JP2021091367A - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
JP2021091367A
JP2021091367A JP2019224707A JP2019224707A JP2021091367A JP 2021091367 A JP2021091367 A JP 2021091367A JP 2019224707 A JP2019224707 A JP 2019224707A JP 2019224707 A JP2019224707 A JP 2019224707A JP 2021091367 A JP2021091367 A JP 2021091367A
Authority
JP
Japan
Prior art keywords
tan
value
tire
relationship
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019224707A
Other languages
English (en)
Other versions
JP7448780B2 (ja
Inventor
一憲 清水
Kazunori Shimizu
一憲 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2019224707A priority Critical patent/JP7448780B2/ja
Publication of JP2021091367A publication Critical patent/JP2021091367A/ja
Application granted granted Critical
Publication of JP7448780B2 publication Critical patent/JP7448780B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Abstract

【課題】雰囲気温度の変化に起因するタイヤの燃費性能の変動を抑制しつつ、低温雰囲気下での走行時におけるタイヤの転がり抵抗を低減できる空気入りタイヤを提供すること。【解決手段】この空気入りタイヤ1は、ビードコア11、11の径方向外側に配置された一対のビードフィラー12、12と、ビードコア11、11に架け渡されたカーカス層13と、カーカス層13の径方向外側に配置されるベルト層14と、キャップトレッド151およびアンダートレッド152から成ると共にベルト層14の径方向外側に配置されたトレッドゴム15と、カーカス層13のタイヤ幅方向外側に配置される一対のサイドウォールゴム16、16と、を備える。また、ビードフィラー12の20[℃]におけるtanδ値T20_bfおよび60[℃]におけるtanδ値T60_bfが、0.90≦T20_bf/T60_bf≦1.05およびT20_bf≦0.18の条件を満たす。【選択図】図1

Description

この発明は、空気入りタイヤに関し、さらに詳しくは、雰囲気温度の変化に起因するタイヤの燃費性能の変動を抑制しつつ、低温雰囲気下での走行時におけるタイヤの転がり抵抗を低減できる空気入りタイヤに関する。
従来の空気入りタイヤでは、常温雰囲気下での走行時におけるタイヤ温度が約60[℃]であることに着目して、60[℃]におけるトレッドゴムのtanδ値(損失正接)を低く設定することにより、タイヤの転がり抵抗を低減している。同時に、0[℃]におけるトレッドゴム(特にタイヤ接地面を構成するキャップゴム)のtanδ値を高く設定することにより、タイヤのウェット性能を確保している。
しかしながら、上記の構成では、低温雰囲気下での走行時におけるタイヤの転がり抵抗が悪化するという課題がある。このような課題に関する従来の空気入りタイヤとして、特許文献1に記載される技術が知られている。
特許第5998310号公報
一方、季節変化などにより走行時の雰囲気温度が変化すると、タイヤの転がり抵抗も変化する。このため、雰囲気温度の変化に起因してタイヤの燃費性能が変動するという課題がある。
そこで、この発明は、上記に鑑みてなされたものであって、雰囲気温度の変化に起因するタイヤの燃費性能の変動を抑制しつつ、低温雰囲気下での走行時におけるタイヤの転がり抵抗を低減できる空気入りタイヤを提供することを目的とする。
上記目的を達成するため、この発明にかかる空気入りタイヤは、一対のビードコアと、前記ビードコアの径方向外側に配置された一対のビードフィラーと、前記ビードコアに架け渡されたカーカス層と、前記カーカス層の径方向外側に配置されるベルト層と、キャップトレッドおよびアンダートレッドから成ると共に前記ベルト層の径方向外側に配置されたトレッドゴムと、前記カーカス層のタイヤ幅方向外側に配置される一対のサイドウォールゴムと、前記一対のビードコアの径方向内側に配置された一対のリムクッションゴムとを備える空気入りタイヤであって、前記ビードフィラーの20[℃]におけるtanδ値T20_bfおよび60[℃]におけるtanδ値T60_bfが、0.90≦T20_bf/T60_bf≦1.05およびT20_bf≦0.18の条件を満たすことを特徴とする。
この発明にかかる空気入りタイヤでは、(1)ビードフィラーの20[℃]におけるtanδ値T20および60[℃]におけるtanδ値T60の比T20/T60が適正化されるので、低温雰囲気下における転がり抵抗と常温雰囲気下における転がり抵抗との差を縮小できる。また、(2)ビードフィラーの20[℃]におけるtanδ値T20が上記の範囲にあることにより、低温雰囲気下における転がり抵抗が低減される。これにより、雰囲気温度の変化に起因するタイヤの燃費性能の変動を抑制しつつ、低温雰囲気下での走行時におけるタイヤの転がり抵抗を低減できる利点がある。
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。 図2は、図1に記載した空気入りタイヤのビード部を示す拡大図である。 図3は、図1に記載した空気入りタイヤのトレッド部を示す拡大図である。 図4は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
[空気入りタイヤ]
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の片側領域の断面図を示している。また、同図は、空気入りタイヤの一例として、乗用車用ラジアルタイヤを示している。
同図において、タイヤ子午線方向の断面は、タイヤ回転軸(図示省略)を含む平面でタイヤを切断したときの断面として定義される。また、タイヤ赤道面CLは、JATMAに規定されたタイヤ断面幅の測定点の中点を通りタイヤ回転軸に垂直な平面として定義される。また、タイヤ幅方向は、タイヤ回転軸に平行な方向として定義され、タイヤ径方向は、タイヤ回転軸に垂直な方向として定義される。また、点Pは、タイヤ最大幅位置である。
空気入りタイヤ1は、タイヤ回転軸を中心とする環状構造を有し、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16と、一対のリムクッションゴム17、17と、インナーライナ18とを備える(図1参照)。
一対のビードコア11、11は、スチールから成る1本あるいは複数本のビードワイヤを環状かつ多重に巻き廻して成り、ビード部に埋設されて左右のビード部のコアを構成する。一対のビードフィラー12、12は、一対のビードコア11、11のタイヤ径方向外周にそれぞれ配置されてビード部を補強する。
カーカス層13は、1枚のカーカスプライから成る単層構造あるいは複数枚のカーカスプライを積層して成る多層構造を有し、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向外側に巻き返されて係止される。また、カーカス層13のカーカスプライは、スチールあるいは有機繊維材(例えば、アラミド、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、80[deg]以上100[deg]以下のコード角度(タイヤ周方向に対するカーカスコードの長手方向の傾斜角として定義される。)を有する。
なお、図1の構成では、カーカス層13が単一のカーカスプライから成る単層構造を有している。しかし、これに限らず、カーカス層13が、2枚以上のカーカスプライを積層して成る多層構造を有しても良い(図示省略)。
また、図1の構成では、カーカス層13が、タイヤ幅方向に連続した構造を有し、タイヤ赤道面CLに交差してタイヤ左右の領域に延在している。しかし、これに限らず、カーカス層13が、左右一対のカーカスプライから成り、トレッド部に分断部を有してタイヤ幅方向に分離した構造(いわゆるカーカス分割構造)を有しても良い(図示省略)。
ベルト層14は、複数のベルトプライ141〜144を積層して成り、カーカス層13の外周に掛け廻されて配置される。ベルトプライ141〜144は、一対の交差ベルト141、142と、ベルトカバー143およびベルトエッジカバー144とを含む。
一対の交差ベルト141、142は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で15[deg]以上55[deg]以下のコード角度を有する。また、一対の交差ベルト141、142は、相互に異符号のコード角度(タイヤ周方向に対するベルトコードの長手方向の傾斜角として定義される)を有し、ベルトコードの長手方向を相互に交差させて積層される(いわゆるクロスプライ構造)。また、一対の交差ベルト141、142は、カーカス層13のタイヤ径方向外側に積層されて配置される。
ベルトカバー143およびベルトエッジカバー144は、スチールあるいは有機繊維材から成るベルトカバーコードをコートゴムで被覆して構成され、絶対値で0[deg]以上10[deg]以下のコード角度を有する。また、ベルトカバー143およびベルトエッジカバー144は、例えば、1本あるいは複数本のベルトカバーコードをコートゴムで被覆して成るストリップ材であり、このストリップ材を交差ベルト141、142の外周面に対してタイヤ周方向に複数回かつ螺旋状に巻き付けて構成される。また、ベルトカバー143が交差ベルト141、142の全域を覆って配置され、一対のベルトエッジカバー144、144が交差ベルト141、142の左右のエッジ部をタイヤ径方向外側から覆って配置される。
トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。また、トレッドゴム15は、キャップトレッド151と、アンダートレッド152とを備える。キャップトレッド151は、接地特性および耐候性に優れるゴム材料から成り、タイヤ接地面の全域に渡ってトレッド面に露出して、トレッド部の外表面を構成する。アンダートレッド152は、キャップトレッド151よりも耐熱性に優れるゴム材料から成り、キャップトレッド151とベルト層14との間に挟み込まれて配置されて、トレッドゴム15のベース部分を構成する。
一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。例えば、図1の構成では、サイドウォールゴム16のタイヤ径方向外側の端部が、トレッドゴム15の下層に配置されてベルト層14とカーカス層13との間に挟み込まれている。しかし、これに限らず、サイドウォールゴム16のタイヤ径方向外側の端部が、トレッドゴム15の外層に配置されてタイヤのバットレス部に露出しても良い(図示省略)。
一対のリムクッションゴム17、17は、左右のビードコア11、11およびカーカス層13の巻き返し部のタイヤ径方向内側からタイヤ幅方向外側に延在して、ビード部のリム嵌合面を構成する。例えば、図1の構成では、リムクッションゴム17のタイヤ径方向外側の端部が、サイドウォールゴム16の下層に挿入されて、サイドウォールゴム16とカーカス層13との間に挟み込まれて配置されている。
インナーライナ18は、タイヤ内腔面に配置されてカーカス層13を覆う空気透過防止層であり、カーカス層13の露出による酸化を抑制し、また、タイヤに充填された空気の洩れを防止する。また、インナーライナ18は、例えば、ブチルゴムを主成分とするゴム組成物、熱可塑性樹脂、熱可塑性樹脂中にエラストマー成分をブレンドした熱可塑性エラストマー組成物などから構成される。
[タイヤゴム部材の特性]
この空気入りタイヤ1では、タイヤのウェット性能を確保しつつ常温雰囲気下および低温雰囲気下での転がり抵抗を低減するために、タイヤケーシングを構成する各ゴム部材が以下の構成を有する。
まず、キャップトレッド151の0[℃]におけるtanδ値T0_ctおよび60[℃]におけるtanδ値T60_ctが、2.00≦T0_ct/T60_ct≦4.38の関係を有し、3.00≦T0_ct/T60_ct≦4.35の関係を有することが好ましく、3.10≦T0_ct/T60_ct≦4.31の関係を有することがより好ましい。これにより、タイヤのウェット性能を向上させつつ、タイヤの燃費性能の温度依存性を低減できる。
損失正接tanδは、(株)東洋精機製作所製の粘弾性スペクトロメーターを用いて、所定の温度、剪断歪み10[%]、振幅±0.5[%]および周波数20[Hz]の条件で測定される。
0[℃]におけるtanδ値は、ウェット路面の走行時におけるタイヤ性能に関係する指標である。また、20[℃]におけるtanδ値は、約10[℃]の雰囲気温度での走行時におけるタイヤ温度を想定した指標であり、60[℃]におけるtanδ値は、約25[℃]の雰囲気温度での走行時におけるタイヤ温度を想定した指標である。また、これらのtanδ値の比は、ゴム部材の温度依存性の指標となる。
