JP5460692B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5460692B2
JP5460692B2 JP2011502515A JP2011502515A JP5460692B2 JP 5460692 B2 JP5460692 B2 JP 5460692B2 JP 2011502515 A JP2011502515 A JP 2011502515A JP 2011502515 A JP2011502515 A JP 2011502515A JP 5460692 B2 JP5460692 B2 JP 5460692B2
Authority
JP
Japan
Prior art keywords
throttle mechanism
amount
power failure
command
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011502515A
Other languages
Japanese (ja)
Other versions
JPWO2010100707A1 (en
Inventor
直道 田村
隆直 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2010100707A1 publication Critical patent/JPWO2010100707A1/en
Application granted granted Critical
Publication of JP5460692B2 publication Critical patent/JP5460692B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor

Description

本発明は、冷凍サイクルを利用して冷房運転又は暖房運転を実行する空気調和装置に関し、特に冷凍サイクルの構成要素の1つである絞り機構を適宜制御して適正な冷凍サイクルを保持可能にした空気調和装置に関するものである。   The present invention relates to an air conditioner that performs a cooling operation or a heating operation using a refrigeration cycle, and in particular, appropriately controls a throttling mechanism that is one of the components of the refrigeration cycle so that an appropriate refrigeration cycle can be maintained. The present invention relates to an air conditioner.

従来から、停電時に備えた空気調和装置が存在する。そのようなものとして、「少なくとも1つの容量可変な圧縮機と、熱源側熱交換器と、膨張弁と、利用側熱交換器とが順次環状に配管接続されてなる冷媒回路を備えた空気調和装置において、前記冷媒回路が保有する少なくとも圧縮機及び膨張弁を含む所定機器の運転状態を検出する運転状態検出手段と、前記運転状態検出手段により検出された運転状態を記憶する運転状態記憶手段と、前記冷媒回路へ供給される電源の給電及び停電を検出する給停電検出手段と、前記給停電検出手段によって停電発生及びその後の給電再開が検出された際に、前記運転状態記憶手段に記憶されている停電前の運転状態を制御目標値に設定して前記所定機器を制御する所定機器制御手段を備えた空気調和装置」が提案されている(たとえば、特許文献1参照)。   Conventionally, there is an air conditioner provided in the event of a power failure. As such, “at least one variable capacity compressor, heat source side heat exchanger, expansion valve, and use side heat exchanger are sequentially connected in an annular manner by pipe connection in an annular fashion. In the apparatus, an operation state detection unit that detects an operation state of a predetermined device including at least a compressor and an expansion valve held by the refrigerant circuit, and an operation state storage unit that stores the operation state detected by the operation state detection unit And a power failure detection means for detecting power supply and power failure of the power supplied to the refrigerant circuit, and when the occurrence of a power failure and subsequent resumption of power supply is detected by the power failure detection means, the operation state storage means stores the power failure. An air conditioner provided with predetermined device control means for controlling the predetermined device by setting the operation state before the power failure as a control target value has been proposed (for example, see Patent Document 1). .

このような空気調和装置においては、停電が発生すると、絞り機構への指令量と絞り機構の実際の制御量とが異なってしまうことが多い。そこで、従来の技術では、空気調和装置の復電後、全ての絞り機構の指令量と制御量とが合致するように、絞り機構の制御量の初期化を実施するようにしていた。したがって、絞り機構の初期化の動作中は、空気調和装置の運転を再開することができず、停止させていた状態となっていた。ただし、空気調和装置の復電後、速やかに能力を発揮することが要求される場合には、一部もしくは全ての絞り機構の初期化を省略し、指令量と制御量とを合致させないままで運転を継続させていた。   In such an air conditioner, when a power failure occurs, the command amount to the throttle mechanism and the actual control amount of the throttle mechanism often differ. Therefore, in the conventional technique, after the air conditioner is restored, the control amount of the throttle mechanism is initialized so that the command amount and the control amount of all the throttle mechanisms are matched. Therefore, during the operation of initializing the throttle mechanism, the operation of the air conditioner cannot be resumed and has been stopped. However, if it is required to perform quickly after the air conditioner is restored, the initialization of some or all of the throttle mechanisms can be omitted, and the command amount and control amount can be left unmatched. Continued driving.

特開2007−255759号公報(第4、5頁、図1、図2等)JP 2007-255759 A (4th, 5th page, FIG. 1, FIG. 2 etc.)

従来の空気調和装置のような絞り機構の制御方法では、空気調和装置が停電するごとに絞り機構の指令量と制御量との差異が大きくなってしまい、復電後の冷凍サイクルが最適な冷凍サイクルに到達するまでに多くの時間を要することがあった。したがって、復電後の冷凍サイクルが速やかに所定の能力を発揮することができなかった。また、絞り機構の指令量と制御量とを合致させないままで運転を継続させていると、機器に故障が発生するおそれもあった。   In a conventional control method for a throttle mechanism such as an air conditioner, the difference between the command amount and the control amount of the throttle mechanism increases each time the air conditioner fails, and the refrigeration cycle after power recovery is optimized for refrigeration. It could take a lot of time to reach the cycle. Therefore, the refrigeration cycle after power recovery cannot quickly exhibit a predetermined capacity. In addition, if the operation is continued without matching the command amount and the control amount of the aperture mechanism, there is a possibility that the device may break down.

本発明は、上記の課題を解決するためになされたもので、復電後に短時間で起動でき、かつ、短時間で最適な冷凍サイクルを維持することができるようにした空気調和装置を提供することを目的としている。   The present invention has been made to solve the above problems, and provides an air conditioner that can be started in a short time after power recovery and that can maintain an optimum refrigeration cycle in a short time. The purpose is that.

本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、過冷却熱交換器の高圧側、第1絞り機構、及び、利用側熱交換器が直列に接続された主冷媒回路と、前記過冷却熱交換器と前記第1絞り機構との間で分岐させ、第2絞り機構及び前記過冷却熱交換器の低圧側を介して前記圧縮機の吸入側に接続させたバイパス回路と、を有した空気調和装置であって、この空気調和装置に停電が発生し、前記第1絞り機構及び前記第2絞り機構に対する開度の指令があったときから停電が発生するまでの時間ΔTと、前記第1絞り機構及び前記第2絞り機構に対する開度の指令量と実際の開度の制御量とが一致するまでの所要時間T1と、を比較して復電後に前記第1絞り機構及び前記第2絞り機構に対する開度の指令量を修正する制御部を備え、前記制御部は、前記第1絞り機構及び前記第2絞り機構に対する実際の開度の制御量の許容範囲、及び、一回の停電で発生する前記第1絞り機構及び前記第2絞り機構に対する開度の指令量と実際の開度の制御量との差異から、前記第1絞り機構及び前記第2絞り機構を初期化しなくても許容できる停電回数を規定回数として予め記憶しておき、停電回数が予め記憶してある前記規定回数より少ない場合には、前記第1絞り機構及び前記第2絞り機構のうちの一方を初期化し、停電回数が予め記憶してある前記規定回数以上である場合には、前記第1絞り機構及び前記第2絞り機構のうちの他方を初期化して、前記第1絞り機構及び前記第2絞り機構に対する開度の指令量を修正するものである。 An air conditioner according to the present invention includes a compressor, a heat source side heat exchanger, a high pressure side of a supercooling heat exchanger, a first throttle mechanism, and a main refrigerant circuit in which a use side heat exchanger is connected in series, A bypass circuit branched between the supercooling heat exchanger and the first throttle mechanism, and connected to the suction side of the compressor via the second throttle mechanism and the low pressure side of the supercooling heat exchanger; A time ΔT from when a power failure occurs in the air conditioner and when an opening command is given to the first throttle mechanism and the second throttle mechanism until the power failure occurs And comparing the required time T1 until the command amount of the opening degree with respect to the first throttle mechanism and the second throttle mechanism and the actual control amount of the opening degree coincide with each other after the power recovery, A controller for correcting a command amount of the opening degree for the second throttle mechanism; Control unit, opening to said first diaphragm mechanism and the allowable range of the control amount of the actual opening relative to the second diaphragm mechanism, and, once that the generated power outage the first throttle mechanism and the second throttle mechanism From the difference between the command amount and the control amount of the actual opening, the number of power outages that can be permitted without initializing the first throttle mechanism and the second throttle mechanism is stored in advance as a specified number of times. If less than the prescribed number of times is previously stored, when the one of the first throttle mechanism and the second throttle mechanism is initialized, the number of power outages is the prescribed number of times or more which is stored in advance The other of the first diaphragm mechanism and the second diaphragm mechanism is initialized to correct the command amount of the opening for the first diaphragm mechanism and the second diaphragm mechanism .

