JP2021089390A - 描画装置および描画システム - Google Patents

描画装置および描画システム Download PDF

Info

Publication number
JP2021089390A
JP2021089390A JP2019220653A JP2019220653A JP2021089390A JP 2021089390 A JP2021089390 A JP 2021089390A JP 2019220653 A JP2019220653 A JP 2019220653A JP 2019220653 A JP2019220653 A JP 2019220653A JP 2021089390 A JP2021089390 A JP 2021089390A
Authority
JP
Japan
Prior art keywords
unit
laser beam
image
mirror
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019220653A
Other languages
English (en)
Inventor
真也 伊藤
Shinya Ito
真也 伊藤
孝史 京野
Takashi Kyono
孝史 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2019220653A priority Critical patent/JP2021089390A/ja
Publication of JP2021089390A publication Critical patent/JP2021089390A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】映像サイズおよび投影方向を調整可能な描画装置および描画システムを提供する。【解決手段】 一実施形態に係る描画装置2は、映像を描画するための描画レーザ光を出力する光源部と、描画レーザ光を反射する第1反射部を有するとともに、前記第1反射部を駆動することによって、前記映像を描くように前記描画レーザ光を走査する描画機構と、描画レーザ光を通す窓部を有しており、光源部および描画機構を収容するパッケージと、第1反射部で反射した描画レーザ光を反射する第2反射部を有するとともに、第2反射部を駆動することによって、映像の投影方向を調整する投影方向調整機構と、を備える。【選択図】図1

