JP5563609B2 - Refrigerant system and control method thereof - Google Patents

Refrigerant system and control method thereof Download PDF

Info

Publication number
JP5563609B2
JP5563609B2 JP2012011963A JP2012011963A JP5563609B2 JP 5563609 B2 JP5563609 B2 JP 5563609B2 JP 2012011963 A JP2012011963 A JP 2012011963A JP 2012011963 A JP2012011963 A JP 2012011963A JP 5563609 B2 JP5563609 B2 JP 5563609B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
refrigeration
main compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012011963A
Other languages
Japanese (ja)
Other versions
JP2012154619A (en
Inventor
ジェフク チェ
テヒ クワク
ヨンホ ヨ
ドヨン ハ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2012154619A publication Critical patent/JP2012154619A/en
Application granted granted Critical
Publication of JP5563609B2 publication Critical patent/JP5563609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • F25B2400/061Several compression cycles arranged in parallel the capacity of the first system being different from the second
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Description

本発明は、冷媒サイクルを行う冷媒システム及びその制御方法に関する。   The present invention relates to a refrigerant system that performs a refrigerant cycle and a control method thereof.

一般に、冷媒システムは、圧縮‐凝縮‐膨張‐蒸発からなる冷媒サイクルを行い、室内を冷暖房するかまたは食品の保管のために冷却する装置である。   In general, a refrigerant system is a device that performs a refrigerant cycle consisting of compression-condensation-expansion-evaporation to cool and cool a room or store food.

冷媒システムは、冷媒を圧縮する圧縮機と、冷媒と室内空気の熱交換を行う室内熱交換機と、冷媒を膨張させる膨張機と、冷媒と室外空気の熱交換を行う室外熱交換機と、を含む。そして、圧縮機に流入される冷媒のうち液状の冷媒と気相の冷媒を取り除くためのアキュムレータと、冷媒サイクルを行うための冷媒の流動方向を転換するための四方弁と、室内熱交換機または室外熱交換機に向かって各々室内空気または室外空気を強制流動させるファンと、ファンを回転するためのモータと、を更に含むことができる。   The refrigerant system includes a compressor that compresses the refrigerant, an indoor heat exchanger that exchanges heat between the refrigerant and indoor air, an expander that expands the refrigerant, and an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air. . An accumulator for removing liquid refrigerant and gas-phase refrigerant from the refrigerant flowing into the compressor, a four-way valve for changing the flow direction of the refrigerant for performing a refrigerant cycle, an indoor heat exchanger or an outdoor A fan for forcibly flowing indoor air or outdoor air toward the heat exchanger and a motor for rotating the fan may be further included.

そして、室内の冷房を行う場合には室内熱交換機は蒸発手段、室外熱交換機は凝縮手段になる。室内の暖房を行う場合には室内熱交換機は凝縮手段、室外熱交換機は蒸発手段になる。冷暖房運転の転換は、四方弁により冷媒の流動方向が変更されることによって行う。   And when performing indoor cooling, an indoor heat exchanger becomes an evaporation means, and an outdoor heat exchanger becomes a condensation means. When the room is heated, the indoor heat exchanger becomes a condensing means and the outdoor heat exchanger becomes an evaporating means. The change of the cooling / heating operation is performed by changing the flow direction of the refrigerant by the four-way valve.

本発明は、冷媒システム及びその制御方法を提供する。   The present invention provides a refrigerant system and a control method thereof.

本発明の一実施形態による冷媒システムは、第1冷媒サイクルを用いて室内を空調する空調部と、第2冷媒サイクルを用いて貯蔵室の冷却を行うための冷却部と、前記空調部の冷媒と前記冷却部の冷媒間の熱交換を行う冷媒熱交換機と、を含み、前記空調部はメイン圧縮機と、前記メイン圧縮機をバックアップするための予備圧縮機と、を含む。   A refrigerant system according to an embodiment of the present invention includes an air conditioning unit that air-conditions a room using a first refrigerant cycle, a cooling unit that cools a storage room using a second refrigerant cycle, and a refrigerant in the air conditioning unit. And a refrigerant heat exchanger for exchanging heat between the refrigerants in the cooling unit, and the air conditioning unit includes a main compressor and a preliminary compressor for backing up the main compressor.

本発明の他の実施形態による冷媒システムは、外気と第1冷媒が熱交換されるようにする第1熱交換機と、前記第1冷媒と内気が熱交換されるようにする第2熱交換機と、前記第1冷媒を圧縮する第1圧縮機と、第3熱交換機の第1冷媒通路と、前記第1冷媒通路の吸入側で冷媒を膨張する第1膨張機を含む空調部と、外気と第2冷媒が熱交換されるようにする第4熱交換機と、前記第2冷媒と内気が熱交換されるようにする第5熱交換機と、前記第2冷媒を圧縮する第2圧縮機と、前記第3熱交換機の第2冷媒通路を含む冷却部と、を含み、前記第2圧縮機は、メイン圧縮機と予備圧縮機と、を含む。   A refrigerant system according to another embodiment of the present invention includes a first heat exchanger that exchanges heat between the outside air and the first refrigerant, and a second heat exchanger that exchanges heat between the first refrigerant and the inside air. A first compressor that compresses the first refrigerant, a first refrigerant passage of a third heat exchanger, an air conditioning unit that includes a first expander that expands the refrigerant on the suction side of the first refrigerant passage, and outside air A fourth heat exchanger that exchanges heat between the second refrigerant, a fifth heat exchanger that exchanges heat between the second refrigerant and the inside air, a second compressor that compresses the second refrigerant, A cooling unit including a second refrigerant passage of the third heat exchanger, and the second compressor includes a main compressor and a preliminary compressor.

本発明のまた他の実施形態による冷媒システムの制御方法は、第1冷媒サイクルを用いて室内の空調を行うステップと、第2冷媒サイクルを用いて前記室内の貯蔵室の空気を冷却するステップと、前記第1冷媒サイクルの冷媒と前記第2冷媒サイクルの冷媒を熱交換させるステップと、前記第2冷媒サイクルのメイン圧縮機の故障または過負荷を感知するステップと、前記メイン圧縮機の故障または過負荷が感知されると、予備圧縮機の作動が開始するステップと、を含む。   A control method of a refrigerant system according to still another embodiment of the present invention includes a step of performing indoor air conditioning using a first refrigerant cycle, and a step of cooling air in the indoor storage chamber using a second refrigerant cycle; A step of exchanging heat between the refrigerant of the first refrigerant cycle and the refrigerant of the second refrigerant cycle; a step of detecting a failure or overload of the main compressor of the second refrigerant cycle; Starting an operation of the precompressor when an overload is sensed.

本発明によると、食品または他の物品が持続的に冷却され、冷却停止による食品または他の物品が腐ることを防止することができる。   According to the present invention, food or other articles can be continuously cooled, and food or other articles can be prevented from rotting due to the cooling stop.

本発明による冷媒システムの構成図である。It is a block diagram of the refrigerant system by this invention. 図1に示す冷媒システムにおける冷媒流動を示す図である。It is a figure which shows the refrigerant | coolant flow in the refrigerant system shown in FIG. 図1に示す冷媒システムにおける制御信号のフローを示すブロック図である。It is a block diagram which shows the flow of the control signal in the refrigerant | coolant system shown in FIG. 本発明の他の実施形態による図1に示す冷媒システムにおける制御信号のフローを示すブロック図である。It is a block diagram which shows the flow of the control signal in the refrigerant | coolant system shown in FIG. 1 by other embodiment of this invention. 図4に示す制御信号フローによる冷媒システムの制御方法を示すフローチャートである。It is a flowchart which shows the control method of the refrigerant | coolant system by the control signal flow shown in FIG. 冷媒システムが過負荷条件で運転される場合の冷媒流動を示す図である。It is a figure which shows a refrigerant | coolant flow in case a refrigerant | coolant system is drive | operated on overload conditions. 冷媒システムのメイン圧縮機の故障が発生した場合の冷媒流動のフローを示す図である。It is a figure which shows the flow of the refrigerant | coolant flow when the failure of the main compressor of a refrigerant | coolant system generate | occur | produces. 本発明のまた他の実施形態の図1に示す冷媒システムにおける制御信号のフローを示すブロック図である。It is a block diagram which shows the flow of the control signal in the refrigerant | coolant system shown in FIG. 1 of other embodiment of this invention. 図7に示す冷媒システムの制御方法を示すフローチャートである。It is a flowchart which shows the control method of the refrigerant system shown in FIG.

図1は、本発明による冷媒システムの構成図である。   FIG. 1 is a configuration diagram of a refrigerant system according to the present invention.

図1に示すように、冷媒システムは、室内の空気調和のために冷媒サイクルを行う空調部1と、貯蔵室の冷却のために冷媒サイクルを行う冷却部2、3と、を含む。例えば、空調部1はビルの空気を調和することができ、冷却部2、3はビルに付着されるかまたはビルに接続されて貯蔵室を冷却することができる。   As shown in FIG. 1, the refrigerant system includes an air conditioning unit 1 that performs a refrigerant cycle for air conditioning in the room, and cooling units 2 and 3 that perform a refrigerant cycle for cooling the storage chamber. For example, the air conditioning unit 1 can harmonize the air in a building, and the cooling units 2 and 3 can be attached to the building or connected to the building to cool the storage room.

詳しくは、冷却部2、3は、食品の冷蔵保管のための冷蔵部2と、食品の冷凍保管のための冷凍部3を含む。そして、空調部1の冷媒、冷蔵部2の冷媒及び冷凍部3の冷媒は、お互い独立に流動する。   Specifically, the cooling units 2 and 3 include a refrigeration unit 2 for refrigerated storage of food and a refrigeration unit 3 for frozen storage of food. And the refrigerant of air-conditioning part 1, the refrigerant of refrigerating part 2, and the refrigerant of freezing part 3 flow mutually independently.