本発明に係る空気調和装置によれば、復電後に短時間で起動でき、かつ、短時間で最適な冷凍サイクルを維持することができる。   The air conditioner according to the present invention can be started in a short time after power recovery, and an optimum refrigeration cycle can be maintained in a short time.

実施の形態1に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。3 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of the air-conditioning apparatus according to Embodiment 1. FIG. 第2絞り機構の制御量と冷凍サイクルの変化との関係を示すグラフである。It is a graph which shows the relationship between the control amount of a 2nd aperture mechanism, and the change of a refrigerating cycle. 停電時における第2絞り機構の制御量と時間との関係を示すグラフである。It is a graph which shows the relationship between the control amount of the 2nd aperture mechanism at the time of a power failure, and time. 停電発生時における絞り機構の初期化についての処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process about initialization of the aperture mechanism at the time of a power failure occurrence. 実施の形態2に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。6 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air-conditioning apparatus according to Embodiment 2. FIG. 停電発生時における絞り機構の指令量の修正についての処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process about correction | amendment of the instruction | command amount of the aperture mechanism at the time of a power failure generation | occurrence | production. 実施の形態3に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。6 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air-conditioning apparatus according to Embodiment 3. FIG. 絞り機構の制御量と過熱度との関係を示すグラフである。It is a graph which shows the relationship between the control amount of an aperture mechanism, and a superheat degree. 停電発生時における絞り機構の指令量の修正についての処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process about correction | amendment of the instruction | command amount of the aperture mechanism at the time of a power failure occurrence.

符号の説明Explanation of symbols

1 圧縮機、2 四方弁、3 熱源側熱交換器、4 過冷却熱交換器、5 第1絞り機構、6 利用側熱交換器、7 アキュムレーター、8 第2絞り機構、9 動力部、50 制御部、51 電源検出手段、52 記憶装置、52a 記憶装置、52b 記憶装置、61 高圧センサー、62 低圧センサー、65 第1温度センサー、66 第2温度センサー、100 空気調和装置、200 空気調和装置、300 空気調和装置。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Heat source side heat exchanger, 4 Supercooling heat exchanger, 5 1st throttle mechanism, 6 Use side heat exchanger, 7 Accumulator, 8 2nd throttle mechanism, 9 Power part, 50 Control unit, 51 power supply detection means, 52 storage device, 52a storage device, 52b storage device, 61 high pressure sensor, 62 low pressure sensor, 65 first temperature sensor, 66 second temperature sensor, 100 air conditioner, 200 air conditioner, 300 Air conditioner.

以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る空気調和装置100の冷媒回路構成を示す冷媒回路図である。図1に基づいて、空気調和装置100の冷媒回路構成及び動作について説明する。この空気調和装置100は、冷媒を循環させる冷凍サイクル(ヒートポンプサイクル)を利用して、冷房運転又は暖房運転を行なうものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the refrigerant circuit structure and operation | movement of the air conditioning apparatus 100 are demonstrated. The air conditioner 100 performs a cooling operation or a heating operation using a refrigeration cycle (heat pump cycle) for circulating a refrigerant. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.

空気調和装置100は、圧縮機1、四方弁2、熱源側熱交換器3、過冷却熱交換器4の高圧側流路、第1絞り機構5、利用側熱交換器6、及び、アキュムレーター7を冷媒配管で直列に接続した主冷媒回路を備えている。また、空気調和装置100は、過冷却熱交換器4の下流側(冷房運転時における冷媒の流れ方向における下流側)で冷媒配管を分岐させ、第2絞り機構8、過冷却熱交換器4の低圧側流路を経由して四方弁2とアキュムレーター7との間を接続している冷媒配管に合流させるバイパス回路を備えている。   The air conditioner 100 includes a compressor 1, a four-way valve 2, a heat source side heat exchanger 3, a high pressure side flow path of the supercooling heat exchanger 4, a first throttle mechanism 5, a use side heat exchanger 6, and an accumulator. The main refrigerant circuit which connected 7 in series with refrigerant piping is provided. Further, the air conditioner 100 branches the refrigerant pipe on the downstream side of the supercooling heat exchanger 4 (downstream side in the refrigerant flow direction during the cooling operation), and the second throttle mechanism 8 and the supercooling heat exchanger 4 A bypass circuit is provided for joining the refrigerant pipe connecting the four-way valve 2 and the accumulator 7 via the low-pressure channel.

圧縮機1は、吸入した低温・低圧冷媒を圧縮し、高温・高圧冷媒として吐出し、系内に冷媒を循環させることで空調運転を可能とするものである。この圧縮機1は、インバーターによる周波数制御可能なタイプで構成することが一般的であるが、回転数が一定のタイプであってもよい。四方弁2は、冷房運転時と暖房運転時とで冷媒流路を切り替えるものである。つまり、四方弁2が制御されることによって、冷房運転と暖房運転では、冷媒回路を流れる冷媒の流れ方向が逆転する。   The compressor 1 compresses the sucked low-temperature / low-pressure refrigerant, discharges it as a high-temperature / high-pressure refrigerant, and enables the air-conditioning operation by circulating the refrigerant in the system. The compressor 1 is generally configured as a type capable of frequency control by an inverter, but may be a type having a constant rotation speed. The four-way valve 2 switches the refrigerant flow path between the cooling operation and the heating operation. That is, by controlling the four-way valve 2, the flow direction of the refrigerant flowing through the refrigerant circuit is reversed in the cooling operation and the heating operation.

熱源側熱交換器3は、冷房運転時には凝縮器(放熱器)、暖房運転時には蒸発器として機能するものであり、周囲の空気と熱交換することで冷媒を凝縮液化もしくは蒸発ガス化するものである。熱源側熱交換器3は、一般的にファン(図示省略)と併せて構成され、ファンの回転数によって凝縮能力又は蒸発能力が制御される。過冷却熱交換器4は、主冷媒回路を流れる冷媒(高圧側)と、バイパス回路を流れる冷媒(低圧側)と、で熱交換を行ない、主冷媒回路を流れる冷媒の過冷却をとり、第1絞り機構5の制御を安定にする機能を有している。なお、過冷却熱交換器4は、二重管構造のものが代表的であるが、これに限定するものではなく、プレート型熱交換器で構成してもよい。   The heat source side heat exchanger 3 functions as a condenser (radiator) during cooling operation, and as an evaporator during heating operation, and heat-exchanges with surrounding air to condense or liquefy the refrigerant. is there. The heat source side heat exchanger 3 is generally configured together with a fan (not shown), and the condensation capacity or the evaporation capacity is controlled by the rotational speed of the fan. The supercooling heat exchanger 4 exchanges heat between the refrigerant flowing through the main refrigerant circuit (high pressure side) and the refrigerant flowing through the bypass circuit (low pressure side), and subcools the refrigerant flowing through the main refrigerant circuit, It has a function of stabilizing the control of the one diaphragm mechanism 5. The supercooling heat exchanger 4 is typically a double pipe structure, but is not limited to this, and may be a plate heat exchanger.

第1絞り機構5は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。この第1絞り機構5は、開度が可変に制御可能なもの、たとえば代表的な電子式膨張弁で構成するものとする。利用側熱交換器6は、冷房運転時には蒸発器、暖房運転時には凝縮器(放熱器)として機能するものであり、冷媒と空気(図示省略のファンから供給される空気)との間で熱交換を行ない、冷媒を蒸発ガス化、もしくは、凝縮液化するものである。   The first throttle mechanism 5 has a function as a pressure reducing valve or an expansion valve, and decompresses the refrigerant to expand it. The first throttle mechanism 5 is configured with a valve whose opening degree can be variably controlled, for example, a typical electronic expansion valve. The use-side heat exchanger 6 functions as an evaporator during cooling operation and as a condenser (heat radiator) during heating operation, and exchanges heat between refrigerant and air (air supplied from a fan not shown). The refrigerant is evaporated and gasified or condensed.

アキュムレーター7は、圧縮機1の吸入側に設置されており、運転状態によって発生する余剰冷媒を貯留するためのものである。なお、実施の形態1では、アキュムレーター7を備えている場合を例に説明するが、これに限定するものではない。たとえば、アキュムレーター7を備えず、熱源側熱交換器3と過冷却熱交換器4との間に受液器(レシーバー)を備えるようにしてもよい。また、アキュムレーター7と受液器の双方を備えるようにしてもよい。第2絞り機構8は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。この第2絞り機構8は、開度が可変に制御可能なもの、たとえば代表的な電子式膨張弁で構成するものとする。   The accumulator 7 is installed on the suction side of the compressor 1 and is for storing surplus refrigerant generated depending on the operation state. In the first embodiment, the case where the accumulator 7 is provided will be described as an example. However, the present invention is not limited to this. For example, the accumulator 7 may not be provided, and a liquid receiver (receiver) may be provided between the heat source side heat exchanger 3 and the supercooling heat exchanger 4. Moreover, you may make it provide both the accumulator 7 and a liquid receiver. The second throttle mechanism 8 functions as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure. The second throttle mechanism 8 is configured by a valve whose opening degree can be variably controlled, for example, a typical electronic expansion valve.

空気調和装置100は、空気調和装置100の全体を統括制御する制御部50を備えている。この制御部50は、第1絞り機構5及び第2絞り機構8を特定の絞り開度に指令したり、第1絞り機構5及び第2絞り機構8の絞り開度を初期化したりする指令部を備えている。また、制御部50は、圧縮機1の駆動周波数の制御、及び、運転状態やモード毎に応じた四方弁2の切替制御も実行している。つまり、制御部50は、ユーザーからの運転指示に基づいて、各アクチュエーター(圧縮機1、図示省略のファン、第1絞り機構5、第2絞り機構8、及び、四方弁2)を制御するようになっている。   The air conditioner 100 includes a control unit 50 that performs overall control of the air conditioner 100. The control unit 50 commands the first throttle mechanism 5 and the second throttle mechanism 8 to a specific throttle opening, and initializes the throttle openings of the first throttle mechanism 5 and the second throttle mechanism 8. It has. Moreover, the control part 50 is also performing the control of the drive frequency of the compressor 1, and the switching control of the four-way valve 2 according to a driving | running state or every mode. That is, the control unit 50 controls each actuator (the compressor 1, a fan (not shown), the first throttle mechanism 5, the second throttle mechanism 8, and the four-way valve 2) based on an operation instruction from the user. It has become.

また、空気調和装置100は、動力部9の電源電圧を検出して停電・復電を検知できる電源検出手段51を備えている。この電源検出手段51は、圧縮機1と現地の電源を接続する動力部8の電源電圧を検出して停電・復電を検知できるものであればよい。なお、検出手段51は、圧縮機1の動力部9以外の電気部品に付設してもよい。さらに、空気調和装置100は、電源検出手段51で検出した停電・復電の回数情報を記憶できる記憶装置52を備えている。この記憶装置52は、フラッシュメモリー等の不揮発性メモリーで構成するとよい。なお、記憶装置52を、制御部50に内蔵してもよい。   In addition, the air conditioner 100 includes power detection means 51 that can detect the power supply voltage of the power unit 9 to detect a power failure / recovery. The power source detection means 51 may be any device that can detect a power failure / recovery by detecting the power source voltage of the power unit 8 connecting the compressor 1 and the local power source. The detection means 51 may be attached to an electrical component other than the power unit 9 of the compressor 1. The air conditioner 100 further includes a storage device 52 that can store information on the number of times of power failure / recovery detected by the power source detection means 51. The storage device 52 may be composed of a nonvolatile memory such as a flash memory. Note that the storage device 52 may be built in the control unit 50.

空気調和装置100に用いられる冷媒としては、非共沸混合冷媒や擬似共沸混合冷媒、単一冷媒等がある。非共沸混合冷媒には、HFC(ハイドロフルオロカーボン)冷媒であるR407C(R32/R125/R134a)等がある。この非共沸混合冷媒は、沸点が異なる冷媒の混合物であるので、液相冷媒と気相冷媒との組成比率が異なるという特性を有している。擬似共沸混合冷媒には、HFC冷媒であるR410A(R32/R125)やR404A(R125/R143a/R134a)等がある。この擬似共沸混合冷媒は、非共沸混合冷媒と同様の特性の他、R22の約1.6倍の動作圧力という特性を有している。   Examples of the refrigerant used in the air conditioner 100 include a non-azeotropic refrigerant mixture, a pseudo-azeotropic refrigerant mixture, and a single refrigerant. Non-azeotropic refrigerant mixture includes R407C (R32 / R125 / R134a) which is an HFC (hydrofluorocarbon) refrigerant. Since this non-azeotropic refrigerant mixture is a mixture of refrigerants having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different. The pseudo azeotropic refrigerant mixture includes R410A (R32 / R125) and R404A (R125 / R143a / R134a) which are HFC refrigerants. This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R22.

また、単一冷媒には、HCFC(ハイドロクロロフルオロカーボン)冷媒であるR22やHFC冷媒であるR134a等がある。この単一冷媒は、混合物ではないので、取扱いが容易であるという特性を有している。特に、従来の空気調和装置で用いられてきた冷媒R22等のHCFC冷媒は、HFC冷媒と比較してオゾン破壊係数が高く環境面での悪影響が大きいことが指摘されている。このような背景からHFC冷媒や自然冷媒等、オゾン破壊係数の小さい冷媒への移行が進んでいる。   The single refrigerant includes R22, which is an HCFC (hydrochlorofluorocarbon) refrigerant, R134a, which is an HFC refrigerant, and the like. Since this single refrigerant is not a mixture, it has the property of being easy to handle. In particular, it has been pointed out that HCFC refrigerants such as refrigerant R22, which have been used in conventional air conditioners, have a higher ozone depletion coefficient than the HFC refrigerant and have a large adverse environmental impact. From such a background, the transition to refrigerants having a small ozone depletion coefficient such as HFC refrigerants and natural refrigerants is progressing.

冷房モードにおける冷媒の流れについて説明する。この空気調和装置100は、使用者からの指示に基づいて、冷房運転あるいは暖房運転が可能になっている。空気調和装置100が冷房運転を実行する場合、制御部50は、四方弁2を圧縮機1から吐出された高温・高圧冷媒を熱源側熱交換器3へ流入させるように切り替える。この状態で、圧縮機1の運転を開始する。なお、制御部50は、第1絞り機構5及び第2絞り機構8の絞り開度を制御するが、制御量については図2で説明する。   The refrigerant flow in the cooling mode will be described. The air conditioner 100 can perform a cooling operation or a heating operation based on an instruction from a user. When the air conditioning apparatus 100 performs the cooling operation, the control unit 50 switches the four-way valve 2 so that the high-temperature / high-pressure refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3. In this state, the operation of the compressor 1 is started. The control unit 50 controls the opening degree of the first diaphragm mechanism 5 and the second diaphragm mechanism 8, and the control amount will be described with reference to FIG.

圧縮機1から吐出された高温・高圧の冷媒ガスは、四方弁2を経由して熱源側熱交換器3に流入する。熱源側熱交換器3に流入した冷媒ガスは、ファン(図示省略)から供給される空気で凝縮・液化される。凝縮・液化された高圧冷媒は、過冷却熱交換器4の高圧側流路を流れる。そして、過冷却熱交換器4から流出した冷媒の一部は、バイパス回路側に流入する。バイパス回路側に流入した冷媒は、第2絞り機構8で減圧されて膨張し、低圧の冷媒になる。この冷媒は、過冷却熱交換器4の低圧側流路を流れる。このとき過冷却熱交換器4では、高圧側流路を流れる高圧冷媒と、低圧側流路を流れる低圧冷媒と、が熱交換することになる。   The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 flows into the heat source side heat exchanger 3 via the four-way valve 2. The refrigerant gas flowing into the heat source side heat exchanger 3 is condensed and liquefied by air supplied from a fan (not shown). The condensed and liquefied high-pressure refrigerant flows through the high-pressure side flow path of the supercooling heat exchanger 4. A part of the refrigerant flowing out from the supercooling heat exchanger 4 flows into the bypass circuit side. The refrigerant that has flowed into the bypass circuit is decompressed and expanded by the second throttle mechanism 8 and becomes a low-pressure refrigerant. This refrigerant flows through the low-pressure side flow path of the supercooling heat exchanger 4. At this time, in the supercooling heat exchanger 4, the high-pressure refrigerant flowing through the high-pressure side passage and the low-pressure refrigerant flowing through the low-pressure side passage exchange heat.