Description

本発明は、描画装置および描画システムに関する。
レーザ光を走査することによって、文字、図形などを含む映像を描画する描画装置が知られている(特許文献1〜3参照)。
特開2014−186068号公報 特開2014−56199号公報 国際公開第2007/120831号
特許文献1〜3に開示されている描画装置では、たとえば、描画装置を固定して設置した場合、映像サイズおよび映像の投影方向を調整できなかった。
本開示は、映像サイズおよび投影方向を調整可能な描画装置および描画システムを提供することを目的とする。
一実施形態に係る描画装置は、映像を描画するための描画レーザ光を出力する光源部と、 前記描画レーザ光を反射する第1反射部を有するとともに、前記第1反射部を駆動することによって、前記映像を描くように前記描画レーザ光を走査する描画機構と、前記描画レーザ光を通す窓部を有しており、前記光源部および前記描画機構を収容するパッケージと、 前記第1反射部で反射した前記描画レーザ光を反射する第2反射部を有するとともに、前記第2反射部を駆動することによって、前記映像の投影方向を調整する投影方向調整機構と、を備える。
本開示によれば、映像サイズおよび投影方向を調整可能な描画装置および描画システムを提供できる。
図1は、一実施形態の描画システムの概念図である。 図2は、第1実施形態に係る描画装置の概略構成を示す側面図である。 図3は、第1実施形態に係る描画装置の斜視図である。 図4は、カバーを外した状態における第1実施形態に係る描画装置の斜視図である。 図5は、カバーを外した状態における第1実施形態に係る描画装置の平面図である。 図6は、第2実施形態に係る描画装置の斜視図である。 図7は、カバーを外した状態の第2実施形態に係る描画装置の斜視図である。 図8は、カバーを外した状態の第2実施形態に係る描画装置の平面図である。 図9は、カバーを外した状態の第2実施形態の変形例に係る描画装置の斜視図である。 図10は、描画システムの変形例を説明するための図面である。
[本開示の実施形態の説明]
最初に、本開示の実施形態の内容を列記して説明する。
一実施形態に係る描画装置は、映像を描画するための描画レーザ光を出力する光源部と、 前記描画レーザ光を反射する第1反射部を有するとともに、前記第1反射部を駆動することによって、前記映像を描くように前記描画レーザ光を走査する描画機構と、前記描画レーザ光を通す窓部を有しており、前記光源部および前記描画機構を収容するパッケージと、 前記第1反射部で反射した前記描画レーザ光を反射する第2反射部を有するとともに、前記第2反射部を駆動することによって、前記映像の投影方向を調整する投影方向調整機構と、を備える。
上記構成では、光源部から出力された描画レーザ光は、描画機構が有する第1反射部によって反射する。第1反射部で反射した描画レーザ光は、第2反射部で反射される。したがって、描画機構が第1反射部を走査することによって、第2反射部上に一旦映像が描画される。そのため、投影方向調整機構が第2反射部を駆動し、第2反射部による描画レーザ光の反射方向を変更することによって、映像が投影される方向を調整可能である。更に、描画レーザ光を走査することで映像を描画しているので、描画機構による描画レーザ光の走査範囲を変更することで映像サイズを調整できる。したがって、上記描画装置では、映像サイズおよび映像の投影方向を調整可能である。
前記投影方向調整機構は、前記パッケージ内に収容されていてよい。これにより、第1反射部と第2反射部との距離を短くできる。
前記光源部は、複数のレーザ光源と、前記複数のレーザ光源から出力される複数のレーザ光をコリメートする複数のレンズと、前記複数のレンズによってコリメートされた前記複数のレーザ光を合波して前記描画レーザ光を生成する合波部と、を有してもよい。
この場合、たとえば、上記複数のレーザ光として異なる波長を有する複数のレーザ光を使用することによって、カラーの映像を描画できる。更に。複数のレーザ光は、コリメートされているので、描画レーザ光もコリメートされたレーザ光である。この場合、ピント合わせが不要である。すなわち、描画装置は、フォーカスフリーな描画装置である。そのため、投影方向位置調整機構で、投影方向を調整することによって、映像の投影位置と、投影方向位置調整機構との距離が変化しても、明瞭な映像を描画できる。
前記第1反射部と前記第2反射部との間の距離は、15mm以下であってもよい。
一実施に係る描画システムは、上記描画装置と、映像情報に基づいて前記光源部および前記描画機構を制御するとともに、映像投影位置情報に基づいて前記投影方向調整機構を制御する制御装置と、を備える。
この場合、制御装置が、映像情報に基づいた映像を、映像投影位置情報に基づいた位置に所望の映像サイズで描画できる。
上記描画装置は、外光を検出する外光センサを備え、前記制御装置は、前記外光センサの検出結果に応じて、前記描画機構による前記描画レーザ光の走査範囲を制御してもよい。
この場合、描画システムの周囲の明るさに応じて、映像サイズを調整可能である。
[本開示の実施形態の詳細]
本開示の実施形態の具体例を、以下に図面を参照しつつ説明する。本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。説明中、「上」、「下」等の方向を示す語は、図面に示された状態に基づいた便宜的な語である。
図1は、一実施形態の描画システムの概念図である。図1に模式的に示した描画システム1は、描画装置2と、制御装置3とを備える。描画システム1は、制御装置3によって描画装置2を制御し、描画レーザ光Lを2次元的に走査することによって映像Iを所望の位置に形成するシステムである。図1では、映像Iを、模式的にハッチングを付して示している。
描画装置2は、光源部10と、描画部(描画機構)20と、方向調整部(投影方向調整機構)40、とを有する。
光源部10は、描画レーザ光Lを出力する。描画レーザ光Lはコリメート光(平行光)である。描画レーザ光Lは、異なる色の複数のレーザ光が合波された合波光でもよいし、単色のレーザ光であってもよい。単色のレーザ光とは、上記合波光ではないことを意味する。たとえば、合波光が、赤色、緑色および青色のレーザ光が合波されたレーザ光である場合に対して、たとえば赤色(緑色または青色)のレーザ光が、単色のレーザ光である。光源部10は、映像Iを形成する画素の情報に基づいて描画レーザ光Lを出力する。たとえば、描画レーザ光Lが上記合波光である場合、合波光に含まれる各色の強度を調整することで、上記画素を示す色、明るさ等を有する描画レーザ光Lを出力する。
描画部20は、光源部10から出力された描画レーザ光Lによって映像Iを方向調整部40(具体的には、後述するミラー41)上に描画する。描画部20は、ミラー(第1反射部)21と、駆動部22とを有する。ミラー21は、方向調整部40に向けて描画レーザ光Lを反射する。駆動部22は、描画レーザ光Lが映像Iを描画するように、ミラー21を2次元的に駆動する。
図1では、図示を省略しているが、光源部10と描画部20とは、パッケージ(図1において不図示)に収容されている。
方向調整部40は、映像Iを投影するとともに、投影方向(たとえば、図1において破線で示した方向D1、方向D2等)を調整する。方向調整部40は、ミラー(第2反射部)41と、駆動部42とを有する。ミラー41は、ミラー21で反射された描画レーザ光Lを更に反射する。これにより、ミラー41は、ミラー41上に描画された映像Iをミラー41の向き(または傾き)によって決定される方向に投影する。駆動部42は、ミラー41に描画された映像Iを所望の方向(或いは所望の位置)に投影するために、ミラー41を駆動する。駆動部42は、ミラー41を1軸で駆動してもよいし、2軸で駆動してもよい。
方向調整部40は、描画部20に対して、ミラー21とミラー41との間の距離がたとえば15mm以下の距離に配置され得る。ミラー21とミラー41の間の距離は、10mm以下でもよいし、5mm以下でもよい。ミラー21とミラー41との間の距離は、たとえば、ミラー21の中心とミラー41の中心との間の距離である。ミラー21とミラー41との間の距離は、たとえば、駆動部22で駆動されるミラー21の駆動中心と、駆動部42で駆動されるミラー41の中心との間の距離である。ミラー21とミラー41の距離を短くすることで、ミラー41のサイズを小さくすることができる。駆動中心は、駆動部で駆動された場合に実質的に位置が変わらない箇所である。方向調整部40は、上記パッケージの外部に配置されてもよいし、パッケージ内に収容されてもよい。
制御装置3は、外部から入力された描画指示に基づいて、描画装置2を制御する。描画指示は、描画すべき映像情報および映像Iの投影方向情報を含む。映像情報は、たとえば、投影すべき映像Iを作成した機器(たとえば、パーソナルコンピュータ)から直接入力されてもよい。投影方向情報は、キーボード、タッチパネルなどで入力され得る。映像情報は、少なくとも映像Iを構成する画素の情報(色、明るさなど)、映像サイズ等を含む。制御装置3は、第1制御部3a、第2制御部3bおよび第3制御部3cを有する。以下、上記描画指示を含む信号を描画指示信号と称す。
第1制御部3aは、上記描画指示信号から第1映像信号S1を生成し、第1映像信号に基づいて光源部10を制御する。第1映像信号S1は、画素の情報を含む信号である。第1制御部3aは、映像Iを形成する画素の素情報に基づいた描画レーザ光Lを出力するように、光源部10を制御する。
第2制御部3bは、上記描画指示信号から第2映像信号S2を生成し、第2映像信号S2に基づいて描画レーザ光Lによって映像Iが描画されるように、描画部20を制御する。具体的には、第2映像信号S2を駆動部22に送信し、駆動部22に、第2映像信号S2に基づいて描画レーザ光Lが走査されるように、ミラー21を駆動させる。第2映像信号S2は、描画レーザ光Lの走査範囲を含む。走査範囲は、映像サイズに対応する。
第3制御部3cは、上記描画指示信号から投影位置信号S3を生成し、投影位置信号S3に基づいて所望の投影位置に映像Iが投影されるように、方向調整部40を制御する。具体的には、第3制御部3cは、投影位置信号S3を駆動部42に送信し、駆動部42に、投影位置信号S3で指示される方向に映像Iが投影されるようにミラー41を駆動させる。投影位置信号S3は、映像Iの投影方向を含む。
制御装置3は、上記第1制御部3a、第2制御部3bおよび第3制御部3cの機能を実現可能に構成されたコンピュータを有すればよい。制御装置3は、上記指示信号、ならびに、その他ユーザからの入力、外部センサなどからの入力を受け付ける入力部、各種信号データなどを保存する記憶部を適宜有し得る。制御装置3の例は、FPGA(field-programmable gate array)である。
次に、描画装置2の種々の実施形態を詳述する。
(第1実施形態)
図2〜図5を利用しては第1実施形態に係る描画装置2(以下、「描画装置2A」と称す)を説明する。図2は、第1実施形態に係る描画装置2Aの概略構成を示す側面図である。図3は、第1実施形態に係る描画装置2Aの斜視図である。図4は、カバーを外した状態における第1実施形態に係る描画装置2Aの斜視図である。図5は、カバーを外した状態における第1実施形態に係る描画装置2Aの平面図である。図2および図3では、映像Iを示すために、映像Iにハッチングを付している。
描画装置2Aは、図2および図3に示したように、光源部10および描画部20がパッケージ30内に収容されており、方向調整部40がパッケージ30の外側に配置された装置である。
まず、パッケージ30を説明する。パッケージ30は、支持体31と、カバー32とを有する。カバー32は、支持体31に固定されている。これにより、光源部10および描画部20が収容される収容空間が形成されている。収容空間の体積の例は1cm(1×10−6)〜11cm(1.1×10−5)である。
支持体31は、光源部10および描画部20を支持する。支持体31は、支持基板311を有する。支持基板311は、たとえば、ステムである。支持基板311の材料の例は、Ni/Auめっきを施した鉄合金である。支持基板311は、たとえば、平面視形状が矩形である板状部材である。この場合、矩形の長辺の長さの例は、10mm〜30mmであり、短辺の長さの例は、8mm〜25mmである。支持基板311は、たとえば、平面視形状が正方形である板状部材であってもよい。
支持体31は、図2に示したように、電子冷却モジュール(以下、TEC(Thermo−Electric Cooler)と称する場合もある。)312を有してもよい。TEC312は、支持基板311に固定される。TEC312の例は、熱電クーラー、またはペルチェモジュール(ペルチェ素子)である。TEC312は、吸熱板312aと、放熱板312bと、吸熱板312aと放熱板312bとを連結する連結部312cを有する。連結部312cは、電極を挟んで吸熱板312aと放熱板312bとの間にそれぞれ間隔をあけて並べて配置される複数の柱状の半導体柱を有する。図2では、連結部312cをブロックで模式的に示している。TEC312は、制御装置3によって制御され得る。以下、断らない限り、TEC312を備えた描画装置の形態を説明する。
支持体31(具体的には支持基板311)には、複数の導電部材33が設けられている。導電部材33は、たとえばリードピンといった棒状部材である。複数の導電部材33は、支持基板311の厚さ方向に支持基板311と絶縁された状態で支持基板311に通されている。各導電部材33の一端は、パッケージ30内に突出している。複数の導電部材33は、パッケージ30内の光源部10、描画部20およびTEC312等を制御装置3に電気的に接続するための部材である。これにより、光源部10、描画部20およびTEC312等が制御装置3で制御され得る。
カバー32は、支持基板311に、たとえば溶接によって固定されている。カバー32は、支持基板311ととともに、たとえば収容空間を気密封止(ハーメチックシール)している。カバー32が有する天壁321(支持基板311と対向する壁)には、描画レーザ光Lを通す窓部322が形成されている。窓部322は、天壁321に形成された開口321aを、窓部材322aで塞ぐことによって形成されている。窓部材322aの材料は、たとえば描画レーザ光Lに対して透明な材料(たとえば透明ガラス)である。開口321aおよび窓部材322aの大きさは、描画部20による走査可能な最大範囲で走査された描画レーザ光Lが通過可能な大きさである。
図4および図5を主に利用して、光源部10および描画部20を説明する。
光源部10は、第1〜第3のレーザ光源11A〜11Cと、第1〜第3のレンズ12A〜12Cと、合波部13とを有する。
図5に示したように、第1のレーザ光源11Aは、第1のレーザ光L1を出力する。第2のレーザ光源11Bは、第2のレーザ光L2を出力する。第3のレーザ光源11Cは、第3のレーザ光L3を出力する。第1〜第3のレーザ光源11A〜11Cの例は、レーザダイオード(LD)である。第1〜第3のレーザ光源11A〜11Cは、LDチップでもよい。LDチップを用いることで、描画装置2Aを小型化することができる。第1〜第3のレーザ光L1〜L3の波長領域は限定されないが、本実施形態において、第1〜第3のレーザ光L1〜L3の波長領域は、可視光の波長領域である。第1〜第3のレーザ光L1〜L3の色(または中心波長)は互いに異なる。たとえば、第1のレーザ光L1は、赤色、緑色および青色の何れかの色のレーザ光であり、第2のレーザ光L2は、赤色、緑色及び青色のうち第1のレーザ光L1の色以外の2つの色の何れかのレーザ光であり、第3のレーザ光はL3、赤色、緑色及び青色のうち第1,第2のレーザ光L1,L2の色以外の色のレーザ光である。赤色のレーザ光の発振波長の例は、波長610nm〜670nmである。緑色のレーザ光の発振波長の例は、波長500nm〜550nmである。青色のレーザ光の発振波長の例は、波長430nm〜470nmである。図4および図5に示した形態では、第1〜第3のレーザ光源11A〜11Cは、第1〜第3のレーザ光L1〜L3の出力方向(または光軸)が互いに平行であるように配置されているが、第1〜第3のレーザ光源11A〜11Cの配置形態は、図に示した形態に限定されない。
第1のレンズ12Aは、第1のレーザ光源11Aから出力された第1のレーザ光L1の光路上に配置されている。同様に、第2のレンズ12Bは、第2のレーザ光源11Bから出力された第2のレーザ光L2の光路上に配置されている。同様に、第3のレンズ12Cは、第3のレーザ光源11Cから出力された第3のレーザ光L3の光路上に配置されている。第1〜第3のレンズ12A〜12Cは、第1〜第3のレーザ光源11A〜11Cから出力された第1〜第3のレーザ光L1〜L3をコリメートするコリメートレンズである。
合波部13は、第1〜第3のレーザ光L1〜L3を合波して描画レーザ光Lを生成する。図4および図5に示した形態に基づいて合波部13の一例を説明する。
合波部13は、第1のフィルタ13A、第2のフィルタ13B、および第3のフィルタ13Cを有する。第1〜第3のフィルタ13A〜13Cは、たとえば波長選択性フィルタである。第1〜第3のフィルタ13A〜13Cは、たとえば波長選択性を有する誘電体多層膜フィルタである。
第1のフィルタ13Aは、第1のレンズ12Aによってコリメートされた第1のレーザ光L1を第2のフィルタ13Bに向けて反射する。第2のフィルタ13Bは、第1のレーザ光L1を透過し、第2のレンズ12Bによってコリメートされた第2のレーザ光L2を第3のフィルタ13Cに向けて反射する。これにより、第1のレーザ光L1および第2のレーザ光L2が合波される。第3のフィルタ13Cは、第1のレーザ光L1および第2のレーザ光L2(すなわち、第1のレーザ光L1および第2のレーザ光L2の合波光)を透過し、第3のレンズ12Cによってコリメートされた第3のレーザ光L3を第2のフィルタ13Bと反対側(図4および図5における描画部20側)に反射する。これにより、第1のレーザ光L1、第2のレーザ光L2および第3のレーザ光L3が合波された合波光として描画レーザ光Lが得られる。第1〜第3のフィルタ13A〜13Cが反射する第1〜第3のレーザ光L1〜L3は、コリメート光であるため、描画レーザ光Lもコリメート光である。
第1〜第3のフィルタ13A〜13Cは、上記描画レーザ光Lが得られるように配置されていればよい。たとえば、第1のフィルタ13A、第2のフィルタ13Bおよび第3のフィルタ13Cの主面は、第1のレーザ光源11A、第2のレーザ光源11Bおよび第3のレーザ光源11Cからの第1のレーザ光L1、第2のレーザ光L2および第3のレーザ光L3の出力方向に対して傾斜している。具体的には、第1のフィルタ13A、第2のフィルタ13B、および第3のフィルタ13Cの主面は、第1のレーザ光L1、第2のレーザ光L2および第3のレーザ光L3の出力方向に対して45°傾斜している。
光源部10は、第1〜第3のレーザ光源11A〜11C、第1〜第3のレンズ12A〜12Cおよび合波部13を支持する支持基板14を有してもよい。図4に示した例に基づいて支持基板14の一例を説明する。
支持基板14は、支持体31(図4に示した形態では、TEC312)上に固定されているベース部材である。支持基板14は、支持体31と反対側に第1の表面14aと第2の表面14bとを有する。
第1の表面14aは、支持基板14において、第1〜第3のレーザ光源11A〜11Cが搭載される領域である。第1〜第3のレーザ光源11A〜11Cは、直接第1の表面14aに固定されてもよいし、図4に示したように、支持台15を介して第1の表面14aに固定されてもよい。
第2の表面14bは、第1〜第3のレンズ12A〜12Cと、合波部13が有する第1〜第3のフィルタ13A〜13Cが搭載される領域である。支持基板14の支持体31側の面に対し、第2の表面14bは第1の表面14aより低い。第1の表面14aおよび第2の表面14bの高さの差は、たとえば、第1〜第3のレーザ光源11A〜11Cの光軸と、第1〜第3のレンズ12A〜12Cの光軸と、第1〜第3のフィルタ13A〜13Cの光軸の高さが実質的に一致する高さである。
第1〜第3のレンズ12A〜12Cおよび第1〜第3のフィルタ13A〜13Cは、たとえば、紫外線硬化樹脂といった活性エネルギー線硬化樹脂によって、第2の表面14bに固定される。これにより、たとえば、第1〜第3のレーザ光源11A〜11Cを支持基板14上に固定した後、第1〜第3のレーザ光源11A〜11Cから第1〜第3のレーザ光L1〜L3を出力しながら、光軸調整が可能である。具体的には、第1〜第3のレンズ12A〜12Cおよび第1〜第3のフィルタ13A〜13Cを、活性エネルギー線硬化樹脂によって設計位置に仮固定し、第1〜第3のレーザ光源11A〜11Cから出力された第1〜第3のレーザ光L1〜L3を用いて、コリメート光である描画レーザ光Lが得られるように、第1〜第3のレンズ12A〜12Cおよび第1〜第3のフィルタ13A〜13Cの光軸調整した後、活性エネルギー線を活性エネルギー線硬化樹脂に照射して、第1〜第3のレンズ12A〜12Cおよび第1〜第3のフィルタ13A〜13Cを固定すればよい。
描画部20は、駆動部22によってミラー21が2次元的に駆動可能に構成されている。描画部20の例は、MEMS(Micro Electro Mechanical Systems)である。描画部20は、たとえば、MEMSチップである。MEMSチップを用いることで、描画装置2Aを小型化することができる。この場合、ミラー21はMEMSミラーである。本実施形態において描画部20は、平板状である。ミラー21のサイズは、描画レーザ光Lのサイズ以上である。
描画部20は、図5に示したように、光源部10から出力された描画レーザ光Lの光路上に配置されている。具体的には、描画部20は、描画レーザ光Lの光路上にミラー21が位置するとともに、描画レーザ光Lが、パッケージ30外に配置された方向調整部40(図2参照)に向けて反射されるように、配置されている。
描画部20は、支持台23を介して支持体31(図4および図5に示した例では、TEC312)上に固定されている。支持台23は、支持体31上に固定されており、描画部20が固定される側面23a(図4参照)を有する。側面23aは、図2に示したように、支持基板311の厚さ方向に対して、カバー32が有する窓部322に臨むように傾斜している。
描画部20に対する描画レーザ光Lの位置調整も、たとえば、第1〜第3のレーザ光L1〜L3を出力しながら実施し得る。たとえば、予め描画部20を固定しておき、描画部20が有するミラー21の中心に描画レーザ光Lが入射するように、合波部13の位置を調整した後、合波部13を固定すればよい。合波部13の位置調整方法はたとえば前述したとおりである。
描画装置2Aは、光源部10から出力された描画レーザ光Lの光路上における合波部13と、ミラー21との間にアパーチャー50を有しても良い。アパーチャー50は、描画レーザ光Lを通す孔部51を有する板部材である。孔部51の大きさは、描画レーザ光Lの設計上の大きさ(たとえば直径)である。アパーチャー50は、描画レーザ光Lの光軸(または中心軸)が孔部51の中心軸を通るように配置されている。アパーチャー50の位置調整も、第1〜第3のレーザ光L1〜L3を出力しながら実施し得る。アパーチャー50は、たとえば活性エネルギー線硬化樹脂によって、支持体31に固定され得る。
図2および図3に示したように、方向調整部40は、パッケージ30の外側に配置されている。本実施形態では、方向調整部40は、パッケージ30の天壁321上に天壁321から離間して配置されている。方向調整部40は、図3に示したように、ミラー41と、ミラー41を駆動する駆動部42とを有する。ミラー41のサイズは、描画部20による描画レーザ光Lの最大走査範囲によって描画される映像Iのサイズより大きい。方向調整部40はMEMSでもよいし、たとえば、モータまたはアクチュエータを有する駆動部42にミラー41が取り付けられた構成を有してもよい。方向調整部40が有する駆動部42は、制御装置3(図1参照)に電気的に接続されている。
次に、上記描画装置2Aを備える描画システム1の動作を説明する。制御装置3に外部から描画指示(描画指示信号)が入力されると、制御装置3が有する第1制御部3aは、入力された描画指示に応じて、第1映像信号S1、第2映像信号S2および投影位置信号S3を光源部10、描画部20および方向調整部40に送信する。
第1映像信号S1は、映像Iの画素の色を実現するための、第1のレーザ光源11A、第2のレーザ光源11Bおよび第3のレーザ光源11Cから出力される出力強度の情報を含む。第1のレーザ光源11A、第2のレーザ光源11Bおよび第3のレーザ光源11Cそれぞれは、第1映像信号S1に含まれる出力強度の情報に応じた強度で、第1のレーザ光L1、第2のレーザ光L2および第3のレーザ光L3を出力する。第1〜第3のレーザ光L1〜L3は、第1〜第3のレンズ12A〜12Cでコリメートされた後、合波部13で合波される。これによって、光源部10は、映像Iの画素の色を有する描画レーザ光Lを出力する。
光源部10から出力された描画レーザ光Lは、描画部20が有するミラー21に入射する。ミラー21に入射された描画レーザ光Lは、ミラー21で反射される。反射された描画レーザ光Lは、窓部322を通過した後、ミラー41に入射する。描画部20が有する駆動部22は、第2映像信号S2に応じてミラー21を2次元的に駆動する。第2映像信号S2は、映像Iの映像サイズの情報を含む。駆動部22は、映像サイズに応じた走査範囲で、ミラー21を駆動する。これにより、描画レーザ光Lが走査され、図2に示したように、ミラー41上に、第2映像信号S2で指定された映像サイズを有する映像Iが一旦描画される。
ミラー41の向きは、投影位置信号S3の指示に応じて駆動部42によって調整されている。ミラー41は、入射された描画レーザ光Lを反射するため、ミラ−41上に描画された映像Iが、ミラー41の向きに応じた方向に投影される。
上記描画装置2Aおよび描画装置2Aを備える描画システム1では、描画レーザ光が、第1〜第3のレーザ光L1〜L3の合波光であることから、カラーの映像Iを描画可能である。ミラー41上に映像Iを一旦描画した後、映像Iをミラ−41の向きに応じた方向(たとえば、図1に破線で示した方向D1、方向D2等)に投影する。そのため、ミラー41の向きを駆動部42で調整することによって、所望の位置(投影位置信号S3で指示される方向)に映像Iを投影できる。更に、描画部20が第2映像信号S2で指定される走査範囲に応じて描画レーザ光Lを走査することによって、ミラー41上に映像Iを描画している。そのため、第2映像信号S2に応じて映像サイズを変更できる。したがって、上記描画装置2Aおよび描画装置2Aを備える描画システム1では、たとえば、描画装置2Aを固定した状態でも、所望の映像サイズの映像Iを、所望の方向に容易に投影可能である。
映像Iは、描画レーザ光Lによって描画される。描画レーザ光Lは、コリメート光である。そのため、フォーカスフリーの状態で映像Iを描画および投影できる。その結果、たとえば、方向調整部40で映像Iの投影方向を任意に変更しても、投影位置において明瞭な映像I(ボケていない映像I)が得られる。
描画装置2Aは、描画レーザ光Lを用いて映像Iを描画する。映像Iを描画するために描画レーザ光Lを走査する描画部20は、パッケージ30内に収容されている。したがって、描画部20と窓部322との間の距離を小さくできる(たとえば、10mm以下)。その結果、ミラー21とミラー41との間の距離も短くできる(たとえば、15mm以下)。よって、描画装置2Aの小型化が図れる。
投影すべきすべての情報を投影するために映像Iのサイズを大きくすると、映像I全体の輝度が低下する。描画装置2Aでは、上記のように、所望の映像サイズの映像Iを、所望の方向に容易に投影可能である。したがって、投影すべき全ての情報の一部の情報を小さいサイズで輝度を確保しながら投影しながら、投影すべき全ての情報における投影すべき領域を移動させながら、それに応じて投影方向を移動させることで、全ての情報を、輝度を確保しながら提示できる。
描画レーザ光Lは、コリメート光であるが、現実的には若干の広がりが生じる。描画レーザ光Lの広がりが、投影位置が遠のくことに伴う画素サイズの拡がりと略等しいため、フォーカスフリーを実現することができる。
(第2実施形態)
図6〜図8を利用して、第2実施形態に係る描画装置2(以下、「描画装置2B」と称す)を説明する。図6は、第2実施形態に係る描画装置2Bの斜視図である。図7は、カバーを外した状態の第2実施形態に係る描画装置2Bの斜視図である。図8は、カバーを外した状態の第2実施形態に係る描画装置2Bの平面図である。描画装置2Bは、方向調整部40が、パッケージ30内に収容されている点で、主に、描画装置2Aと相違する。この相違点を中心にして描画装置2Bを説明する。
図6および図7に示したように、描画装置2Bは、パッケージ30と、パッケージ30に収容された光源部10と、描画部20および方向調整部40と、を有する。光源部10と、描画部20および方向調整部40は、支持体31(図7および図8に示した形態では、TEC312)上に配置されている。
光源部10およびパッケージ30の構成は、描画装置2Aの場合と同様であるため、説明を省略する。描画装置2Bでは、光源部10は、TEC312の一縁部近傍に配置されている。描画装置2Bでは、方向調整部40がパッケージ30内に収容されているので、窓部322からは、方向調整部40が有するミラー41で反射された描画レーザ光L(或いは、投影される映像I)が窓部322を通る。そのため、窓部322の位置および大きさは、ミラー41の駆動範囲においてミラー41反射された描画レーザ光L(或いは、投影される映像I)が通過できるにように設定されている。
図7および図8では、方向調整部40は、光源部10に近接して配置されている。方向調整部40は、光源部10から出力される描画レーザ光Lを阻害しないように、第1〜第3のレーザ光源11A〜11Cからの第1〜第3のレーザ光L1〜L3の出力方向において、第1〜第3のレーザ光源11A〜11C寄りに配置されている。方向調整部40は、パッケージ30内に収容可能に小型化されている。第2実施形態において、方向調整部40は、平板状のMEMSである。
方向調整部40は、支持台43を介して支持体31上に固定されている。支持台43は、支持体31上に固定されており、方向調整部40が有する駆動部42が固定される側面43aを有する。側面43aは、支持基板311の厚さ方向に対して、カバー32が有する窓部322に臨むように傾斜している。たとえば、支持基板311の厚さ方向と側面43aとの為す角度は、40度〜75度である。上記支持台43に駆動部42を固定することによって、駆動部42に取り付けられているミラー41で反射した描画レーザ光Lを、窓部322に向けて反射可能である。
描画部20は、支持台24を介して支持体31上に固定されている。支持台24は、描画部20が有する駆動部22が固定される側面24aを有する。側面24aは、TEC312の吸熱板312aに実質的に直交する。描画部20の配置位置は、光源部10から出力された描画レーザ光Lをミラー21で反射し、方向調整部40が有するミラー41に入射可能に配置されていれば、限定されない。
一実施形態において、描画部20が有するミラー21の中心(駆動中心)および方向調整部40が有するミラー41の中心(駆動中心)の高さ(たとえば、TEC312が有する吸熱板312aに対する高さ)は、実質的に同じである。
図7および図8に示した例では、描画部20は、TEC312において光源部10が配置されている側と反対側の縁部近傍に配置されている。描画部20は、第1〜第3のレーザ光源11A〜11Cからの第1〜第3のレーザ光L1〜L3の出力方向において、第1〜第3のレーザ光源11A〜11C寄りに配置されている。
図7および図8に示した描画部20の配置例では、光源部10から出力された描画レーザ光Lをミラー21に入射させるために、描画装置2Bは、ミラー60を有する。ミラー60は、光源部10から出力された描画レーザ光Lの光路上において、描画レーザ光Lを、描画部20に向けて反射するように配置されている。ミラー60は、支持台61を介して支持体31に固定されている。
描画装置2Bを備える描画システム1では、第1実施形態の場合と同様にして、第1映像信号S1を受けた光源部10から映像Iの画素の色を有する描画レーザ光Lが出力される。光源部10から出力された描画レーザ光Lは、ミラー60で反射されてミラー21に入射する。第1実施形態の場合と同様にして、ミラー21が駆動部22によって第2映像信号S2に応じて駆動される。これにより、ミラー21で反射した描画レーザ光Lが走査されるので、ミラー41上に映像Iが描画される。ミラ−41は入射した描画レーザ光Lを窓部322側に向けて且つミラー41の向きに応じた方向に反射する。これにより、ミラー41で反射した描画レーザ光Lは、窓部322を通過してミラー41の向きに応じた方向に投影される。図8における破線の矢印は、窓部322側に向けた描画レーザ光Lの反射方向(または映像Iの投影方向)を示している。駆動部42がミラー41の向きを投影位置信号S3に応じて調整することによって、映像Iの投影位置を変更可能である。
描画装置2Bは、方向調整部40が、パッケージ30内に収容されている点で、主に、描画装置2Aと相違するが、その他の構成(たとえば、光源部10および描画部20など)は、描画装置2Aと実質的に同じである。そのため、描画装置2Bは、描画装置2Aと少なくとも同じ作用効果を有する。
描画装置2Bでは、方向調整部40が、パッケージ30内に収容されているため、ミラー21とミラー41の間の距離をより小さくできる。ミラー21とミラー41の間の距離をたとえば10mm以下にできる。そのため、描画装置2Bの小型化を更に図れる。
描画装置2Bは、第1実施形態の場合と同様にアパーチャー50を有してもよい。
(変形例)
図9は、第2実施形態に係る描画装置2Bにおける方向調整部の配置の変形例を説明するための図面である。変形例の描画装置を描画装置2Cと称し、描画装置2Cを説明する。図9は、カバーを外した状態の第2実施形態の変形例に係る描画装置の斜視図である。
描画装置2Cにおいて、描画部20は、光源部10から出力された描画レーザ光Lの光路上に配置されている。描画部20が有するミラー21の中心(または駆動中心)は、光源部10から出力される描画レーザ光Lの光軸の高さと実質的に同じである。描画部20は、ミラー21による描画レーザ光Lの全走査範囲において、ミラー21で反射した描画レーザ光Lが、支持体31側に進行するように配置されている。具体的には、描画部20が有する駆動部22は、支持台25が有する側面25aに固定されている。支持台25は、支持体31に固定されており、側面25aは、支持基板311の厚さ方向に対して、支持体31を臨むように傾斜している。これにより、ミラー21による描画レーザ光Lの全走査範囲において、ミラー21で反射した描画レーザ光Lが、支持体31側に進行する。
方向調整部40は、ミラー21で反射した描画レーザ光Lを、ミラー41で受けるように配置されている。具体的には、方向調整部40は、支持台43を介して支持体31上に固定されている。たとえば、支持台43が有しており方向調整部40が有する駆動部42が固定される側面43aは、描画装置2Bの場合より、支持基板311の厚さ方向に対して、より大きな角度で傾斜している。たとえば、側面43aを含む仮想平面と、側面25aを含む仮想平面とが鋭角を為すように、側面43aは形成されている。このような配置では、ミラー41の中心(または駆動中心)の高さは、光源部10から出力される描画レーザ光Lの光軸の高さより低い。
上記構成の描画装置2Cは、方向調整部40の配置位置が異なる点以外は、描画装置2Bと同様である。したがって、描画装置2Cは、描画装置2Bと少なくとも同じ作用効果を有する。
上記描画装置2Cの構成では、描画部20が、支持体31を臨むように傾斜して配置される。そのため、描画部20の下側(支持体31側)に方向調整部40を配置できる。その結果、ミラー21とミラー41の間の距離をより短く(たとえば、5mm以下)にすることが可能である。その結果、描画装置2Cの小型化をより一層図れる。
以上、本開示による描画装置及び描画システムの実施形態および種々の変形例を説明したが、本開示による描画装置及び描画システムは、例示した実施形態および種々の変形例に限定されず、種々の変形が可能である。
たとえば、描画システム1は、図10に示した描画システム1Aのように、外光センサ4を更に備えてもよい。外光センサ4は、描画装置2または描画システム1Aの周囲環境の光(外光)を検出する。外光センサ4の例は、フォトディテクタである。この場合、外光センサ4は、制御装置3と有線または無線で接続されており、外光センサ4は、検出結果を制御装置3に入力する。制御装置3は、外光センサ4の検出結果に応じて、描画部20が有する駆動部22を制御して、映像Iのサイズ(映像サイズ)を変更し得る。たとえば、描画装置2または描画システム1Aの周囲環境が明るい場合は、映像サイズを小さくし、暗い場合は、映像サイズを大きくしてもよい。制御装置3は、外光センサ4の検出結果に基づいて、たとえば、光源部10から出力される描画レーザ光Lの明るさ(輝度)を調整してもよい。描画システム1Aにおいて、上述した描画装置2A、描画装置2B、描画装置2Cを描画装置2として採用できる。
映像Iの投影方向の変更、映像Iのサイズの変更などの制御装置への指示は、たとえば、キーボード、タッチパネルなどに基づく指示に限定されない。たとえば、ジェスチャーで入力してもよいし、音声で入力してもよい。たとえば、ジェスチャーで指示を入力する場合は、描画システムは、カメラなど撮像部を有するとともに、制御装置は、撮像部で撮像された画像を解析する機能を有してもよい。同様に、音声で指示を入力するために、描画システムは、マイク等の音声入力部を有するとともに、制御装置は、音声入力部を介して入力された音声を解析する機能を有してもよい。
映像Iは、投影方向を変更している間にも描画されてもよい。映像Iの投影方向を変更した後に、映像Iのサイズを更に変更してもよい。
第1反射部として2次元的に駆動するMEMSミラーを例示したが、1次元的に駆動するMEMSミラーを2個使うことで、描画レーザ光を2次元的に走査する構成としてもよい。
第1反射部および第2反射部の例は、ミラーに限定されない。
以上説明した種々の実施形態および変形例は、本開示の趣旨を逸脱しない範囲で適宜組み合わされてもよい。
1,1A…描画システム
2,2A,2B,2C…描画装置
3…制御装置
3a…第1制御部
3b…第2制御部
3c…第3制御部
4…外光センサ
10…光源部
11A…第1のレーザ光源
11B…第2のレーザ光源
11C…第3のレーザ光源
12A…第1のレンズ
12B…第2のレンズ
12C…第3のレンズ
13…合波部
13A…第1のフィルタ
13B…第2のフィルタ
13C…第3のフィルタ
14…支持基板
14a…第1の表面
14b…第2の表面
15…支持台
20…描画部
21…ミラー
22…駆動部
23…支持台
23a…側面
24…支持台
24a…側面
25…支持台
25a…側面
30…パッケージ
31…支持体
32…カバー
33…導電部材
40…方向調整部
41…ミラー
42…駆動部
43…支持台
43a…側面
50…アパーチャー
51…孔部
60…ミラー
61…支持台
311…支持基板
312…TEC
312a…吸熱板
312b…放熱板
312c…連結部
321…天壁
322…窓部
321a…開口
322a…窓部材
I…映像
L1…第1のレーザ光
L2…第2のレーザ光
L3…第3のレーザ光
S1…第1映像信号
S2…第2映像信号
S3…投影位置信号

Claims (6)

  1. 映像を描画するための描画レーザ光を出力する光源部と、
    前記描画レーザ光を反射する第1反射部を有するとともに、前記第1反射部を駆動することによって、前記映像を描くように前記描画レーザ光を走査する描画機構と、
    前記描画レーザ光を通す窓部を有しており、前記光源部および前記描画機構を収容するパッケージと、
    前記第1反射部で反射した前記描画レーザ光を反射する第2反射部を有するとともに、前記第2反射部を駆動することによって、前記映像の投影方向を調整する投影方向調整機構と、
    を備える、描画装置。
  2. 前記投影方向調整機構は、前記パッケージ内に収容されている、
    請求項1に記載の描画装置。
  3. 前記光源部は、
    複数のレーザ光源と、
    前記複数のレーザ光源から出力される複数のレーザ光をコリメートする複数のレンズと、
    前記複数のレンズによってコリメートされた前記複数のレーザ光を合波して前記描画レーザ光を生成する合波部と、
    を有する、
    請求項1または請求項2に記載の描画装置。
  4. 前記第1反射部と前記第2反射部との間の距離は、15mm以下である、
    請求項1から請求項3の何れか一項に記載の描画装置。
  5. 請求項1から請求項4の何れか一項に記載の描画装置と、
    映像情報に基づいて前記光源部および前記描画機構を制御するとともに、映像投影位置情報に基づいて前記投影方向調整機構を制御する制御装置と、
    を備える、
    描画システム。
  6. 外光を検出する外光センサを備え、
    前記制御装置は、前記外光センサの検出結果に応じて、前記描画機構による前記描画レーザ光の走査範囲を制御する、
    請求項5に記載の描画システム。
JP2019220653A 2019-12-05 2019-12-05 描画装置および描画システム Pending JP2021089390A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019220653A JP2021089390A (ja) 2019-12-05 2019-12-05 描画装置および描画システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019220653A JP2021089390A (ja) 2019-12-05 2019-12-05 描画装置および描画システム

Publications (1)

Publication Number Publication Date
JP2021089390A true JP2021089390A (ja) 2021-06-10

Family

ID=76220203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220653A Pending JP2021089390A (ja) 2019-12-05 2019-12-05 描画装置および描画システム

Country Status (1)

Country Link
JP (1) JP2021089390A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252012A (ja) * 2003-02-18 2004-09-09 Canon Inc 投射型表示光学系
JP2004527793A (ja) * 2001-04-20 2004-09-09 マイクロビジョン インコーポレイテッド スイッチされた画像による走査された像化装置
JP2006276633A (ja) * 2005-03-30 2006-10-12 Brother Ind Ltd 画像表示装置
US20120069415A1 (en) * 2010-09-22 2012-03-22 Microvision, Inc. Scanning Projector with Dynamic Scan Angle
JP2018536179A (ja) * 2015-09-04 2018-12-06 マイクロビジョン,インク. 走査型表示システムにおける投影コンテンツの輝度またはサイズの動的恒常性
WO2019211943A1 (ja) * 2018-05-02 2019-11-07 住友電気工業株式会社 光モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004527793A (ja) * 2001-04-20 2004-09-09 マイクロビジョン インコーポレイテッド スイッチされた画像による走査された像化装置
JP2004252012A (ja) * 2003-02-18 2004-09-09 Canon Inc 投射型表示光学系
JP2006276633A (ja) * 2005-03-30 2006-10-12 Brother Ind Ltd 画像表示装置
US20120069415A1 (en) * 2010-09-22 2012-03-22 Microvision, Inc. Scanning Projector with Dynamic Scan Angle
JP2018536179A (ja) * 2015-09-04 2018-12-06 マイクロビジョン,インク. 走査型表示システムにおける投影コンテンツの輝度またはサイズの動的恒常性
WO2019211943A1 (ja) * 2018-05-02 2019-11-07 住友電気工業株式会社 光モジュール

Similar Documents

Publication Publication Date Title
US11454817B2 (en) Free space multiple laser diode modules
US11668927B2 (en) Wavelength stabilization of laser diodes by temperature control
US11009705B2 (en) Free space multiple laser diode module with fast axis collimator
KR101721047B1 (ko) 2-미러 주사시스템
US20080310002A1 (en) Scanning Type Image Display Apparatus
US8197071B2 (en) Light source device and image display apparatus
JP7136097B2 (ja) 光モジュール
JP2004062155A (ja) 露光ヘッド及び露光装置
JP2023002753A (ja) 光モジュール
WO2010122853A1 (ja) 走査光学系およびそれを備えたプロジェクタ
JP4588428B2 (ja) 画像露光方法および装置
JP2021089390A (ja) 描画装置および描画システム
JP2006195166A (ja) 画像露光装置およびマイクロレンズアレイユニット
JP7043048B2 (ja) レーザモジュール及び画像投影装置
JP2013108999A (ja) 走査光学系およびそれを備えたプロジェクタ
JP2016164632A (ja) 光走査装置、光走査装置における基板の固定方法、画像表示装置、車両
JP4639691B2 (ja) 光走査装置及び画像表示装置
JP2014115443A (ja) 光源装置
US11921330B2 (en) Light receiving device, and light transmitting and receiving device
US20220140571A1 (en) Compact optical module
JP5321511B2 (ja) 走査光学系およびそれを備えたプロジェクタ
JP2006186066A (ja) レーザ光源及びレーザ表示装置
JP2006258852A (ja) マイクロレンズアレイの取付構造および画像露光装置
JP2023096463A (ja) 映像装置および表示システム
JP2023084313A (ja) 描画システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230829