空調部1は、空調部1を流動する冷媒を圧縮するための空調側の圧縮機11と冷媒と室外空気間の熱交換が行われる空調側の室外熱交換機14と、冷媒を膨張させる空調側の膨張機131、132、133と、冷媒と室内空気間の熱交換が行われる室内熱交換機12を含むことができる。そして、空調部1は、空調側の圧縮機11に流入される冷媒のうち気相の冷媒と液状の冷媒を分離するためのアキュムレータ16と、空調側の圧縮機11から吐出される冷媒の流動方向を転換するための四方弁15を含んでもよい。   The air-conditioning unit 1 includes an air-conditioning side compressor 11 for compressing refrigerant flowing in the air-conditioning unit 1, an air-conditioning-side outdoor heat exchanger 14 that performs heat exchange between the refrigerant and outdoor air, and an air-conditioning side that expands the refrigerant. And the indoor heat exchanger 12 that performs heat exchange between the refrigerant and the room air. The air-conditioning unit 1 includes an accumulator 16 for separating a gas-phase refrigerant and a liquid-state refrigerant from among refrigerants flowing into the air-conditioning compressor 11, and a flow of refrigerant discharged from the air-conditioning compressor 11. A four-way valve 15 for changing the direction may be included.

冷蔵部2は、冷蔵部2を流動する冷媒を圧縮するための冷蔵側の圧縮機21と、冷媒と室外空気間の熱交換が行われる冷蔵側の室外熱交換機24と、冷媒を膨張させる冷蔵側の膨張機231、232と、冷媒と食品に隣接の空気間の熱交換が行われる冷蔵熱交換機22を含むことができる。冷蔵部2の室外空気は、空調部1の室外空気と同様であるか、または空調部1の室内空気であってもよい。   The refrigeration unit 2 includes a refrigeration compressor 21 for compressing refrigerant flowing in the refrigeration unit 2, a refrigeration outdoor heat exchanger 24 in which heat exchange between the refrigerant and outdoor air, and refrigeration for expanding the refrigerant. The side expanders 231 and 232 and the refrigeration heat exchanger 22 that performs heat exchange between the refrigerant and the air adjacent to the food can be included. The outdoor air of the refrigeration unit 2 may be the same as the outdoor air of the air conditioning unit 1 or the indoor air of the air conditioning unit 1.

そして、冷凍部3は、冷凍部3を流動する冷媒を圧縮するための冷凍側の圧縮機31と、冷媒と室外空気間の熱交換が行われる冷凍側の室外熱交換機34と、室外熱交換機に向かって室外空気を強制流動させるファンモータアセンブリ35と、冷媒を膨張させる冷凍側の膨張機33と、冷媒と食品に隣接の空気間の熱交換が行われる冷凍熱交換機32を含めることができる。冷凍部3の室外空気は、空調部1の室外空気と同様であるか、または空調部1の室内空気であってもよい。   The refrigeration unit 3 includes a refrigeration compressor 31 for compressing the refrigerant flowing in the refrigeration unit 3, a refrigeration outdoor heat exchanger 34 that performs heat exchange between the refrigerant and outdoor air, and an outdoor heat exchanger. The fan motor assembly 35 forcing the outdoor air to flow toward the refrigerator, the refrigerating side expander 33 for expanding the refrigerant, and the refrigeration heat exchanger 32 for performing heat exchange between the refrigerant and the food adjacent to the food can be included. . The outdoor air of the refrigeration unit 3 may be the same as the outdoor air of the air conditioning unit 1 or the indoor air of the air conditioning unit 1.

一方、冷蔵部2と冷凍部3は、冷蔵部2または冷凍部3を流動する冷媒を圧縮するための冷却側の圧縮機と、冷媒と室外空気間の熱交換が行われる冷却側の室外熱交換機と、冷媒を膨張させる冷却側の膨張機と、冷媒と食品に隣接の空気間の熱交換が行われる冷却熱交換機を含む。そして、冷却側の圧縮機は、冷蔵側の圧縮機21と冷凍側の圧縮機31を含んでもよい。冷却側の室外熱交換機は、冷蔵側の室外熱交換機24と冷凍側の室外熱交換機34を含んでもよい。冷却側の膨張機は、冷蔵側の膨張機231、232と冷凍側の膨張機33を含んでもよい。冷却熱交換機は、冷蔵熱交換機22と冷凍熱交換機32を含んでもよい。   On the other hand, the refrigeration unit 2 and the refrigeration unit 3 include a cooling-side compressor for compressing the refrigerant flowing in the refrigeration unit 2 or the refrigeration unit 3, and a cooling-side outdoor heat in which heat exchange is performed between the refrigerant and outdoor air. It includes an exchanger, a cooling-side expander that expands the refrigerant, and a cooling heat exchanger that performs heat exchange between air adjacent to the refrigerant and the food. The cooling side compressor may include a refrigeration side compressor 21 and a refrigeration side compressor 31. The outdoor heat exchanger on the cooling side may include an outdoor heat exchanger 24 on the refrigeration side and an outdoor heat exchanger 34 on the refrigeration side. The cooling side expander may include refrigeration side expanders 231 and 232 and a refrigeration side expander 33. The cooling heat exchanger may include a refrigeration heat exchanger 22 and a refrigeration heat exchanger 32.

この際、空調側の膨張機131、132、133、冷蔵側の膨張機231、232、冷凍側の膨張機33は、例えば、電子弁のように冷媒流動の開閉、冷媒の膨張及び冷媒流動量の調節が可能な多様な装置になりうる。また、冷媒システムは、空調側の室外熱交換機14及び冷蔵側の室外熱交換機24に向かって室外空気を強制流動させるためのファンモータアセンブリ6を含む。空調側の室外熱交換機14と冷蔵側の室外熱交換機24が隣接した場合には、ファンモータアセンブリ6が空調側の室外熱交換機14及び冷蔵側の室外熱交換機24の両方に向かって室外空気を強制流動させうる。ただ、空調側の室外熱交換機14と冷蔵側の室外熱交換機24が離隔された場合には、空調側の室外熱交換機14及び冷蔵側の室外熱交換機24各々に対応する2つのファンモータアセンブリを備えてもよい。   At this time, the expanders 131, 132, 133 on the air conditioning side, the expanders 231, 232 on the refrigeration side, and the expander 33 on the refrigeration side, for example, open / close refrigerant flow, refrigerant expansion, and refrigerant flow amount like an electronic valve. It can be a variety of devices that can be adjusted. The refrigerant system also includes a fan motor assembly 6 for forcibly flowing outdoor air toward the outdoor heat exchanger 14 on the air conditioning side and the outdoor heat exchanger 24 on the refrigeration side. When the outdoor heat exchanger 14 on the air conditioning side and the outdoor heat exchanger 24 on the refrigeration side are adjacent to each other, the fan motor assembly 6 sends outdoor air toward both the outdoor heat exchanger 14 on the air conditioning side and the outdoor heat exchanger 24 on the refrigeration side. Can be forced to flow. However, when the outdoor heat exchanger 14 on the air conditioning side and the outdoor heat exchanger 24 on the refrigeration side are separated from each other, two fan motor assemblies corresponding to the outdoor heat exchanger 14 on the air conditioning side and the outdoor heat exchanger 24 on the refrigeration side are provided. You may prepare.

一方、冷媒システムは、空調部1と冷蔵部2または冷蔵部2と冷凍部3間に熱交換が行われるようにするための冷媒熱交換機4、5を含めてもよい。より詳しくは、冷媒熱交換機4、5は、空調部1の冷媒と冷蔵部2の冷媒間の熱交換が行われる第1冷媒熱交換機4と、冷蔵部2の冷媒と冷凍部3の冷媒間の熱交換が行われる第2冷媒熱交換機5を含めてもよい。   On the other hand, the refrigerant system may include refrigerant heat exchangers 4 and 5 for heat exchange between the air conditioning unit 1 and the refrigeration unit 2 or between the refrigeration unit 2 and the refrigeration unit 3. More specifically, the refrigerant heat exchangers 4 and 5 include the first refrigerant heat exchanger 4 in which heat exchange is performed between the refrigerant in the air conditioning unit 1 and the refrigerant in the refrigeration unit 2, and between the refrigerant in the refrigeration unit 2 and the refrigerant in the refrigeration unit 3. You may include the 2nd refrigerant | coolant heat exchanger 5 in which this heat exchange is performed.

この際、第1冷媒熱交換機4の内部には、空調部1の冷媒と冷蔵部2の冷媒が独立に流動しつつお互い熱交換が可能となるように2つの流路41、42が形成されうる。そして、第2冷媒熱交換機5の内部には、冷蔵部2の冷媒と冷凍部3の冷媒が独立に流動しつつお互い熱交換できるように2つの流路51、52が形成されうる。   At this time, in the first refrigerant heat exchanger 4, two flow paths 41 and 42 are formed so that the refrigerant of the air conditioning unit 1 and the refrigerant of the refrigeration unit 2 can exchange heat with each other while flowing independently. sell. And inside the 2nd refrigerant | coolant heat exchanger 5, the two flow paths 51 and 52 can be formed so that the refrigerant | coolant of the refrigerator 2 and the refrigerant | coolant of the freezing part 3 can mutually heat-exchange while flowing independently.


第1冷媒熱交換機4は、空調部1の室内熱交換機12と並列に接続される。より詳しくは、空調部1は、空調部1の冷媒流動を案内するための空調側の冷媒配管101、102、103をさらに含めてもよい。そして、空調側の冷媒配管101、102、103は、圧縮機、空調側の室外熱交換機14及び第1冷媒熱交換機4を接続する第1冷媒配管101と、空調側の圧縮機11から吐出される冷媒または室外熱交換機から吐出される冷媒を室内熱交換機12に案内する第2冷媒配管102と、後述する第3膨張機131と並列に接続される迂回配管103を含めることができる。即ち、第2冷媒配管102の一端は空調側の室外熱交換機14と室内熱交換機12の間に該当する第1冷媒配管101の一点に接続され、第2冷媒配管102の他端は室内熱交換機12と空調側の圧縮機11の間に該当する第1冷媒配管101の他点に接続されうる。そして、迂回配管103の一端は空調側の室外熱交換機14と第3膨張機131の間に該当する第1冷媒配管101に接続され、迂回配管103の他端は第3膨張機131と第1冷媒熱交換機4の間に該当する第1冷媒配管101に接続されうる。

The first refrigerant heat exchanger 4 is connected in parallel with the indoor heat exchanger 12 of the air conditioning unit 1. More specifically, the air conditioning unit 1 may further include air conditioning side refrigerant pipes 101, 102, 103 for guiding the refrigerant flow of the air conditioning unit 1. The air conditioning side refrigerant pipes 101, 102, and 103 are discharged from the compressor, the first refrigerant pipe 101 that connects the air conditioning side outdoor heat exchanger 14 and the first refrigerant heat exchanger 4, and the air conditioning side compressor 11. The second refrigerant pipe 102 for guiding the refrigerant discharged from the outdoor heat exchanger or the refrigerant discharged from the outdoor heat exchanger to the indoor heat exchanger 12 and the bypass pipe 103 connected in parallel with the third expander 131 described later can be included. That is, one end of the second refrigerant pipe 102 is connected to one point of the corresponding first refrigerant pipe 101 between the outdoor heat exchanger 14 and the indoor heat exchanger 12 on the air conditioning side, and the other end of the second refrigerant pipe 102 is the indoor heat exchanger. 12 and the compressor 11 on the air conditioning side can be connected to the other point of the first refrigerant pipe 101 corresponding thereto. One end of the bypass pipe 103 is connected to the corresponding first refrigerant pipe 101 between the outdoor heat exchanger 14 on the air conditioning side and the third expander 131, and the other end of the bypass pipe 103 is connected to the third expander 131 and the first expander 131. It can be connected to the corresponding first refrigerant pipe 101 between the refrigerant heat exchangers 4.