したがって、高圧側流路を流れる高圧冷媒は、低圧側流路を流れる低圧冷媒によって更に冷却され、過冷却度が増加する。過冷却熱交換器4で冷却された高圧冷媒は、第1絞り機構5で減圧されて膨張し、低圧の冷媒となり、利用側熱交換器6に流入する。利用側熱交換器6に流入した低圧冷媒は、ファン(図示省略)から供給される空気で蒸発・ガス化される。蒸発・ガス化した低圧冷媒は、四方弁2を経由し、バイパス回路を流れてきた低圧冷媒とアキュムレーター7に上流で合流し、アキュムレーター7に流入する。そして、圧縮機1に再吸入される。   Therefore, the high-pressure refrigerant flowing through the high-pressure channel is further cooled by the low-pressure refrigerant flowing through the low-pressure channel, and the degree of supercooling increases. The high-pressure refrigerant cooled by the supercooling heat exchanger 4 is decompressed by the first throttle mechanism 5 and expands to become a low-pressure refrigerant and flows into the use side heat exchanger 6. The low-pressure refrigerant flowing into the use side heat exchanger 6 is evaporated and gasified with air supplied from a fan (not shown). The low-pressure refrigerant that has been evaporated and gasified passes through the four-way valve 2 and joins the low-pressure refrigerant that has flowed through the bypass circuit and the accumulator 7 upstream, and flows into the accumulator 7. Then, it is sucked again into the compressor 1.

図2は、第2絞り機構8の制御量(絞り開度)と冷凍サイクルの変化(冷媒の状態遷移)との関係を示すグラフである。図2に基づいて、第2絞り機構8の制御量に基づく冷凍サイクルの変化について説明する。図2では、横軸が第2絞り機構8の制御量を、縦軸が冷凍サイクルの変化(冷媒の状態)を、それぞれ表している。なお、この図2では、第2絞り装置8の制御量を例に示しているが、第1絞り装置5の制御量についても同様に説明することが可能である。   FIG. 2 is a graph showing the relationship between the control amount (throttle opening) of the second throttle mechanism 8 and the change of the refrigeration cycle (refrigerant state transition). A change in the refrigeration cycle based on the control amount of the second throttle mechanism 8 will be described with reference to FIG. In FIG. 2, the horizontal axis represents the control amount of the second throttle mechanism 8, and the vertical axis represents the change in the refrigeration cycle (refrigerant state). In FIG. 2, the control amount of the second diaphragm device 8 is shown as an example, but the control amount of the first diaphragm device 5 can be described in the same manner.

空気調和装置100が実行する冷房モードにおいては、上述したように、バイパス回路に流入した冷媒は、第2絞り機構8で減圧されて膨張し、低圧冷媒になり、過冷却熱交換器4の低圧側流路に流入する。第2絞り機構8の絞り開度が最適値(図2に示す適正の範囲)より小さい(図2に示す過少の範囲)と、過冷却熱交換器4において高圧冷媒との熱交換量が不足し、過冷却度が小さく、過冷却度不足になり、空気調和装置100の能力が低下する。また、第2絞り機構8の絞り開度が更に小さくなった場合は、冷媒の高圧圧力が過度に上昇し、異常高圧に至る場合がある。   In the cooling mode executed by the air conditioner 100, as described above, the refrigerant that has flowed into the bypass circuit is decompressed and expanded by the second throttle mechanism 8, becomes a low-pressure refrigerant, and the low-pressure of the supercooling heat exchanger 4. It flows into the side channel. When the throttle opening of the second throttle mechanism 8 is smaller than the optimum value (the appropriate range shown in FIG. 2) (the excessive range shown in FIG. 2), the heat quantity with the high-pressure refrigerant is insufficient in the supercooling heat exchanger 4. However, the degree of supercooling is small, the degree of supercooling is insufficient, and the capacity of the air conditioner 100 is reduced. In addition, when the throttle opening of the second throttle mechanism 8 is further reduced, the high pressure of the refrigerant may increase excessively and reach an abnormally high pressure.

逆に、第2絞り機構8の絞り開度が最適値より大きい(図2に示す過大の範囲)と、熱源側熱交換器3で凝縮・液化された冷媒がバイパス回路を経由してアキュムレーター7に過度に流れることになる。そうすると、圧縮機1への液バック量が過大になったり、過冷却度不足になったりすることで、やはり空気調和装置100の能力が低下する。   On the contrary, when the throttle opening of the second throttle mechanism 8 is larger than the optimum value (excessive range shown in FIG. 2), the refrigerant condensed and liquefied by the heat source side heat exchanger 3 is passed through the bypass circuit to the accumulator. 7 will flow excessively. If it does so, the capability of the air conditioning apparatus 100 will fall again because the liquid back amount to the compressor 1 becomes excessive or the degree of supercooling becomes insufficient.

図3は、停電時における第2絞り機構8の制御量と時間との関係を示すグラフである。図3に基づいて、停電時に発生する第2絞り機構8の指令量と制御量との経時的な差について説明する。図3では、横軸が時間を、縦軸が第2絞り装置8の絞り開度を、それぞれ表している。なお、この図3では、停電時における第2絞り機構8の制御量を例に示しているが、停電時における第1絞り装置5の制御量についても同様に説明することが可能である。   FIG. 3 is a graph showing the relationship between the control amount of the second aperture mechanism 8 and time during a power failure. A time-dependent difference between the command amount of the second aperture mechanism 8 and the control amount that occurs at the time of a power failure will be described with reference to FIG. In FIG. 3, the horizontal axis represents time, and the vertical axis represents the opening degree of the second expansion device 8. In FIG. 3, the control amount of the second aperture mechanism 8 at the time of a power failure is shown as an example, but the control amount of the first aperture device 5 at the time of a power failure can be described in the same manner.

制御部50の指令部より第2絞り装置8に絞り開度の指令が送信されると、第2絞り装置8の実際の制御量が、送信された指令量になる。ただし、実際の制御量が指令量に到達するまでの間には所定の時間T1を要してしまう。この時間T1の間に停電が起きると、第2絞り装置8に電源が供給されなくなってしまい、実際の制御量と指令量との差異が発生してしまう。図3では、1回の停電で発生する実際の制御量と指令量との差異をSjとして示している。   When a command for the throttle opening degree is transmitted from the command unit of the control unit 50 to the second throttle device 8, the actual control amount of the second throttle device 8 becomes the transmitted command amount. However, a predetermined time T1 is required until the actual control amount reaches the command amount. If a power failure occurs during this time T1, power will not be supplied to the second diaphragm device 8, and a difference between the actual control amount and the command amount will occur. In FIG. 3, the difference between the actual control amount and the command amount generated by one power failure is shown as Sj.

この図3から、絞り機構(第1絞り機構5及び第2絞り機構8)の指令量と制御量との差異Sjの算出の仕方について説明する。
絞り機構の単位時間あたりの絞り開度幅をΔSj、指令量と制御量とが一致するまでの所要時間をT1、停電が発生し、指令部からの指令があったときから停電が発生するまでの時間をΔTとすると、指令量と制御量との差異Sjは以下の式で算出できる。

Figure 0005460692
A method of calculating the difference Sj between the command amount and the control amount of the aperture mechanism (the first aperture mechanism 5 and the second aperture mechanism 8) will be described with reference to FIG.
The throttle opening width per unit time of the throttle mechanism is ΔSj, the required time until the command amount and the control amount coincide with each other, T1, the power failure occurs, and from the time when the command is issued from the command section until the power failure occurs The difference Sj between the command amount and the control amount can be calculated by the following equation.
Figure 0005460692

図4は、停電発生時における絞り機構(第1絞り装置5及び第2絞り装置8)の初期化についての処理の流れを示すフローチャートである。図4に基づいて、実施の形態1に係る空気調和装置100の特徴事項である停電発生時における絞り機構の初期化について説明する。絞り機構の制御量の許容範囲と一回の停電で発生する指令量と制御量の差異Sjとから、絞り機構を初期化しなくても許容できる停電の回数を規定回数として予め記憶装置52に記憶しておく。   FIG. 4 is a flowchart showing the flow of processing for initializing the aperture mechanism (the first aperture device 5 and the second aperture device 8) when a power failure occurs. Based on FIG. 4, initialization of the throttle mechanism when a power failure occurs, which is a characteristic matter of the air-conditioning apparatus 100 according to Embodiment 1, will be described. From the allowable range of the control amount of the aperture mechanism, the command amount generated by a single power failure, and the difference Sj between the control amounts, the number of power failures that can be permitted without initializing the aperture mechanism is stored in advance in the storage device 52 as the specified number of times. Keep it.

停電・復電が発生したとき(ステップS1)、制御部50は、記憶装置52から停電回数を読み込み、+1計数し、+1計数された停電回数を記憶装置52に書き込んで停電回数のカウントアップを実行する(ステップS2)。そして、制御部50は、停電回数と予め記憶してある規定回数とを比較する(ステップS3)。停電回数が規定回数より少ない場合は(ステップS3;Yes)、制御部50は、第1絞り機構5のみを初期化する(ステップS4)。一方、停電回数が規定回数以上である場合は(ステップS3;No)、制御部50は、第2絞り機構8のみを初期化する(ステップS5)。このように、絞り機構を初期化するので、初期化の時間を短時間で維持でき、かつ、最適な冷凍サイクルを維持できる。なお、第1絞り機構5と第2絞り機構8の初期化を逆としてもよい。   When a power failure / recovery occurs (step S1), the control unit 50 reads the number of power failures from the storage device 52, counts +1, writes the number of power failures counted +1 to the storage device 52, and counts up the number of power failures. Execute (Step S2). Then, the control unit 50 compares the number of power outages with a predetermined number stored in advance (step S3). When the number of power failures is less than the specified number (step S3; Yes), the control unit 50 initializes only the first aperture mechanism 5 (step S4). On the other hand, when the number of power failures is equal to or greater than the prescribed number (step S3; No), the control unit 50 initializes only the second aperture mechanism 8 (step S5). Thus, since the throttle mechanism is initialized, the initialization time can be maintained in a short time, and an optimum refrigeration cycle can be maintained. The initialization of the first aperture mechanism 5 and the second aperture mechanism 8 may be reversed.

以上のように、空気調和装置100は、圧縮機1、熱源側熱交換器3、複数の絞り機構(第1絞り機構5、第2絞り機構8)、及び、利用側熱交換器6を少なくとも有しており、停電回数を予め定められている所定の規定回数と比較して、復電後に複数の絞り機構の初期化の有無を決定する制御部50を備えている。具体的には、空気調和装置100は、圧縮機1、熱源側熱交換器3、過冷却熱交換器4の高圧側、第1絞り機構5、及び、利用側熱交換器6が直列に接続された主冷媒回路と、過冷却熱交換器4と第1絞り機構5との間で分岐させ、第2絞り機構8及び過冷却熱交換器4の低圧側を介して圧縮機1の吸入側に接続させたバイパス回路と、を有している。   As described above, the air conditioner 100 includes at least the compressor 1, the heat source side heat exchanger 3, the plurality of throttle mechanisms (the first throttle mechanism 5 and the second throttle mechanism 8), and the use side heat exchanger 6. The controller 50 includes a controller 50 that compares the number of times of power failure with a predetermined predetermined number of times, and determines whether or not to initialize a plurality of aperture mechanisms after power recovery. Specifically, in the air conditioner 100, the compressor 1, the heat source side heat exchanger 3, the high pressure side of the supercooling heat exchanger 4, the first throttle mechanism 5, and the use side heat exchanger 6 are connected in series. Branching between the main refrigerant circuit, the supercooling heat exchanger 4 and the first throttle mechanism 5, and the suction side of the compressor 1 through the second throttle mechanism 8 and the low pressure side of the supercooling heat exchanger 4 And a bypass circuit connected to.

そして、制御装部50は、停電回数が規定回数よりも少ないときには第1絞り機構5又は第2絞り機構8を初期化し、停電回数が規定回数以上のときには第1絞り機構5及び第2絞り機構8のうち初期化していなかった方を初期化するようなっている。   The control unit 50 initializes the first diaphragm mechanism 5 or the second diaphragm mechanism 8 when the number of power outages is less than the specified number of times, and the first diaphragm mechanism 5 and the second diaphragm mechanism when the number of power outages is equal to or greater than the specified number of times. The one that was not initialized among 8 is initialized.

実施の形態2.
図5は、本発明の実施の形態2に係る空気調和装置200の冷媒回路構成を示す冷媒回路図である。図5に基づいて、空気調和装置200の冷媒回路構成及び動作について説明する。この空気調和装置200は、冷媒を循環させる冷凍サイクルを利用して、冷房運転又は暖房運転を行なうものである。なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付している。
Embodiment 2. FIG.
FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of the air-conditioning apparatus 200 according to Embodiment 2 of the present invention. Based on FIG. 5, the refrigerant circuit structure and operation | movement of the air conditioning apparatus 200 are demonstrated. The air conditioner 200 performs a cooling operation or a heating operation using a refrigeration cycle in which a refrigerant is circulated. In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment are denoted by the same reference numerals.

この空気調和装置200は、記憶装置の機能(以下、記憶装置52aと称する)及び絞り機構の指令量の修正の仕方が実施の形態1に係る空気調和装置100と相違している。記憶装置52aは、停電が発生したときに停電が発生する直前の指令部からの指令量と指令されてから停電が発生するまでの時間とを記憶するようになっている。この記憶装置52aは、フラッシュメモリー等の不揮発性メモリーで構成するとよい。なお、記憶装置52aを、制御部50に内蔵してもよい。また、実施の形態2に係る空気調和装置200の冷房モードにおける冷媒の流れ、及び、絞り機構の開度と冷凍サイクルの変化との関係については実施の形態1に係る空気調和装置100と同様である。   The air conditioner 200 differs from the air conditioner 100 according to Embodiment 1 in the function of the storage device (hereinafter referred to as the storage device 52a) and the method of correcting the command amount of the throttle mechanism. The storage device 52a stores the command amount from the command unit immediately before the occurrence of the power failure and the time from when the command is issued until the power failure occurs when the power failure occurs. The storage device 52a may be composed of a nonvolatile memory such as a flash memory. The storage device 52a may be built in the control unit 50. In addition, the refrigerant flow in the cooling mode of the air-conditioning apparatus 200 according to Embodiment 2 and the relationship between the opening of the throttle mechanism and the change in the refrigeration cycle are the same as those of the air-conditioning apparatus 100 according to Embodiment 1. is there.

図6は、停電発生時における絞り機構(第1絞り装置5及び第2絞り装置8)の指令量の修正についての処理の流れを示すフローチャートである。図6に基づいて、実施の形態2に係る空気調和装置200の特徴事項である停電発生時における絞り機構の指令量の修正について説明する。なお、図3で説明したように、指令量と制御量とが一致するまでの所要時間をT1、停電が発生し、指令部からの指令があったときから停電が発生するまでの時間をΔTとして、図6で使用している。   FIG. 6 is a flowchart showing the flow of processing for correcting the command amount of the aperture mechanism (the first aperture device 5 and the second aperture device 8) when a power failure occurs. Based on FIG. 6, correction of the command amount of the throttle mechanism when a power failure occurs, which is a feature of the air-conditioning apparatus 200 according to Embodiment 2, will be described. As described with reference to FIG. 3, the time required for the command amount and the control amount to coincide with each other is T1, and the time from when the power failure occurs to when the command is issued until the power failure occurs is ΔT. As shown in FIG.

停電・復電が発生したとき(ステップS11)、制御部50は、停電が発生した場合に指令部から指令が送信されてから停電が発生するまでの時間ΔTを検出する(ステップS12)。そして、制御部50は、ΔTと指令量と制御量とが合致するまでの時間T1を比較する(ステップS13)。ΔTがT1以上の場合は(ステップS13;No)、制御部50は、絞り機構の絞り開度をそのままにしておく(ステップS14)。一方、ΔTがT1より短い場合は(ステップS13;Yes)、制御部50は、ΔTとT1との差異を算出し、記憶装置52aに記憶してある指令量と制御量との差分の量を指令量に加算することで絞り機構の指令量を修正する(ステップS15)。   When a power failure / recovery occurs (step S11), the control unit 50 detects a time ΔT from when the command is transmitted from the command unit to when the power failure occurs when a power failure occurs (step S12). Then, the control unit 50 compares the time T1 until ΔT matches the command amount and the control amount (step S13). When ΔT is equal to or greater than T1 (step S13; No), the control unit 50 leaves the throttle opening of the throttle mechanism as it is (step S14). On the other hand, when ΔT is shorter than T1 (step S13; Yes), the control unit 50 calculates the difference between ΔT and T1, and calculates the difference amount between the command amount and the control amount stored in the storage device 52a. The command amount of the aperture mechanism is corrected by adding to the command amount (step S15).

このように、絞り機構の制御量を修正するので、制御量の修正に要する時間を短時間で維持でき、かつ、最適な冷凍サイクルを維持できる。なお、ステップS15における絞り機構の指令量の修正には、第1絞り機構5及び第2絞り機構8の双方の制御量を修正するだけでなく、第1絞り機構5あるいは第2絞り機構8のうち1つの制御量を修正することも含まれているものとする。   Thus, since the control amount of the throttle mechanism is corrected, the time required for correcting the control amount can be maintained in a short time, and an optimum refrigeration cycle can be maintained. In order to correct the command amount of the diaphragm mechanism in step S15, not only the control amounts of both the first diaphragm mechanism 5 and the second diaphragm mechanism 8 are modified, but also the first diaphragm mechanism 5 or the second diaphragm mechanism 8 is corrected. It is assumed that correction of one control amount is included.

実施の形態3.
図7は、本発明の実施の形態3に係る空気調和装置300の冷媒回路構成を示す冷媒回路図である。図7に基づいて、空気調和装置300の冷媒回路構成及び動作について説明する。この空気調和装置300は、冷媒を循環させる冷凍サイクルを利用して、冷房運転又は暖房運転を行なうものである。なお、実施の形態3では実施の形態1及び実施の形態2との相違点を中心に説明し、実施の形態1及び実施の形態2と同一部分には、同一符号を付している。
Embodiment 3 FIG.
FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration of the air-conditioning apparatus 300 according to Embodiment 3 of the present invention. Based on FIG. 7, the refrigerant circuit structure and operation | movement of the air conditioning apparatus 300 are demonstrated. The air conditioner 300 performs a cooling operation or a heating operation using a refrigeration cycle in which a refrigerant is circulated. In the third embodiment, differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments are denoted by the same reference numerals.

この空気調和装置300は、各種センサーの設置及び絞り機構の初期化処理が実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200と相違している。また、記憶装置の機能(以下、記憶装置52bと称する)が実施の形態1に係る空気調和装置100及び実施の形態2に係る空気調和装置200と相違している。記憶装置52bは、停電が発生したときに停電直前の第1絞り機構5の制御量と過熱度SH1、及び、第2絞り機構8の制御量と過熱度SH2を記憶するようになっている。記憶する制御量と過熱度は、停電直前の代わりに予め試験研究のときに利用したようなデータであってもよい。この記憶装置52bは、フラッシュメモリー等の不揮発性メモリーで構成するとよい。なお、記憶装置52bを、制御部50に内蔵してもよい。   The air conditioner 300 is different from the air conditioner 100 according to the first embodiment and the air conditioner 200 according to the second embodiment in the installation of various sensors and the initialization process of the throttle mechanism. Further, the function of the storage device (hereinafter referred to as the storage device 52b) is different from the air conditioner 100 according to the first embodiment and the air conditioner 200 according to the second embodiment. The storage device 52b stores the control amount and superheat degree SH1 of the first throttle mechanism 5 and the control amount and superheat degree SH2 of the second throttle mechanism 8 immediately before the power failure when a power failure occurs. The control amount and the degree of superheat to be stored may be data such as those used in advance during a test study instead of immediately before a power failure. The storage device 52b may be composed of a nonvolatile memory such as a flash memory. The storage device 52b may be built in the control unit 50.

圧縮機1の吐出側には、圧縮機1から吐出室された冷媒の圧力(高圧)を検知する高圧センサー61が設けられている。圧縮機1の吸入側には、圧縮機1に吸入される冷媒の圧力(低圧)を検知する低圧センサー62が設けられている。利用側熱交換器6の出口側(冷房運転時の冷媒の流れにおける出口側)には、冷媒の温度を検知する第1温度センサー65が設けられている。バイパス回路上の過冷却熱交換器4の出口からアキュムレーター7と四方弁2との間の経路と合流する経路には、冷媒の温度を検知する第2温度センサー66が設けられている。   On the discharge side of the compressor 1, a high pressure sensor 61 that detects the pressure (high pressure) of the refrigerant discharged from the compressor 1 is provided. A low pressure sensor 62 that detects the pressure (low pressure) of the refrigerant sucked into the compressor 1 is provided on the suction side of the compressor 1. A first temperature sensor 65 that detects the temperature of the refrigerant is provided on the outlet side of the usage-side heat exchanger 6 (the outlet side in the refrigerant flow during the cooling operation). A second temperature sensor 66 that detects the temperature of the refrigerant is provided in a path that joins the path between the accumulator 7 and the four-way valve 2 from the outlet of the supercooling heat exchanger 4 on the bypass circuit.

各種センサー(高圧センサー61、低圧センサー62、第1温度センサー65、及び、第2温度センサー66)で検知された情報は、制御部50に送られるようになっている。そして、制御部50は、各種センサーからの情報に基づいて、第1絞り機構5及び第2絞り機構8を目的の絞り開度に制御する。なお、空気調和装置300の冷房モードにおける冷媒の流れ、及び、絞り機構の開度と冷凍サイクルの変化との関係については実施の形態1に係る空気調和装置100と同様である。   Information detected by various sensors (the high pressure sensor 61, the low pressure sensor 62, the first temperature sensor 65, and the second temperature sensor 66) is sent to the control unit 50. And the control part 50 controls the 1st aperture mechanism 5 and the 2nd aperture mechanism 8 to the target aperture opening based on the information from various sensors. Note that the refrigerant flow in the cooling mode of the air-conditioning apparatus 300 and the relationship between the opening of the throttle mechanism and the change in the refrigeration cycle are the same as those of the air-conditioning apparatus 100 according to Embodiment 1.

空気調和装置300の冷凍サイクル上の冷媒の過熱度(過熱度SH1及び過熱度SH2)の計算について説明する。
低圧センサー62で検知された圧力値を用いて冷媒毎に決まっている圧力−飽和温度の関係式から飽和温度を算出する。そして、第1温度センサー65及び第2温度センサー66で検知された温度から、上記飽和温度を減じることによって過熱度が算出できる。計算式は以下となる。

Figure 0005460692
Figure 0005460692
The calculation of the superheat degree (superheat degree SH1 and superheat degree SH2) of the refrigerant | coolant on the refrigerating cycle of the air conditioning apparatus 300 is demonstrated.
Using the pressure value detected by the low-pressure sensor 62, the saturation temperature is calculated from the pressure-saturation temperature relational expression determined for each refrigerant. Then, the degree of superheat can be calculated by subtracting the saturation temperature from the temperatures detected by the first temperature sensor 65 and the second temperature sensor 66. The calculation formula is as follows.
Figure 0005460692
Figure 0005460692

図8は、絞り機構の制御量と過熱度との関係を示すグラフである。図8に基づいて、絞り機構の制御量と過熱度との関係について説明する。図2(a)が第1絞り機構5の制御量と過熱度SH1との関係を、図2(b)が第2絞り機構8の制御量と過熱度SH2との関係を、それぞれ示している。また、図2では、横軸が絞り機構の制御量を、縦軸が過熱度を、それぞれ表している。   FIG. 8 is a graph showing the relationship between the control amount of the throttle mechanism and the degree of superheat. Based on FIG. 8, the relationship between the control amount of the throttle mechanism and the degree of superheat will be described. FIG. 2 (a) shows the relationship between the control amount of the first throttle mechanism 5 and the superheat degree SH1, and FIG. 2 (b) shows the relationship between the control amount of the second throttle mechanism 8 and the superheat degree SH2. . In FIG. 2, the horizontal axis represents the control amount of the throttle mechanism, and the vertical axis represents the degree of superheat.

図8に示すように、絞り機構の制御量と過熱度との間には1対1の関係があることがわかる。つまり、図2(a)及び図2(b)から、絞り機構の1つの制御量が決定すれば、この1つの制御量に対応した1つの過熱度が決定するのである。したがって、絞り機構の制御量が分かれば、過熱度を予測することができるということになる。逆に言えば、過熱度が分かれば、絞り機構の制御量を予測することができるということである。   As shown in FIG. 8, it can be seen that there is a one-to-one relationship between the control amount of the throttle mechanism and the degree of superheat. That is, if one control amount of the throttle mechanism is determined from FIGS. 2A and 2B, one degree of superheat corresponding to this one control amount is determined. Therefore, if the control amount of the throttle mechanism is known, the degree of superheat can be predicted. In other words, if the degree of superheat is known, the control amount of the throttle mechanism can be predicted.

図9は、停電発生時における絞り機構(第1絞り装置5及び第2絞り装置8)の指令量の修正についての処理の流れを示すフローチャートである。図9に基づいて、実施の形態3に係る空気調和装置300の特徴事項である停電発生時における絞り機構の指令量の修正について説明する。   FIG. 9 is a flowchart showing the flow of processing for correcting the command amount of the aperture mechanism (the first aperture device 5 and the second aperture device 8) when a power failure occurs. Based on FIG. 9, correction of the command amount of the throttle mechanism when a power failure occurs, which is a feature of the air-conditioning apparatus 300 according to Embodiment 3, will be described.

停電・復電が発生したとき(ステップS21)、制御部50は、停電直線の絞り機構の制御量及び過熱度を記憶装置52bに記憶させる(ステップS22)。それから、制御部50は、記憶装置52bに予め記憶しておいた停電直前の絞り機構の制御量を指令量として指令する。そして、制御部50は、現在の過熱度と停電直前の過熱度とを比較・照合する(ステップS24)。現在の過熱度と停電直前の過熱度とが同じである場合は(ステップS24;No)、制御部50は、絞り機構の絞り開度をそのままにしておく(ステップS25)。一方、現在の過熱度と停電直前の過熱度とが同じでない場合は(ステップS24;Yes)、制御部50は、それらの過熱度の差異から相当する制御量の差異を算出し、修正量とする(ステップS26)。   When a power failure / recovery occurs (step S21), the control unit 50 stores the control amount and superheat degree of the power failure straight line throttle mechanism in the storage device 52b (step S22). Then, the control unit 50 commands the control amount of the throttle mechanism immediately before the power failure stored in advance in the storage device 52b as the command amount. And the control part 50 compares and collates the present superheat degree and the superheat degree just before a power failure (step S24). When the current superheat degree and the superheat degree immediately before the power failure are the same (step S24; No), the control unit 50 leaves the throttle opening of the throttle mechanism as it is (step S25). On the other hand, when the current superheat degree and the superheat degree immediately before the power failure are not the same (step S24; Yes), the control unit 50 calculates a corresponding control amount difference from the difference between the superheat degrees, and the correction amount. (Step S26).

このステップS26では、算出された修正量を現在の指令量に加算して指令することで絞り機構の制御量としている。このように、絞り機構の制御量を修正するので、指令量の修正に要する時間を短時間で維持でき、かつ、最適な冷凍サイクルを維持できる。なお、ステップS26における絞り機構の指令量の修正には、第1絞り機構5及び第2絞り機構8の双方の制御量を修正するだけでなく、第1絞り機構5あるいは第2絞り機構8のうち1つの制御量を修正することも含まれているものとする。   In step S26, the calculated correction amount is added to the current command amount and commanded to obtain the control amount of the aperture mechanism. Thus, since the control amount of the throttle mechanism is corrected, the time required for correcting the command amount can be maintained in a short time, and an optimum refrigeration cycle can be maintained. In order to correct the command amount of the aperture mechanism in step S26, not only the control amounts of both the first aperture mechanism 5 and the second aperture mechanism 8 are corrected, but also the first aperture mechanism 5 or the second aperture mechanism 8 is corrected. It is assumed that correction of one control amount is included.

なお、ステップS23で予め記憶しておいた過熱度になるようにした場合の絞り機構に指令量を指令し、ステップS24でステップS23の指令量と予め記憶しておいた絞り機構の制御量とを比較・照合し、指令量と制御量との差異を修正量とする制御フローでも同様である。また、各実施の形態の特徴事項を組み合わせた制御としてもよい。   A command amount is commanded to the throttle mechanism when the degree of superheat stored in advance in step S23 is set. In step S24, the command amount in step S23 and the control amount of the throttle mechanism stored in advance are stored. The same applies to the control flow in which the difference between the command amount and the control amount is the correction amount. Moreover, it is good also as control which combined the characteristic matter of each embodiment.

以上のように、空気調和装置300は、圧縮機1、熱源側熱交換器5、過冷却熱交換器4の高圧側、第1絞り機構5、及び、利用側熱交換器6が直列に接続された主冷媒回路と、過冷却熱交換器4と第1絞り機構5との間で分岐させ、第2絞り機構8及び過冷却熱交換器4の低圧側を介して圧縮機1の吸入側に接続させたバイパス回路と、を有しており、停電前後の利用側熱交換器6の出口における過熱度、及び、停電前後の過冷却熱交換器4のバイパス経路側の出口における過熱度のそれぞれを比較して復電後に第1絞り機構5及び第2絞り機構8に対する開度の指令量を修正する制御部50を備えてい。   As described above, in the air conditioning apparatus 300, the compressor 1, the heat source side heat exchanger 5, the high pressure side of the supercooling heat exchanger 4, the first throttle mechanism 5, and the use side heat exchanger 6 are connected in series. Branching between the main refrigerant circuit, the supercooling heat exchanger 4 and the first throttle mechanism 5, and the suction side of the compressor 1 through the second throttle mechanism 8 and the low pressure side of the supercooling heat exchanger 4 And the degree of superheat at the outlet of the use side heat exchanger 6 before and after the power failure and the degree of superheat at the outlet on the bypass path side of the supercooling heat exchanger 4 before and after the power failure. A control unit 50 is provided for correcting the opening command amount for the first throttle mechanism 5 and the second throttle mechanism 8 after power recovery by comparing each of them.

そして、制御部50は、停電前後の過熱度が同じでないとき、比較した過熱度の差異から相当する制御量の差異を算出し、第1絞り機構5及び第2絞り機構8に対する開度の修正量とするようなっている。   And when the superheat degree before and after a power failure is not the same, the control part 50 calculates the difference of the corresponding control amount from the difference of the compared superheat degree, and corrects the opening degree with respect to the 1st aperture mechanism 5 and the 2nd aperture mechanism 8. The amount is supposed to be.

Claims (4)

圧縮機、熱源側熱交換器、過冷却熱交換器の高圧側、第1絞り機構、及び、利用側熱交換器が直列に接続された主冷媒回路と、
前記過冷却熱交換器と前記第1絞り機構との間で分岐させ、第2絞り機構及び前記過冷却熱交換器の低圧側を介して前記圧縮機の吸入側に接続させたバイパス回路と、を有した空気調和装置であって、
この空気調和装置に停電が発生し、前記第1絞り機構及び前記第2絞り機構に対する開度の指令があったときから停電が発生するまでの時間ΔTと、前記第1絞り機構及び前記第2絞り機構に対する開度の指令量と実際の開度の制御量とが一致するまでの所要時間T1と、を比較して復電後に前記第1絞り機構及び前記第2絞り機構に対する開度の指令量を修正する制御部を備え、
前記制御部は、
前記第1絞り機構及び前記第2絞り機構に対する実際の開度の制御量の許容範囲、及び、一回の停電で発生する前記第1絞り機構及び前記第2絞り機構に対する開度の指令量と実際の開度の制御量との差異から、前記第1絞り機構及び前記第2絞り機構を初期化しなくても許容できる停電回数を規定回数として予め記憶しておき、
停電回数が予め記憶してある前記規定回数より少ない場合には、前記第1絞り機構及び前記第2絞り機構のうちの一方を初期化し、
停電回数が予め記憶してある前記規定回数以上である場合には、前記第1絞り機構及び前記第2絞り機構のうちの他方を初期化して、前記第1絞り機構及び前記第2絞り機構に対する開度の指令量を修正する
ことを特徴とする空気調和装置。
A main refrigerant circuit in which a compressor, a heat source side heat exchanger, a high pressure side of a supercooling heat exchanger, a first throttle mechanism, and a use side heat exchanger are connected in series;
A bypass circuit branched between the supercooling heat exchanger and the first throttle mechanism, and connected to the suction side of the compressor via the second throttle mechanism and the low pressure side of the supercooling heat exchanger; An air conditioner having
When a power failure occurs in the air conditioner and an opening degree command is given to the first throttle mechanism and the second throttle mechanism, a time ΔT from when the power failure occurs to the first throttle mechanism and the second throttle mechanism. Comparing the required time T1 until the command amount of the opening degree with respect to the throttle mechanism and the control amount of the actual opening coincide with each other, the command of the opening degree with respect to the first throttle mechanism and the second throttle mechanism after power recovery With a control unit to correct the quantity,
The controller is
The allowable range of the actual opening control amount for the first throttle mechanism and the second throttle mechanism, and the command amount of the opening degree for the first throttle mechanism and the second throttle mechanism generated by one power failure, From the difference from the actual control amount of the opening, the number of power failures that can be permitted without initializing the first throttle mechanism and the second throttle mechanism is stored in advance as a specified number of times,
If a power failure count is less than said predetermined number of times which is stored in advance, while the initializing of the first throttle mechanism and the second throttle mechanism,
If a power failure count is the prescribed number of times or more which is stored in advance, said other of the first throttle mechanism and the second throttle mechanism is initialized, the first throttle mechanism and the second throttle mechanism The air conditioning apparatus characterized by correcting the command amount of the opening with respect to .
前記ΔTが前記T1以上のときには前記第1絞り機構及び前記第2絞り機構に対する開度の指令量の修正をせず、
前記ΔTが前記T1より短いときには予め記憶してある前記第1絞り機構及び前記第2絞り機構に対する開度の指令量に前記指令量と実際の開度の制御量との差分の量を加算して前記第1絞り機構及び前記第2絞り機構のうち少なくとも1つに対する開度の指令量を修正する
ことを特徴とする請求項1に記載の空気調和装置。
When ΔT is equal to or greater than T1, the command amount of the opening degree for the first throttle mechanism and the second throttle mechanism is not corrected,
When ΔT is shorter than T1, an amount of difference between the command amount and the actual control amount of the opening is added to the opening command amounts stored in advance for the first and second throttle mechanisms. The air conditioning apparatus according to claim 1 , wherein the command amount of the opening degree for at least one of the first throttle mechanism and the second throttle mechanism is corrected.
前記停電回数、前記第1絞り機構及び前記第2絞り機構に対する開度の指令量及び実際の制御量、又は、前記過熱度を記憶する記憶装置を設けた
ことを特徴とする請求項1又は2に記載の空気調和装置。
The number of power outages, the reference variable and the actual control amount of the opening with respect to the first throttle mechanism and the second throttle mechanism, or, according to claim 1 or 2, characterized in that a storage device for storing the degree of superheat The air conditioning apparatus described in 1.
供給電源を検出して停電・復電を検知できる電源検出手段を設けた
ことを特徴とする請求項1〜3のいずれか一項に記載の空気調和装置。
The air conditioner according to any one of claims 1 to 3 , further comprising a power source detection unit capable of detecting power supply and detecting power failure / recovery.
JP2011502515A 2009-03-02 2009-03-02 Air conditioner Expired - Fee Related JP5460692B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/053811 WO2010100707A1 (en) 2009-03-02 2009-03-02 Air conditioner

Publications (2)

Publication Number Publication Date
JPWO2010100707A1 JPWO2010100707A1 (en) 2012-09-06
JP5460692B2 true JP5460692B2 (en) 2014-04-02

Family

ID=42709285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011502515A Expired - Fee Related JP5460692B2 (en) 2009-03-02 2009-03-02 Air conditioner

Country Status (3)

Country Link
EP (2) EP3242093B1 (en)
JP (1) JP5460692B2 (en)
WO (1) WO2010100707A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2729992T3 (en) * 2012-05-03 2019-11-07 Carrier Corp Air conditioning system that uses supercooled phase change material
JP6365066B2 (en) * 2014-07-28 2018-08-01 ダイキン工業株式会社 Air conditioning system
CN106440460B (en) * 2016-10-26 2022-04-26 广东高而美制冷设备有限公司 Supercooling system of air conditioner heat pump and working method of supercooling system
CN107339780B (en) * 2017-07-21 2021-03-02 广东美的暖通设备有限公司 Control method and device for differential pressure of high-pressure side and low-pressure side of multi-connected air conditioner compressor and air conditioner
RU2690996C1 (en) * 2018-06-21 2019-06-07 Акционерное общество "Научно-производственное объединение "Лианозовский электромеханический завод" Device for maintaining temperature mode of consumer and method of its operation
CN109945563B (en) * 2019-03-22 2021-11-19 广东美的制冷设备有限公司 Multi-split air conditioning system and method and device for initializing electronic expansion valve thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256526A (en) * 1992-03-10 1993-10-05 Daikin Ind Ltd Opening control device for motor-operated expansion valve
JPH09189456A (en) * 1996-01-10 1997-07-22 Sharp Corp Air conditioner
JP2007255759A (en) * 2006-03-22 2007-10-04 Mitsubishi Electric Corp Air conditioner
JP2008138921A (en) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011957B2 (en) * 2006-09-07 2012-08-29 ダイキン工業株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256526A (en) * 1992-03-10 1993-10-05 Daikin Ind Ltd Opening control device for motor-operated expansion valve
JPH09189456A (en) * 1996-01-10 1997-07-22 Sharp Corp Air conditioner
JP2007255759A (en) * 2006-03-22 2007-10-04 Mitsubishi Electric Corp Air conditioner
JP2008138921A (en) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
WO2010100707A1 (en) 2010-09-10
EP3242093B1 (en) 2018-06-20
JPWO2010100707A1 (en) 2012-09-06
EP2343486A1 (en) 2011-07-13
EP2343486A4 (en) 2014-11-05
EP3242093A1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
US9599395B2 (en) Refrigerating apparatus
JP6403887B2 (en) Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
JP4974658B2 (en) Air conditioner
JP6370545B2 (en) Heat pump system
JP5460692B2 (en) Air conditioner
WO2009154149A1 (en) Non‑azeotropic refrigerant mixture and refrigeration cycle device
JP2012112617A (en) Refrigeration device
WO2013093979A1 (en) Air conditioner
KR101901540B1 (en) Air conditioning device
JP6257809B2 (en) Refrigeration cycle equipment
JP6080939B2 (en) Air conditioner
US11796212B2 (en) Air-conditioning apparatus
JP5765990B2 (en) Indoor unit and air conditioner
JP4999531B2 (en) Air conditioner
JP6573723B2 (en) Air conditioner
JP2015087020A (en) Refrigeration cycle device
JP6537629B2 (en) Air conditioner
JP6518467B2 (en) Refrigeration system
WO2020234994A1 (en) Air conditioning device
JP6766239B2 (en) Refrigeration cycle equipment
WO2021240615A1 (en) Refrigeration cycle device
WO2015140950A1 (en) Air conditioner
WO2022195727A1 (en) Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same
GB2587278A (en) Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and fault determination method
JP2019045056A (en) Freezer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5460692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees