して形成された組電池の冷却に用いられるサーモサイフォン式の冷却装置が開示されている。 For example, Patent Document 1 discloses a thermosiphon-type cooling device used for cooling a battery assembly formed by stacking a plurality of battery cells.
 特許文献1の冷却装置は、組電池の側面に接触して電池セルの積層方向に延びる流体通路を備える蒸発器を有している。特許文献1の蒸発器では、流体通路の長手方向一端側に設けられた流体流入口から液相の作動流体を流入させる。そして、流体通路を流通する際に組電池から吸熱して蒸発した気相の作動流体を、流体通路の長手方向他端側に設けられた流体流出口から流出させている。 The cooling device of Patent Document 1 includes an evaporator provided with a fluid passage in contact with the side surface of the assembled battery and extending in the stacking direction of the battery cells. In the evaporator of Patent Document 1, the working fluid in the liquid phase is allowed to flow in from the fluid inlet provided at one longitudinal end side of the fluid passage. Then, when flowing through the fluid passage, the gas phase working fluid which has absorbed heat and evaporated from the assembled battery is made to flow out from the fluid outlet provided on the other end side in the longitudinal direction of the fluid passage.
特許第5942943号公報Patent No. 5942943 gazette
 ところで、特許文献1のように、電池セルの積層方向に延びる流体通路を有する蒸発器では、液相の作動流体が多く存在する箇所では作動流体の蒸発潜熱によって電池セルを充分に冷却することができる。しかし、流体通路のうち気相の作動流体が偏在している箇所では作動流体を蒸発させることができないので、当該箇所に接触する電池セルの冷却が不充分になってしまうという、いわゆるドライアウトが生じ得る。 By the way, as in Patent Document 1, in the evaporator having a fluid passage extending in the stacking direction of the battery cells, the battery cells can be sufficiently cooled by the latent heat of vaporization of the working fluid at a location where there is a large amount of working fluid in liquid phase. it can. However, since it is not possible to evaporate the working fluid at a portion of the fluid passage where the working fluid in the gas phase is unevenly distributed, so-called dry out that cooling of the battery cell in contact with the portion becomes insufficient. It can occur.
 さらに、複数の電池セルを積層して形成された組電池では、いずれかの電池セルの冷却が不充分となって当該電池セルの性能が低下してしまうと、組電池全体としての性能が低下してしまう。このため、組電池のような冷却対象物では、冷却対象物全体が均等に冷却されることが望ましい。 Furthermore, in a battery pack formed by stacking a plurality of battery cells, if the cooling of any battery cell is insufficient and the performance of the battery cell is degraded, the overall performance of the battery pack is degraded. Resulting in. For this reason, in a cooling object such as a battery pack, it is desirable that the entire cooling object be cooled uniformly.
 本開示は、サーモサイフォン式の冷却装置に適用される蒸発器であって、冷却対象物全体を均等に冷却可能な蒸発器を提供することを目的とする。 The present disclosure is an evaporator applied to a thermosiphon-type cooling device, and an object of the present disclosure is to provide an evaporator that can uniformly cool the entire object to be cooled.
 本開示の一態様によると、サーモサイフォン式の冷却装置に適用される蒸発器である。蒸発器は、作動流体を流通させる作動流体チューブと、作動流体チューブの下方側の端部に接続されて、作動流体チューブに液相の作動流体を分配する液供給部と、を備える。作動流体チューブは、内部を流通する液相の作動流体に冷却対象物の熱を吸熱させて、作動流体を蒸発させる蒸発部を形成している。作動流体チューブの内部は、下方側から上方側へ向かって作動流体を流通させる複数の流体通路に区画されている。複数の流体通路の入口部は、少なくとも一部の入口部が液供給部の内部で開口しているとともに、それぞれの入口部の開口位置が上下方向に異なっている。 According to one aspect of the present disclosure, it is an evaporator applied to a thermosiphon cooling device. The evaporator comprises a working fluid tube for circulating the working fluid, and a liquid supply unit connected to the lower end of the working fluid tube to distribute the working fluid in the liquid phase to the working fluid tube. The working fluid tube forms an evaporation unit that evaporates the working fluid by absorbing the heat of the object to be cooled by the liquid phase working fluid flowing therethrough. The inside of the working fluid tube is divided into a plurality of fluid passages for passing the working fluid from the lower side to the upper side. In the inlets of the plurality of fluid passages, at least a part of the inlets is opened inside the liquid supply unit, and the opening positions of the respective inlets are different in the vertical direction.
 これによれば、下方側から上方側へ向かって作動流体を流通させる複数の流体通路の入口部の少なくとも一部の開口位置が上下方向に異なっている。このため、液供給部内の液相の作動流体は、複数の流体通路のうち、より下方側で入口部が開口する流体通路へ供給されやすくなる。 According to this, the opening positions of at least a part of the inlets of the plurality of fluid passages through which the working fluid flows from the lower side to the upper side are different in the vertical direction. For this reason, the working fluid in the liquid phase in the liquid supply portion is easily supplied to the fluid passage in which the inlet portion is opened at the lower side among the plurality of fluid passages.
 従って、液相の作動流体が供給されやすい流体通路を、蒸発部を形成する作動流体チューブに間隔を開けて配置しておくことで、液供給部から蒸発部の全域に液相の作動流体を概ね均等に分配することができる。その結果、蒸発部の全域で作動流体の蒸発潜熱によって、冷却対象物全体を均等に冷却することができる。 Therefore, by arranging the fluid passage to which the working fluid in the liquid phase is likely to be supplied spaced apart from the working fluid tube forming the evaporating unit, the working fluid in the liquid phase can be supplied from the liquid supply unit to the entire region of the evaporating unit. It can be distributed almost evenly. As a result, the whole of the object to be cooled can be uniformly cooled by the latent heat of evaporation of the working fluid in the entire area of the evaporation section.
第1実施形態のサーモサイフォン式の冷却装置の構成図である。It is a block diagram of the thermosiphon type cooling device of 1st Embodiment. 第1実施形態の蒸発器の分解斜視図である。It is a disassembled perspective view of the evaporator of 1st Embodiment. 第1実施形態の蒸発器の液供給タンク内を示す模式的な断面図である。It is a schematic cross section which shows the inside of the liquid supply tank of the evaporator of 1st Embodiment. 第1実施形態の蒸発器と組電池との配置関係を示す説明図である。It is explanatory drawing which shows the arrangement | positioning relationship between the evaporator of 1st Embodiment, and an assembled battery. 第2実施形態の蒸発器の液供給タンク内を示す模式的な断面図である。It is a schematic cross section which shows the inside of the liquid supply tank of the evaporator of 2nd Embodiment. 第3実施形態の蒸発器の分解斜視図である。It is a disassembled perspective view of the evaporator of 3rd Embodiment. 第3実施形態の蒸発器の液供給タンク内を示す模式的な断面図である。It is a schematic cross section which shows the inside of the liquid supply tank of the evaporator of 3rd Embodiment. 第4実施形態の蒸発器の液供給タンク内を示す模式的な断面図である。It is a schematic cross section which shows the inside of the liquid supply tank of the evaporator of 4th Embodiment. 第5実施形態の蒸発器の分解斜視図である。It is a disassembled perspective view of the evaporator of 5th Embodiment. 第5実施形態のX部の模式的な拡大図である。It is a typical enlarged view of the X section of 5th Embodiment. 第5実施形態の変形例の図10に対応する模式的な拡大図である。It is a typical enlarged view corresponding to FIG. 10 of the modification of 5th Embodiment. 第5実施形態の別の変形例の図10に対応する模式的な拡大図である。FIG. 21 is a schematic enlarged view corresponding to FIG. 10 of another modified example of the fifth embodiment. 第6実施形態の蒸発器の液供給タンク内を示す模式的な断面図である。It is a schematic cross section which shows the inside of the liquid supply tank of the evaporator of 6th Embodiment. 図13のXIV-XIV断面図である。It is XIV-XIV sectional drawing of FIG. 他の実施形態の蒸発器の分解斜視図である。It is a disassembled perspective view of the evaporator of other embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. The same referential mark may be attached | subjected to the part corresponding to the matter demonstrated by the form preceded in each form, and the overlapping description may be abbreviate | omitted. When only a part of the configuration is described in each form, the other forms described above can be applied to other parts of the configuration. Not only combinations of parts which clearly indicate that combinations are possible in each embodiment, but also combinations of embodiments even if they are not specified unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 図1~図4を用いて、本開示の第1実施形態を説明する。本実施形態では、本開示に係る蒸発器2が適用されたサーモサイフォン式の冷却装置1を、電気自動車に搭載された組電池BPを冷却するために用いている。従って、サーモサイフォン式の冷却装置1は、組電池BPとともに車両に搭載されている。さらに、蒸発器2における冷却対象物は、組電池BPである。
First Embodiment
A first embodiment of the present disclosure will be described using FIGS. 1 to 4. In the present embodiment, the thermosiphon cooling device 1 to which the evaporator 2 according to the present disclosure is applied is used to cool the battery pack BP mounted on the electric vehicle. Therefore, the thermosiphon cooling device 1 is mounted on the vehicle together with the battery pack BP. Furthermore, the object to be cooled in the evaporator 2 is the battery pack BP.
 組電池BPは、電気自動車において、電力を蓄える機能、および蓄えた電力を走行用電動モータ等の車載機器に供給する機能を果たす。組電池BPは、複数の電池セルBCを電気的に直列に接続したものである。電池セルBCは、充放電可能な二次電池(例えば、リチウムイオン電池、鉛蓄電池)である。 In the electric vehicle, the battery pack BP has a function of storing electric power and a function of supplying the stored electric power to on-vehicle equipment such as a traveling electric motor. The battery pack BP is obtained by electrically connecting a plurality of battery cells BC in series. The battery cell BC is a chargeable / dischargeable secondary battery (for example, a lithium ion battery, a lead storage battery).
 この種の電池セルBCは、充放電時に発熱を伴う。さらに、電池セルBCは、自己発熱等による温度上昇によって劣化が進行しやすい。このため、いずれの電池セルBCも予め定めた基準温度を超えないように冷却されることが望ましい。つまり、組電池BPは、全ての電池セルBCが冷却されるように、全体が均等に冷却されることが望ましい。 This type of battery cell BC involves heat generation during charge and discharge. Furthermore, the battery cell BC is likely to be deteriorated due to temperature rise due to self-heating or the like. For this reason, it is desirable that each battery cell BC be cooled so as not to exceed a predetermined reference temperature. That is, it is desirable that the entire assembled battery BP be uniformly cooled so that all the battery cells BC are cooled.
 また、それぞれの電池セルBCは、略直方体形状に形成されている。組電池BPは、電池セルBCを一定の方向に2列に積層配置することによって形成されている。このため、組電池BPの外観形状も略直方体形状になっている。 Each battery cell BC is formed in a substantially rectangular parallelepiped shape. The assembled battery BP is formed by stacking the battery cells BC in two rows in a predetermined direction. For this reason, the external shape of the battery pack BP is also substantially rectangular.
 次に、サーモサイフォン式の冷却装置1について説明する。サーモサイフォン式の冷却装置1は、図1に示すように、蒸発器2、気相流体配管3、凝縮器4、液相流体配管5を有している。サーモサイフォン式の冷却装置1は、これらの構成機器を環状に(すなわち、閉ループ状に)接続することによって構成されている。 Next, the thermosiphon cooling device 1 will be described. As shown in FIG. 1, the thermosiphon cooling device 1 includes an evaporator 2, a gas phase fluid pipe 3, a condenser 4, and a liquid phase fluid pipe 5. The thermosiphon cooling device 1 is configured by connecting these components in an annular manner (ie, in a closed loop).
 蒸発器2は、液相の作動流体に組電池BPの有する熱を吸熱させて作動流体を蒸発させるものである。本実施形態では、作動流体として、蒸気圧縮式の冷凍サイクルに用いられるフロン系冷媒(具体的には、R134a)を採用している。蒸発器2の詳細構成については後述する。 The evaporator 2 absorbs the heat of the battery pack BP to the working fluid in the liquid phase to evaporate the working fluid. In this embodiment, a fluorocarbon-based refrigerant (specifically, R134a) used in a vapor compression refrigeration cycle is employed as the working fluid. The detailed configuration of the evaporator 2 will be described later.
 蒸発器2の流体流出口23aには、気相流体配管3が接続されている。気相流体配管3は、蒸発器2にて蒸発させた気相の作動流体を凝縮器4の流体流入口へ導く流体配管である。気相流体配管3は、気相の作動流体が流通する際に生じる圧力損失を低減させるために、液相流体配管5よりも通路断面積の大きい配管が採用されていることが望ましい。 A gas phase fluid pipe 3 is connected to the fluid outlet 23 a of the evaporator 2. The gas phase fluid piping 3 is a fluid piping that leads the gas phase working fluid evaporated in the evaporator 2 to the fluid inlet of the condenser 4. The gas phase fluid piping 3 is preferably a piping having a passage cross-sectional area larger than that of the liquid phase fluid piping 5 in order to reduce the pressure loss that occurs when the working fluid in the gas phase flows.
 凝縮器4は、気相流体配管3を介して流入した気相の作動流体を放熱させて凝縮させるものである。本実施形態では、凝縮器4として、気相の作動流体と蒸気圧縮式の冷凍サイクルの低圧冷媒とを熱交換させる熱交換器を採用している。凝縮器4は、蒸発器2よりも上方側に配置されている。 The condenser 4 dissipates heat and condenses the working fluid of the gas phase which has flowed in via the gas phase fluid piping 3. In the present embodiment, a heat exchanger for exchanging heat between the gas phase working fluid and the low pressure refrigerant of the vapor compression refrigeration cycle is adopted as the condenser 4. The condenser 4 is disposed above the evaporator 2.
 凝縮器4の流体流出口には、液相流体配管5が接続されている。液相流体配管5は、凝縮器4にて凝縮させた液相の作動流体を蒸発器2の流体流入口22aへ導く流体配管である。 A liquid phase fluid pipe 5 is connected to the fluid outlet of the condenser 4. The liquid-phase fluid piping 5 is a fluid piping that leads the working fluid of the liquid phase condensed by the condenser 4 to the fluid inlet 22 a of the evaporator 2.
 次に、図2~図4を用いて、蒸発器2の詳細構成を説明する。なお、各図面における上下の各矢印は、サーモサイフォン式の冷却装置1を車両に搭載した状態における上下の各方向を示している。また、各図面では、図示の明確化のため、組電池BPを形成する一部の電池セルBCを二点鎖線で描いている。 Next, the detailed configuration of the evaporator 2 will be described using FIGS. 2 to 4. In addition, each arrow of the upper and lower sides in each drawing has shown each direction of the upper and lower sides in the state which mounted the thermosiphon type cooling device 1 in the vehicle. Further, in each drawing, a part of battery cells BC forming the assembled battery BP is drawn by a two-dot chain line for the sake of clarification of the illustration.
 蒸発器2は、複数の扁平多穴チューブ21、液供給タンク22、流体流出タンク23を備えている。 The evaporator 2 includes a plurality of flat multi-hole tubes 21, a liquid supply tank 22, and a fluid outflow tank 23.
 複数の扁平多穴チューブ21は、内部を流通する液相の作動流体に組電池BPの有する熱を吸熱させて、作動流体を蒸発させる蒸発部を形成するものである。それぞれの扁平多穴チューブ21は、作動流体を流通させる冷媒通路を形成する作動流体チューブである。扁平多穴チューブ21は、伝熱性に優れる金属(本実施形態では、アルミニウム合金)で形成されている。 The plurality of flat multi-hole tubes 21 form an evaporation unit that evaporates the working fluid by absorbing the heat of the battery pack BP by the working fluid in the liquid phase flowing therethrough. Each flat multi hole tube 21 is a working fluid tube which forms a refrigerant passage which distributes a working fluid. The flat multi-hole tube 21 is formed of a metal (in the present embodiment, an aluminum alloy) which is excellent in heat conductivity.
 扁平多穴チューブ21は、長手方向に垂直な断面形状が扁平形状に形成されている。ここで、本実施形態における扁平形状とは、互いに平行な2つの線分の端部同士を曲線あるいは直線で接続した形状であって、2つの線分同士の距離である厚み寸法が、2つの線分の延びる方向(以下、幅方向という。)の幅寸法よりも短くなっている横長形状と定義することができる。さらに、断面形状が互いに平行な2つの線分となる部位は、扁平多穴チューブ21の裏表の平坦面(以下、扁平面という。)を形成する部位である。 The flat multi-hole tube 21 is formed to have a flat cross-sectional shape perpendicular to the longitudinal direction. Here, the flat shape in the present embodiment is a shape in which the ends of two parallel line segments are connected by a curve or a straight line, and the thickness dimension which is the distance between the two line segments is two. It can be defined as a horizontally elongated shape which is shorter than the width dimension of the direction in which the line segment extends (hereinafter referred to as the width direction). Furthermore, the part which becomes two line segments parallel in cross-sectional shape is a part which forms the flat surface (henceforth flat surface) of the back and front of flat multi hole tube 21.
 扁平多穴チューブ21には、長手方向に延びる複数の貫通穴が形成されている。これらの貫通穴は、幅方向に1列に並んで配置されている。このため、扁平多穴チューブ21の内部は、複数の貫通穴によって作動流体を流通させる複数の流体通路に区画されている。 The flat multi-hole tube 21 is formed with a plurality of through holes extending in the longitudinal direction. These through holes are arranged in a line in the width direction. For this reason, the inside of the flat multi-hole tube 21 is divided by the plurality of through holes into a plurality of fluid passages for circulating the working fluid.
 本実施形態の扁平多穴チューブ21の内部は、図3に示すように、第1流体通路211a、第2流体通路211b、第3流体通路211c、第4流体通路211d、第5流体通路211e(以下、「第1流体通路211a~第5流体通路211e」と称する)の5つの流体通路に区画されている。扁平多穴チューブ21は、長手方向が上下方向となるように配置されている。このため、本実施形態の第1流体通路211a~第5流体通路211eでは、作動流体を下方側から上方側へ向かって、並列的に流通させる。 As shown in FIG. 3, the inside of the flat multi-hole tube 21 of the present embodiment is a first fluid passage 211a, a second fluid passage 211b, a third fluid passage 211c, a fourth fluid passage 211d, and a fifth fluid passage 211e ( Hereinafter, it is divided into five fluid passages of “first fluid passage 211 a to fifth fluid passage 211 e”. The flat multi-hole tube 21 is disposed such that the longitudinal direction is the vertical direction. Therefore, in the first fluid passage 211a to the fifth fluid passage 211e of the present embodiment, the working fluid is circulated in parallel from the lower side to the upper side.
 扁平多穴チューブ21の下方側の端部には、それぞれ第1流体通路211a~第5流体通路211eへ作動流体を流入させる第1入口部212a、第2入口部212b、第3入口部212c、第4入口部212d、第5入口部212e(以下、「第1入口部212a~第5入口部212e」と称する)が形成されている。第1入口部212a~第5入口部212eは、液供給タンク22の内部で開口している。 The lower end of the flat multi-hole tube 21 has a first inlet 212a, a second inlet 212b, and a third inlet 212c, which allow the working fluid to flow into the first fluid passage 211a to the fifth fluid passage 211e, respectively. A fourth inlet 212d and a fifth inlet 212e (hereinafter, referred to as "first inlet 212a to fifth inlet 212e") are formed. The first inlet portion 212 a to the fifth inlet portion 212 e are opened inside the liquid supply tank 22.
 さらに、図3に示すように、扁平多穴チューブ21の下方側の端面は、水平面に対して傾斜している。このため、第1入口部212a~第5入口部212eの開口位置は、上下方向に異なっている。 Furthermore, as shown in FIG. 3, the lower end surface of the flat multi-hole tube 21 is inclined with respect to the horizontal plane. For this reason, the opening positions of the first inlet portion 212a to the fifth inlet portion 212e are different in the vertical direction.
 本実施形態では、第1入口部212a~第5入口部212eの開口位置は、扁平多穴チューブ21の幅方向に順に変化している。すなわち、図3に示すように、紙面右側から左側へ向かって、第1入口部212a→第2入口部212b→第3入口部212c→第4入口部212d→第5入口部212eの順に開口位置が高くなっている。従って、第1入口部212aは、第1入口部212a~第5入口部212eのうち、液供給タンク22の底面に最も近い位置で開口する底面側入口部である。 In the present embodiment, the opening positions of the first inlet portion 212 a to the fifth inlet portion 212 e are sequentially changed in the width direction of the flat multi-hole tube 21. That is, as shown in FIG. 3, from the right side to the left side as viewed in the drawing, the opening positions are in the order of first inlet 212a → second inlet 212b → third inlet 212c → fourth inlet 212d → fifth inlet 212e. Is high. Therefore, the first inlet 212a is a bottom inlet which is opened at a position closest to the bottom of the liquid supply tank 22 among the first inlet 212a to the fifth inlet 212e.
 このような扁平多穴チューブ21は、押出成形等により1つの金属部材に複数の貫通穴を形成し、その端部を長手方向に対して斜めに切断することによって製造することができる。 Such a flat multi-hole tube 21 can be manufactured by forming a plurality of through holes in one metal member by extrusion molding or the like and cutting its end obliquely with respect to the longitudinal direction.
 液供給タンク22は、扁平多穴チューブ21の各流体通路に対して、液相の作動流体を分配して供給する液供給部である。液供給タンク22は、扁平多穴チューブ21と同種の金属で、水平方向に延びる有底円筒状に形成されている。液供給タンク22の長手方向一端部には、凝縮器4にて凝縮した液相の作動流体を流入させる流体流入口22aが設けられている。 The liquid supply tank 22 is a liquid supply unit that distributes and supplies a working fluid of a liquid phase to each fluid passage of the flat multi-hole tube 21. The liquid supply tank 22 is formed of a metal similar to the flat multi-hole tube 21 and has a bottomed cylindrical shape extending in the horizontal direction. At one end in the longitudinal direction of the liquid supply tank 22, a fluid inflow port 22a is provided to which the working fluid of the liquid phase condensed by the condenser 4 flows.
 液供給タンク22の側面には、扁平多穴チューブ21の下方側の端部が挿入されて接続される複数の挿入穴22bが形成されている。液供給タンク22の挿入穴22bは、扁平多穴チューブ21の両側の扁平面がそれぞれ同一平面上に配置されるように、液供給タンク22の長手方向に1列に並んで形成されている。 On the side surface of the liquid supply tank 22, a plurality of insertion holes 22b to which the lower end of the flat multi-hole tube 21 is inserted and connected are formed. The insertion holes 22 b of the liquid supply tank 22 are formed in a line in the longitudinal direction of the liquid supply tank 22 so that the flat surfaces on both sides of the flat multi-hole tube 21 are arranged on the same plane.
 従って、複数の扁平多穴チューブ21は、液供給タンク22の長手方向に1列に並んで配置されている。さらに、複数の扁平多穴チューブ21の幅方向は、液供給タンク22の長手方向に一致している。 Therefore, the plurality of flat multi-hole tubes 21 are arranged in line in the longitudinal direction of the liquid supply tank 22. Furthermore, the width direction of the plurality of flat multi-hole tubes 21 coincides with the longitudinal direction of the liquid supply tank 22.
 また、扁平多穴チューブ21は、図3に示すように、その最下端部が液供給タンク22の内壁面の底面側に当接した状態で液供給タンク22に接続されている。このため、少なくとも第1入口部212a~第5入口部212eのうち液供給タンク22の底面に最も近い位置で開口する第1入口部212aは、液供給タンク22の中心線CLよりも下方側で開口している。 Further, as shown in FIG. 3, the flat multi-hole tube 21 is connected to the liquid supply tank 22 in a state where the lowermost end is in contact with the bottom surface side of the inner wall surface of the liquid supply tank 22. Therefore, at least the first inlet 212a to the fifth inlet 212e at the position closest to the bottom surface of the liquid supply tank 22 among the first inlet 212a to the fifth inlet 212e is lower than the center line CL of the liquid supply tank 22. It is open.
 さらに、本実施形態では、少なくとも第1入口部212a~第5入口部212eのうち液供給タンク22の底面から最も離れた位置で開口する第5入口部212eが中心線CLよりも上方側で開口するように、扁平多穴チューブ21の下方側の端面を傾斜させている。ここで、液供給タンク22は有底円筒状に形成されているので、液供給タンク22の中心線CLは、液供給タンク22の上下方向中央部となる。 Furthermore, in the present embodiment, the fifth inlet 212e which opens at a position farthest from the bottom of the liquid supply tank 22 among at least the first inlet 212a to the fifth inlet 212e is opened above the center line CL. The lower end surface of the flat multi-hole tube 21 is inclined so that Here, since the liquid supply tank 22 is formed in a cylindrical shape with a bottom, the center line CL of the liquid supply tank 22 is the central portion of the liquid supply tank 22 in the vertical direction.
 また、本実施形態では、複数の扁平多穴チューブ21として同一形状のものを採用している。さらに、複数の扁平多穴チューブ21は、下方側の端面が同一方向に傾斜するように配置されている。このため、液供給タンク22の内部に開口する全ての入口部の開口位置は、液供給タンク22の長手方向に向かって規則的に変化する。 Further, in the present embodiment, a plurality of flat multi-hole tubes 21 having the same shape are employed. Furthermore, the plurality of flat multi-hole tubes 21 are arranged such that the lower end faces are inclined in the same direction. For this reason, the opening positions of all the inlets opening into the interior of the liquid supply tank 22 regularly change in the longitudinal direction of the liquid supply tank 22.
 より詳細には、複数の扁平多穴チューブ21に形成された複数の流体通路のうち、予め定めた複数の流体通路を、基準流体通路群と定義する。本実施形態では、1つの扁平多穴チューブ21に形成される第1流体通路211a~第5流体通路211eを基準流体通路群と定義する。 More specifically, a plurality of predetermined fluid passages among the plurality of fluid passages formed in the plurality of flat multi-hole tubes 21 are defined as a reference fluid passage group. In the present embodiment, the first fluid passage 211a to the fifth fluid passage 211e formed in one flat multi-hole tube 21 are defined as a reference fluid passage group.
 さらに、基準流体通路群の液供給タンク22の長手方向における入口部の開口位置の変化を、基準変化パターンと定義する。本実施形態では、第1入口部212a→第2入口部212b→第3入口部212c→第4入口部212d→第5入口部212eの順に開口位置が高くなっているという変化を、基準変化パターンと定義する。 Further, the change in the opening position of the inlet in the longitudinal direction of the liquid supply tank 22 of the reference fluid passage group is defined as a reference change pattern. In this embodiment, the reference change pattern is a change in which the opening position becomes higher in the order of the first inlet 212a, the second inlet 212b, the third inlet 212c, the fourth inlet 212d, and the fifth inlet 212e. Define as
 このように基準変化パターンを定義すると、液供給タンク22の内部に開口する全ての入口部の開口位置は、液供給タンク22の長手方向に向かって、基準変化パターンを繰り返して規則的に変化している。さらに、基準変化パターンは、扁平多穴チューブ21の数量分、繰り返される。 When the reference change pattern is thus defined, the opening positions of all the inlets opening into the interior of the liquid supply tank 22 regularly change the reference change pattern repeatedly in the longitudinal direction of the liquid supply tank 22. ing. Furthermore, the reference change pattern is repeated by the number of flat multi-hole tubes 21.
 従って、底面側入口部である第1入口部212aは、扁平多穴チューブ21の数量分、複数設けられる。さらに、隣り合う第1入口部212a同士は、一定の間隔(本実施形態では、扁平多穴チューブ21の幅方向の配置間隔)を開けて配置されている。 Therefore, a plurality of first inlets 212 a, which are bottom side inlets, are provided for the number of flat multi-hole tubes 21. Further, the adjacent first inlets 212a are arranged at a constant interval (in the present embodiment, an arrangement interval in the width direction of the flat multi-hole tube 21).
 流体流出タンク23は、扁平多穴チューブ21を流通する際に蒸発した気相の作動流体を集合させて流出させる流体流出部である。流体流出タンク23は、扁平多穴チューブ21と同種の金属で、水平方向に延びる有底円筒状に形成されている。流体流出タンク23の長手方向一端部には、気相の作動流体を流出させる流体流出口23aが設けられている。 The fluid outflow tank 23 is a fluid outflow portion for collecting and flowing out the gas phase working fluid that has evaporated when flowing through the flat multi-hole tube 21. The fluid outflow tank 23 is formed of a metal similar to the flat multi-hole tube 21 and has a bottomed cylindrical shape extending in the horizontal direction. At one longitudinal end of the fluid outflow tank 23, there is provided a fluid outlet 23a through which the working fluid in the gas phase flows out.
 流体流出タンク23は、気相の作動流体が流通する際に生じる圧力損失を低減させるために、液供給タンク22よりも径の大きいものが採用されていることが望ましい。 It is desirable that the fluid outflow tank 23 be larger in diameter than the liquid supply tank 22 in order to reduce the pressure loss that occurs when the working fluid in the gas phase flows.
 流体流出タンク23の側面には、扁平多穴チューブ21の上端側が挿入されて接続される複数の挿入穴23bが形成されている。流体流出タンク23の挿入穴23bは、扁平多穴チューブ21の両側の扁平面がそれぞれ同一平面上に配置されるように、流体流出タンク23の長手方向に1列に並んで形成されている。 On the side surface of the fluid outflow tank 23, a plurality of insertion holes 23b to which the upper end side of the flat multi-hole tube 21 is inserted and connected are formed. The insertion holes 23 b of the fluid outflow tank 23 are formed in line in the longitudinal direction of the fluid outflow tank 23 so that flat surfaces on both sides of the flat multi-hole tube 21 are disposed on the same plane.
 従って、複数の扁平多穴チューブ21は、流体流出タンク23の長手方向に1列に並んで配置されている。さらに、複数の扁平多穴チューブ21の幅方向は、流体流出タンク23の長手方向に一致している。従って、液供給タンク22の長手方向と流体流出タンク23の長手方向も一致している。 Therefore, the plurality of flat multi-hole tubes 21 are arranged in line in the longitudinal direction of the fluid outflow tank 23. Furthermore, the width direction of the plurality of flat multi-hole tubes 21 coincides with the longitudinal direction of the fluid outflow tank 23. Accordingly, the longitudinal direction of the liquid supply tank 22 and the longitudinal direction of the fluid outflow tank 23 also coincide.
 また、本実施形態の蒸発器2は、複数の扁平多穴チューブ21、液供給タンク22、流体流出タンク23等の各構成部材を、ろう付け接合にて一体化することによって製造される。 Moreover, the evaporator 2 of this embodiment is manufactured by integrating each component, such as several flat multi hole tubes 21, the liquid supply tank 22, and the fluid outflow tank 23, by brazing joining.
 次に、蒸発器2と組電池BPとの配置関係について説明する。図2に示すように、液供給タンク22の長手方向および流体流出タンク23の長手方向は、電池セルBCの積層方向と一致している。さらに、図4に示すように、組電池BPの電池セルBCは、列毎に扁平多穴チューブ21の扁平面の両側に配置されている。なお、図4は、蒸発器2および組電池BPを、組電池BPの積層方向から見た図面である。 Next, an arrangement relationship between the evaporator 2 and the battery pack BP will be described. As shown in FIG. 2, the longitudinal direction of the liquid supply tank 22 and the longitudinal direction of the fluid outflow tank 23 coincide with the stacking direction of the battery cells BC. Furthermore, as shown in FIG. 4, the battery cells BC of the battery pack BP are disposed on both sides of the flat surface of the flat multi-hole tube 21 in each row. FIG. 4 is a view of the evaporator 2 and the battery pack BP as viewed from the stacking direction of the battery pack BP.
 より詳細には、組電池BPは、一方の列を形成する電池セルBCの側面が、複数の扁平多穴チューブ21の一方の扁平面と熱的に接続されるように配置されている。換言すると、一方の列を形成する電池セルBCは、一方の列を形成する電池セルBCの有する熱が、扁平多穴チューブ21の一方の扁平面を介して、扁平多穴チューブ21を流通する作動流体へ熱移動可能に配置されている。 More specifically, the assembled battery BP is disposed such that the side surfaces of the battery cells BC forming one row are thermally connected to one flat surface of the plurality of flat multi-hole tubes 21. In other words, in the battery cells BC forming one row, the heat of the battery cells BC forming one row flows through the flat multi-hole tube 21 via the flat surface of the flat multi-hole tube 21 The heat transfer to the working fluid is arranged.
 さらに、他方の列を形成する電池セルBCの側面が、複数の扁平多穴チューブ21の他方の扁平面と熱的に接続されるように配置されている。換言すると、他方の列を形成する電池セルBCは、他方の列を形成する電池セルBCの有する熱が、扁平多穴チューブ21の他方の扁平面を介して、扁平多穴チューブ21を流通する作動流体へ熱移動可能に配置されている。 Furthermore, the side surfaces of the battery cells BC forming the other row are disposed so as to be thermally connected to the other flat surfaces of the plurality of flat multi-hole tubes 21. In other words, in the battery cell BC forming the other row, the heat of the battery cell BC forming the other row flows through the flat multi-hole tube 21 via the other flat surface of the flat multi-hole tube 21 The heat transfer to the working fluid is arranged.
 このように、それぞれの電池セルBC(すなわち、組電池BP)の有する熱が、作動流体へ熱移動可能になっていることで、複数の扁平多穴チューブ21内では、作動流体を蒸発させることができる。従って、蒸発部は、作動流体チューブ(本実施形態では、複数の扁平多穴チューブ21)のうち、電池セルBCの有する熱が作動流体へ伝達される部位によって形成されている。 Thus, the heat of each battery cell BC (that is, the assembled battery BP) can be transferred to the working fluid so that the working fluid is evaporated in the plurality of flat multi-hole tubes 21. Can. Therefore, the evaporation portion is formed by a portion of the working fluid tube (in the present embodiment, a plurality of flat multi-hole tubes 21) to which the heat of the battery cell BC is transferred to the working fluid.
 さらに、電池セルBCと蒸発部を形成する扁平多穴チューブ21との間には、図4に示すように、熱拡散板24および熱伝導材25が配置されている。 Further, as shown in FIG. 4, a heat diffusion plate 24 and a heat conductive material 25 are disposed between the battery cell BC and the flat multi-hole tube 21 forming the evaporation portion.
 熱拡散板24は、電池セルBCの熱を蒸発部の広範囲に拡散させるものである。本実施形態では、熱拡散板24として、伝熱性に優れる金属(具体的には、アルミニウム合金)製の板状部材を採用している。熱伝導材25は、電池セルBCの熱を作動流体への熱移動を促進するものである。本実施形態では、熱伝導材25として、電気絶縁性と高い熱伝導性とを備える樹脂シートを採用している。 The heat diffusion plate 24 diffuses the heat of the battery cell BC to a wide area of the evaporation portion. In the present embodiment, a plate-like member made of a metal (specifically, an aluminum alloy) excellent in heat conductivity is adopted as the heat diffusion plate 24. The heat transfer material 25 promotes heat transfer from the battery cell BC to the working fluid. In the present embodiment, a resin sheet having electrical insulation and high thermal conductivity is adopted as the heat conductive material 25.
 なお、図4では、図示の明確化のため、扁平多穴チューブ21、熱拡散板24、熱伝導材25、および電池セルBCとの間に隙間を設けているが、実際には、扁平多穴チューブ21と熱伝導材25、熱拡散板24と熱伝導材25、電池セルBCと熱伝導材25は、互いに接触している。 In FIG. 4, a clearance is provided between the flat multi-hole tube 21, the heat diffusion plate 24, the heat conductive material 25, and the battery cell BC for the sake of clarity of the illustration, but in fact The hole tube 21 and the heat conductive material 25, the heat diffusion plate 24 and the heat conductive material 25, and the battery cell BC and the heat conductive material 25 are in contact with each other.
 また、図2、図3に示すように、本実施形態の扁平多穴チューブ21の幅方向の配置間隔は、電池セルBCの積層方向の幅寸法と同等に設定されている。さらに、扁平多穴チューブ21の数は、電池セルBCの数と同数になっている。 Further, as shown in FIGS. 2 and 3, the arrangement interval in the width direction of the flat multi-hole tube 21 of the present embodiment is set to be equal to the width dimension in the stacking direction of the battery cells BC. Furthermore, the number of flat multi-hole tubes 21 is the same as the number of battery cells BC.
 このため、上述した扁平多穴チューブ21の各入口部の開口位置の基準変化パターンは、電池セルBCの幅寸法毎に、扁平多穴チューブ21の数量分、規則的に繰り返される。従って、電池セルBCの積層方向に垂直な水平方向から見ると、それぞれの電池セルBCは、第1流体通路211aと重合配置されている。 For this reason, the reference change pattern of the opening position of each inlet portion of the flat multi-hole tube 21 described above is regularly repeated by the number of the flat multi-hole tube 21 for each width dimension of the battery cell BC. Therefore, when viewed in the horizontal direction perpendicular to the stacking direction of the battery cells BC, the respective battery cells BC are arranged to overlap with the first fluid passage 211a.
 次に、サーモサイフォン式の冷却装置1の作動について説明する。組電池BPが充放電により自己発熱すると、蒸発部を形成する扁平多穴チューブ21内では、液相の作動流体が組電池BPの有する熱を吸熱して蒸発する。これにより、組電池BPが冷却されて、組電池BPの温度上昇が抑制される。 Next, the operation of the thermosiphon cooling device 1 will be described. When the assembled battery BP generates heat by charge and discharge, the working fluid in the liquid phase absorbs heat of the assembled battery BP and evaporates in the flat multi-hole tube 21 forming the evaporation portion. Thereby, the battery pack BP is cooled, and the temperature rise of the battery pack BP is suppressed.
 扁平多穴チューブ21にて蒸発した気相の作動流体は、液相の作動流体との密度差によって、扁平多穴チューブ21の各流体通路を上方側へ移動して流体流出タンク23内に集合する。流体流出タンク23内に集合した気相の作動流体は、流体流出口23aから流出し、気相流体配管3を介して凝縮器4へ流入する。 The working fluid in the gas phase evaporated in the flat multi-hole tube 21 moves upward through the respective fluid passages of the flat multi-hole tube 21 and gathers in the fluid outflow tank 23 due to the density difference between the liquid phase and the working fluid. Do. The gas-phase working fluid collected in the fluid outflow tank 23 flows out of the fluid outlet 23 a and flows into the condenser 4 through the gas-phase fluid piping 3.
 凝縮器4へ流入した気相の作動流体は、冷凍サイクルの低圧冷媒に吸熱されて冷却される。これにより、凝縮器4へ流入した作動流体が凝縮する。そして、組電池BPの排熱が作動流体を介して、冷凍サイクルの冷媒に放熱される。 The gas phase working fluid that has flowed into the condenser 4 is absorbed by the low pressure refrigerant of the refrigeration cycle and cooled. Thus, the working fluid flowing into the condenser 4 is condensed. Then, the exhaust heat of the battery pack BP is dissipated to the refrigerant of the refrigeration cycle via the working fluid.
 凝縮器4にて凝縮した液相の作動流体は、重力の作用によって下方側へ移動する。そして、液相流体配管5を介して蒸発器2の流体流入口22aから液供給タンク22へ流入する。液供給タンク22へ流入した液相の作動流体は、再び扁平多穴チューブ21の各流体通路へ分配供給される。 The working fluid in the liquid phase condensed in the condenser 4 moves downward by the action of gravity. Then, the fluid flows from the fluid inlet 22 a of the evaporator 2 to the liquid supply tank 22 through the liquid phase fluid piping 5. The working fluid in the liquid phase that has flowed into the liquid supply tank 22 is distributed to each fluid passage of the flat multi-hole tube 21 again.
 以上の如く、サーモサイフォン式の冷却装置1では、圧縮機やポンプのような作動流体の輸送装置を必要とすることなく、作動流体を自然循環させて、冷却対象物である組電池BPの排熱を連続的に外部に放熱することができる。すなわち、サーモサイフォン式の冷却装置1によれば、効率的かつ連続的に、組電池BPの冷却を行うことができる。 As described above, in the thermosiphon type cooling device 1, the working fluid is naturally circulated without the need for a working fluid transfer device such as a compressor or a pump to discharge the battery pack BP which is the object to be cooled. Heat can be continuously dissipated to the outside. That is, according to the thermosiphon cooling device 1, the battery assembly BP can be cooled efficiently and continuously.
 ところで、上述したサーモサイフォン式の冷却装置1の作動は、液供給タンク22内に液相の作動流体が満たされていることを前提としている。しかし、凝縮器4における作動流体の冷却が不充分となった際や、液相流体配管5や液供給タンク22内の液相の作動流体が外部から受熱した際には、液供給タンク22内に気相の作動流体が混入してしまうことがある。 By the way, the operation of the thermosiphon cooling device 1 described above is based on the premise that the liquid supply tank 22 is filled with the working fluid of the liquid phase. However, when the cooling of the working fluid in the condenser 4 becomes insufficient, or when the working fluid in the liquid phase in the liquid phase fluid piping 5 or the liquid supply tank 22 receives heat from the outside, the inside of the liquid supply tank 22 In some cases, the working fluid in the gas phase may be mixed.
 そして、液供給タンク22内に気相の作動流体が混入してしまうと、液供給タンク22から全ての扁平多穴チューブ21に液相の作動流体を均等に供給できなくなってしまう。さらに、液相の作動流体が供給されない扁平多穴チューブ21では、作動流体を蒸発させることができなくなってしまうので、電池セルBCの冷却が不充分になってしまうという、ドライアウトが生じ得る。 Then, if the working fluid in the gas phase is mixed into the liquid supply tank 22, the working fluid in the liquid phase can not be uniformly supplied from the liquid supply tank 22 to all the flat multi-hole tubes 21. Furthermore, in the flat multi-hole tube 21 to which the working fluid in the liquid phase is not supplied, the working fluid can not be evaporated, so that the dryout may occur that the cooling of the battery cell BC becomes insufficient.
 つまり、液供給タンク22内に気相の作動流体が混入してしまうと、組電池BP全体を均等に冷却できなくなってしまい、組電池BPの性能が低下してしまうおそれがある。 That is, when the working fluid in the gas phase is mixed in the liquid supply tank 22, the entire assembled battery BP can not be cooled uniformly, which may lower the performance of the assembled battery BP.
 これに対して、本実施形態の蒸発器2では、扁平多穴チューブ21に形成された第1流体通路211a~第5流体通路211eの第1入口部212a~第5入口部212eの開口位置が上下方向に異なっている。このため、液供給タンク22内の液相の作動流体は、気相の作動流体が混入していたとしても、第1流体通路211a~第5流体通路211eのうち、より下方側で入口部が開口する流体通路へ供給されやすくなる。 On the other hand, in the evaporator 2 of the present embodiment, the opening positions of the first inlet portion 212a to the fifth inlet portion 212e of the first fluid passage 211a to the fifth fluid passage 211e formed in the flat multi-hole tube 21 It is different in the vertical direction. For this reason, even if the working fluid of the liquid phase in the liquid supply tank 22 is mixed with the working fluid of the gas phase, the inlet portion is lower on the lower side among the first fluid passage 211a to the fifth fluid passage 211e. It becomes easy to be supplied to the open fluid passage.
 すなわち、液供給タンク22内の液相の作動流体は、底面側入口部となる第1入口部212aを有する第1流体通路211aへ供給されやすくなる。 That is, the working fluid in the liquid phase in the liquid supply tank 22 is easily supplied to the first fluid passage 211a having the first inlet 212a which is the bottom side inlet.
 さらに、本実施形態の蒸発器2では、複数の扁平多穴チューブ21を液供給タンク22の長手方向に並べて配置しているので、第1流体通路211aを液供給タンク22の長手方向に一定の間隔を開けて配置することができる。換言すると、液相の作動流体が供給されやすい流体通路を、蒸発部を形成する作動流体チューブに一定の間隔を開けて配置することができる。 Furthermore, in the evaporator 2 of the present embodiment, since the plurality of flat multi-hole tubes 21 are arranged in the longitudinal direction of the liquid supply tank 22, the first fluid passage 211a is fixed in the longitudinal direction of the liquid supply tank 22. It can be spaced apart. In other words, the fluid passages to which the liquid phase working fluid is likely to be supplied can be arranged at regular intervals in the working fluid tube forming the evaporation portion.
 従って、液供給タンク22から蒸発部の全域に液相の作動流体を均等に分配することができる。その結果、液供給タンク22内に気相の作動流体が混入したとしても、蒸発部の全域で作動流体の蒸発潜熱によって、組電池BP全体を均等に冷却することができる。 Therefore, the working fluid in the liquid phase can be evenly distributed from the liquid supply tank 22 to the entire region of the evaporation section. As a result, even if the working fluid of the gas phase is mixed in the liquid supply tank 22, the whole of the assembled battery BP can be uniformly cooled by the latent heat of vaporization of the working fluid in the entire region of the evaporating unit.
 さらに、扁平多穴チューブ21の幅方向の配置間隔と電池セルBCの積層方向の幅寸法とを同等に設定して、電池セルBCの積層方向に垂直な水平方向から見たときに、それぞれの電池セルBCと第1流体通路211aが重合配置している。従って、いずれの電池セルBCについても、第1流体通路211aへ流入した液相の作動流体の蒸発潜熱によって冷却することができる。その結果、組電池BP全体としての性能が低下してしまうことを抑制することができる。 Furthermore, when the arrangement interval in the width direction of the flat multi-hole tube 21 and the width dimension in the stacking direction of the battery cells BC are set equal, when viewed from the horizontal direction perpendicular to the stacking direction of the battery cells BC, The battery cell BC and the first fluid passage 211a are arranged in an overlapping manner. Therefore, any battery cell BC can be cooled by the latent heat of vaporization of the working fluid in the liquid phase that has flowed into the first fluid passage 211a. As a result, it is possible to suppress deterioration in the overall performance of the battery pack BP.
 また、本実施形態の蒸発器2では、作動流体チューブとして複数の扁平多穴チューブ21を採用している。さらに、扁平多穴チューブ21の下方側の端面を、水平面に対して傾斜させている。従って、作動流体チューブの内部を容易に複数の流体通路に区画することができる。さらに、それぞれの流体通路の入口部の開口位置を容易に上下方向に異なる位置とすることができる。 Moreover, in the evaporator 2 of this embodiment, the several flat multi hole tube 21 is employ | adopted as a working fluid tube. Furthermore, the lower end surface of the flat multi-hole tube 21 is inclined with respect to the horizontal plane. Therefore, the inside of the working fluid tube can be easily divided into a plurality of fluid passages. Furthermore, the opening positions of the inlets of the respective fluid passages can be easily made different positions in the vertical direction.
 これに加えて、扁平多穴チューブ21は、押出成形等によって形成された長尺の金属部材の端部を長手方向に対して斜めに切断することによって製造することができる。従って、切断された残りの金属部材から、切断面を端面とした扁平多穴チューブ21を切り出すことができる。その結果、扁平多穴チューブ21の原材料を無駄にすることなく、扁平多穴チューブ21を製造する際の歩留まり率を向上させることができる。 In addition to this, the flat multi-hole tube 21 can be manufactured by obliquely cutting the end of a long metal member formed by extrusion molding or the like with respect to the longitudinal direction. Therefore, the flat multi-hole tube 21 whose end face is a cut surface can be cut out from the remaining metal members that have been cut. As a result, the yield rate at the time of manufacturing the flat multi-hole tube 21 can be improved without wasting the raw material of the flat multi-hole tube 21.
 また、本実施形態の蒸発器2では、扁平多穴チューブ21の最下端部を、液供給タンク22の内壁面に当接させている。これによれば、液供給タンク22の内部における扁平多穴チューブ21の位置決めを容易に行うことができる。つまり、各扁平多穴チューブ21における底面側入口部となる第1入口部212aの上下方向の位置合わせを容易に行うことができる。 Further, in the evaporator 2 of the present embodiment, the lowermost end portion of the flat multi-hole tube 21 is in contact with the inner wall surface of the liquid supply tank 22. According to this, the flat multi-hole tube 21 can be easily positioned inside the liquid supply tank 22. That is, the vertical alignment of the first inlet 212 a serving as the bottom side inlet in each flat multi-hole tube 21 can be easily performed.
 また、本実施形態の蒸発器2では、少なくとも第1入口部212aを、液供給タンク22の中心線CLよりも下方側で開口させ、少なくとも第5入口部212eを、液供給タンク22の中心線CLよりも上方側で開口させている。 Further, in the evaporator 2 of the present embodiment, at least the first inlet 212 a is opened below the center line CL of the liquid supply tank 22, and at least the fifth inlet 212 e is the center line of the liquid supply tank 22. It is opened above CL.
 これによれば、第1入口部212aの開口位置と第5入口部212eの開口位置との高さ方向の距離を確保しやすい。従って、電気自動車の加減速や車体の傾斜によって、液供給タンク22の中心線CLや液供給タンク22内の液面が水平方向から傾いたとしても、一部の第1流体通路211aに液相の作動流体が偏って供給されてしまうことを抑制しやすい。 According to this, it is easy to secure the distance in the height direction between the opening position of the first inlet 212a and the opening position of the fifth inlet 212e. Therefore, even if the center line CL of the liquid supply tank 22 and the liquid level in the liquid supply tank 22 are inclined from the horizontal direction due to the acceleration or deceleration of the electric vehicle or the inclination of the vehicle body, the liquid phase in some first fluid passages 211a It is easy to suppress that the working fluid of the above is supplied unevenly.
 (第2実施形態)
 本実施形態では、第1実施形態に対して、図5に示すように、扁平多穴チューブ21の各流体通路の入口部の開口位置の変化のパターン(すなわち、基準変化パターン)を変更した例を説明する。なお、図5は、第1実施形態で説明した図3に対応する図面である。図5では、第1実施形態と同一もしくは均等の部分には同一の符号を付している。このことは、以下の図面でも同様である。
Second Embodiment
In the present embodiment, as shown in FIG. 5 with respect to the first embodiment, an example in which the change pattern of the opening position of the inlet portion of each fluid passage of the flat multi-hole tube 21 (that is, the reference change pattern) is changed Explain. FIG. 5 is a drawing corresponding to FIG. 3 described in the first embodiment. In FIG. 5, the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 具体的には、本実施形態では、第1入口部212a、第2入口部212b、第4入口部212d、第5入口部212eが同じ高さで、液供給タンク22の中心線CLよりも下方側で開口している。また、第3入口部212cが液供給タンク22の中心線CLよりも上方側で開口している。従って、本実施形態では、第1入口部212a、第2入口部212b、第4入口部212d、第5入口部212eが底面側入口部である。 Specifically, in the present embodiment, the first inlet 212a, the second inlet 212b, the fourth inlet 212d, and the fifth inlet 212e have the same height and are lower than the center line CL of the liquid supply tank 22. It is open at the side. In addition, the third inlet 212 c opens above the center line CL of the liquid supply tank 22. Therefore, in the present embodiment, the first inlet 212a, the second inlet 212b, the fourth inlet 212d, and the fifth inlet 212e are bottom side inlets.
 その他の蒸発器2およびサーモサイフォン式の冷却装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の蒸発器2においても、第1実施形態と同様の効果を得ることができる。 The configuration and operation of the other evaporator 2 and the thermosiphon cooling device 1 are the same as in the first embodiment. Therefore, also in the evaporator 2 of this embodiment, the same effect as that of the first embodiment can be obtained.
 より詳細には、本実施形態では、全ての底面側入口部が一定の間隔を開けて規則的に配置されていないものの、各扁平多穴チューブ21に少なくとも1つ以上の底面側入口部が設けられている。これによれば、液供給タンク22から各扁平多穴チューブ21に液相の作動流体を分配することができる。 More specifically, in the present embodiment, although all the bottom side inlets are not regularly arranged at regular intervals, each flat multi-hole tube 21 is provided with at least one or more bottom side inlets. It is done. According to this, the working fluid in the liquid phase can be distributed from the liquid supply tank 22 to the flat multi-hole tubes 21.
 また、別の表現を用いると、本実施形態では、一部の底面側入口部(例えば、第5入口部212e)に着眼すると、当該一部の底面側入口部は蒸発部の全域に亘って一定の間隔を開けて配置されている。従って、液供給タンク22から蒸発部の全域に液相の作動流体を分配することができる。 Moreover, when another expression is used, in the present embodiment, when focusing on a part of the bottom side inlet part (for example, the fifth inlet part 212e), the part of the bottom side inlet part extends over the entire area of the evaporation part. It is arranged at regular intervals. Therefore, the working fluid in the liquid phase can be distributed from the liquid supply tank 22 to the entire region of the evaporation section.
 その結果、本実施形態の蒸発器2においても、第1実施形態と同様に、液供給タンク22内に気相の作動流体が混入したとしても、蒸発部の全域で作動流体の蒸発潜熱によって、組電池BP全体を均等に冷却することができる。 As a result, also in the evaporator 2 of the present embodiment, as in the first embodiment, even if the working fluid of the gas phase is mixed in the liquid supply tank 22, the latent heat of vaporization of the working fluid in the entire region of the evaporating unit The entire assembled battery BP can be cooled uniformly.
 (第3実施形態)
 本実施形態では、第1実施形態に対して、図6、図7に示すように、蒸発器2の構成を変更した例を説明する。
Third Embodiment
In this embodiment, an example in which the configuration of the evaporator 2 is changed as shown in FIGS. 6 and 7 will be described with respect to the first embodiment.
 具体的には、本実施形態の蒸発器2は、作動流体チューブとして一枚の板状に形成された扁平多穴チューブ26を備えている。扁平多穴チューブ26には、上下方向に延びる複数の貫通穴が形成されている。複数の貫通穴は、板面(すなわち、扁平面)に沿って、1列に並んで配置されている。従って、扁平多穴チューブ26の内部は、第1実施形態と同様に、複数の貫通穴によって複数の流体通路に区画されている。 Specifically, the evaporator 2 of the present embodiment is provided with a flat multi-hole tube 26 formed in a plate shape as a working fluid tube. The flat multi-hole tube 26 is formed with a plurality of through holes extending in the vertical direction. The plurality of through holes are arranged in a line along the plate surface (i.e., flat surface). Therefore, the inside of the flat multi-hole tube 26 is divided into a plurality of fluid passages by a plurality of through holes as in the first embodiment.
 このような扁平多穴チューブ26は、第1実施形態で説明した扁平多穴チューブ21と同様に、押出成形等により製造することができる。 Such a flat multi-hole tube 26 can be manufactured by extrusion molding or the like in the same manner as the flat multi-hole tube 21 described in the first embodiment.
 また、本実施形態の液供給タンク22の側面には、扁平多穴チューブ26の下方側の端部が挿入されて接続される1つの挿入穴22bが形成されている。液供給タンク22の挿入穴22bは、液供給タンク22の長手方向に延びる扁平形状に形成されている。同様に、流体流出タンク23の側面には、扁平多穴チューブ26の上方側の端部が挿入されて接続される1つの扁平形状の挿入穴23bが形成されている。 Further, on the side surface of the liquid supply tank 22 of the present embodiment, one insertion hole 22b is formed, to which the lower end of the flat multi-hole tube 26 is inserted and connected. The insertion hole 22 b of the liquid supply tank 22 is formed in a flat shape extending in the longitudinal direction of the liquid supply tank 22. Similarly, one flat insertion hole 23 b is formed on the side surface of the fluid outflow tank 23 to which the upper end of the flat multi-hole tube 26 is inserted and connected.
 さらに、図7に示すように、扁平多穴チューブ26の下方側の端面は、水平方向から見たときに、下方側に尖った尖頭部26aが複数箇所に形成されるように傾斜している。 Furthermore, as shown in FIG. 7, the lower end surface of the flat multi-hole tube 26 is inclined so that a pointed head 26 a pointed downward may be formed at a plurality of locations when viewed from the horizontal direction. There is.
 より詳細には、本実施形態では、予め定めた本数(本実施形態では、12本)の流体通路を基準流体通路群とした時に、基準流体通路群の各入口部は、液供給タンク22の長手方向に向かって前半の半数の開口位置が順に低くなり、後半の半数の開口位置が順に多角なるという基準変化パターンで変化している。つまり、基準流体通路群のうち、液供給タンク22の長手方向中央部に尖頭部26aが形成されている。 More specifically, in the present embodiment, when a predetermined number (12 in the present embodiment) of fluid passages is used as the reference fluid passage group, each inlet portion of the reference fluid passage group corresponds to that of the liquid supply tank 22. In the reference change pattern, the half first half opening positions are sequentially lowered in the longitudinal direction, and the second half half opening positions are sequentially polygonal. That is, in the reference fluid passage group, the sharp head 26 a is formed at the longitudinal center of the liquid supply tank 22.
 そして、液供給タンク22の内部に開口する扁平多穴チューブ26の全ての入口部の開口位置は、液供給タンク22の長手方向に向かって、基準変化パターンを繰り返して規則的に変化している。 The opening positions of all the inlets of the flat multi-hole tube 26 opened inside the liquid supply tank 22 regularly change the reference change pattern in the longitudinal direction of the liquid supply tank 22. .
 扁平多穴チューブ26は、尖頭部26aが液供給タンク22の内へ内壁面に当接した状態で接続されている。従って、本実施形態では、尖頭部26aと重合あるいは隣接する入口部が底面側入口部212fとなる。そして、底面側入口部212fは、第2実施形態と同様に、各電池セルBCを均等に冷却可能に配置されている。 The flat multi-hole tube 26 is connected with the pointed head 26 a in contact with the inner wall surface of the liquid supply tank 22. Therefore, in the present embodiment, the inlet portion overlapping with or adjacent to the pointed portion 26a is the bottom side inlet portion 212f. The bottom side inlet portion 212f is arranged to be able to uniformly cool the battery cells BC, as in the second embodiment.
 また、本実施形態の流体流出タンク23は、流体流出口23aの形成された長手方向一端側に向かって高さ方向の寸法が拡大している。つまり、本実施形態の流体流出タンク23では、長手方向一端側に向かうに伴って、長手方向に垂直な通路断面積が拡大している。 Moreover, the dimension of the height direction is expanding toward the longitudinal direction one end side in which the fluid outflow port 23a was formed of the fluid outflow tank 23 of this embodiment. That is, in the fluid outflow tank 23 of the present embodiment, the passage cross-sectional area perpendicular to the longitudinal direction is enlarged as it goes to the one end side in the longitudinal direction.
 その他の蒸発器2およびサーモサイフォン式の冷却装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の蒸発器2においても、第2実施形態と同様に、液供給タンク22内に気相の作動流体が混入したとしても、蒸発部の全域で作動流体の蒸発潜熱によって、組電池BP全体を均等に冷却することができる。 The configuration and operation of the other evaporator 2 and the thermosiphon cooling device 1 are the same as in the first embodiment. Therefore, also in the evaporator 2 of the present embodiment, as in the second embodiment, even if the working fluid of the gas phase is mixed in the liquid supply tank 22, the latent heat of vaporization of the working fluid in the entire region of the evaporating unit The entire battery BP can be cooled evenly.
 また、本実施形態では、図6に示すように、流体流出タンク23として、流体流出口23aの形成された長手方向一端側に向かうに伴って通路断面積を拡大させたものを採用している。これによれば、気相の作動流体が流体流出タンク23を流通する際の圧力損失を低減させることができ、作動流体を自然循環させやすい。 Further, in the present embodiment, as shown in FIG. 6, as the fluid outflow tank 23, one in which the passage cross-sectional area is expanded along with the longitudinal direction one end side where the fluid outlet 23 a is formed is adopted. . According to this, it is possible to reduce the pressure loss when the gas phase working fluid flows through the fluid outflow tank 23, and it is easy to naturally circulate the working fluid.
 (第4実施形態)
 本実施形態では、第3実施形態に対して、図8に示すように、扁平多穴チューブ26の各流体通路の入口部の開口位置の変化のパターン(すなわち、基準変化パターン)を変更した例を説明する。
Fourth Embodiment
In the present embodiment, as shown in FIG. 8 with respect to the third embodiment, an example in which the change pattern of the opening position of the inlet portion of each fluid passage of the flat multi-hole tube 26 (that is, the reference change pattern) is changed Explain.
 具体的には、本実施形態の基準変化パターンでは、第2実施形態と同様に、入口部として、液供給タンク22の中心線CLよりも下方側で同じ高さで開口するものと、液供給タンク22の中心線CLよりも上方側で同じ高さで開口するものとの2種類を設けた基準変化パターンを採用している。 Specifically, in the reference change pattern of the present embodiment, as in the second embodiment, the inlet portion is the same as the one opened at the same height below the center line CL of the liquid supply tank 22, and the liquid supply A reference change pattern is provided in which two types are provided: one opening at the same height on the upper side of the center line CL of the tank 22.
 その他の蒸発器2およびサーモサイフォン式の冷却装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の蒸発器2においても、第3実施形態と同様に、液供給タンク22内に気相の作動流体が混入したとしても、蒸発部の全域で作動流体の蒸発潜熱によって、組電池BP全体を均等に冷却することができる。 The configuration and operation of the other evaporator 2 and the thermosiphon cooling device 1 are the same as in the first embodiment. Therefore, also in the evaporator 2 of the present embodiment, as in the third embodiment, even if the working fluid of the gas phase is mixed in the liquid supply tank 22, the latent heat of vaporization of the working fluid in the entire region of the evaporating unit The entire battery BP can be cooled evenly.
 (第5実施形態)
 本実施形態では、図9に示すように、板面に凹凸が形成され一対の第1プレート部材271、および第2プレート部材272を貼り合わせることによって形成された蒸発器20について説明する。
Fifth Embodiment
In the present embodiment, as shown in FIG. 9, an evaporator 20 is described in which projections and depressions are formed on a plate surface, and a pair of first plate members 271 and a second plate member 272 are pasted together.
 第1プレート部材271の下方側には、第2プレート部材272から離れる側に凹んだ第1液供給形成部271aが形成されている。第1液供給形成部271aは、水平方向に延びる形状に形成されている。第1プレート部材271の上方側には、第2プレート部材272から離れる側に凹んだ第1流体流出形成部271bが形成されている。第1流体流出形成部271bは、水平方向に延びる形状に形成されている。 On the lower side of the first plate member 271, a first liquid supply forming portion 271a recessed toward the side away from the second plate member 272 is formed. The first liquid supply forming portion 271a is formed in a shape extending in the horizontal direction. A first fluid outflow forming portion 271 b recessed on the side away from the second plate member 272 is formed on the upper side of the first plate member 271. The first fluid outflow formation portion 271b is formed in a shape extending in the horizontal direction.
 第1プレート部材271の上下方向中央部であって、第1液供給形成部271aと第1流体流出形成部271bとの間には、第2プレート部材272から離れる側に凹んだ複数の第1チューブ形成部271cが形成されている。それぞれの第1チューブ形成部271cは、第1液供給形成部271aと第1流体流出形成部271bとを接続するように上下方向に延びる形状に凹んでいる。それぞれの第1チューブ形成部271cは、水平方向に等間隔に配置されている。 A plurality of first concave portions of the first plate member 271 in the vertical direction and between the first liquid supply forming portion 271 a and the first fluid outflow forming portion 271 b are separated from the second plate member 272. The tube forming portion 271c is formed. Each first tube forming portion 271c is recessed in a vertically extending shape so as to connect the first liquid supply forming portion 271a and the first fluid outflow forming portion 271b. The respective first tube forming portions 271c are arranged at equal intervals in the horizontal direction.
 一方、第2プレート部材272の下方側であって、第1液供給形成部271aと水平方向に重合する位置には、第1プレート部材271から離れる側に凹んだ第2液供給形成部272aが形成されている。第2プレート部材272の上方側であって、第1流体流出形成部271bと水平方向に重合する位置には、第1プレート部材271から離れる側に凹んだ第2流体流出形成部272bが形成されている。 On the other hand, the second liquid supply forming portion 272a recessed on the side away from the first plate member 271 is located below the second plate member 272 and at a position where it overlaps with the first liquid supply forming portion 271a in the horizontal direction. It is formed. A second fluid outflow forming portion 272b recessed on the side away from the first plate member 271 is formed at a position above the second plate member 272 and in a position horizontally overlapping with the first fluid outflow forming portion 271b. ing.
 第2プレート部材272の上下方向中央部であって、第2液供給形成部272aと第2流体流出形成部272bとの間には、第1プレート部材271の複数の第1チューブ形成部271cの形成された部位が貼り合わされる平坦面部272cが形成されている。 A plurality of first tube forming portions 271 c of the first plate member 271 are provided at the central portion in the vertical direction of the second plate member 272 and between the second liquid supply forming portion 272 a and the second fluid outflow forming portion 272 b. A flat surface portion 272c to which the formed portion is bonded is formed.
 また、第2プレート部材272の第2液供給形成部272aの長手方向他端側には、凝縮器4にて凝縮した液相の作動流体を流入させる流体流入口22aが設けられている。第2プレート部材272の第2流体流出形成部272bの長手方向一端側には、気相の作動流体を流出させる流体流出口23aが設けられている。 Further, on the other end side in the longitudinal direction of the second liquid supply formation portion 272a of the second plate member 272, a fluid inflow port 22a is provided to which the working fluid of the liquid phase condensed by the condenser 4 flows. At one end side in the longitudinal direction of the second fluid outflow forming portion 272b of the second plate member 272, a fluid outflow port 23a which causes the working fluid of the gas phase to flow out is provided.
 従って、第1プレート部材271と第2プレート部材272とを貼り合わせると、第1液供給形成部271aと第2液供給形成部272aとによって、第1実施形態で説明した液供給タンク22に対応する構成としての液供給タンク部221が形成される。液供給タンク部221は、断面長方形状の有底筒状に形成されている。 Therefore, when the first plate member 271 and the second plate member 272 are bonded, the first liquid supply forming portion 271a and the second liquid supply forming portion 272a correspond to the liquid supply tank 22 described in the first embodiment. A liquid supply tank portion 221 as a configuration to be formed is formed. The liquid supply tank portion 221 is formed in a bottomed cylindrical shape having a rectangular cross section.
 また、第1流体流出形成部271bと第2流体流出形成部272bとによって、第1実施形態で説明した流体流出タンク23に対応する構成としての流体流出タンク部231が形成される。流体流出タンク部231は、長手方向一端側に向かうに伴って、長手方向に垂直な通路断面積が拡大している。 The first fluid outflow formation portion 271b and the second fluid outflow formation portion 272b form a fluid outflow tank portion 231 corresponding to the fluid outflow tank 23 described in the first embodiment. As the fluid outflow tank portion 231 goes to the one end side in the longitudinal direction, the passage cross-sectional area perpendicular to the longitudinal direction is enlarged.
 また、第1チューブ形成部271cと平坦面部272cによって、下方側から上方側へ向かって作動流体を流通させるプレートチューブ211が形成される。さらに、本実施形態では、第1チューブ形成部271cの内部に、第1チューブ形成部271c内を複数の流体通路に区画するためのサブチューブ273が配置されている。従って、本実施形態の作動流体チューブは、プレートチューブ211とサブチューブ273とを有している。 Further, the first tube forming portion 271c and the flat surface portion 272c form a plate tube 211 which causes the working fluid to flow from the lower side to the upper side. Furthermore, in the present embodiment, a sub-tube 273 for dividing the inside of the first tube forming portion 271c into a plurality of fluid passages is disposed inside the first tube forming portion 271c. Therefore, the working fluid tube of the present embodiment includes the plate tube 211 and the sub tube 273.
 サブチューブ273は、複数の貫通穴が形成された扁平多穴チューブである。サブチューブ273の内部は、図10に示すように、第1流体通路211g、第2流体通路211h、第3流体通路211i(以下、「第1流体通路211g~第3流体通路211i」と称する)の3つの流体通路に区画されている。なお、図10では、図示の明確化のため、第1プレート部材271と第2プレート部材272とを貼り合わせる際の接合面を網掛けハッチングで示している。このことは、後述する図11、図12でも同様である。 The sub tube 273 is a flat multi-hole tube in which a plurality of through holes are formed. As shown in FIG. 10, the inside of the sub-tube 273 is a first fluid passage 211g, a second fluid passage 211h, and a third fluid passage 211i (hereinafter referred to as "first fluid passage 211g to third fluid passage 211i") Are divided into three fluid passages. In addition, in FIG. 10, the joint surface at the time of bonding together the 1st plate member 271 and the 2nd plate member 272 is shown by hatching hatching for clarification of illustration. The same applies to FIGS. 11 and 12 described later.
 サブチューブ273の幅寸法は、第1チューブ形成部271cの幅寸法よりも小さく設定されている。このため、サブチューブ273の幅方向の両側と第1チューブ形成部271cの内壁面との隙間には、第4流体通路211jおよび第5流体通路211kが形成される。 The width dimension of the sub-tube 273 is set smaller than the width dimension of the first tube forming portion 271c. For this reason, the fourth fluid passage 211j and the fifth fluid passage 211k are formed in the gap between both sides in the width direction of the sub-tube 273 and the inner wall surface of the first tube forming portion 271c.
 サブチューブ273の下端部は、液供給タンク部221の内部に延びている。このため、第1流体通路211g~第3流体通路211iの下端部に開口する第1入口部212g、第2入口部212h、第3入口部212i(以下、「第1入口部212g~第3入口部212i」と称する)は、液供給タンク部221の内部で開口している。そして、第1入口部212g~第3入口部212iは、第4流体通路211jおよび第5流体通路211kの下端部に開口する第4入口部212jおよび第5入口部212kよりも下方側で開口している。 The lower end portion of the sub tube 273 extends into the liquid supply tank portion 221. Therefore, the first inlet 212g, the second inlet 212h, and the third inlet 212i (hereinafter referred to as "the first inlet 212g to the third inlet") open at the lower end of the first fluid passage 211g to the third fluid passage 211i. The portion 212i ′ ′ is opened inside the liquid supply tank portion 221. The first inlet portion 212g to the third inlet portion 212i are opened below the fourth inlet portion 212j and the fifth inlet portion 212k which open at the lower end portions of the fourth fluid passage 211j and the fifth fluid passage 211k. ing.
 より詳細には、第1入口部212g~第3入口部212iは、液供給タンク部221の上下方向中央部よりも下方側で、互いに同じ高さで開口している。従って、本実施形態では、第1入口部212g~第3入口部212iが底面側入口部となる。 More specifically, the first inlet portion 212g to the third inlet portion 212i are opened at the same height below the center in the vertical direction of the liquid supply tank portion 221. Therefore, in the present embodiment, the first inlet portion 212g to the third inlet portion 212i are the bottom side inlet portion.
 その他のサーモサイフォン式の冷却装置1の構成および作動は、第1実施形態と同様である。上記の如く、蒸発器20は、第1実施形態で説明した蒸発器2と実質的に同様の構成を有している。従って、本実施形態の蒸発器20においても、第1実施形態と同様に、液供給タンク部221内に気相の作動流体が混入したとしても、蒸発部の全域で作動流体の蒸発潜熱によって、組電池BP全体を均等に冷却することができる。 The configuration and operation of the other thermosiphon cooling device 1 are the same as in the first embodiment. As described above, the evaporator 20 has substantially the same configuration as the evaporator 2 described in the first embodiment. Therefore, also in the evaporator 20 of the present embodiment, as in the first embodiment, even if the working fluid of the gas phase mixes in the liquid supply tank portion 221, the latent heat of vaporization of the working fluid in the entire region of the evaporating portion The entire assembled battery BP can be cooled uniformly.
 さらに、本実施形態の変形例として、図11に示すように、第1実施形態と同様に、サブチューブ273の下端部に開口する第1入口部212g~第3入口部212iの開口位置を上下方向に変化させてもよい。 Furthermore, as a modification of the present embodiment, as shown in FIG. 11, the opening positions of the first inlet 212 g to the third inlet 212 i opening at the lower end of the sub tube 273 are similar to the first embodiment. It may be changed in the direction.
 また、第4流体通路211j、第5流体通路211kのいずれか一方を設けるようにしてもよい。 Further, any one of the fourth fluid passage 211 j and the fifth fluid passage 211 k may be provided.
 また、サブチューブ273の幅寸法と第1チューブ形成部271cの幅寸法が同等に設定されている場合には、第4流体通路211j、第5流体通路211kが形成されない。この場合は、図12に示すように、第1入口部212g~第3入口部212iの開口位置を上下方向に変化させて、いずれか(本実施形態では、第1入口部212g)を底面側入口部とすることで、第1実施形態と同様の効果を得ることができる。 When the width dimension of the sub-tube 273 and the width dimension of the first tube forming portion 271c are set equal, the fourth fluid passage 211j and the fifth fluid passage 211k are not formed. In this case, as shown in FIG. 12, the opening positions of the first inlet portion 212g to the third inlet portion 212i are changed in the vertical direction, and any one (in the present embodiment, the first inlet portion 212g) is on the bottom side By using the inlet portion, the same effect as that of the first embodiment can be obtained.
 (第6実施形態)
 本実施形態では、第1実施形態に対して、図13、図14に示すように、液供給タンク22内に整流板28を配置した例を説明する。整流板28は、車両が傾斜した場合等に、液供給タンク22内の高い位置に気相の作動流体が集中してしまうことを抑制する板状部材である。つまり、整流板28は、車両が傾斜した場合等に、作動流体が液供給タンク22の内部を移動してしまうことを抑制する機能を有している。
Sixth Embodiment
In the present embodiment, as shown in FIGS. 13 and 14, an example in which the rectifying plate 28 is disposed in the liquid supply tank 22 will be described with respect to the first embodiment. The straightening vane 28 is a plate-like member that suppresses the concentration of the working fluid in the gas phase at a high position in the liquid supply tank 22 when the vehicle is inclined or the like. That is, the straightening vane 28 has a function of suppressing the working fluid from moving inside the liquid supply tank 22 when the vehicle is inclined or the like.
 整流板28は、液供給タンク22と同種の金属で、液供給タンク22の内壁面の上方側にろう付けにて接合されている。整流板28は、図13に示すように、隣り合う扁平多穴チューブ21同士の間に配置されている。従って、整流板28の厚みは、隣り合う扁平多穴チューブ21同士の間隔よりも薄い。 The current plate 28 is made of the same metal as the liquid supply tank 22 and is brazed to the upper side of the inner wall surface of the liquid supply tank 22. As shown in FIG. 13, the straightening vanes 28 are disposed between adjacent flat multi-hole tubes 21. Therefore, the thickness of the flow straightening plate 28 is thinner than the distance between adjacent flat multi-hole tubes 21.
 整流板28は、図14に示すように、液供給タンク22の長手方向から見たときに、半円形状に形成されている。このため、整流板28は、液供給タンク22の上方側の半分を閉塞している。 The straightening vanes 28 are formed in a semicircular shape when viewed from the longitudinal direction of the liquid supply tank 22 as shown in FIG. Therefore, the baffle plate 28 closes the upper half of the liquid supply tank 22.
 その他の蒸発器2およびサーモサイフォン式の冷却装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の蒸発器2においても、第1実施形態と同様に、液供給タンク22内に気相の作動流体が混入したとしても、蒸発部の全域で作動流体の蒸発潜熱によって、組電池BP全体を均等に冷却することができる。 The configuration and operation of the other evaporator 2 and the thermosiphon cooling device 1 are the same as in the first embodiment. Accordingly, in the evaporator 2 of the present embodiment, as in the first embodiment, even if the working fluid of the gas phase is mixed in the liquid supply tank 22, the latent heat of vaporization of the working fluid in the entire region of the evaporating unit The entire battery BP can be cooled evenly.
 さらに、本実施形態の蒸発器2では、整流板28が配置されているので、電気自動車の加減速や車体の傾斜によって、液供給タンク22の中心線CLや液供給タンク22内の液面が水平方向から傾いたとしても、液相の作動流体が液供給タンク22の内部を移動してしまうことが抑制される。 Furthermore, in the evaporator 2 of the present embodiment, since the rectifying plate 28 is disposed, the center line CL of the liquid supply tank 22 and the liquid level in the liquid supply tank 22 are determined by acceleration and deceleration of the electric vehicle and inclination of the vehicle body. Even when tilted from the horizontal direction, movement of the working fluid in the liquid phase inside the liquid supply tank 22 is suppressed.
 従って、液供給タンク22の中心線CLや液供給タンク22内の液面が水平方向から傾いた際に、一部の第1流体通路211aに液相の作動流体が供給されなくなってしまうことを抑制することができる。これにより、組電池BP全体を、均等に冷却することができる。さらに、整流板28によれば、液供給タンク22内で液相の作動流体が気相の作動流体と混ざって移動する際に生じる異音の発生を抑制することができる。 Therefore, when the center line CL of the liquid supply tank 22 and the liquid level in the liquid supply tank 22 are inclined from the horizontal direction, the working fluid in the liquid phase is not supplied to some of the first fluid passages 211a. It can be suppressed. Thereby, the entire assembled battery BP can be cooled uniformly. Furthermore, according to the straightening vanes 28, it is possible to suppress the generation of abnormal noise that occurs when the working fluid in the liquid phase mixes with the working fluid in the gas phase and moves in the liquid supply tank 22.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure. In addition, the means disclosed in each of the above embodiments may be combined as appropriate in the feasible range.
 (1)上述の実施形態では、蒸発器2、20の冷却対象物を組電池BPとした例を説明したが、冷却対象物は組電池BPに限定されない。本実施形態の蒸発器2、20を備えるサーモサイフォン式の冷却装置1は、全体が均等に冷却されることが望ましい冷却対象物を冷却するために用いて好適である。 (1) In the above-mentioned embodiment, although the example which made the battery pack BP the cooling object of the evaporators 2 and 20 was explained, the cooling object is not limited to the battery pack BP. The thermosiphon-type cooling device 1 including the evaporators 2 and 20 of the present embodiment is suitably used to cool an object to be cooled which is desirably uniformly cooled throughout.
 また、冷却対象物としての組電池BPは、電気自動車に搭載されるものに限定されない。例えば、走行用の駆動力を内燃機関(エンジン)および走行用電動モータから得るハイブリッド車両等に搭載されるものであってもよい。また、組電池BPには、電気的に並列に接続された電池セルBCが含まれていてもよい。 Further, the battery pack BP as the object to be cooled is not limited to one mounted on an electric vehicle. For example, it may be mounted on a hybrid vehicle or the like which obtains driving power for traveling from an internal combustion engine (engine) and a traveling electric motor. In addition, the battery pack BP may include battery cells BC electrically connected in parallel.
 また、上述の実施形態では、電池セルBCを2列に積層し、蒸発器2の蒸発部の両側に1列ずつ配置した例を説明したが、電池セルBCおよび蒸発器2の配置態様はこれに限定されない。電池セルBCが積層される列数は2列に限定されないし、蒸発器2の数量も1つに限定されない。 Moreover, although the above-mentioned embodiment demonstrated the example which laminated | stacked battery cell BC to 2 rows and arrange | positioned 1 row each on the both sides of the evaporation part of the evaporator 2, the arrangement aspect of the battery cell BC and the evaporator 2 is this It is not limited to. The number of rows in which the battery cells BC are stacked is not limited to two, and the number of evaporators 2 is not limited to one.
 例えば、電池セルBCを1列に積層し、蒸発器2、20の蒸発部の一方の面に熱的に接続されるように配置してもよい。さらに、電池セルBCを4列に積層し、2つの蒸発器2、20の蒸発部の両側に1列ずつ配置してもよい。この場合は、サーモサイフォン式の冷却装置1において、2つの蒸発器2を作動流体流れに対して並列的に接続すればよい。 For example, the battery cells BC may be stacked in one row and disposed so as to be thermally connected to one surface of the evaporation portion of the evaporator 2 or 20. Furthermore, the battery cells BC may be stacked in four rows, and one row may be arranged on both sides of the evaporators of the two evaporators 2 and 20. In this case, the two evaporators 2 may be connected in parallel to the working fluid flow in the thermosiphon cooling device 1.
 (2)蒸発器2、20を構成する各構成部は、上述の実施形態に開示されたものに限定されない。 (2) Each component which comprises evaporator 2 and 20 is not limited to what was indicated by the above-mentioned embodiment.
 例えば、蒸発器2の液供給タンク22は、断面円形状に形成されたものに限定されず、第5実施形態で説明した蒸発器20の液供給タンク部221のように、断面多角形状に形成されたものであってもよい。このことは、流体流出タンク23についても同様である。 For example, the liquid supply tank 22 of the evaporator 2 is not limited to one formed in a circular cross-sectional shape, and is formed in a polygonal cross-sectional shape like the liquid supply tank portion 221 of the evaporator 20 described in the fifth embodiment. It may be done. The same applies to the fluid outflow tank 23.
 断面多角形状の液供給タンク22では、断面の重心点を結んだ線を、上限方向中央部と定義してもよい。また、断面形状が変化する液供給タンク22の上下方向中央部については、水平方向から見たときに液供給タンク22の内部空間の上下方向の中心部を結んだ線と定義してもよい。 In the liquid supply tank 22 having a polygonal cross section, a line connecting the center of gravity of the cross section may be defined as a central portion in the upper limit direction. In addition, the central portion in the vertical direction of the liquid supply tank 22 in which the cross-sectional shape changes may be defined as a line connecting the central portions in the vertical direction of the internal space of the liquid supply tank 22 when viewed from the horizontal direction.
 熱拡散板24は、他の金属(例えば、銅)製のものを採用してもよい。さらに、金属に限定されることなく、伝熱性に優れる炭素材料(例えば、炭素繊維、カーボンナノチューブ)で形成されていてもよい。熱伝導材25は、グリス状のものを採用してもよい。さらに、蒸発器2と組電池BPとの間の電気絶縁性が確保できれば、熱伝導材25を廃止して、蒸発器2と組電池BPとを直接接触させてもよい。 The heat diffusion plate 24 may be made of another metal (for example, copper). Furthermore, it is not limited to a metal, You may be formed with the carbon material (for example, carbon fiber, a carbon nanotube) which is excellent in heat conductivity. The heat conductive material 25 may be in the form of grease. Furthermore, if the electrical insulation between the evaporator 2 and the battery pack BP can be secured, the heat conductive material 25 may be eliminated and the evaporator 2 may be in direct contact with the battery pack BP.
 第5実施形態では、サブチューブ273として、押出成形等により製造される扁平多穴チューブを採用した例を説明したが、サブチューブはこれに限定されない。例えば、板状部材を折り曲げて接合することによって製造される電縫管を採用してもよい。もちろん、第1チューブ形成部271cの幅方向より細い単孔の管を単数あるいは複数配置することによって、サブチューブを形成してもよい。 Although the example which employ | adopted the flat multi hole tube manufactured by extrusion molding etc. was demonstrated as a subtube 273 in 5th Embodiment, a subtube is not limited to this. For example, a welded tube manufactured by bending and joining plate members may be employed. Of course, the sub-tube may be formed by arranging one or more single-hole pipes thinner than the width direction of the first tube forming portion 271c.
 さらに、第5実施形態では、全ての第1チューブ形成部271cの内部に、サブチューブ273を配置した例を説明したが、サブチューブ273の配置はこれに限定されない。冷却対象物の全体を均等に冷却することができれば、例えば、図15に示すように、サブチューブ273が配置されない第1チューブ形成部271cが設けられていてもよい。 Furthermore, although the example which arrange | positioned the subtube 273 in the inside of all the 1st tube formation parts 271c was demonstrated in 5th Embodiment, arrangement | positioning of the subtube 273 is not limited to this. As long as the entire object to be cooled can be cooled uniformly, for example, as shown in FIG. 15, a first tube forming portion 271 c in which the sub tube 273 is not disposed may be provided.
 この場合は、サブチューブ273が配置される第1チューブ形成部271cとサブチューブ273が配置されない第1チューブ形成部271cとを交互に配置する等、サブチューブ273が配置される第1チューブ形成部271cとサブチューブ273が配置されない第1チューブ形成部271cが、液供給タンク部221の長手方向に規則的に配置されていることが望ましい。 In this case, the first tube forming portion in which the sub tube 273 is disposed, such as alternately arranging the first tube forming portion 271 c in which the sub tube 273 is disposed and the first tube forming portion 271 c in which the sub tube 273 is not disposed It is desirable that the first tube forming portion 271 c in which the sub tube 271 c is not disposed is regularly disposed in the longitudinal direction of the liquid supply tank portion 221.
 第6実施形態では、液供給タンク22の長手方向から見たときに、半円形状に形成された整流板28を採用した例を説明したが、整流板28の形状はこれに限定されない。液供給タンク22の内壁面に接合可能であれば、矩形状に形成されていてもよい。さらに、液相の作動流体が液供給タンク22の内部を移動することを抑制可能であれば、液供給タンク22のいずれの一部の部位を閉塞するように配置されていてもよい。 In the sixth embodiment, when viewed from the longitudinal direction of the liquid supply tank 22, the example has been described in which the straightening vane 28 formed in a semicircular shape is adopted, but the shape of the straightening vane 28 is not limited thereto. If it can be joined to the inner wall surface of the liquid supply tank 22, it may be formed in a rectangular shape. Furthermore, as long as the working fluid in the liquid phase can be prevented from moving inside the liquid supply tank 22, it may be arranged to close any part of the liquid supply tank 22.
 (3)サーモサイフォン式の冷却装置1を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。 (3) Each component apparatus which comprises the thermosiphon type cooling device 1 is not limited to what was disclosed by the above-mentioned embodiment.
 凝縮器4は、気相の作動流体を凝縮させることができるものであれば、上述の実施形態に開示された熱交換器に限定されることなく、種々の形式のものを採用することができる。例えば、凝縮器4として、気相の作動流体と外気やLLC(冷却水)とを熱交換させる熱交換器を採用してもよい。 The condenser 4 is not limited to the heat exchanger disclosed in the above-described embodiment as long as it can condense the working fluid in the gas phase, and various types of condensers can be adopted. . For example, a heat exchanger may be adopted as the condenser 4 for exchanging heat between the gas phase working fluid and the outside air or LLC (cooling water).
 さらに、凝縮器4として、気相の作動流体をペルチェ素子等によって発生させた冷熱で冷却する冷却装置を採用してもよい。凝縮器4は、複数設けられており、作動流体の流れに対して互いに並列的あるいは直列的に接続されていてもよい。 Furthermore, as the condenser 4, a cooling device may be adopted which cools the working fluid in the gas phase with the cold heat generated by a Peltier element or the like. A plurality of condensers 4 may be provided and connected in parallel or in series to the flow of the working fluid.
 また、第1実施形態で説明したサーモサイフォン式の冷却装置1において、蒸発器2以外を1つの作動流体配管で形成してもよい。つまり、作動流体配管のうち作動流体を冷却して凝縮させる部位を凝縮器としての機能を果たす凝縮部とし、凝縮部の作動流体流れ上流側の部位を気相流体配管3とし、凝縮部の作動流体流れ下流側の部位を液相流体配管5としてもよい。 Further, in the thermosiphon cooling device 1 described in the first embodiment, one working fluid pipe may be used except the evaporator 2. That is, in the working fluid piping, the portion that cools and condenses the working fluid is the condensation portion that functions as a condenser, the portion on the working fluid flow upstream side of the condensation portion is the gas phase fluid piping 3, and the operation of the condensation portion The portion on the downstream side of the fluid flow may be used as the liquid-phase fluid piping 5.
 また、上述の実施形態では、作動流体として、R134aを採用した例を説明したが、作動流体はこれに限定されない。作動流体として、別のフロン系冷媒(例えば、R1234yf)を採用してもよい。さらに、フロン系冷媒に限定されることなく、プロパン、二酸化炭素、アルコール等の熱媒体を採用してもよい。 Moreover, although the above-mentioned embodiment demonstrated the example which employ | adopted R134a as a working fluid, a working fluid is not limited to this. Another fluorocarbon-based refrigerant (eg, R1234yf) may be employed as the working fluid. Furthermore, the heat medium such as propane, carbon dioxide and alcohol may be employed without being limited to the fluorocarbon refrigerant.
 本開示は実施例を参照して記載されているが、本開示は開示された上記実施例や構造に限定されるものではないと理解される。寧ろ、本開示は、様々な変形例や均等範囲内の変形を包含する。加えて、本開示の様々な要素が、様々な組み合わせや形態によって示されているが、それら要素よりも多くの要素、あるいは少ない要素、またはそのうちの1つだけの要素を含む他の組み合わせや形態も、本開示の範疇や思想範囲に入るものである。 Although the disclosure has been described with reference to examples, it is understood that the disclosure is not limited to the disclosed examples or structures. Rather, the present disclosure includes various modifications and variations within the equivalent range. In addition, although various elements of the present disclosure are illustrated by various combinations and forms, other combinations and forms including more elements, fewer elements, or only one of these elements Are also within the scope and scope of the present disclosure.

Claims (8)

  1.  サーモサイフォン式の冷却装置(1)に適用される蒸発器であって、
     作動流体を流通させる作動流体チューブ(21、26、211)と、
     前記作動流体チューブの下方側の端部に接続されて、前記作動流体チューブに液相の前記作動流体を供給する液供給部(22、221)と、を備え、
     前記作動流体チューブは、内部を流通する液相の前記作動流体に冷却対象物(BP)の有する熱を吸熱させて、前記作動流体を蒸発させる蒸発部を形成しており、
     前記作動流体チューブの内部は、下方側から上方側へ向かって前記作動流体を流通させる複数の流体通路(211a、211b、211c、211d、211e、211g、211h、211i、211j、211k)に区画されており、
     前記複数の流体通路の入口部(212a、212b、212c、212d、212e、212f、212g、212h、212i、212j、212k)の少なくとも一部は、前記液供給部の内部で開口しているとともに、それぞれの開口位置が互いに上下方向に異なっている蒸発器。
    An evaporator applied to a thermosyphon cooling system (1), comprising:
    Working fluid tubes (21, 26, 211) for circulating working fluid;
    A liquid supply unit (22, 221) connected to the lower end of the working fluid tube to supply the working fluid of the liquid phase to the working fluid tube;
    The working fluid tube forms an evaporation unit that evaporates the working fluid by absorbing heat of the object to be cooled (BP) by the working fluid in a liquid phase flowing therethrough.
    The inside of the working fluid tube is divided into a plurality of fluid passages (211 a, 211 b, 211 c, 211 d, 211 e, 211 h, 211 h, 211 i, 211 j, and 211 k) for passing the working fluid from the lower side to the upper side. Yes,
    At least a part of the inlets (212a, 212b, 212c, 212d, 212e, 212f, 212g, 212h, 212i, 212j, 212k) of the plurality of fluid passages are opened inside the liquid supply unit, Evaporators whose opening positions are different from each other in the vertical direction.
  2.  前記入口部のうち、前記液供給部の底面に最も近い位置で開口する入口部を底面側入口部と定義したときに、
     前記底面側入口部は、複数設けられており、
     複数の前記底面側入口部は、互いに間隔を開けて配置されている請求項1に記載の蒸発器。
    Among the inlets, when the inlet opening at the position closest to the bottom surface of the liquid supply unit is defined as the bottom side inlet,
    A plurality of bottom side inlets are provided,
    The evaporator according to claim 1, wherein the plurality of bottom side inlets are spaced apart from each other.
  3.  前記冷却対象物は、複数の電池セル(BC)を積層して形成された組電池(BP)であり、
     前記複数の電池セルの積層方向に垂直な水平方向から見たときに、それぞれの電池セルは前記底面側入口部を有する流体通路の少なくとも1つと重合配置されている請求項2に記載の蒸発器。
    The object to be cooled is a battery pack (BP) formed by stacking a plurality of battery cells (BC),
    The evaporator according to claim 2, wherein each battery cell is arranged to overlap with at least one of the fluid passages having the bottom side inlets when viewed from the horizontal direction perpendicular to the stacking direction of the plurality of battery cells. .
  4.  前記作動流体チューブは、複数の貫通穴が形成された多穴チューブ(21、26)であり、
     前記作動流体チューブの下方側の端面には、水平面に対して傾斜した部位が形成されている請求項1ないし3のいずれか1つに記載の蒸発器。
    The working fluid tube is a multi-hole tube (21, 26) in which a plurality of through holes are formed,
    The evaporator according to any one of claims 1 to 3, wherein the lower end surface of the working fluid tube is formed with a portion inclined with respect to a horizontal surface.
  5.  前記作動流体チューブの最下端部は、前記液供給部の内壁面に当接している請求項4に記載の蒸発器。 The evaporator according to claim 4, wherein a lowermost end of the working fluid tube is in contact with an inner wall surface of the liquid supply unit.
  6.  前記作動流体チューブは、板面に凹凸が形成された一対のプレート部材を貼り合わせることによって形成されたプレートチューブ(211)、および前記プレートチューブの内部に配置されて前記流体通路を形成するサブチューブ(273)を有している請求項1ないし3のいずれか1つに記載の蒸発器。 The working fluid tube is a plate tube (211) formed by bonding a pair of plate members having projections and depressions on a plate surface, and a sub-tube disposed inside the plate tube to form the fluid passage The evaporator according to any one of claims 1 to 3, comprising (273).
  7.  前記複数の流体通路の入口部の少なくとも1つは、前記液供給部の上下方向中央部よりも下方側で開口しており、
     前記複数の流体通路の入口部の別の少なくとも1つは、前記液供給部の上下方向中央部よりも上方側で開口している請求項1ないし6のいずれか1つに記載の蒸発器。
    At least one of the inlets of the plurality of fluid passages is opened below the vertical center of the liquid supply unit,
    The evaporator according to any one of claims 1 to 6, wherein at least another one of the inlets of the plurality of fluid passages is open above the vertical center of the liquid supply unit.
  8.  前記液供給部の内部には、前記作動流体が前記液供給部の内部を移動することを抑制する板状部材(28)が配置されている請求項1ないし7のいずれか1つに記載の蒸発器。 The plate-shaped member (28) which suppresses that the said working fluid moves the inside of the said liquid supply part in the inside of the said liquid supply part is arrange | positioned in any one of Claim 1 thru | or 7 Evaporator.
PCT/JP2018/037945 2017-11-09 2018-10-11 Evaporator WO2019093065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017216528A JP6919511B2 (en) 2017-11-09 2017-11-09 Evaporator
JP2017-216528 2017-11-09

Publications (1)

Publication Number Publication Date
WO2019093065A1 true WO2019093065A1 (en) 2019-05-16

Family

ID=66438345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037945 WO2019093065A1 (en) 2017-11-09 2018-10-11 Evaporator

Country Status (2)

Country Link
JP (1) JP6919511B2 (en)
WO (1) WO2019093065A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021007085A (en) * 2019-06-28 2021-01-21 株式会社デンソー Heat exchanger and method of manufacturing the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309987A (en) * 1980-02-14 1982-01-12 H & H Tube & Mfg. Co. Fluid flow assembly for solar heat collectors or radiators
JPH07280467A (en) * 1994-04-01 1995-10-27 Nippon Light Metal Co Ltd Heat exchanger
JP2005300072A (en) * 2004-04-14 2005-10-27 Calsonic Kansei Corp Evaporator
JP2007003080A (en) * 2005-06-23 2007-01-11 Calsonic Kansei Corp Evaporator
JP2009009888A (en) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd Vehicle power source device
JP2009176464A (en) * 2008-01-22 2009-08-06 Toyoda Gosei Co Ltd Battery pack device
JP2011106738A (en) * 2009-11-17 2011-06-02 Mitsubishi Electric Corp Heat exchanger and heat pump system
JP2013019581A (en) * 2011-07-11 2013-01-31 Hitachi Appliances Inc Refrigeration cycle apparatus
CN103401044A (en) * 2013-07-18 2013-11-20 三门峡速达交通节能科技股份有限公司 Power battery heat management system based on flat plate heat pipes
JP2015041418A (en) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 Battery temperature adjusting device
CN104764255A (en) * 2015-03-26 2015-07-08 广东美的制冷设备有限公司 Parallel flow heat exchanger
JP2015175534A (en) * 2014-03-14 2015-10-05 カルソニックカンセイ株式会社 Cooling device
JP2017048964A (en) * 2015-09-01 2017-03-09 富士電機株式会社 Loop type thermos-siphon device
WO2018070115A1 (en) * 2016-10-12 2018-04-19 株式会社デンソー Evaporator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100175856A1 (en) * 2009-01-12 2010-07-15 Meyer Iv George Anthony Vapor chamber with wick structure of different thickness and die for forming the same
JP2011174647A (en) * 2010-02-24 2011-09-08 Showa Denko Kk Heat pipe type radiator

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309987A (en) * 1980-02-14 1982-01-12 H & H Tube & Mfg. Co. Fluid flow assembly for solar heat collectors or radiators
JPH07280467A (en) * 1994-04-01 1995-10-27 Nippon Light Metal Co Ltd Heat exchanger
JP2005300072A (en) * 2004-04-14 2005-10-27 Calsonic Kansei Corp Evaporator
JP2007003080A (en) * 2005-06-23 2007-01-11 Calsonic Kansei Corp Evaporator
JP2009009888A (en) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd Vehicle power source device
JP2009176464A (en) * 2008-01-22 2009-08-06 Toyoda Gosei Co Ltd Battery pack device
JP2011106738A (en) * 2009-11-17 2011-06-02 Mitsubishi Electric Corp Heat exchanger and heat pump system
JP2013019581A (en) * 2011-07-11 2013-01-31 Hitachi Appliances Inc Refrigeration cycle apparatus
CN103401044A (en) * 2013-07-18 2013-11-20 三门峡速达交通节能科技股份有限公司 Power battery heat management system based on flat plate heat pipes
JP2015041418A (en) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 Battery temperature adjusting device
JP2015175534A (en) * 2014-03-14 2015-10-05 カルソニックカンセイ株式会社 Cooling device
CN104764255A (en) * 2015-03-26 2015-07-08 广东美的制冷设备有限公司 Parallel flow heat exchanger
JP2017048964A (en) * 2015-09-01 2017-03-09 富士電機株式会社 Loop type thermos-siphon device
WO2018070115A1 (en) * 2016-10-12 2018-04-19 株式会社デンソー Evaporator

Also Published As

Publication number Publication date
JP6919511B2 (en) 2021-08-18
JP2019086254A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6601573B2 (en) Evaporator
US10005354B2 (en) Cooling module and cooling system for vehicle
JP5768480B2 (en) Cold storage heat exchanger
JP5470385B2 (en) Evaporator with cool storage function
JP6183100B2 (en) Cold storage heat exchanger
US10018422B2 (en) Cooling module
JP2007271197A (en) Absorption type refrigerating device
JP2013002758A (en) Cooling device for vehicle
US20160245595A1 (en) Cooling module
JP5920087B2 (en) Cold storage heat exchanger
WO2015045105A1 (en) Heat exchanger and air conditioner using same
JP5849883B2 (en) Cold storage heat exchanger
WO2019111849A1 (en) Heat exchanger
WO2019093065A1 (en) Evaporator
KR20150085765A (en) Tube-fin thermal storage evaporator
JP6678235B2 (en) Heat exchanger
KR102439432B1 (en) Cooling module for hybrid vehicle
JP2008256234A (en) Evaporator
JP6327386B2 (en) Cold storage heat exchanger
WO2019146262A1 (en) Thermosiphon cooling device for vehicle
KR101855850B1 (en) Integrated heat exchanger
JP6477314B2 (en) Refrigerant evaporator
JP2021081116A (en) Boiling cooling device
JP6432275B2 (en) Refrigerant evaporator
JP2016031203A (en) Condenser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875298

Country of ref document: EP

Kind code of ref document: A1