また、キャップトレッド151の20[℃]におけるtanδ値T20_ctおよび60[℃]におけるtanδ値T60_ctが、1.60≦T20_ct/T60_ct≦1.90の関係を有し、1.70≦T20_ct/T60_ct≦1.80の関係を有することが好ましい。これにより、低温雰囲気下における転がり抵抗と常温雰囲気下における転がり抵抗との差が縮小されて、タイヤの燃費性能の温度依存性が低減される。
また、キャップトレッド151の0[℃]におけるtanδ値T0_ctが、T0_ct≦0.75の範囲にある。また、キャップトレッドの20[℃]におけるtanδ値T20_ctが、T20_ct≦0.48の範囲にある。また、キャップトレッドの60[℃]におけるtanδ値T60_ctが、T60_ct≦0.38の範囲にある。これにより、タイヤのウェット性能を向上しつつ、低温雰囲気下および高温雰囲気下における転がり抵抗が低減される。なお、T0_ct、T20_ctおよびT60_ctの下限は、特に限定がなく0に近いほど好ましいが、上記比の条件により制約を受ける。
また、20[℃]におけるキャップトレッド151のゴム硬さHs_ctが、50≦Hs_ct≦75の範囲にある。また、キャップトレッド151の100[%]伸張時のモジュラスが、1.0[MPa]≦E’_ct≦3.5[MPa]の範囲にある。
ゴム硬さは、JIS K6253に準拠して測定される。
モジュラスは、JIS K6251(3号ダンベル使用)に準拠して、ダンベル状試験片を用いた温度20[℃]での引張試験により測定される。
また、タイヤケーシングを構成するキャップトレッド151以外のゴム部材の20[℃]におけるtanδ値T20および60[℃]におけるtanδ値T60が、0.50≦T20/T60≦2.00の関係を有し、0.65≦T20/T60≦1.55の関係を有することが好ましく、0.80≦T20/T60≦1.50の関係を有することがより好ましい。
上記ゴム部材として、具体的には、ビードフィラー12、トレッドゴム15のアンダートレッド152、サイドウォールゴム16およびリムクッションゴム17の少なくとも1つが上記の条件を満たす。これらのゴム部材にかかる詳細な条件については、後述する。また、例えば、ビードコア11のビードワイヤのコートゴム、カーカス層13のカーカスコードのコートゴム、ベルト層14のベルトコードのコートゴムが上記の条件を満たしても良い。
上記の構成では、ゴム部材の20[℃]におけるtanδ値T20および60[℃]におけるtanδ値T60の比T20/T60が適正化されるので、低温雰囲気下における転がり抵抗と常温雰囲気下における転がり抵抗との差を縮小できる。これにより、雰囲気温度の変化(例えば、季節変化など)に起因するタイヤの燃費性能の変動を抑制できる。
また、上記ゴム部材の20[℃]におけるtanδ値T20が、T20≦0.22の範囲にあり、T20≦0.15の範囲にあることが好ましい。また、上記ゴム部材の60[℃]におけるtanδ値T60が、T60≦0.17の範囲にある。T20およびT60の下限は、特に限定がなく0に近いほど好ましいが、上記比の条件により制約を受ける。これにより、低温雰囲気下における転がり抵抗が低減される。
[ビードフィラーの特性]
また、ビードフィラー12の20[℃]におけるtanδ値T20_bfおよび60[℃]におけるtanδ値T60_bfが、0.90≦T20_bf/T60_bf≦1.05の関係を有し、0.91≦T20_bf/T60_bf≦1.04の関係を有することが好ましく、0.92≦T20_bf/T60_bf≦1.03の関係を有することがより好ましい。これにより、低温雰囲気下における転がり抵抗と常温雰囲気下における転がり抵抗との差を縮小できる。
また、ビードフィラー12の20[℃]におけるtanδ値T20_bfが、T20_bf≦0.18の範囲にあり、T20_bf≦0.17の範囲にあることが好ましく、T20_bf≦0.16の範囲にあることがより好ましい。また、ビードフィラー12の60[℃]におけるtanδ値T60_bfが、T60_bf≦0.20の範囲にある。これにより、低温雰囲気下および高温雰囲気下における転がり抵抗が低減される。なお、T20_bfおよびT60_bfの下限は、特に限定がなく0に近いほど好ましいが、上記比の条件により制約を受ける。
また、ビードフィラー12の20[℃]におけるtanδ値T20_bfが、キャップトレッド151の20[℃]におけるtanδ値T20_ctに対してT20_ct×T20_bf≦0.040の関係を有し、T20_ct×T20_bf≦0.039の関係を有することが好ましい。これにより、低温雰囲気下における転がり抵抗を適正に低減できる。
また、ビードフィラー12の60[℃]におけるtanδ値T60_bfが、キャップトレッド151の60[℃]におけるtanδ値T60_ctに対してT60_ct×T60_bf≦0.030の関係を有し、T60_ct×T60_bf≦0.028の関係を有することが好ましく、T60_ct×T60_bf≦0.026の関係を有することがより好ましい。これにより、常温雰囲気下における転がり抵抗が適正化される。
また、ビードフィラー12の20[℃]におけるtanδ値T20_bfと60[℃]におけるtanδ値T60_bfとの比T20_bf/T60_bfが、キャップトレッド151の20[℃]におけるtanδ値T20_ctと60[℃]におけるtanδ値T60_ctとの比T20_ct/T60_ctに対して0.40≦(T20_bf/T60_bf)/(T20_ct/T60_ct)≦0.60の関係を有し、0.45≦(T20_bf/T60_bf)/(T20_ct/T60_ct)≦0.55の関係を有することが好ましい。かかる構成では、タイヤ接地面側に位置するゴム部材のtanδ比がリム嵌合面側に位置するゴム部材よりも小さく設定されるので、タイヤ転動時におけるゴム部材の変形および振動がタイヤ接地面からリム嵌合面に向かって効率的に減衰する。これにより、走行時の雰囲気温度に関わらず、タイヤ全体としてのエネルギー消費量が低減されて、タイヤの転がり抵抗が低減される。
また、20[℃]におけるビードフィラー12のゴム硬さHs_bfが、70≦Hs_bf≦97の範囲にある。また、ビードフィラー12の100[%]伸張時のモジュラスが、1.0[MPa]≦E’_bf≦13.0[MPa]の範囲にある。
また、20[℃]におけるビードフィラー12のゴム硬さHs_bfが、20[℃]におけるキャップトレッド151のゴム硬さHs_ctに対して25≦Hs_bf−Hs_ct≦30の関係を有する。かかる構成では、ビードフィラー12およびキャップトレッド151のゴム硬さの関係が適正化されて、ビード部からタイヤ接地面への操舵力の伝達効率および応答性が向上する。これにより、タイヤの操縦安定性能が向上する。
図2は、図1に記載した空気入りタイヤ1のビード部を示す拡大図である。同図において、ビードコア11の頂面からビードコア11の断面高さH1の距離までの領域A1を定義する。
このとき、領域A1におけるビードフィラー12の最大ゲージGa_bfと、20[℃]におけるビードフィラー12のtanδ値T20_bfとが、Ga_bf×T20_bf≦0.90の関係を有し、Ga_bf×T20_bf≦0.80のの関係を有することが好ましい。また、ビードフィラー12の最大ゲージGa_bfが、ビードコア11の最大幅W1に対して0.90≦Ga_bf/W1≦1.10の関係を有する。これにより、タイヤ転動時におけるビードフィラー12のエネルギー消費量が低減されて、低温雰囲気下における転がり抵抗を低減できる。
ビードフィラー12の最大ゲージGa_bfは、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態としたときのタイヤ幅方向の最大厚さとして測定される。
規定リムとは、JATMAに規定される「標準リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が規定内圧での最大負荷能力の88[%]である。
また、図1において、ビードフィラー12の高さH2が、タイヤ断面高さSHに対して0.15≦H2/SH≦0.21の関係を有し、0.18≦H2/SH≦0.20の関係を有することがより好ましい。また、このとき、カーカス層13の巻き上げ高さH3が、タイヤ断面高さSHに対して0.15≦H3/SHの関係を有することが好ましく、0.17≦H3/SHの関係を有することがより好ましく、0.19≦H3/SHの関係を有することがさらに好ましい。
ビードフィラー12の高さH2は、タイヤ径方向におけるビードフィラー12の延在長さとして測定される。
カーカス層13の巻き上げ高さH3は、ビードコア11の径方向最内点からカーカス層13の巻き上げ部の径方向最外点までのタイヤ径方向の距離として測定される。
[アンダートレッドの特性]
また、アンダートレッド152の20[℃]におけるtanδ値T20_utおよび60[℃]におけるtanδ値T60_utが、0.50≦T20_ut/T60_ut≦1.55の関係を有し、0.75≦T20_ut/T60_ut≦1.50の関係を有することが好ましく、0.80≦T20_ut/T60_ut≦1.45の関係を有することがより好ましい。これにより、低温雰囲気下における転がり抵抗と常温雰囲気下における転がり抵抗との差を縮小できる。
また、アンダートレッド152の20[℃]におけるtanδ値T20_utが、T20_ut≦0.15の範囲にあり、T20_ut≦0.07の範囲にあることが好ましい。また、アンダートレッド152の60[℃]におけるtanδ値T60_utが、T60_ut≦0.30の範囲にあり、T60_ut≦0.15の範囲にあることが好ましい。これにより、低温雰囲気下および高温雰囲気下における転がり抵抗が低減される。なお、T20_utおよびT60_utの下限は、特に限定がなく0に近いほど好ましいが、上記比の条件により制約を受ける。
また、アンダートレッド152の20[℃]におけるtanδ値T20_utが、キャップトレッド151の0[℃]におけるtanδ値T0_ctに対してT0_ct×T20_ut≦0.050の関係を有し、T0_ct×T20_ut≦0.050の関係を有することが好ましい。これにより、低温雰囲気下における転がり抵抗を適正に低減できる。
上記tanδ値の積について、タイヤ転動時におけるタイヤ内部の温度分布によれば、路面に接触するキャップトレッド151の温度は、アンダートレッド152の温度よりも低い傾向にある。そこで、キャップトレッド151について相対的に低い温度のtanδ値を使用することにより、低温雰囲気下における転がり抵抗へのtanδ値の影響を適正に評価できる。
また、アンダートレッド152の60[℃]におけるtanδ値T60_utが、キャップトレッド151の40[℃]におけるtanδ値T40_ctに対してT40_ct×T60_ut≦0.024の関係を有し、T40_ct×T60_ut≦0.020の関係を有することが好ましく、T40_ct×T60_ut≦0.015の関係を有することがより好ましい。これにより、高温雰囲気下における転がり抵抗を適正に低減できる。
また、アンダートレッド152の20[℃]におけるtanδ値T20_utと60[℃]におけるtanδ値T60_utとの比T20_ut/T60_utが、キャップトレッド151の20[℃]におけるtanδ値T20_ctと60[℃]におけるtanδ値T60_ctとの比T20_ct/T60_ctに対して0.75≦(T20_ut/T60_ut)/(T20_ct/T60_ct)≦1.00の関係を有し、0.78≦(T20_ut/T60_ut)/(T20_ct/T60_ct)≦0.95の関係を有することが好ましい。
上記の構成では、タイヤ接地面側に位置するゴム部材のtanδ比がリム嵌合面側に位置するゴム部材よりも小さく設定されるので、タイヤ転動時におけるゴム部材の変形および振動がタイヤ接地面からリム嵌合面に向かって効率的に減衰する。これにより、走行時の雰囲気温度に関わらず、タイヤ全体としてのエネルギー消費量が低減されて、タイヤの転がり抵抗が低減される。
また、20[℃]におけるアンダートレッド152のゴム硬さHs_utが、55≦Hs_ut≦65の範囲にある。また、アンダートレッド152の100[%]伸張時のモジュラスが、1.5[MPa]≦E’_ut≦3.0[MPa]の範囲にある。
また、20[℃]におけるアンダートレッド152のゴム硬さHs_utが、キャップトレッド151のゴム硬さHs_ctに対して1≦Hs_ct−Hs_ut≦10の関係を有し、3≦Hs_ct−Hs_ut≦8の関係を有することが好ましく、4≦Hs_ct−Hs_ut≦7の関係を有することがより好ましい。かかる構成では、キャップトレッド151がアンダートレッド152よりも硬いので、タイヤの操縦安定性が向上し、また、アンダートレッド152の路面追従性が向上して、タイヤのウェット性能が向上する。
また、図1において、タイヤ子午線方向の断面視におけるキャップトレッド151の断面積S_ctおよびアンダートレッド152の断面積S_utが、0.11≦S_ut/(S_ct+S_ut)≦0.50の関係を有し、0.13≦S_ut/(S_ct+S_ut)≦0.45の関係を有することが好ましく、0.15≦S_ut/(S_ct+S_ut)≦0.40の関係を有することが好ましい。上記下限により、比較的小さいtanδ値をもつアンダートレッド152のボリュームが確保されて、上記した転がり抵抗の低減作用が確保される。タイヤの転がり抵抗の低減作用が確保される利点がある。上記上限により、硬いキャップトレッド151のボリュームが確保されて、上記したタイヤの操縦安定性能の向上作用が確保される。
キャップトレッド151の断面積S_ctおよびアンダートレッド152の断面積S_utは、タイヤ全周における平均値として算出される。
また、図1において、ベルト層14を構成する交差ベルト141、142のうち最も幅広な交差ベルト141の最大幅Wb2、キャップトレッド151の最大幅Wctおよびアンダートレッド152の最大幅Wutが、15[mm]≦Wct−Wb2≦30[mm]およびWb2<Wut<Wctの条件を満たす。上記上限により、交差ベルト142の最大幅Wb2が確保されて、タイヤの転がり抵抗が低減される。また、上記大小関係Wb2<Wut<Wctにより、タイヤの耐久性が確保される。
交差ベルト142の最大幅Wb2、キャップトレッド151の最大幅Wctおよびアンダートレッド152の最大幅Wutは、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。
図3は、図1に記載した空気入りタイヤ1のトレッド部を示す拡大図である。同図において、ベルト層14を構成する交差ベルト141、142のうち最も幅広な交差ベルト141の端部を通りカーカス層13に垂直な仮想線L1を定義する。
このとき、仮想線L1上におけるキャップトレッド151のゲージGa_ctおよびアンダートレッド152のゲージGa_utが、0.20≦Ga_ut/Ga_ct≦0.40の関係を有する。上記下限により、比較的小さいtanδ値をもつアンダートレッド152のボリュームが確保されて、上記した転がり抵抗の低減作用が確保される。上記上限により、硬いキャップトレッド151のボリュームが確保されて、上記したタイヤの操縦安定性能の向上作用が確保される。
また、タイヤ子午線方向の断面視におけるキャップトレッド151の断面積S_ctおよびアンダートレッド152の断面積S_utと、0[℃]におけるキャップトレッド151のtanδ値T0_ctとが、0.20≦{S_ct/(S_ct+S_ut)}×T0_ct≦0.60の条件を満たし、0.30≦{S_ct/(S_ct+S_ut)}×T0_ct≦0.58の条件を満たすことが好ましい。上記下限により、キャップトレッド151のボリュームが確保されて、上記したタイヤの操縦安定性能の向上作用が確保される。上記上限により、キャップトレッド151のボリュームあるいはtanδ値が過大となることに起因する転がり抵抗の悪化が抑制される。
また、タイヤ子午線方向の断面視におけるキャップトレッド151の断面積S_ctおよびアンダートレッド152の断面積S_utと、20[℃]におけるアンダートレッドのtanδ値T20_utとが、0.01≦{S_ut/(S_ct+S_ut)}×T20_ut≦0.60の条件を満たし、0.01≦{S_ut/(S_ct+S_ut)}×T20_ut≦0.05の条件を満たすことが好ましい。上記上限により、アンダートレッド152の路面追従性が確保されて、上記したタイヤのウェット性能の向上作用が確保され、また、比較的柔らかいアンダートレッド152のボリュームが過大となることに起因するタイヤの操縦安定性能の悪化が抑制される。
[サイドウォールゴムの特性]
また、サイドウォールゴム16の20[℃]におけるtanδ値T20_swおよび60[℃]におけるtanδ値T60_swが、0.50≦T20_sw/T60_sw≦1.50の関係を有し、0.75≦T20_sw/T60_sw≦1.45の関係を有することが好ましく、0.80≦T20_sw/T60_sw≦1.40の関係を有することがより好ましい。これにより、低温雰囲気下における転がり抵抗と常温雰囲気下における転がり抵抗との差を縮小できる。
また、サイドウォールゴム16の20[℃]におけるtanδ値T20_swが、T20_sw≦0.11の範囲にあり、T20_sw≦0.10の範囲にあることが好ましい。また、サイドウォールゴム16の60[℃]におけるtanδ値T60_swが、T60_sw≦0.22の範囲にある。これにより、低温雰囲気下および高温雰囲気下における転がり抵抗が低減される。なお、T20_swおよびT60_swの下限は、特に限定がなく0に近いほど好ましいが、上記比の条件により制約を受ける。
また、サイドウォールゴム16の20[℃]におけるtanδ値T20_swが、キャップトレッド151の0[℃]におけるtanδ値T0_ctに対してT0_ct×T20_sw≦0.070の関係を有し、T0_ct×T20_sw≦0.65の関係を有することが好ましく、T0_ct×T20_sw≦0.60の関係を有することがより好ましい。これにより、低温雰囲気下における転がり抵抗を適正に低減できる。
上記tanδ値の積について、タイヤ転動時におけるタイヤ内部の温度分布によれば、路面に接触するキャップトレッド151の温度は、サイドウォールゴム16の温度よりも低い傾向にある。そこで、キャップトレッド151について相対的に低い温度のtanδ値を使用することにより、低温雰囲気下における転がり抵抗へのtanδ値の影響を適正に評価できる。
また、サイドウォールゴム16の60[℃]におけるtanδ値T60_swが、キャップトレッド151の40[℃]におけるtanδ値T40_ctに対してT40_ct×T60_sw≦0.024の関係を有し、T40_ct×T60_sw≦0.21の関係を有することが好ましく、T40_ct×T60_sw≦0.18の関係を有することがより好ましい。これにより、高温雰囲気下における転がり抵抗を適正に低減できる。
また、サイドウォールゴム16の20[℃]におけるtanδ値T20_swと60[℃]におけるtanδ値T60_swとの比T20_sw/T60_swが、キャップトレッド151の20[℃]におけるtanδ値T20_ctと60[℃]におけるtanδ値T60_ctとの比T20_ct/T60_ctに対して0.70≦(T20_sw/T60_sw)/(T20_ct/T60_ct)≦0.90の関係を有し、0.75≦(T20_sw/T60_sw)/(T20_ct/T60_ct)≦0.85の関係を有することが好ましい。かかる構成では、タイヤ接地面側に位置するゴム部材のtanδ比がリム嵌合面側に位置するゴム部材よりも小さく設定されるので、タイヤ転動時におけるゴム部材の変形および振動がタイヤ接地面からリム嵌合面に向かって効率的に減衰する。これにより、走行時の雰囲気温度に関わらず、タイヤ全体としてのエネルギー消費量が低減されて、タイヤの転がり抵抗が低減される。
また、サイドウォールゴム16の20[℃]におけるtanδ値T20_swと60[℃]におけるtanδ値T60_swとの比T20_sw/T60_swが、ビードフィラー12の20[℃]におけるtanδ値T20_bfと60[℃]におけるtanδ値T60_bfとの比T20_bf/T60_bfに対して0.62≦(T20_bf/T60_bf)/(T20_sw/T60_sw)≦0.72の関係を有し、1.40≦(T20_sw/T60_sw)/(T20_bf/T60_bf)≦1.60の関係を有することが好ましい。これにより、タイヤの転がり抵抗が低減される。
また、サイドウォールゴム16の20[℃]におけるtanδ値T20_swと60[℃]におけるtanδ値T60_swとの比T20_sw/T60_swが、アンダートレッド152の20[℃]におけるtanδ値T20_utと60[℃]におけるtanδ値T60_utとの比T20_ut/T60_utに対して0.90≦(T20_sw/T60_sw)/(T20_ut/T60_ut)≦1.10の関係を有し、0.95≦(T20_sw/T60_sw)/(T20_ut/T60_ut)≦1.05の関係を有することが好ましい。これにより、タイヤの転がり抵抗が低減される。
また、20[℃]におけるサイドウォールゴム16のゴム硬さHs_swが、50≦Hs_sw≦60の範囲にある。また、サイドウォールゴム16の100[%]伸張時のモジュラスが、1.0[MPa]≦E’_sw≦2.5[MPa]の範囲にある。
また、20[℃]におけるサイドウォールゴム16のゴム硬さHs_swが、20[℃]におけるキャップトレッド151のゴム硬さHs_ctに対して1≦Hs_ct−Hs_sw≦10の関係を有し、3≦Hs_ct−Hs_sw≦8の関係を有することが好ましく、4≦Hs_ct−Hs_sw≦7の関係を有することがより好ましい。かかる構成では、サイドウォールゴム16およびキャップトレッド151のゴム硬さの関係が適正化されて、リム嵌合面からタイヤ接地面への操舵力の伝達効率および応答性が向上する。これにより、タイヤの操縦安定性能が向上する。
また、20[℃]におけるサイドウォールゴム16のゴム硬さHs_swが、20[℃]におけるビードフィラー12のゴム硬さHs_bfに対して35≦Hs_bf−Hs_sw≦40の関係を有し、36≦Hs_bf−Hs_sw≦39の関係を有することが好ましい。これにより、タイヤの操縦安定性能が向上する。
また、図1において、タイヤ最大幅位置Pを中心とするタイヤ断面高さの50[%]の領域A2を定義する。
このとき、領域A2におけるサイドウォールゴム16の最小厚さGa_sw(図2参照)と、サイドウォールゴム16の20[℃]におけるtanδ値T20_swとが、Ga_sw×T20_sw≦0.25の関係を有し、Ga_sw×T20_sw≦0.23の関係を有することが好ましく、Ga_sw×T20_sw≦0.21の関係を有することがより好ましい。これにより、タイヤ転動時におけるサイドウォールゴム16のエネルギー消費量が低減されて、低温雰囲気下における転がり抵抗を低減できる。また、サイドウォールゴム16の最小厚さGa_swが、1.5[mm]≦Ga_sw≦3.5[mm]の範囲にある。
また、トレッドゴム15(具体的には、キャップトレッド151およびアンダートレッド152の少なくとも一方)と、サイドウォールゴム16とのオーバーラップ量Laが、30[mm]≦La≦60[mm]の範囲にある。上記下限により、トレッドゴムのセパレーションが抑制され、上記上限により、タイヤ転動時におけるショルダー部の歪みが過大となることに起因する転がり抵抗の増加が抑制される。
オーバーラップ量Laは、タイヤ内周面に沿った長さとして測定される。
[リムクッションゴムの特性]
また、リムクッションゴム17の20[℃]におけるtanδ値T20_rcおよび60[℃]におけるtanδ値T60_rcが、0.70≦T20_rc/T60_rc≦1.30の関係を有し、0.80≦T20_rc/T60_rc≦1.25の関係を有することが好ましく、0.90≦T20_rc/T60_rc≦1.20の関係を有することがより好ましい。これにより、低温雰囲気下における転がり抵抗と常温雰囲気下における転がり抵抗との差を縮小できる。
また、リムクッションゴム17の20[℃]におけるtanδ値T20_rcが、T20_rc≦0.22の範囲にあり、T20_rc≦21の範囲にあることが好ましく、T20_rc≦21の範囲にあることがより好ましい。また、リムクッションゴム17の60[℃]におけるtanδ値T60_rcが、T60_rc≦0.31の範囲にある。これにより、低温雰囲気下および高温雰囲気下における転がり抵抗が低減される。なお、T20_rcおよびT60_rcの下限は、特に限定がなく0に近いほど好ましいが、上記比の条件により制約を受ける。
また、リムクッションゴム17の20[℃]におけるtanδ値T20_rcが、キャップトレッド151の20[℃]におけるtanδ値T20_ctに対してT20_ct×T20_rc≦0.070の関係を有し、T20_ct×T20_rc≦0.060の関係を有することが好ましい。上記積は、低温雰囲気下における転がり抵抗の指標となる。
また、リムクッションゴム17の20[℃]におけるtanδ値T20_rcが、ビードフィラー12の20[℃]におけるtanδ値T20_bfに対してT20_bf×T20_rc≦0.050の関係を有し、T20_bf×T20_rc≦0.040の関係を有することが好ましい。これにより、低温雰囲気下における転がり抵抗を適正に低減できる。
また、リムクッションゴム17の20[℃]におけるtanδ値T20_rcが、サイドウォールゴム16の60[℃]におけるtanδ値T20_swに対してT20_ct×T20_sw≦0.06の関係を有し、T20_ct×T20_sw≦0.05の関係を有することが好ましい。上記積は、低温雰囲気下における転がり抵抗の指標となる。
また、リムクッションゴム17の60[℃]におけるtanδ値T60_rcが、キャップトレッド151の60[℃]におけるtanδ値T60_ctに対してT60_ct×T60_rc≦0.030の関係を有し、T60_ct×T60_rc≦0.27の関係を有することが好ましく、T60_ct×T60_rc≦0.25の関係を有することがより好ましい。これにより、高温雰囲気下における転がり抵抗を適正に低減できる。
また、リムクッションゴム17の60[℃]におけるtanδ値T60_rcが、ビードフィラー12の60[℃]におけるtanδ値T60_bfに対してT60_bf×T60_rc≦0.040の関係を有し、T60_bf×T60_rc≦0.030の関係を有することが好ましい。これにより、高温雰囲気下における転がり抵抗を適正に低減できる。
また、リムクッションゴム17の60[℃]におけるtanδ値T60_rcが、サイドウォールゴム16の60[℃]におけるtanδ値T60_swに対してT60_sw×T60_rc≦0.030の関係を有し、T60_sw×T60_rc≦0.020の関係を有することが好ましい。上記積は、低温雰囲気下における転がり抵抗の指標となる。
また、リムクッションゴム17の20[℃]におけるtanδ値T20_rcと60[℃]におけるtanδ値T60_rcとの比T20_rc/T60_rcが、キャップトレッド151の20[℃]におけるtanδ値T20_ctと60[℃]におけるtanδ値T60_ctとの比T20_ct/T60_ctに対して0.55≦(T20_rc/T60_rc)/(T20_ct/T60_ct)≦0.85の関係を有し、0.65≦(T20_rc/T60_rc)/(T20_ct/T60_ct)≦0.75の関係を有することが好ましい。
上記の構成では、タイヤ接地面側に位置するゴム部材のtanδ比がリム嵌合面側に位置するゴム部材よりも小さく設定されるので、タイヤ転動時におけるゴム部材の変形および振動がタイヤ接地面からリム嵌合面に向かって効率的に減衰する。これにより、走行時の雰囲気温度に関わらず、タイヤ全体としてのエネルギー消費量が低減されて、タイヤの転がり抵抗が低減される。
また、リムクッションゴム17の20[℃]におけるtanδ値T20_rcと60[℃]におけるtanδ値T60_rcとの比T20_rc/T60_rcが、ビードフィラー12の20[℃]におけるtanδ値T20_bfと60[℃]におけるtanδ値T60_bfとの比T20_bf/T60_bfに対して1.00≦(T20_rc/T60_rc)/(T20_bf/T60_bf)≦1.40の関係を有し、1.02≦(T20_rc/T60_rc)/(T20_bf/T60_bf)≦1.38の関係を有することが好ましく、1.04≦(T20_rc/T60_rc)/(T20_bf/T60_bf)≦1.36の関係を有することがより好ましい。
上記の構成では、タイヤサイド部からビード部までを構成するゴム部材が同等の温度依存性を有することにより、タイヤ転動時におけるゴム部材の変形および振動がタイヤ接地面からリム嵌合面に向かって効率的に減衰する。これにより、走行時の雰囲気温度に関わらず、タイヤ全体としてのエネルギー消費量が低減されて、タイヤの転がり抵抗が低減される。
また、リムクッションゴム17の20[℃]におけるtanδ値T20_rcと60[℃]におけるtanδ値T60_rcとの比T20_rc/T60_rcが、サイドウォールゴム16の20[℃]におけるtanδ値T20_swと60[℃]におけるtanδ値T60_swとの比T20_sw/T60_swに対して0.85≦(T20_rc/T60_rc)/(T20_sw/T60_sw)≦1.15の関係を有し、0.85≦(T20_rc/T60_rc)/(T20_sw/T60_sw)≦1.00することが好ましい。これにより、タイヤの転がり抵抗が低減される。
また、20[℃]におけるリムクッションゴム17のゴム硬さHs_rcが、65≦Hs_rc≦75の範囲にある。また、リムクッションゴム17の100[%]伸張時のモジュラスが、3.5[MPa]≦E’_rc≦6.0[MPa]の範囲にある。
また、20[℃]におけるリムクッションゴム17のゴム硬さHs_rcが、20[℃]におけるキャップトレッド151のゴム硬さHs_ctに対して7≦Hs_rc-Hs_ct≦11の関係を有し、8≦Hs_rc-Hs_ct≦10の関係を有することが好ましい。かかる構成では、リムクッションゴム17およびキャップトレッド151のゴム硬さの関係が適正化されて、リム嵌合面からタイヤ接地面への操舵力の伝達効率および応答性が向上する。これにより、タイヤの操縦安定性能が向上する。
また、20[℃]におけるリムクッションゴム17のゴム硬さHs_rcが、20[℃]におけるビードフィラー12のゴム硬さHs_bfに対して18≦Hs_bf-Hs_rc≦21の関係を有し、19≦Hs_bf-Hs_rc≦21の関係を有することが好ましい。かかる構成では、タイヤ幅方向に隣り合うビードフィラー12およびリムクッションゴム17のゴム硬さの関係が適正化されて、車両旋回時におけるタイヤ幅方向へのビード部の変形が連続的となる。これにより、タイヤの操縦安定性能が向上する。
また、20[℃]におけるリムクッションゴム17のゴム硬さHs_rcが、20[℃]におけるサイドウォールゴム16のゴム硬さHs_swに対して17≦Hs_rc−Hs_sw≦20の関係を有し、18≦Hs_rc−Hs_sw≦19の関係を有することが好ましい。かかる構成では、ビード部からタイヤサイド部を構成するサイドウォールゴム16およびリムクッションゴム17のゴム硬さの関係が適正化されて、車両旋回時におけるタイヤ幅方向へのタイヤサイド部の変形が連続的となる。これにより、タイヤの操縦安定性能が向上する。
また、図2において、ビードコア11の頂面からビードコア11の断面高さH1の距離にあるタイヤ回転軸に平行な仮想線L2を定義する。
このとき、仮想線L2上におけるリムクッションゴム17のゲージGa_rcと、20[℃]におけるリムクッションゴム17のtanδ値T20_rcとが、Ga_rc×T20_rc≦0.80の関係を有し、Ga_rc×T20_rc≦0.70の関係を有することが好ましい。また、リムクッションゴム17のゲージGa_rcが、3.5[mm]≦Ga_rc≦4.5[mm]の範囲にある。これにより、タイヤ転動時におけるリムクッションゴム17のエネルギー消費量が低減されて、低温雰囲気下における転がり抵抗を低減できる。
[効果]
以上説明したように、この空気入りタイヤ1は、一対のビードコア11、11と、ビードコア11、11の径方向外側に配置された一対のビードフィラー12、12と、ビードコア11、13に架け渡されたカーカス層13と、カーカス層13の径方向外側に配置されるベルト層14と、キャップトレッド151およびアンダートレッド152から成ると共にベルト層14の径方向外側に配置されたトレッドゴム15と、カーカス層13のタイヤ幅方向外側に配置される一対のサイドウォールゴム16、16と、ビードコア11、11の径方向内側に配置された一対のリムクッションゴム17、17とを備える(図1参照)。また、ビードフィラー12の20[℃]におけるtanδ値T20_bfおよび60[℃]におけるtanδ値T60_bfが、0.90≦T20_bf/T60_bf≦1.05およびT20_bf≦0.18の条件を満たす。
上記の構成では、(1)ビードフィラー12の20[℃]におけるtanδ値T20および60[℃]におけるtanδ値T60の比T20/T60が適正化されるので、低温雰囲気下における転がり抵抗と常温雰囲気下における転がり抵抗との差を縮小できる。また、(2)ビードフィラー12の20[℃]におけるtanδ値T20が上記の範囲にあることにより、低温雰囲気下における転がり抵抗が低減される。これにより、雰囲気温度の変化に起因するタイヤの燃費性能の変動を抑制しつつ、低温雰囲気下での走行時におけるタイヤの転がり抵抗を低減できる利点がある。
また、この空気入りタイヤ1では、ビードフィラー12の20[℃]におけるtanδ値T20_bfが、キャップトレッド151の20[℃]におけるtanδ値T20_ctに対してT20_ct×T20_bf≦0.040の関係を有する。これにより、低温雰囲気下における転がり抵抗を適正に低減できる利点がある。
また、この空気入りタイヤ1では、ビードフィラー12の60[℃]におけるtanδ値T60_bfが、キャップトレッド151の60[℃]におけるtanδ値T60_ctに対してT60_ct×T60_bf≦0.030の関係を有する。これにより、高温雰囲気下における転がり抵抗を適正に低減できる利点がある。
また、この空気入りタイヤ1では、ビードフィラー12の20[℃]におけるtanδ値T20_bfと60[℃]におけるtanδ値T60_bfとの比T20_bf/T60_bfが、キャップトレッド151の20[℃]におけるtanδ値T20_ctと60[℃]におけるtanδ値T60_ctとの比T20_ct/T60_ctに対して0.40≦(T20_bf/T60_bf)/(T20_ct/T60_ct)≦0.60の関係を有する。かかる構成では、タイヤ接地面側に位置するゴム部材のtanδ比がリム嵌合面側に位置するゴム部材よりも小さく設定されるので、タイヤ転動時におけるゴム部材の変形および振動がタイヤ接地面からリム嵌合面に向かって効率的に減衰する。これにより、走行時の雰囲気温度に関わらず、タイヤ全体としてのエネルギー消費量が低減されて、タイヤの転がり抵抗が低減される利点がある。
また、この空気入りタイヤ1では、ビードフィラー12の20[℃]におけるtanδ値T20_bfと60[℃]におけるtanδ値T60_bfとの比T20_bf/T60_bfが、サイドウォールゴム16の20[℃]におけるtanδ値T20_swと60[℃]におけるtanδ値T60_swとの比T20_sw/T60_swに対して0.62≦(T20_bf/T60_bf)/(T20_sw/T60_sw)≦0.72の関係を有する。かかる構成では、タイヤ接地面側に位置するゴム部材のtanδ比がリム嵌合面側に位置するゴム部材よりも小さく設定されるので、タイヤ転動時におけるゴム部材の変形および振動がタイヤ接地面からリム嵌合面に向かって効率的に減衰する。これにより、走行時の雰囲気温度に関わらず、タイヤ全体としてのエネルギー消費量が低減されて、タイヤの転がり抵抗が低減される利点がある。
また、この空気入りタイヤ1では、ビードフィラー12の20[℃]におけるtanδ値T20_bfと60[℃]におけるtanδ値T60_bfとの比T20_bf/T60_bfが、リムクッションゴム17の20[℃]におけるtanδ値T20_rcと60[℃]におけるtanδ値T60_rcとの比T20_rc/T60_rcに対して1.00≦(T20_rc/T60_rc)/(T20_bf/T60_bf)≦1.40の関係を有する。かかる構成では、タイヤ幅方向外側に位置するリムクッションゴム17のtanδ比がタイヤ幅方向内側に位置するビードフィラー12のtanδ比よりも大きく設定されるので、車両旋回時におけるゴム部材の変形および振動が効率的に減衰する。これにより、走行時の雰囲気温度に関わらず、タイヤ全体としてのエネルギー消費量が低減されて、タイヤの転がり抵抗が低減される利点がある。
また、この空気入りタイヤ1では、20[℃]におけるビードフィラー12のゴム硬さHs_bfが、20[℃]におけるキャップトレッド151のゴム硬さHs_ctに対して25≦Hs_bf−Hs_ct≦30の関係を有する。かかる構成では、ビードフィラー12およびキャップトレッド151のゴム硬さの関係が適正化されて、ビード部からタイヤ接地面への操舵力の伝達効率および応答性が向上する。これにより、タイヤの操縦安定性能が向上する利点がある。
また、この空気入りタイヤ1では、20[℃]におけるビードフィラー12のゴム硬さHs_bfが、20[℃]におけるリムクッションゴム17のゴム硬さHs_rcに対して18≦Hs_bf-Hs_rc≦21の関係を有する。かかる構成では、タイヤ幅方向に隣り合うビードフィラー12およびリムクッションゴム17のゴム硬さの関係が適正化されて、車両旋回時におけるタイヤ幅方向へのビード部の変形が連続的となる。これにより、タイヤの操縦安定性能が向上する利点がある。
また、この空気入りタイヤ1では、20[℃]におけるビードフィラー12のゴム硬さHs_bfが、20[℃]におけるサイドウォールゴム16のゴム硬さHs_swに対して30≦Hs_bf−Hs_sw≦40の関係を有する。かかる構成では、ビード部からタイヤサイド部を構成するビードフィラー12およびサイドウォールゴム16のゴム硬さの関係が適正化されて、車両旋回時におけるタイヤ幅方向へのタイヤサイド部の変形が連続的となる。これにより、タイヤの操縦安定性能が向上する利点がある。
また、この空気入りタイヤ1では、タイヤ子午線方向の断面視にて、ビードコア11の頂面からビードコア11の断面高さH1の距離までの領域A1を定義し(図2参照)、領域A1におけるビードフィラー12の最大ゲージGa_bfと、20[℃]におけるビードフィラー12のtanδ値T20_bfとが、Ga_bf×T20_bf≦0.90[mm]の関係を有する。これにより、タイヤ転動時におけるビードフィラー12のエネルギー消費量が低減されて、低温雰囲気下における転がり抵抗を低減できる利点がある。
また、この空気入りタイヤ1では、キャップトレッド151の0[℃]におけるtanδ値T0_ctおよび60[℃]におけるtanδ値T60_ctが、2.00≦T0_ct/T60_ct≦4.38の関係を有する。これにより、タイヤのウェット性能を向上させつつ、タイヤの燃費性能の温度依存性を低減できる利点がある。
また、この空気入りタイヤ1では、キャップトレッド151の0[℃]におけるtanδ値T0_ctが、T0_ct≦0.75の範囲にある。これにより、タイヤのウェット性能が向上する利点がある。
図4は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。
この性能試験では、複数種類の試験タイヤについて、(1)転がり抵抗および(2)ウェット性能に関する評価が行われた。また、タイヤサイズ195/65R15の試験タイヤが用いられる。
(1)転がり抵抗に関する評価では、ドラム径1707[mm]のドラム試験機が用いられ、180[kPa]の内圧およびJATMAに規定された最大負荷能力の88[%]の荷重が試験タイヤに付与され、速度80[km/h]の条件にて試験タイヤの転がり抵抗係数が測定された。また、常温転がり抵抗は、雰囲気温度25[℃]における測定値であり、低温転がり抵抗は、雰囲気温度10[℃]における測定値である。この評価は、従来例を基準(100)とした指数評価により行われ、その数値が大きいほど好ましい。また、常温転がり抵抗の評価は、98以上であれば、性能が適正に確保あれているといえる。
(2)ウェット性能に関する評価では、試験タイヤが排気量1800[cc]かつ前輪駆動車である試験車両の前後輪に装着され、試験タイヤに空気圧250[kPa](前輪)および240[kPa](後輪)が付与される。そして、試験車両が水深2[mm]のアスファルト路面からなるテストコースを走行し、時速100[km/h]からの制動距離が測定された。そして、測定結果に基づいて従来例を基準(100)とした指数評価が行われる。この評価は、その数値が大きいほど好ましい。
従来例および実施例の試験タイヤは、図1の構成を備え、タイヤケーシングを構成する各ゴム部材は、それぞれ所定の物性を有する。
試験結果が示すように、実施例の試験タイヤでは、タイヤの転がり抵抗が低減され、また、タイヤのウェット性能が向上することが分かる。
1 空気入りタイヤ;11 ビードコア;12 ビードフィラー;13 カーカス層;14 ベルト層;141、142 交差ベルト;143 ベルトカバー;144 ベルトエッジカバー;15 トレッドゴム;151 キャップトレッド;152 アンダートレッド;16 サイドウォールゴム;17 リムクッションゴム;18 インナーライナ

Claims (12)

  1. 一対のビードコアと、前記ビードコアの径方向外側に配置された一対のビードフィラーと、前記ビードコアに架け渡されたカーカス層と、前記カーカス層の径方向外側に配置されるベルト層と、キャップトレッドおよびアンダートレッドから成ると共に前記ベルト層の径方向外側に配置されたトレッドゴムと、前記カーカス層のタイヤ幅方向外側に配置される一対のサイドウォールゴムと、前記一対のビードコアの径方向内側に配置された一対のリムクッションゴムとを備える空気入りタイヤであって、
    前記ビードフィラーの20[℃]におけるtanδ値T20_bfおよび60[℃]におけるtanδ値T60_bfが、0.90≦T20_bf/T60_bf≦1.05およびT20_bf≦0.18の条件を満たすことを特徴とする空気入りタイヤ。
  2. 前記ビードフィラーの20[℃]におけるtanδ値T20_bfが、前記キャップトレッドの20[℃]におけるtanδ値T20_ctに対してT20_ct×T20_bf≦0.040の関係を有する請求項1に記載の空気入りタイヤ。
  3. 前記ビードフィラーの60[℃]におけるtanδ値T60_bfが、前記キャップトレッドの60[℃]におけるtanδ値T60_ctに対してT60_ct×T60_bf≦0.030の関係を有する請求項1または2に記載の空気入りタイヤ。
  4. 前記ビードフィラーの20[℃]におけるtanδ値T20_bfと60[℃]におけるtanδ値T60_bfとの比T20_bf/T60_bfが、前記キャップトレッドの20[℃]におけるtanδ値T20_ctと60[℃]におけるtanδ値T60_ctとの比T20_ct/T60_ctに対して0.40≦(T20_bf/T60_bf)/(T20_ct/T60_ct)≦0.60の関係を有する請求項1〜3のいずれか一つに記載の空気入りタイヤ。
  5. 前記ビードフィラーの20[℃]におけるtanδ値T20_bfと60[℃]におけるtanδ値T60_bfとの比T20_bf/T60_bfが、前記サイドウォールゴムの20[℃]におけるtanδ値T20_swと60[℃]におけるtanδ値T60_swとの比T20_sw/T60_swに対して0.62≦(T20_bf/T60_bf)/(T20_sw/T60_sw)≦0.72の関係を有する請求項1〜4のいずれか一つに記載の空気入りタイヤ。
  6. 前記ビードフィラーの20[℃]におけるtanδ値T20_bfと60[℃]におけるtanδ値T60_bfとの比T20_bf/T60_bfが、前記リムクッションゴムの20[℃]におけるtanδ値T20_rcと60[℃]におけるtanδ値T60_rcとの比T20_rc/T60_rcに対して1.00≦(T20_rc/T60_rc)/(T20_bf/T60_bf)≦1.40の関係を有する請求項1〜5のいずれか一つに記載の空気入りタイヤ。
  7. 20[℃]における前記ビードフィラーのゴム硬さHs_bfが、20[℃]における前記キャップトレッドのゴム硬さHs_ctに対して25≦Hs_bf−Hs_ct≦30の関係を有する請求項1〜6のいずれか一つに記載の空気入りタイヤ。
  8. 20[℃]における前記ビードフィラーのゴム硬さHs_bfが、20[℃]における前記リムクッションゴムのゴム硬さHs_rcに対して18≦Hs_bf-Hs_rc≦21の関係を有する請求項1〜7のいずれか一つに記載の空気入りタイヤ。
  9. 20[℃]における前記ビードフィラーのゴム硬さHs_bfが、20[℃]における前記サイドウォールゴムのゴム硬さHs_swに対して30≦Hs_bf−Hs_sw≦40の関係を有する請求項1〜8のいずれか一つに記載の空気入りタイヤ。
  10. タイヤ子午線方向の断面視にて、前記ビードコアの頂面から前記ビードコアの断面高さH1の距離までの領域A1を定義し、
    領域A1における前記ビードフィラーの最大ゲージGa_bfと、20[℃]における前記ビードフィラーのtanδ値T20_bfとが、Ga_bf×T20_bf≦0.90[mm]の関係を有する請求項1〜9のいずれか一つに記載の空気入りタイヤ。
  11. 前記キャップトレッドの0[℃]におけるtanδ値T0_ctおよび60[℃]におけるtanδ値T60_ctが、2.00≦T0_ct/T60_ct≦4.38の関係を有する請求項1〜10のいずれか一つに記載の空気入りタイヤ。
  12. 前記キャップトレッドの0[℃]におけるtanδ値T0_ctが、T0_ct≦0.75の範囲にある請求項1〜11のいずれか一つに記載の空気入りタイヤ。
JP2019224707A 2019-12-12 2019-12-12 空気入りタイヤ Active JP7448780B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019224707A JP7448780B2 (ja) 2019-12-12 2019-12-12 空気入りタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019224707A JP7448780B2 (ja) 2019-12-12 2019-12-12 空気入りタイヤ

Publications (2)

Publication Number Publication Date
JP2021091367A true JP2021091367A (ja) 2021-06-17
JP7448780B2 JP7448780B2 (ja) 2024-03-13

Family

ID=76311547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019224707A Active JP7448780B2 (ja) 2019-12-12 2019-12-12 空気入りタイヤ

Country Status (1)

Country Link
JP (1) JP7448780B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136863A (ja) 2002-08-20 2004-05-13 Bridgestone Corp 空気入りタイヤ
JP5503513B2 (ja) 2010-12-02 2014-05-28 住友ゴム工業株式会社 ベーストレッド又はサイドウォール補強層用ゴム組成物、空気入りタイヤ並びにサイド補強型ランフラットタイヤ

Also Published As

Publication number Publication date
JP7448780B2 (ja) 2024-03-13

Similar Documents

Publication Publication Date Title
US9150052B2 (en) Pneumatic tire
JP6859825B2 (ja) 空気入りタイヤ
US20170197465A1 (en) Passenger-vehicle pneumatic radial tire
WO2017110643A1 (ja) 空気入りタイヤ
JP2020006723A (ja) 空気入りラジアルタイヤ
JP4506477B2 (ja) 空気入りタイヤの装着方法
JP3744935B2 (ja) 空気入りタイヤ
JP2016107725A (ja) 空気入りタイヤ
JP4525352B2 (ja) 空気入りタイヤ
US11760130B2 (en) Run-flat tire
US20190054777A1 (en) Pneumatic Tire
WO2021117612A1 (ja) 空気入りタイヤ
JP2021091367A (ja) 空気入りタイヤ
EP1182060A2 (en) Pneumatic tire
JP7448779B2 (ja) 空気入りタイヤ
JP2021091369A (ja) 空気入りタイヤ
JP7151627B2 (ja) 空気入りタイヤ
WO2022049865A1 (ja) タイヤ
JP7115019B2 (ja) 空気入りタイヤ
JP7135940B2 (ja) 空気入りタイヤ
JP2019142456A (ja) ランフラットタイヤ
RU2773568C1 (ru) Пневматическая шина
WO2019123973A1 (ja) ランフラットタイヤ
JP2024076971A (ja) タイヤ
JP2021075212A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240212

R150 Certificate of patent or registration of utility model

Ref document number: 7448780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150