この際、迂回配管103には、迂回配管103を介する冷媒流動が一定な方向に向かうように制限する流動制限部17が設けられてもよい。より詳しくは、流動制限部17は、室内熱交換機12から空調側の室外熱交換機14に向かった冷媒が迂回配管103を通過することを防止することができる。よって、室内熱交換機12から空調側の室外熱交換機14に向かう冷媒は、第3膨張機131を通過できる。ここで、流動制限部17は例えば、チェックバルブのように、冷媒方向を一定の方向に制限することができる多様な装置になりうる。   At this time, the bypass pipe 103 may be provided with a flow restriction unit 17 that restricts the refrigerant flow through the bypass pipe 103 in a certain direction. More specifically, the flow restriction unit 17 can prevent the refrigerant from the indoor heat exchanger 12 toward the air conditioner side outdoor heat exchanger 14 from passing through the bypass pipe 103. Therefore, the refrigerant heading from the indoor heat exchanger 12 to the outdoor heat exchanger 14 on the air conditioning side can pass through the third expander 131. Here, the flow restricting unit 17 can be various devices that can restrict the refrigerant direction to a certain direction, such as a check valve.

そして、空調側の膨張機131、132、133は、室内熱交換機12の流入側に該当する第1冷媒配管101に設ける第1膨張機132と、冷媒熱交換機4、5の流入側に該当する第2冷媒配管102に設ける第2膨張機133と、空調側の室外熱交換機14に隣接の第1冷媒配管101に設ける第3膨張機131を含めてもよい。空調側の膨張機131、132、133は、空調側の冷媒配管101、102の開度を調節できると同時に、空調側の冷媒配管101、102を選択的に遮蔽することができる。より詳しくは、第1膨張機132は室内熱交換機12に流入される冷媒量を調節できると同時に室内熱交換機12に向かう冷媒流動を選択的に遮断することができ、第2膨張機133は第1冷媒熱交換機4に流入される冷媒量を調節できると同時に第1冷媒熱交換機4に向かう冷媒流動を選択的に遮断することができる。そして、第3膨張機131は、空調側の室外熱交換機14に流入される冷媒を膨張させるか、または、空調側の室外熱交換機14を通過した冷媒が第3膨張機131を迂回するように第1冷媒配管101を遮断することができる。   The air conditioner side expanders 131, 132, and 133 correspond to the first expander 132 provided in the first refrigerant pipe 101 corresponding to the inflow side of the indoor heat exchanger 12 and the inflow side of the refrigerant heat exchangers 4 and 5. A second expander 133 provided in the second refrigerant pipe 102 and a third expander 131 provided in the first refrigerant pipe 101 adjacent to the outdoor heat exchanger 14 on the air conditioning side may be included. The expanders 131, 132, 133 on the air conditioning side can adjust the opening degree of the refrigerant pipes 101, 102 on the air conditioning side, and can selectively shield the refrigerant pipes 101, 102 on the air conditioning side. More specifically, the first expander 132 can adjust the amount of refrigerant flowing into the indoor heat exchanger 12, and at the same time can selectively block the refrigerant flow toward the indoor heat exchanger 12, and the second expander 133 can The amount of refrigerant flowing into the first refrigerant heat exchanger 4 can be adjusted, and at the same time, the refrigerant flow toward the first refrigerant heat exchanger 4 can be selectively blocked. The third expander 131 expands the refrigerant flowing into the outdoor heat exchanger 14 on the air conditioning side, or the refrigerant that has passed through the outdoor heat exchanger 14 on the air conditioning side bypasses the third expander 131. The first refrigerant pipe 101 can be shut off.

この際、第1膨張機132は、室内熱交換機12に向かう冷媒流動を選択的に遮断する側面から流動遮断部71とも称してもよい。   At this time, the first expander 132 may also be referred to as a flow blocking unit 71 from a side surface that selectively blocks the refrigerant flow toward the indoor heat exchanger 12.

第2冷媒熱交換機5は、冷蔵部2上で冷蔵熱交換機22と並列に接続されうる。より詳しくは、冷蔵部2は、冷蔵部2を流動する冷媒を案内する冷蔵側の冷媒配管104、105を更に含めてもよい。冷蔵側の冷媒配管104、105は、冷蔵側の圧縮機21、冷蔵側の室外熱交換機24、第1冷媒熱交換機4及び第2冷媒熱交換機5を接続する第3冷媒配管104と、第2冷媒熱交換機5に流入される冷媒のうち一部を冷蔵熱交換機22に案内する第4冷媒配管105を含めてもよい。即ち、第4冷媒配管105の一端は冷蔵側の圧縮機21と第2冷媒熱交換機5の間に該当する第3冷媒配管104の一点に接続され、第4冷媒配管105の他端は第1冷媒熱交換機1と第2冷媒熱交換機5の間に該当する第3冷媒配管104の他点に接続されうる。   The second refrigerant heat exchanger 5 can be connected in parallel with the refrigeration heat exchanger 22 on the refrigeration unit 2. More specifically, the refrigeration unit 2 may further include refrigeration-side refrigerant pipes 104 and 105 that guide the refrigerant flowing through the refrigeration unit 2. The refrigeration side refrigerant pipes 104 and 105 are connected to the refrigeration side compressor 21, the refrigeration side outdoor heat exchanger 24, the first refrigerant heat exchanger 4 and the second refrigerant heat exchanger 5, and the second refrigerant pipe 104 and 105, respectively. A fourth refrigerant pipe 105 that guides a part of the refrigerant flowing into the refrigerant heat exchanger 5 to the refrigeration heat exchanger 22 may be included. That is, one end of the fourth refrigerant pipe 105 is connected to one point of the third refrigerant pipe 104 that corresponds between the refrigeration compressor 21 and the second refrigerant heat exchanger 5, and the other end of the fourth refrigerant pipe 105 is the first refrigerant pipe 105. It can be connected to the other point of the 3rd refrigerant | coolant piping 104 applicable between the refrigerant | coolant heat exchanger 1 and the 2nd refrigerant | coolant heat exchanger 5. FIG.

一方、第2冷媒熱交換機5は、冷凍部3上で冷凍熱交換機32と直列に接続されえる。より詳しくは、冷凍部3は、冷凍部3を流動する冷媒を案内する冷凍側の冷媒配管106を更に含めてもよい。冷凍側の冷媒配管106は、冷凍側の圧縮機31、冷凍側の室外熱交換機34、第2冷媒熱交換機5、冷凍側の膨張機33、冷凍熱交換機32を順に接続しうる。   On the other hand, the second refrigerant heat exchanger 5 can be connected in series with the refrigeration heat exchanger 32 on the refrigeration unit 3. More specifically, the refrigeration unit 3 may further include a refrigeration-side refrigerant pipe 106 that guides the refrigerant flowing through the refrigeration unit 3. The refrigeration-side refrigerant pipe 106 can sequentially connect the refrigeration-side compressor 31, the refrigeration-side outdoor heat exchanger 34, the second refrigerant heat exchanger 5, the refrigeration-side expander 33, and the refrigeration heat exchanger 32.

ここで、冷却部2、3は、冷却部2、3を流動する冷媒を案内する冷却側の冷媒配管104、105、106を含み、冷却側の冷媒配管104、105は冷蔵側の冷媒配管104、105と冷凍側の冷媒配管106を含むことができる。   Here, the cooling units 2 and 3 include cooling-side refrigerant pipes 104, 105, and 106 that guide the refrigerant flowing through the cooling units 2 and 3, and the cooling-side refrigerant pipes 104 and 105 are refrigeration-side refrigerant pipes 104. , 105 and a refrigerant pipe 106 on the freezing side.

そして、冷蔵側の膨張機231、232は、第2冷媒熱交換機5の流入側に該当する第3冷媒配管104に設ける第4膨張機232と、冷蔵熱交換機22の流入側に該当する第4冷媒配管105に設ける第5膨張機231を含めてもよい。   The refrigerating side expanders 231 and 232 are the fourth expander 232 provided in the third refrigerant pipe 104 corresponding to the inflow side of the second refrigerant heat exchanger 5 and the fourth inflow corresponding to the inflow side of the refrigerating heat exchanger 22. A fifth expander 231 provided in the refrigerant pipe 105 may be included.

冷蔵側の室外熱交換機24と第1冷媒熱交換機4の間には、受液機26が設けられてもよい。受液機26には冷蔵側の冷媒配管104、105を流動する冷媒が液状に貯蔵されうる。   A liquid receiver 26 may be provided between the refrigerated outdoor heat exchanger 24 and the first refrigerant heat exchanger 4. In the liquid receiver 26, the refrigerant flowing through the refrigerant pipes 104 and 105 on the refrigeration side can be stored in liquid form.

一方、冷蔵側の圧縮機21は、メイン圧縮機211と、メイン圧縮機の故障が発生した場合に、メイン圧縮機211をバックアップするための予備圧縮機212を含めることができる。メイン圧縮機211及び予備圧縮機212は、第3冷媒配管104上に並列に接続されうる。   On the other hand, the refrigerator 21 on the refrigeration side can include a main compressor 211 and a spare compressor 212 for backing up the main compressor 211 when a failure of the main compressor occurs. The main compressor 211 and the preliminary compressor 212 may be connected in parallel on the third refrigerant pipe 104.

より詳しくは、メイン圧縮機211及び予備圧縮機212の流入部は、冷蔵熱交換機22及び第4冷媒熱交換機5に同時に接続され、メイン圧縮機211及び予備圧縮機212の吐出部は、冷蔵側の室外熱交換機24に同時に接続されうる。よって、第3冷媒配管104上の冷媒は、メイン圧縮機211及び予備圧縮機212のうち少なくとも一つを選択的に流動できる。   More specifically, the inflow portions of the main compressor 211 and the precompressor 212 are simultaneously connected to the refrigeration heat exchanger 22 and the fourth refrigerant heat exchanger 5, and the discharge portions of the main compressor 211 and the precompressor 212 are connected to the refrigeration side. The outdoor heat exchanger 24 can be connected simultaneously. Therefore, the refrigerant on the third refrigerant pipe 104 can selectively flow through at least one of the main compressor 211 and the preliminary compressor 212.

以下で、本発明による冷媒システムの室内冷房及び貯蔵室冷却を行う場合の冷媒流動に対して添付の図面を参照して詳しく説明する。   Hereinafter, the refrigerant flow in the case of performing indoor cooling and storage chamber cooling of the refrigerant system according to the present invention will be described in detail with reference to the accompanying drawings.

図2は、本発明による冷媒システムが室内を冷房するときの図1に示す冷媒システムにおける冷媒のフローを示す図である。   FIG. 2 is a diagram showing a refrigerant flow in the refrigerant system shown in FIG. 1 when the refrigerant system according to the present invention cools the room.

図2に示すように、空調側の圧縮機11から吐出される高温高圧の冷媒が空調側の室外熱交換機14に流入される。この際、空調側の圧縮機11と空調側の室外熱交換機14の間に位置される四方弁15は、空調側の圧縮機11から吐出される冷媒が空調側の室外熱交換機14に向かって流動するように冷媒の流動方向を案内する。   As shown in FIG. 2, the high-temperature and high-pressure refrigerant discharged from the compressor 11 on the air conditioning side flows into the outdoor heat exchanger 14 on the air conditioning side. At this time, the four-way valve 15 positioned between the air conditioning side compressor 11 and the air conditioning side outdoor heat exchanger 14 causes the refrigerant discharged from the air conditioning side compressor 11 toward the air conditioning side outdoor heat exchanger 14. The flow direction of the refrigerant is guided so as to flow.

冷媒が空調側の室外熱交換機14を流動する過程で冷媒は室外空気に熱を放出して凝縮される。そして、空調側の室外熱交換機14を通過した冷媒は空調側の膨張機131、132、133のうち第1膨張機132を通過しつつ、低温低圧の状態に膨張する。この際、第3膨張機131は遮蔽された状態を維持して、空調側の室外熱交換機14を通過した冷媒が迂回配管103を介して第1膨張機132に流入する。   In the process in which the refrigerant flows through the outdoor heat exchanger 14 on the air conditioning side, the refrigerant releases heat into the outdoor air and is condensed. And the refrigerant | coolant which passed the outdoor heat exchanger 14 by the side of an air conditioning expand | swells to the state of a low temperature low pressure, passing the 1st expander 132 among the expanders 131, 132, 133 by the side of an air conditioning. At this time, the third expander 131 maintains a shielded state, and the refrigerant that has passed through the outdoor heat exchanger 14 on the air conditioning side flows into the first expander 132 via the bypass pipe 103.

第1膨張機132を通過した冷媒は、室内熱交換機12に流入される。冷媒が室内熱交換機12を流動する過程で冷媒は室内空気から熱を吸収して蒸発し、冷媒の温度は増加する。そして、室内熱交換機12を通過した冷媒は、アキュムレータ16に流入する。この際、室内熱交換機12とアキュムレータ16間に位置する四方弁15は室内熱交換機12を通過した冷媒がアキュムレータ16に流入できるように、冷媒の流動方向を案内する。   The refrigerant that has passed through the first expander 132 flows into the indoor heat exchanger 12. In the process in which the refrigerant flows through the indoor heat exchanger 12, the refrigerant absorbs heat from the indoor air and evaporates, and the temperature of the refrigerant increases. Then, the refrigerant that has passed through the indoor heat exchanger 12 flows into the accumulator 16. At this time, the four-way valve 15 positioned between the indoor heat exchanger 12 and the accumulator 16 guides the flow direction of the refrigerant so that the refrigerant that has passed through the indoor heat exchanger 12 can flow into the accumulator 16.

冷媒がアキュムレータ16を通過する過程で冷媒のうち液状の冷媒が取り除かれて気相の冷媒のみが空調側の圧縮機11に再び流入する。そして、冷媒が空調側の圧縮機11を通過する過程で冷媒は高温高圧の状態に圧縮される。
上述の冷媒の流動が持続されつつ室内の冷房を行うこともある。
In the process in which the refrigerant passes through the accumulator 16, the liquid refrigerant is removed from the refrigerant, and only the gas-phase refrigerant flows into the compressor 11 on the air conditioning side again. And in the process in which a refrigerant | coolant passes the compressor 11 by the side of an air conditioning, a refrigerant | coolant is compressed into the state of high temperature high pressure.
The indoor cooling may be performed while the above-described refrigerant flow is maintained.

次に、冷蔵部2の冷媒流動を見ると、メイン圧縮機211から吐出される高温高圧の冷媒が冷蔵側の室外熱交換機24及び第1冷媒熱交換機4を通過する。   Next, when the refrigerant flow in the refrigeration unit 2 is viewed, the high-temperature and high-pressure refrigerant discharged from the main compressor 211 passes through the outdoor heat exchanger 24 and the first refrigerant heat exchanger 4 on the refrigeration side.

冷媒が冷蔵側の室外熱交換機24及び第1冷媒熱交換機4を通過する過程で冷媒は凝縮されて冷媒の温度は減少する。冷媒が冷蔵側の室外熱交換機24を通過する過程で冷媒は室外空気に熱を放出する。そして、冷媒が第1冷媒熱交換機4を通過する過程で冷蔵部2の冷媒は、空調部1の冷媒に熱を放出する。よって、冷媒が凝縮されて、冷媒の温度は更に減少する。   In the process in which the refrigerant passes through the outdoor heat exchanger 24 and the first refrigerant heat exchanger 4 on the refrigeration side, the refrigerant is condensed and the temperature of the refrigerant decreases. In the process in which the refrigerant passes through the outdoor heat exchanger 24 on the refrigeration side, the refrigerant releases heat to the outdoor air. Then, the refrigerant in the refrigeration unit 2 releases heat to the refrigerant in the air conditioning unit 1 in the process in which the refrigerant passes through the first refrigerant heat exchanger 4. Therefore, the refrigerant is condensed and the temperature of the refrigerant further decreases.

この際、冷媒が冷蔵側の室外熱交換機24及び第1冷媒熱交換機4を全て通過する場合には、冷蔵側の室外熱交換機24及び第1冷媒熱交換機4のうち何れか一つだけを通過する場合に比べて、冷媒が過冷却されて相対的に低温の状態に到達することができる。よって、冷媒が冷蔵側の室外熱交換機24及び第1冷媒熱交換機4を全て通過する場合には、冷蔵側の室外熱交換機24だけを通過する場合に比べて、冷蔵部2の冷却性能係数(COP)が相対的に高くなるという利点がある。   At this time, when the refrigerant passes through the outdoor heat exchanger 24 and the first refrigerant heat exchanger 4 on the refrigeration side, only one of the outdoor heat exchanger 24 and the first refrigerant heat exchanger 4 on the refrigeration side passes. Compared to the case, the refrigerant is supercooled and can reach a relatively low temperature state. Therefore, when all the refrigerant passes through the refrigeration outdoor heat exchanger 24 and the first refrigerant heat exchanger 4, the cooling performance coefficient (2) of the refrigeration unit 2 is greater than when only the refrigerant passes through the refrigeration outdoor heat exchanger 24. COP) is relatively high.

冷蔵側の室外熱交換機24及び第1冷媒熱交換機4から排出された冷媒は、冷蔵側の膨張機231、232に流入する。冷蔵側の室外熱交換機24及び第1冷媒熱交換機4から排出された冷媒は、第4膨張機232及び第5膨張機231に流入する。冷媒が冷蔵側の膨張機231、232を通過する過程で冷媒は低温低圧の状態に膨張する。   The refrigerant discharged from the refrigeration-side outdoor heat exchanger 24 and the first refrigerant heat exchanger 4 flows into the refrigeration-side expanders 231 and 232. The refrigerant discharged from the refrigerated outdoor heat exchanger 24 and the first refrigerant heat exchanger 4 flows into the fourth expander 232 and the fifth expander 231. In the process where the refrigerant passes through the refrigerators 231 and 232 on the refrigeration side, the refrigerant expands to a low temperature and low pressure state.

そして、第4膨張機232から排出された冷媒は、第2冷媒熱交換機5に流入し、第5膨張機231から排出された冷媒は、冷蔵熱交換機22に流入する。即ち、冷蔵側の膨張機231、232から排出された冷媒は、第2冷媒熱交換機5及び冷蔵熱交換機22に流入する。   The refrigerant discharged from the fourth expander 232 flows into the second refrigerant heat exchanger 5, and the refrigerant discharged from the fifth expander 231 flows into the refrigeration heat exchanger 22. That is, the refrigerant discharged from the refrigeration side expanders 231 and 232 flows into the second refrigerant heat exchanger 5 and the refrigeration heat exchanger 22.

冷媒が第2冷媒熱交換機5を通過する過程で、冷蔵部2の冷媒は冷凍部3の冷媒から熱を吸収して蒸発し、冷媒の温度は増加する。冷媒が冷蔵熱交換機22を通過する過程で、冷媒は冷蔵熱交換機22に隣接した空気の熱を吸収して蒸発し、冷媒の温度は増加する。   In the process in which the refrigerant passes through the second refrigerant heat exchanger 5, the refrigerant in the refrigeration unit 2 absorbs heat from the refrigerant in the refrigeration unit 3 and evaporates, and the temperature of the refrigerant increases. In the process in which the refrigerant passes through the refrigeration heat exchanger 22, the refrigerant absorbs the heat of the air adjacent to the refrigeration heat exchanger 22 and evaporates, and the temperature of the refrigerant increases.

そして、第2冷媒熱交換機5及び冷蔵熱交換機22から排出された冷媒は、メイン圧縮機211に向かって流動する。冷媒がメイン圧縮機21を通過する過程で冷媒は高温高圧の状態に圧縮される。   Then, the refrigerant discharged from the second refrigerant heat exchanger 5 and the refrigeration heat exchanger 22 flows toward the main compressor 211. In the process in which the refrigerant passes through the main compressor 21, the refrigerant is compressed into a high temperature and high pressure state.

冷凍部3の冷媒流動を見ると、冷凍側の圧縮機31から吐出される高温高圧状態の冷媒は、冷凍側の室外熱交換機34に流入する。冷媒が冷凍側の室外熱交換機34を通過する過程で、冷媒は室外空気に熱を放出して凝縮され、冷媒の温度は減少する。冷凍側の室外熱交換機34から排出された冷媒は、第2冷媒熱交換機5に流入する。冷媒が第2冷媒熱交換機5を通過する過程で冷凍部3の冷媒は、冷蔵部2の冷媒に熱を放出して凝縮され、冷媒の温度は減少する。   Looking at the refrigerant flow in the refrigeration unit 3, the high-temperature and high-pressure refrigerant discharged from the compressor 31 on the refrigeration side flows into the outdoor heat exchanger 34 on the refrigeration side. In the process in which the refrigerant passes through the outdoor heat exchanger 34 on the freezing side, the refrigerant releases heat to the outdoor air and is condensed, and the temperature of the refrigerant decreases. The refrigerant discharged from the refrigeration-side outdoor heat exchanger 34 flows into the second refrigerant heat exchanger 5. While the refrigerant passes through the second refrigerant heat exchanger 5, the refrigerant in the refrigeration unit 3 releases heat to the refrigerant in the refrigeration unit 2 and is condensed, and the temperature of the refrigerant decreases.

この際、冷媒が冷凍側の室外熱交換機34及び第2冷媒熱交換機5を全て通過する場合には、冷凍側の室外熱交換機34及び第2冷媒熱交換機5のうち何れか一つだけを通過する場合に比べ、冷媒が過冷却されて相対的に低温の状態に到達できる。よって、冷媒が冷凍側の室外熱交換機34及び第2冷媒熱交換機5を全て通過する場合には、冷凍側の室外熱交換機34だけを通過する場合に比べ、冷凍部3の冷却性能係数(COP)が相対的に高くなるという利点がある。   At this time, when the refrigerant passes through the refrigeration side outdoor heat exchanger 34 and the second refrigerant heat exchanger 5, only one of the refrigeration side outdoor heat exchanger 34 and the second refrigerant heat exchanger 5 passes through. Compared to the case, the refrigerant is supercooled and can reach a relatively low temperature state. Therefore, when all the refrigerant passes through the refrigeration-side outdoor heat exchanger 34 and the second refrigerant heat exchanger 5, the cooling performance coefficient (COP) of the refrigeration unit 3 is greater than when only the refrigeration-side outdoor heat exchanger 34 passes. ) Is relatively high.

第2冷媒熱交換機5から排出された冷媒は、冷凍側の膨張機33に流入する。冷媒が冷凍側の膨張機33を通過する過程で冷媒は低温低圧の状態に膨張する。冷凍側の膨張機33を通過した冷媒は冷凍熱交換機32に流入する。冷媒が冷凍熱交換機32を通過する過程で冷媒は冷凍熱交換機32に隣接した空気から熱を吸収して蒸発し、冷媒の温度が増加する。そして冷凍熱交換機32から排出された冷媒は冷凍側の圧縮機31を通過しつつ再び高温高圧の状態に圧縮される。   The refrigerant discharged from the second refrigerant heat exchanger 5 flows into the refrigeration side expander 33. In the process in which the refrigerant passes through the refrigeration side expander 33, the refrigerant expands to a low temperature and low pressure state. The refrigerant that has passed through the refrigerating-side expander 33 flows into the refrigerating heat exchanger 32. In the process in which the refrigerant passes through the refrigeration heat exchanger 32, the refrigerant absorbs heat from the air adjacent to the refrigeration heat exchanger 32 and evaporates, and the temperature of the refrigerant increases. Then, the refrigerant discharged from the refrigeration heat exchanger 32 is compressed again to a high temperature and high pressure state while passing through the refrigeration compressor 31.

冷媒システムが暖房モードで作動する場合には空調部で第2冷媒配管を流動する冷媒の流動方向が冷房モードに作動する場合と反対方向に転換する。   When the refrigerant system operates in the heating mode, the flow direction of the refrigerant flowing through the second refrigerant pipe in the air conditioning unit is changed to the opposite direction to that in the case of operating in the cooling mode.

冷媒システムが暖房モードに作動する場合に、空調部1の冷媒流動を見ると、空調側の圧縮機11から吐出される冷媒は、室内熱交換機12に流入する。この際、四方弁15は空調側の圧縮機11から吐出された冷媒が室内熱交換機12に流動できるように、冷媒の流動方向を案内する。   When the refrigerant system operates in the heating mode and the refrigerant flow in the air conditioning unit 1 is seen, the refrigerant discharged from the compressor 11 on the air conditioning side flows into the indoor heat exchanger 12. At this time, the four-way valve 15 guides the flow direction of the refrigerant so that the refrigerant discharged from the compressor 11 on the air conditioning side can flow to the indoor heat exchanger 12.

そして、冷媒が室内熱交換機12を通過する過程で、冷媒は室内空気に熱を放出して低温高圧に凝縮する。そして、室内熱交換機12から排出された冷媒は、空調側の膨張機131、132、133のうち第3膨張機131に流入する。この際、流動制限部17によって室内熱交換機12を通過した冷媒は迂回配管103を通過できないため、第3膨張機131に流入する。第3膨張機131は完全に開放の状態を維持して、冷媒の実質的な膨張が第3膨張機131で行われる。即ち、冷媒が第3膨張機131を通過する過程で冷媒は低温低圧の状態に膨張する。   And in the process in which a refrigerant | coolant passes the indoor heat exchanger 12, a refrigerant | coolant discharge | releases heat to indoor air and condenses to low temperature high pressure. The refrigerant discharged from the indoor heat exchanger 12 flows into the third expander 131 among the expanders 131, 132, and 133 on the air conditioning side. At this time, the refrigerant that has passed through the indoor heat exchanger 12 by the flow restriction unit 17 cannot pass through the bypass pipe 103, and therefore flows into the third expander 131. The third expander 131 is kept completely open, and substantial expansion of the refrigerant is performed by the third expander 131. That is, in the process in which the refrigerant passes through the third expander 131, the refrigerant expands to a low temperature and low pressure state.

第3膨張機131から排出された冷媒は、空調側の室外熱交換機14に流入する。冷媒が空調側の室外熱交換機14を通過する過程で冷媒は室外空気から熱を吸収して蒸発し、冷媒の温度は増加する。   The refrigerant discharged from the third expander 131 flows into the outdoor heat exchanger 14 on the air conditioning side. In the process in which the refrigerant passes through the outdoor heat exchanger 14 on the air conditioning side, the refrigerant absorbs heat from the outdoor air and evaporates, and the temperature of the refrigerant increases.

空調側の室外熱交換機14から吐出された冷媒は、アキュムレータ16に流入し、液状の冷媒と気相の冷媒が取り除かれる。この際、四方弁15は空調側の室外熱交換機14から吐出される冷媒がアキュムレータ16に流入するように、冷媒の流動方向を案内する。そして、アキュムレータ16から取り除かれた気相の冷媒のみが空調側の圧縮機11に流入して、再び高温高圧に圧縮される。
この冷媒流動が持続されつつ、室内の暖房を行ってもよい。
The refrigerant discharged from the outdoor heat exchanger 14 on the air conditioning side flows into the accumulator 16, and the liquid refrigerant and the gas phase refrigerant are removed. At this time, the four-way valve 15 guides the flow direction of the refrigerant so that the refrigerant discharged from the outdoor heat exchanger 14 on the air conditioning side flows into the accumulator 16. Only the gas-phase refrigerant removed from the accumulator 16 flows into the compressor 11 on the air conditioning side, and is compressed again to high temperature and pressure.
Indoor heating may be performed while this refrigerant flow is maintained.

冷媒システムが暖房モードに作動する場合に冷蔵部2及び冷凍部3の冷媒流動は冷媒システムが冷房モードに作動する場合と同様である。   When the refrigerant system operates in the heating mode, the refrigerant flow in the refrigeration unit 2 and the refrigeration unit 3 is the same as when the refrigerant system operates in the cooling mode.

以下では、本発明による冷媒システムの制御構成及び制御方法に対して添付の図面を参照して詳しく説明する。   Hereinafter, a control configuration and a control method of a refrigerant system according to the present invention will be described in detail with reference to the accompanying drawings.

図3は、図1に示す冷媒システムの制御信号のフローを示す制御構成図で、図4は、他の実施形態による図1に示す冷媒システムの制御信号のフローを示す制御構成図であって、図5は図4に示す制御信号のフローによる冷媒システムの制御方法を示すフレーチャートである。図6は冷媒システムが過負荷条件で作動する時の冷媒のフローを示す図で、図7は冷媒システムのメイン圧縮機の故障が発生した場合の冷媒流動を示す図である。   3 is a control configuration diagram showing a flow of control signals of the refrigerant system shown in FIG. 1, and FIG. 4 is a control configuration diagram showing a flow of control signals of the refrigerant system shown in FIG. 1 according to another embodiment. FIG. 5 is a flowchart showing a refrigerant system control method based on the control signal flow shown in FIG. FIG. 6 is a diagram showing a refrigerant flow when the refrigerant system is operated under an overload condition, and FIG. 7 is a diagram showing a refrigerant flow when a failure of the main compressor of the refrigerant system occurs.

図3を参照して、冷媒システムの制御構成を説明すると、冷媒システムは、メイン圧縮機211の故障を感知する故障感知センサー61と、メイン圧縮機211の過負荷を感知する過負荷センサー62と、メイン圧縮機211の故障の際に故障信号を出力する故障信号出力部69と、故障感知センサー61と過負荷センサ062から受信する信号を基にメイン圧縮機211と予備圧縮機212及び故障信号出力部69を制御するコントローラ65をさらに含むことができる。この際、故障感知センサー61、過負荷センサー62、メイン圧縮機211、予備圧縮機212、故障信号出力部69及びコントローラ65は、お互い制御信号のやり取りができるように電機的に接続されうる。   The control configuration of the refrigerant system will be described with reference to FIG. 3. The refrigerant system includes a failure detection sensor 61 that detects a failure of the main compressor 211, and an overload sensor 62 that detects an overload of the main compressor 211. A failure signal output unit 69 that outputs a failure signal in the event of a failure of the main compressor 211, a main compressor 211, a spare compressor 212, and a failure signal based on signals received from the failure detection sensor 61 and the overload sensor 062 A controller 65 that controls the output unit 69 may be further included. At this time, the failure detection sensor 61, the overload sensor 62, the main compressor 211, the auxiliary compressor 212, the failure signal output unit 69, and the controller 65 can be electrically connected so that they can exchange control signals with each other.

故障感知センサー61がメイン圧縮機211の故障を感知すると、コントローラ65はメイン圧縮機211を代替するように予備圧縮機212を制御し、故障信号出力部69はメイン圧縮機211に故障が発生したことをユーザに報知するための信号を出力する。   When the failure detection sensor 61 detects a failure of the main compressor 211, the controller 65 controls the spare compressor 212 so as to replace the main compressor 211, and the failure signal output unit 69 causes a failure in the main compressor 211. A signal for informing the user of this fact is output.

過負荷センサー62がメイン圧縮機211の過負荷を感知すると、コントローラ65はメイン圧縮機211を補充するために予備圧縮機212を制御する。   When the overload sensor 62 detects an overload of the main compressor 211, the controller 65 controls the precompressor 212 to replenish the main compressor 211.

図4を参照すると、冷媒システムはメイン圧縮機211の電流を感知する電流センサー71と、室外温度を感知する室外温度センサー72と、メイン圧縮機211の故障の際に故障信号を出力する故障信号出力部79と、電流センサー71及び室外温度センサー72によって感知されたメイン圧縮機211の電流及び室外温度を基にメイン圧縮機211、予備圧縮機212及び故障信号出力部79を制御する制御部75をさらに含む。この際、電流センサー71、室外温度センサー72、メイン圧縮機212、予備圧縮機212、故障信号出力部79及び制御部75は、お互い制御信号のやり取りができるように電気的に接続される。   Referring to FIG. 4, the refrigerant system includes a current sensor 71 that senses the current of the main compressor 211, an outdoor temperature sensor 72 that senses the outdoor temperature, and a failure signal that outputs a failure signal when the main compressor 211 fails. A control unit 75 that controls the main compressor 211, the precompressor 212, and the failure signal output unit 79 based on the output unit 79, the current of the main compressor 211 and the outdoor temperature detected by the current sensor 71 and the outdoor temperature sensor 72. Further included. At this time, the current sensor 71, the outdoor temperature sensor 72, the main compressor 212, the auxiliary compressor 212, the failure signal output unit 79, and the control unit 75 are electrically connected so that they can exchange control signals with each other.

図5を参照して、冷媒システムの制御方法を説明すると、最初に冷媒システムの作動が開始され、室外温度が感知される(S11)。室外温度は室外温度センサー72によって感知できる。   Referring to FIG. 5, the refrigerant system control method will be described. First, the operation of the refrigerant system is started, and the outdoor temperature is sensed (S11). The outdoor temperature can be detected by the outdoor temperature sensor 72.

そして、室外温度が基準温度以上に該当する場合には(S12)、制御部75によってメイン圧縮機211及び予備圧縮機212が同時に作動するように制御される(S13)。基準温度はメイン圧縮機211だけで耐えられない程度に負荷が増加した状態の室外温度中での下限値を意味する。すなわち、室外温度が基準温度以上に該当すると、メイン圧縮機211だけでは正常(ノーマル)な食品の冷却に困る過負荷条件に該当することがある。よって、メイン圧縮機211だけでは耐えられない負荷を我慢するために、予備圧縮機212が補助としてともに作動しなければならないことである。   When the outdoor temperature is equal to or higher than the reference temperature (S12), the control unit 75 controls the main compressor 211 and the preliminary compressor 212 to operate simultaneously (S13). The reference temperature means a lower limit value in the outdoor temperature in a state where the load is increased to such a degree that the main compressor 211 alone cannot withstand. That is, when the outdoor temperature is equal to or higher than the reference temperature, the main compressor 211 alone may correspond to an overload condition that is difficult to cool normal food. Therefore, in order to endure a load that cannot be withstood by the main compressor 211 alone, the preliminary compressor 212 must operate together as an auxiliary.

ここで、メイン圧縮機211及び予備圧縮機212が同時に作動される場合の冷媒流動は、図6に示すような状態である。すなわち、冷蔵熱交換機及び第2冷媒熱交換機を通過した冷媒がメイン圧縮機211及び予備圧縮機212を同時に通過した後、冷蔵側の室外熱交換機に流入する。   Here, the refrigerant flow when the main compressor 211 and the precompressor 212 are operated simultaneously is as shown in FIG. That is, the refrigerant that has passed through the refrigeration heat exchanger and the second refrigerant heat exchanger passes through the main compressor 211 and the preliminary compressor 212 at the same time, and then flows into the refrigeration outdoor heat exchanger.

そこで、室外温度が基準温度未満である場合には(S12)、メイン圧縮機211だけ作動する状態を維持する(S14)。   Therefore, when the outdoor temperature is lower than the reference temperature (S12), the state where only the main compressor 211 is operated is maintained (S14).

続いて、メイン圧縮機211の電流が感知される(S15)。メイン圧縮機211の電流は電流センサー71によって感知される。   Subsequently, the current of the main compressor 211 is sensed (S15). The current of the main compressor 211 is sensed by the current sensor 71.

電流センサー71によって感知されたメイン圧縮機211の電流が基準範囲(第1基準電流より多いか第2基準電流より少ない場合)から離れる場合には(S16)制御部75によって予備圧縮機212が作動してメイン圧縮機211を代替し、故障信号が出力されるように制御される(S17)。故障信号は故障信号出力部79によって出力されうる。すなわち、感知された電流が基準範囲から離れる場合、予備圧縮機212だけ作動し、故障信号が出力される。   When the current of the main compressor 211 sensed by the current sensor 71 moves away from the reference range (when it is greater than the first reference current or less than the second reference current) (S16), the preliminary compressor 212 is activated by the control unit 75. Then, the main compressor 211 is replaced, and control is performed so that a failure signal is output (S17). The failure signal can be output by the failure signal output unit 79. That is, when the sensed current departs from the reference range, only the precompressor 212 is activated and a fault signal is output.

この際、基準範囲は、メイン圧縮機211が正常に作動される場合にメイン圧縮機211に示す電流値を意味する。基準電流は、メイン圧縮機211が正常に作動される状態に示す電流の一定範囲になることもある。よって、メイン圧縮機211の電流が第1基準電流を超えること、すなわち、正常な電流値から離れる場合には、メイン圧縮機211に異常があるということを意味する。また、メイン圧縮機211が正常に作動している限り、メイン圧縮機211の示す電流は「0」を超え一定電流値を有することになる。よって、メイン圧縮機211の電流が第2基準電流未満である場合には、メイン圧縮機211に異常があるということ意味する。例えば、メイン圧縮機211のモータそのものに異常が発生したか、または、結線がある場合にメイン圧縮機211の電流は「0」を示すことがある。   At this time, the reference range means a current value shown in the main compressor 211 when the main compressor 211 is normally operated. The reference current may be within a certain range of current shown in a state where the main compressor 211 is normally operated. Therefore, when the current of the main compressor 211 exceeds the first reference current, that is, when the current deviates from the normal current value, it means that the main compressor 211 is abnormal. As long as the main compressor 211 is operating normally, the current indicated by the main compressor 211 exceeds “0” and has a constant current value. Therefore, when the current of the main compressor 211 is less than the second reference current, it means that the main compressor 211 is abnormal. For example, when the motor itself of the main compressor 211 is abnormal or there is a connection, the current of the main compressor 211 may indicate “0”.

結局、感知された電流が第1基準電流を超えるか、第2基準電流未満に該当する場合には、メイン圧縮機211に故障が発生した状態であることを示すので、予備圧縮機212が作動してメイン圧縮機211を代替することによって、冷却部による食品または他の物品の冷却が持続的に行なうことができる。一般に、食品は保管温度に従って鮮度に大きい影響を受けるため、冷却部による冷却が中断される場合には食品の状態が急激に悪くなる恐れがある。しかし、メイン圧縮機211の故障の際に予備圧縮機212によって食品の冷却を持続的に行なうことができるので、冷却の中断による食品の損傷(劣化)を防止できるという利点がある。   Eventually, if the sensed current exceeds the first reference current or falls below the second reference current, it indicates that the main compressor 211 has failed, so the precompressor 212 is activated. Thus, by replacing the main compressor 211, the food or other article can be continuously cooled by the cooling unit. In general, foods are greatly affected by the freshness according to the storage temperature. Therefore, when the cooling by the cooling unit is interrupted, the state of the foods may be abruptly deteriorated. However, since the food can be continuously cooled by the preliminary compressor 212 when the main compressor 211 fails, there is an advantage that damage (deterioration) of the food due to the interruption of cooling can be prevented.

ここで、予備圧縮機212がメイン圧縮機211を代替して作動する場合の冷媒流動は図7に示す状態と同様である。すなわち、熱交換機及び第2冷媒熱交換機を通過した冷媒が予備圧縮機212だけを通過した後、冷蔵側の室外熱交換機に流入する。   Here, the refrigerant flow when the preliminary compressor 212 operates in place of the main compressor 211 is the same as the state shown in FIG. That is, the refrigerant that has passed through the heat exchanger and the second refrigerant heat exchanger passes only through the preliminary compressor 212 and then flows into the outdoor heat exchanger on the refrigeration side.

メイン圧縮機211の電流を用いてメイン圧縮機211の故障の有無を感知するということから、電流センサー71はメイン圧縮機211の故障の有無を感知するための故障感知センサーともいえる。   Since the current of the main compressor 211 is used to detect the presence or absence of a failure of the main compressor 211, the current sensor 71 can be said to be a failure detection sensor for detecting the presence or absence of a failure of the main compressor 211.

しかし、感知された電流が基準範囲内に入る場合には(S16)、さらに室外温度が感知される(S11)。すなわち、感知された電流が基準範囲から離れない限り、室外温度に従ってメイン圧縮機211及び予備圧縮機212を制御し、メイン圧縮機211の電流を感知して故障の有無を判断する過程を繰り返す。
これによって、本発明によるとメイン圧縮機211の故障の際に予備圧縮機212が作動してメイン圧縮機211を代替するので、冷却部による食品の冷却が持続的に維持できるという利点がある。
However, when the sensed current falls within the reference range (S16), the outdoor temperature is further sensed (S11). That is, as long as the sensed current does not deviate from the reference range, the process of controlling the main compressor 211 and the precompressor 212 according to the outdoor temperature, sensing the current of the main compressor 211, and determining whether there is a failure is repeated.
Thus, according to the present invention, when the main compressor 211 fails, the auxiliary compressor 212 operates to replace the main compressor 211, so that there is an advantage that the cooling of the food by the cooling unit can be continuously maintained.

また、メイン圧縮機211だけで耐えられない過負荷条件に該当する場合には、予備圧縮機212が補助的にメイン圧縮機211とともに作動するので、冷却部の冷却性能が維持または向上しうるという利点がある。   In addition, in the case of an overload condition that cannot be withstood by the main compressor 211 alone, the auxiliary compressor 212 operates supplementarily with the main compressor 211, so that the cooling performance of the cooling unit can be maintained or improved. There are advantages.

以下では、また他の実施形態による冷媒システムの制御構成及び制御方法に対して添付の図面を参照して詳しく説明する。この実施形態は、メイン圧縮機の故障の有無をメイン圧縮機の吐出側の冷媒温度を用いて感知するという点に違いはある。ただ、この実施形態で第1実施形態と同じ構成に対しては第1実施形態の説明を援用する。   Hereinafter, a control configuration and a control method of a refrigerant system according to another embodiment will be described in detail with reference to the accompanying drawings. This embodiment is different in that the presence or absence of a failure of the main compressor is sensed using the refrigerant temperature on the discharge side of the main compressor. However, in this embodiment, the description of the first embodiment is used for the same configuration as that of the first embodiment.

図8はまた他の実施形態の図1に示す冷媒システムにおける制御信号のフローを示すブロック図で、図9は図7に示す冷媒システムの制御方法を示すフローチャートである。図8を参照して、冷媒システムの制御構成を説明すると、冷媒システムはメイン圧縮機211の吐出側の冷媒温度を感知する冷媒温度センサー81と、室外温度を感知するための室外温度センサー82と、メイン圧縮機211の故障の際に故障信号を出力する出力部89と、冷媒温度センサー82及び室外温度センサー82によって感知されるメイン圧縮機211の吐出側の冷媒温度及び室外温度を基にメイン圧縮機211、予備圧縮機212及び故障信号出力部89を制御する制御部85をさらに含むことができる。この際、冷媒温度センサー81、室外温度センサー82、メイン圧縮機211、予備圧縮機212、故障信号出力部89及び制御部85はお互い制御信号のやり取りができるように電気的に接続される。   FIG. 8 is a block diagram showing a flow of control signals in the refrigerant system shown in FIG. 1 of another embodiment, and FIG. 9 is a flowchart showing a control method of the refrigerant system shown in FIG. The control configuration of the refrigerant system will be described with reference to FIG. 8. The refrigerant system includes a refrigerant temperature sensor 81 that senses the refrigerant temperature on the discharge side of the main compressor 211, and an outdoor temperature sensor 82 that senses the outdoor temperature. Based on the refrigerant temperature and outdoor temperature on the discharge side of the main compressor 211 detected by the output unit 89 that outputs a failure signal when the main compressor 211 fails, and the refrigerant temperature sensor 82 and the outdoor temperature sensor 82 A controller 85 that controls the compressor 211, the preliminary compressor 212, and the failure signal output unit 89 may be further included. At this time, the refrigerant temperature sensor 81, the outdoor temperature sensor 82, the main compressor 211, the preliminary compressor 212, the failure signal output unit 89, and the control unit 85 are electrically connected so that they can exchange control signals with each other.

図9を参照して、冷媒システムの制御方法を説明すると、最初に冷媒システムの作動が開始され、室外温度が感知される(S21)。この際、室外温度は室外温度センサー82によって感知されうる。   Referring to FIG. 9, the control method of the refrigerant system will be described. First, the operation of the refrigerant system is started, and the outdoor temperature is sensed (S21). At this time, the outdoor temperature can be detected by the outdoor temperature sensor 82.

そして、室外温度が基準温度以上に該当する場合には(S22)、制御部85によってメイン圧縮機211及び予備圧縮機212が同時に作動するように制御される(S23)。   When the outdoor temperature is equal to or higher than the reference temperature (S22), the control unit 85 controls the main compressor 211 and the precompressor 212 to operate simultaneously (S23).

しかし、室外温度が基準温度未満である場合には(S22)、メイン圧縮機211だけ作動する状態を維持する(S24)。   However, when the outdoor temperature is lower than the reference temperature (S22), the state where only the main compressor 211 operates is maintained (S24).

続いて、メイン圧縮機211の吐出側の冷媒温度が感知される(S25)。この際、メイン圧縮機211の吐出側の冷媒温度は冷媒温度センサー81によって感知されうる。   Subsequently, the refrigerant temperature on the discharge side of the main compressor 211 is sensed (S25). At this time, the refrigerant temperature on the discharge side of the main compressor 211 can be detected by the refrigerant temperature sensor 81.

冷媒温度センサー81によって感知されたメイン圧縮機211の吐出側の冷媒温度が基準温度を超える場合には(S26)、制御部85によって予備圧縮機212が作動しメイン圧縮機211を代替し、故障信号が出力されるように制御する(S27)。故障信号は故障信号出力部89によって出力されることができる。すなわち、感知された冷媒温度が基準温度を超える場合には、予備圧縮機212だけ作動し、故障信号が出力されることがある。   When the refrigerant temperature on the discharge side of the main compressor 211 detected by the refrigerant temperature sensor 81 exceeds the reference temperature (S26), the preliminary compressor 212 is activated by the control unit 85 to replace the main compressor 211, and a failure occurs. Control is performed so that a signal is output (S27). The failure signal can be output by the failure signal output unit 89. That is, when the detected refrigerant temperature exceeds the reference temperature, only the pre-compressor 212 operates and a failure signal may be output.

基準温度はメイン圧縮機211が正常に作動される場合にメイン圧縮機211の吐出側の冷媒温度の上限値を意味することがある。基準温度はメイン圧縮機21が正常に作動する状態で示されうる吐出側の冷媒温度が一定範囲になることもある。よって、メイン圧縮機211の吐出側の冷媒温度が基準温度を超えること、すなわち、正常な冷媒温度から離れる場合にはメイン圧縮機211に異常があることを意味する。例えば、メイン圧縮機211の内部に異物が挟まった場合またはメイン圧縮機211の機械的磨耗によって内部摩擦力が増加した場合にはメイン圧縮機211の吐出側の冷媒温度が増加する恐れがある。   The reference temperature may mean an upper limit value of the refrigerant temperature on the discharge side of the main compressor 211 when the main compressor 211 is normally operated. As for the reference temperature, the refrigerant temperature on the discharge side that can be indicated in a state in which the main compressor 21 operates normally may be within a certain range. Therefore, it means that the refrigerant temperature on the discharge side of the main compressor 211 exceeds the reference temperature, that is, when the main compressor 211 is away from the normal refrigerant temperature, there is an abnormality in the main compressor 211. For example, when a foreign substance is caught inside the main compressor 211 or when an internal friction force increases due to mechanical wear of the main compressor 211, the refrigerant temperature on the discharge side of the main compressor 211 may increase.

即ち、感知された冷媒温度が基準温度を超える場合にはメイン圧縮機211が故障状態であると判断され、予備圧縮機212が作動されメイン圧縮機211を代替することによって、冷却部による食品の冷却を持続的に行なうことができる。   That is, when the detected refrigerant temperature exceeds the reference temperature, it is determined that the main compressor 211 is in a failure state, and the spare compressor 212 is activated to replace the main compressor 211, thereby Cooling can be performed continuously.

メイン圧縮機211の吐出側の冷媒温度を用いてメイン圧縮機211の故障の有無を感知するという点から冷媒温度センサー81はメイン圧縮機211の故障の有無を感知するための故障感知センサーともいえる。   The refrigerant temperature sensor 81 can be said to be a failure detection sensor for detecting the presence or absence of a failure of the main compressor 211 in that the presence or absence of a failure of the main compressor 211 is detected using the refrigerant temperature on the discharge side of the main compressor 211. .

しかし感知された冷媒温度が基準温度を超えない場合には(S26)、さらに室外温度が感知される(S21)。即ち、感知された冷媒温度が基準温度を超えない限り、室外温度に従ってメイン圧縮機211及び予備圧縮機212を制御し、メイン圧縮機211の吐出側の冷媒温度を感知して故障の有無を判断する過程を繰り返す。   However, if the detected refrigerant temperature does not exceed the reference temperature (S26), the outdoor temperature is further detected (S21). That is, as long as the detected refrigerant temperature does not exceed the reference temperature, the main compressor 211 and the preliminary compressor 212 are controlled according to the outdoor temperature, and the refrigerant temperature on the discharge side of the main compressor 211 is sensed to determine whether there is a failure. Repeat the process.

これによって、本発明によるメイン圧縮機211の故障の際に予備圧縮機212が作動しメイン圧縮機211を代替するので、冷却部による食品の冷却が持続的に維持できるという利点がある。   As a result, when the main compressor 211 according to the present invention fails, the auxiliary compressor 212 operates to replace the main compressor 211, so that there is an advantage that the cooling of the food by the cooling unit can be continuously maintained.

また、メイン圧縮機211だけで耐えられない過負荷条件に該当する場合には、予備圧縮機212が補助的にメイン圧縮機211とともに作動するので、冷却部の冷却性能が維持または向上しうるという利点がある。   In addition, in the case of an overload condition that cannot be withstood by the main compressor 211 alone, the auxiliary compressor 212 operates supplementarily with the main compressor 211, so that the cooling performance of the cooling unit can be maintained or improved. There are advantages.

一方、本発明においてメイン圧縮機211の電流を用いてメイン圧縮機211の故障の有無を感知する方法と、メイン圧縮機211の冷媒温度を用いてメイン圧縮機211の故障の有無を感知する方法は、ともに適用されることもある。例えば、メイン圧縮機211の電流が基準範囲から離れるか、またはメイン圧縮機211の冷媒温度が基準温度を超える場合のうち少なくとも一つに該当すると、メイン圧縮機211の故障が発生されたことと判断することもある。 On the other hand, in the present invention, a method for detecting whether or not the main compressor 211 has failed using the current of the main compressor 211 and a method for detecting whether or not the main compressor 211 has failed using the refrigerant temperature of the main compressor 211. May apply together. For example, if the current of the main compressor 211 is out of the reference range, or if at least one of the cases where the refrigerant temperature of the main compressor 211 exceeds the reference temperature, a failure of the main compressor 211 has occurred. Sometimes it is judged.

Claims (1)

外気と第1冷媒が熱交換されるようにする第1熱交換機、前記第1冷媒と内気が熱交換されるようにする第2熱交換機、前記第1冷媒を圧縮する第1圧縮機と、第3熱交換機の第1冷媒通路、及び前記第1冷媒通路の吸入側で冷媒を膨張する第1膨張機を含む空調部と、
外気と第2冷媒が熱交換されるようにする第4熱交換機、前記第2冷媒と内気が熱交換されるようにする第5熱交換機、前記第2冷媒を圧縮する第2圧縮機、第3熱交換機の第2冷媒通路を、メイン圧縮機と、前記メイン圧縮機をバックアップするための予備圧縮機と、前記メイン圧縮機と前記予備圧縮機を接続する接続管を含む冷却部と
前記空調部の冷媒と前記冷却部の冷媒の間の熱交換が行われる冷媒熱交換機と
前記メイン圧縮機の故障の有無を感知する故障感知センサーと、
前記故障感知センサーによって前記メイン圧縮機の故障が感知される場合には、前記予備圧縮機が前記メイン圧縮機を代替するように制御する制御部とを含み、
前記制御部は、
前記故障感知センサーで感知された情報に基づいて冷媒が前記接続管に移動するか否かを決定し
前記冷却部は、
第6熱交換機の第3冷媒通路と、前記第3冷媒通路の吸入側で前記第2冷媒を膨張させる第2膨張機と、外気と第3冷媒を熱交換させるための第7熱交換機と、前記第3冷媒と内気を熱交換させるための第8熱交換機と、前記第3冷媒を圧縮するための第3圧縮機と、前記第6熱交換機の第4冷媒通路と、を含む冷媒システム。
A first heat exchanger that exchanges heat between the outside air and the first refrigerant, a second heat exchanger that exchanges heat between the first refrigerant and the inside air, a first compressor that compresses the first refrigerant, An air conditioning unit including a first refrigerant passage of a third heat exchanger, and a first expander that expands the refrigerant on the suction side of the first refrigerant passage;
A fourth heat exchanger that exchanges heat between the outside air and the second refrigerant; a fifth heat exchanger that exchanges heat between the second refrigerant and the inside air; a second compressor that compresses the second refrigerant; A second refrigerant passage of the three heat exchanger, a main compressor, a preliminary compressor for backing up the main compressor, a cooling unit including a connection pipe connecting the main compressor and the preliminary compressor ,
A refrigerant heat exchanger in which heat exchange is performed between the refrigerant of the air conditioning unit and the refrigerant of the cooling unit ;
A failure detection sensor for detecting the presence or absence of a failure of the main compressor;
A controller that controls the spare compressor to replace the main compressor when a failure of the main compressor is detected by the failure detection sensor;
The controller is
Determining whether or not the refrigerant moves to the connecting pipe based on information detected by the failure detection sensor ;
The cooling part is
A third refrigerant passage of the sixth heat exchanger, a second expander that expands the second refrigerant on the suction side of the third refrigerant passage, and a seventh heat exchanger for exchanging heat between the outside air and the third refrigerant; said third refrigerant and inside air to for heat exchange eighth heat exchanger, the third and the third compressor for compressing the refrigerant, the sixth heat exchanger 4 coolant passage and the including refrigerant system .
JP2012011963A 2011-01-24 2012-01-24 Refrigerant system and control method thereof Expired - Fee Related JP5563609B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110006686A KR101250100B1 (en) 2011-01-24 2011-01-24 Refrigerant system and method for controlling the same
KR10-2011-0006686 2011-01-24

Publications (2)

Publication Number Publication Date
JP2012154619A JP2012154619A (en) 2012-08-16
JP5563609B2 true JP5563609B2 (en) 2014-07-30

Family

ID=45495793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011963A Expired - Fee Related JP5563609B2 (en) 2011-01-24 2012-01-24 Refrigerant system and control method thereof

Country Status (4)

Country Link
US (1) US20120186284A1 (en)
EP (1) EP2479519B1 (en)
JP (1) JP5563609B2 (en)
KR (1) KR101250100B1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575192B2 (en) * 2012-08-06 2014-08-20 三菱電機株式会社 Dual refrigeration equipment
KR101973203B1 (en) 2012-09-24 2019-04-26 엘지전자 주식회사 A united type system of air conditioning and cooling
JP5769684B2 (en) * 2012-10-18 2015-08-26 三菱電機株式会社 Heat pump equipment
KR102032178B1 (en) * 2012-11-06 2019-10-15 엘지전자 주식회사 Integral air conditioning system for heating and cooling
KR102014441B1 (en) * 2012-11-07 2019-08-26 엘지전자 주식회사 A combined refrigerating and air conditioning system
KR102014457B1 (en) * 2012-11-07 2019-10-21 엘지전자 주식회사 A combined refrigerating and air conditioning system
KR102087677B1 (en) * 2013-06-24 2020-03-11 엘지전자 주식회사 A combined refrigerating and air conditioning system
CN208443069U (en) * 2015-01-09 2019-01-29 特灵国际有限公司 Heat pump system
KR102243833B1 (en) * 2015-01-28 2021-04-23 엘지전자 주식회사 Hot water supply device using heat pump and a method for controlling the same
KR101721771B1 (en) 2015-09-17 2017-03-30 엘지전자 주식회사 Colntrol method for refrigerator
US10969165B2 (en) 2017-01-12 2021-04-06 Emerson Climate Technologies, Inc. Micro booster supermarket refrigeration architecture
US10422562B2 (en) * 2017-02-14 2019-09-24 Heatcraft Refrigeration Products Llc Cooling system with intermediary heat exchange
EP3370017A1 (en) * 2017-03-03 2018-09-05 Huurre Group Oy Multi-mode refrigeration system
KR102359565B1 (en) * 2017-08-25 2022-02-08 엘지전자 주식회사 Refrigerator
JP7214227B2 (en) * 2018-11-07 2023-01-30 伸和コントロールズ株式会社 temperature control system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484449A (en) * 1983-02-15 1984-11-27 Ernest Muench Low temperature fail-safe cascade cooling apparatus
US4934155A (en) * 1986-03-18 1990-06-19 Mydax, Inc. Refrigeration system
JPH06129718A (en) * 1992-10-14 1994-05-13 Sanyo Electric Co Ltd Air-conditioning machine
JP3819546B2 (en) * 1997-06-23 2006-09-13 三洋電機株式会社 Air conditioner
JP2004360967A (en) * 2003-06-03 2004-12-24 Toshiba Kyaria Kk Air conditioner
WO2006013861A1 (en) * 2004-08-02 2006-02-09 Daikin Industries, Ltd. Refrigeration unit
JP2006057869A (en) * 2004-08-17 2006-03-02 Daikin Ind Ltd Refrigerating device
US7246500B2 (en) * 2004-10-28 2007-07-24 Emerson Retail Services Inc. Variable speed condenser fan control system
JP4659521B2 (en) * 2004-12-08 2011-03-30 三菱電機株式会社 Refrigeration air conditioner, operation method of refrigeration air conditioner, method of manufacturing refrigeration air conditioner, refrigeration apparatus, method of manufacturing refrigeration apparatus
CN101501415B (en) * 2006-08-01 2012-09-05 开利公司 Refrigeration system and operation method
JP2008070075A (en) * 2006-09-15 2008-03-27 Matsushita Electric Ind Co Ltd Air conditioner
KR101166203B1 (en) * 2006-12-26 2012-07-18 엘지전자 주식회사 Multi-Type Air conditioner and the controlling method
JP4687710B2 (en) * 2007-12-27 2011-05-25 三菱電機株式会社 Refrigeration equipment
KR20100002905A (en) * 2008-06-30 2010-01-07 한국과학기술연구원 Diagnostic equipment of cooling system, cooling system having the same and diagnostic method of cooling system
EP2317147B1 (en) * 2008-07-22 2017-05-03 LG Electronics Inc. Compressor and air-conditioner having the same
KR101504202B1 (en) * 2008-07-22 2015-03-19 엘지전자 주식회사 Compressor and air conditioner comprising the compressor therein
JP5321013B2 (en) * 2008-11-26 2013-10-23 パナソニック株式会社 Heat pump equipment

Also Published As

Publication number Publication date
EP2479519A2 (en) 2012-07-25
KR20120085396A (en) 2012-08-01
EP2479519B1 (en) 2019-08-21
EP2479519A3 (en) 2014-07-30
US20120186284A1 (en) 2012-07-26
KR101250100B1 (en) 2013-04-09
JP2012154619A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5563609B2 (en) Refrigerant system and control method thereof
JP5063347B2 (en) Refrigeration air conditioner
JP6428717B2 (en) Refrigeration system
JP5484930B2 (en) Air conditioner
JP6403887B2 (en) Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
JP6878612B2 (en) Refrigeration cycle equipment
JP4418936B2 (en) Air conditioner
KR20190041091A (en) Air Conditioner
JP6715655B2 (en) Cooling system
KR100773803B1 (en) Control method of air conditioner
US9297558B2 (en) Refrigerating system
JP6206787B2 (en) Refrigeration equipment
JP2008267691A (en) Air conditioner
WO2013073070A1 (en) Refrigeration cycle device
WO2013014896A1 (en) Condensing unit set
JP2018009768A (en) Refrigeration system
KR20160073162A (en) Air conditioner and Method for controlling it
KR101579099B1 (en) Air conditioner
KR101518053B1 (en) Method for controlling multi air conditioner
JP2017101856A (en) Freezing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130605

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140612

R150 Certificate of patent or registration of utility model

Ref document number: 5563609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees