JP2021089070A - Fluid control valve - Google Patents

Fluid control valve Download PDF

Info

Publication number
JP2021089070A
JP2021089070A JP2020188673A JP2020188673A JP2021089070A JP 2021089070 A JP2021089070 A JP 2021089070A JP 2020188673 A JP2020188673 A JP 2020188673A JP 2020188673 A JP2020188673 A JP 2020188673A JP 2021089070 A JP2021089070 A JP 2021089070A
Authority
JP
Japan
Prior art keywords
valve
annular
fluid control
valve body
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020188673A
Other languages
Japanese (ja)
Other versions
JP7472000B2 (en
Inventor
教巨 山田
Norinao Yamada
教巨 山田
立視 鍋井
Tatsumi Nabei
立視 鍋井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to US17/099,336 priority Critical patent/US11199268B2/en
Priority to TW109140053A priority patent/TWI792095B/en
Priority to KR1020200154490A priority patent/KR102425974B1/en
Priority to CN202011306472.1A priority patent/CN112824721B/en
Publication of JP2021089070A publication Critical patent/JP2021089070A/en
Application granted granted Critical
Publication of JP7472000B2 publication Critical patent/JP7472000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a fluid control valve capable of preventing the occurrence of cavitation and also preventing the occurrence of vibration due to a jet flow.SOLUTION: In a regulator 1 for performing fluid control, an annular protruded part 115 having a valve seat 115a at the front end includes an annular diameter reduction face 115b provided on the whole inner diameter side periphery of the annular protruded part 115 for reducing the inner diameter of the annular protruded part 115 toward a valve hole 114, a valve element 14 includes an abutment face 141a abutting on the valve seat 115a, and a step part 143 provided on the inner periphery side of the valve seat 115a while being protruded from the abutment face 141a to the valve hole 114 side, having a diameter larger than the inner diameter of the valve hole 114, and shaped columnar coaxially with the valve hole 114, and a first annular ridge line 145 where the outer peripheral face of the step part 143 and the end face on the valve hole 114 side of the step part 143 cross each other is located near the annular diameter reduction face 115b to form a flow path restriction part 17.SELECTED DRAWING: Figure 2

Description

本発明は、弁体と、弁体が収容される上流側の弁室と、弁室に連通する下流側の弁孔と、弁孔の外周に沿って、弁室の弁孔側内面から突設され、先端に弁座を有する環状突出部と、を有し、弁体が弁座と当接離間することで、流体制御を行う流体制御弁に関するものである。 In the present invention, the valve body, the valve chamber on the upstream side in which the valve body is housed, the valve hole on the downstream side communicating with the valve chamber, and the valve chamber projecting from the inner surface on the valve hole side along the outer circumference of the valve hole. The present invention relates to a fluid control valve that is provided and has an annular protrusion having a valve seat at its tip, and controls fluid by contacting and separating the valve body from the valve seat.

弁体が弁座に当接離間することで、流体制御を行う流体制御機器として、例えば、特許文献1に開示される流量制御弁や、図4に示すレギュレータ50等が考えられる。レギュレータ50は、半導体製造工程で用いられる純水や薬液等の制御流体の圧力制御を行うものである。入力ポート511、弁室513、下流側流体室516a、出力ポート512が連通された流路を有しており、弁本体51の内部において、圧力作用室516bに導入される操作エアにより、薄膜部材55に接続された弁体54の当接面54aが、弁座515と当接離間することにより、入力ポート511から入力され、出力ポート512から出力される制御流体の圧力制御が行われる。 As a fluid control device that controls fluid by contacting and separating the valve body from the valve seat, for example, a flow rate control valve disclosed in Patent Document 1, a regulator 50 shown in FIG. 4, and the like can be considered. The regulator 50 controls the pressure of a control fluid such as pure water or a chemical solution used in a semiconductor manufacturing process. It has a flow path in which the input port 511, the valve chamber 513, the downstream fluid chamber 516a, and the output port 512 are communicated with each other, and the thin film member is formed inside the valve body 51 by the operating air introduced into the pressure acting chamber 516b. By separating the contact surface 54a of the valve body 54 connected to the 55 from the valve seat 515, the pressure of the control fluid input from the input port 511 and output from the output port 512 is controlled.

特開2009−230259号公報Japanese Unexamined Patent Publication No. 2009-23259

しかしながら、上記従来技術には次のような問題があった。
圧力制御により、入力側と出力側で制御流体の圧力の差圧が、例えば200kPa程度と大きい場合、当接面54aと弁座515との離間されている距離(即ち弁開度)は、例えば0.035mm程度と小さく、そのような小さい隙間を通る制御流体は、流速が速くなる。流速の増加により、弁座515の下流側において、制御流体の圧力が低下し(ベルヌーイの定理)、負圧領域となる。すると、制御流体において、沸騰による発泡現象(キャビテーション)が発生する。そして、キャビテーションによる泡が崩壊し 泡の崩壊による衝撃波が、レギュレータ50に振動を引き起こす。また、キャビテーションにより気化した制御流体は体積が増加するが、泡の崩壊により増加した体積が元の体積に戻る。この制御流体の体積の増減が、下流側流体室516aに圧力振動を生じさせる。これら、衝撃波による振動や圧力振動は、レギュレータ50が接続された配管にも伝達され、騒音の原因となり得る。
However, the above-mentioned prior art has the following problems.
When the pressure difference between the control fluid on the input side and the pressure on the output side is as large as about 200 kPa due to pressure control, the distance between the contact surface 54a and the valve seat 515 (that is, the valve opening) is, for example, The control fluid, which is as small as about 0.035 mm and passes through such a small gap, has a high flow velocity. As the flow velocity increases, the pressure of the control fluid decreases on the downstream side of the valve seat 515 (Bernoulli's theorem), resulting in a negative pressure region. Then, in the control fluid, a foaming phenomenon (cavitation) due to boiling occurs. Then, the bubbles due to cavitation collapse, and the shock wave due to the collapse of the bubbles causes vibration in the regulator 50. In addition, the volume of the control fluid vaporized by cavitation increases, but the increased volume due to the collapse of bubbles returns to the original volume. This increase or decrease in the volume of the control fluid causes pressure vibration in the downstream fluid chamber 516a. These vibrations and pressure vibrations due to shock waves are also transmitted to the piping to which the regulator 50 is connected, which may cause noise.

また、弁開度が0.035mm程度の当接面54aと弁座515との隙間を制御流体が通過すると、制御流体の流速が速くなることで、弁座515の下流側で噴流が発生する。この噴流は当接面54aに沿って流れるため、弁体54を振動させるおそれがあり、この振動は、レギュレータ50が接続された配管にも伝達され、騒音の原因となり得る。 Further, when the control fluid passes through the gap between the contact surface 54a having a valve opening degree of about 0.035 mm and the valve seat 515, the flow velocity of the control fluid increases, so that a jet flow is generated on the downstream side of the valve seat 515. .. Since this jet flows along the contact surface 54a, there is a risk of vibrating the valve body 54, and this vibration is also transmitted to the pipe to which the regulator 50 is connected, which may cause noise.

近年、半導体製造装置の小型化、高密度化により、流体制御弁の小型化が求められている。従来のレギュレータ50では、キャビテーションや噴流に起因する振動が発生しても、弁体54に接続される薄膜部材55により吸収できていたと考えられるが、小型化により薄膜部材55が、従来に比べ小径化され、下流側流体室516aや圧力作用室516bの容積が小さくなったため、キャビテーションに起因する振動を吸収できなくなったと考えられ、振動が発生しやすくなっていると考えられる。 In recent years, there has been a demand for miniaturization of fluid control valves due to miniaturization and high density of semiconductor manufacturing equipment. In the conventional regulator 50, it is considered that even if vibration caused by cavitation or jet flow is generated, it can be absorbed by the thin film member 55 connected to the valve body 54, but due to the miniaturization, the thin film member 55 has a smaller diameter than the conventional one. Since the volume of the downstream fluid chamber 516a and the pressure acting chamber 516b became smaller, it is considered that the vibration caused by cavitation could not be absorbed, and it is considered that the vibration is likely to occur.

本発明は、上記問題に鑑みてなされたものであり、制御流体の流れにより発生する振動を防止または抑制することが可能な流体制御弁を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a fluid control valve capable of preventing or suppressing vibration generated by a flow of a control fluid.

上記課題を解決するために、本発明の流体制御弁は、次のような構成を有している。
(1)弁体と、弁体が収容される上流側の弁室と、弁室に連通する下流側の弁孔と、弁孔の外周に沿って、弁室の弁孔側内面から突設され、先端に弁座を有する環状突出部と、を有し、弁体が弁座と当接離間することで、流体制御を行う流体制御弁において、環状突出部は、環状突出部の内径側全周に、環状突出部の内径を弁孔に向かって縮径させる環状縮径面を備え、弁体は、弁座と当接する当接面を備え、弁座の内周側に、当接面から弁孔側に向かって突設された、弁孔の内径よりも大きい径を有し、弁孔と同軸の円柱状の段差部を備え、段差部の外周面と段差部の弁孔の側の端面とが交わる環状稜線は、環状縮径面の近傍に位置し、流路絞り部を形成すること、を特徴とする。
In order to solve the above problems, the fluid control valve of the present invention has the following configuration.
(1) The valve body, the valve chamber on the upstream side in which the valve body is housed, the valve hole on the downstream side communicating with the valve chamber, and projecting from the inner surface of the valve chamber on the valve hole side along the outer circumference of the valve hole. In a fluid control valve that has an annular protrusion having a valve seat at its tip and controls the fluid by contacting and separating the valve body from the valve seat, the annular protrusion is on the inner diameter side of the annular protrusion. The entire circumference is provided with an annular diameter-reduced surface that reduces the inner diameter of the annular protrusion toward the valve hole, and the valve body is provided with a contact surface that contacts the valve seat and abuts on the inner peripheral side of the valve seat. It has a diameter larger than the inner diameter of the valve hole and is provided with a columnar step portion coaxial with the valve hole, which protrudes from the surface toward the valve hole side. The annular ridge line that intersects the end face on the side is located in the vicinity of the annular reduced diameter surface, and is characterized in that a flow path narrowing portion is formed.

(1)に記載の流体制御弁によれば、弁室から弁孔へ流れる流体は、弁体と弁座により流路面積が絞られた箇所、環状縮径面と当接面と段差部の外周面とにより囲まれた空間により流路面積が広げられた箇所、流路絞り部により流路面積が絞られた箇所を順に通過する。これにより、弁座の下流側での負圧状態が軽減されることを、出願人は実験により発見した。 According to the fluid control valve described in (1), the fluid flowing from the valve chamber to the valve hole is a portion where the flow path area is narrowed by the valve body and the valve seat, the annular diameter reduced surface, the contact surface, and the step portion. It passes through a place where the flow path area is widened by the space surrounded by the outer peripheral surface and a place where the flow path area is narrowed by the flow path narrowing portion. The applicant has experimentally found that this reduces the negative pressure condition on the downstream side of the valve seat.

負圧状態が軽減されることで、キャビテーションの発生の抑制や、キャビテーションが発生したとしても、気泡の発生から消滅までの時間の短縮化が可能である。これらにより、キャビテーションに起因する振動の発生を抑えることができ、当該振動に起因する騒音の発生を抑えることが可能となる。 By reducing the negative pressure state, it is possible to suppress the occurrence of cavitation and shorten the time from the generation of bubbles to the disappearance even if cavitation occurs. As a result, it is possible to suppress the generation of vibration caused by cavitation, and it is possible to suppress the generation of noise caused by the vibration.

さらに、当接面から弁孔側に向かって突設された段差部により、噴流が、弁孔側へ誘導され、弁体から剥離される。噴流が弁体から剥離されることで、噴流に起因する弁体の振動の発生を抑えることができ、騒音の発生を抑えることが可能となる。 Further, the jet flow is guided to the valve hole side by the stepped portion protruding from the contact surface toward the valve hole side, and is separated from the valve body. By separating the jet from the valve body, it is possible to suppress the generation of vibration of the valve body due to the jet, and it is possible to suppress the generation of noise.

(2)(1)に記載の流体制御弁において、流路絞り部の、環状稜線の直径方向の隙間寸法に、環状突出部の、弁座の中心部における直径寸法を乗じた値が、0.6から1.2の間であること、を特徴とする。 (2) In the fluid control valve according to (1), the value obtained by multiplying the gap dimension in the radial direction of the annular ridge line of the flow path throttle portion by the diameter dimension of the annular protrusion portion at the center portion of the valve seat is 0. It is characterized by being between .6 and 1.2.

(2)に記載の流体制御弁によれば、キャビテーションに起因する振動を抑えることに優れた流体制御弁とすることができることを、出願人は実験により発見した。 The applicant has experimentally found that the fluid control valve described in (2) can be an excellent fluid control valve for suppressing vibration caused by cavitation.

(3)(1)または(2)に記載の流体制御弁において、弁座から、段差部の外周面までの距離は、0.4mmから0.8mmの範囲内であること、を特徴とする。 (3) The fluid control valve according to (1) or (2) is characterized in that the distance from the valve seat to the outer peripheral surface of the step portion is within the range of 0.4 mm to 0.8 mm. ..

(3)に記載の流体制御弁によれば、噴流に起因する振動を抑えることに優れた流体制御弁とすることができることを、出願人は実験により発見した。 The applicant has experimentally found that the fluid control valve described in (3) can be an excellent fluid control valve for suppressing vibration caused by a jet flow.

(4)(1)乃至(3)のいずれか1つに記載の流体制御弁において、弁体は、段差部の弁孔の側の端面から弁孔の側に向かって突設された、段差部の外径よりも小さい径を有し、弁孔と同軸の円柱状の第2段差部を備え、第2段差部の外周面と第2段差部の弁孔の側の端面とが交わる第2環状稜線は、弁孔の内周面近傍に位置し、第2流路絞り部を形成すること、を特徴とする。 (4) In the fluid control valve according to any one of (1) to (3), the valve body is a step protruding from the end surface of the step portion on the valve hole side toward the valve hole side. A second step portion having a diameter smaller than the outer diameter of the portion and coaxial with the valve hole is provided, and the outer peripheral surface of the second step portion and the end surface of the second step portion on the valve hole side intersect. The two annular ridges are located near the inner peripheral surface of the valve hole and form a second flow path narrowing portion.

(4)に記載の流体制御弁によれば、弁室から弁孔へ流れる流体は、弁体と弁座により流路面積が絞られた箇所、環状縮径面と当接面と段差部の外周面とにより囲まれた空間により流路面積が広げられた箇所、流路絞り部により流路面積が絞られた箇所を通過した後、さらに、段差部の弁孔の側の端面と第2段差部の外周面とにより流路面積が広げられた箇所、第2流路絞り部により流路面積が絞られた箇所を順に通過する。これにより、弁座の下流側での負圧状態がさらに軽減されることを、出願人は実験により発見した。 According to the fluid control valve described in (4), the fluid flowing from the valve chamber to the valve hole is a portion where the flow path area is narrowed by the valve body and the valve seat, the annular diameter reduced surface, the contact surface, and the step portion. After passing through a place where the flow path area is widened by the space surrounded by the outer peripheral surface and a place where the flow path area is narrowed by the flow path narrowing section, the end face on the valve hole side of the stepped portion and the second It passes through a portion where the flow path area is widened by the outer peripheral surface of the step portion and a portion where the flow path area is narrowed by the second flow path throttle portion. The applicant has experimentally found that this further reduces the negative pressure condition on the downstream side of the valve seat.

負圧状態が軽減されることで、キャビテーションの発生を抑えることができる。キャビテーションの発生を抑えることができれば、キャビテーションに起因する振動の発生を抑えることができ、当該振動に起因する騒音の発生を抑えることが可能となる。 By reducing the negative pressure state, the occurrence of cavitation can be suppressed. If the occurrence of cavitation can be suppressed, the generation of vibration caused by cavitation can be suppressed, and the generation of noise caused by the vibration can be suppressed.

(5)(4)に記載の流体制御弁において、第2流路絞り部の、第2環状稜線の直径方向の隙間寸法に、環状突出部の、弁座の中心部における直径寸法を乗じた値が、0.6から1.2の間であること、を特徴とする。 (5) In the fluid control valve according to (4), the clearance dimension in the radial direction of the second annular ridge line of the second flow path throttle portion is multiplied by the diameter dimension of the annular protrusion portion at the center portion of the valve seat. The value is between 0.6 and 1.2.

(5)に記載の流体制御弁によれば、キャビテーションに起因する振動を抑えることに優れた流体制御弁とすることができることを、出願人は実験により発見した。 The applicant has experimentally found that the fluid control valve according to (5) can be an excellent fluid control valve for suppressing vibration caused by cavitation.

(6)(4)または(5)に記載の流体制御弁において、環状縮径面と、弁孔の内周面は、環状縮径面から下流側に向かって穿設された、弁孔と同軸の環状窪み部により接続され、環状窪み部の内周面と環状縮径面とが交わる第3環状稜線は、環状稜線の近傍に位置し、環状稜線とともに流路絞り部を形成すること、環状窪み部の弁孔の側の内面と弁孔の内周面とが交わる第4環状稜線は、第2環状稜線の近傍に位置し、第2環状稜線とともに第2流路絞り部を形成すること、を特徴とする。 (6) In the fluid control valve according to (4) or (5), the annular diameter-reduced surface and the inner peripheral surface of the valve hole are formed from the annular diameter-reduced surface toward the downstream side. The third annular ridge line, which is connected by a coaxial annular recess and where the inner peripheral surface of the annular recess and the annular reduced diameter surface intersect, is located near the annular ridge and forms a flow path narrowing portion together with the annular ridge. The fourth annular ridge line where the inner surface of the annular recess on the valve hole side and the inner peripheral surface of the valve hole intersect is located in the vicinity of the second annular ridge line, and forms the second flow path narrowing portion together with the second annular ridge line. It is characterized by that.

(6)に記載の流体制御弁によれば、窪み部により、流路絞り部と第2流路絞り部の間の空間が拡大され、キャビテーションに起因する振動を抑えることに、より優れた流体制御弁とすることができることを、出願人は実験により発見した。 According to the fluid control valve described in (6), the recessed portion expands the space between the flow path throttle portion and the second flow path throttle portion, and is more excellent in suppressing vibration caused by cavitation. The applicant has experimentally found that it can be a control valve.

(7)(6)に記載の流体制御弁において、弁座から、環状窪み部の弁孔の側の内面までの距離は、当接面から第2段差部の弁孔の側の端面までの距離よりも0.03mmから0.13mm小さいこと、を特徴とする。 (7) In the fluid control valve according to (6), the distance from the valve seat to the inner surface of the annular recess on the valve hole side is from the contact surface to the end surface of the second step portion on the valve hole side. It is characterized in that it is 0.03 mm to 0.13 mm smaller than the distance.

(7)に記載の流体制御弁によれば、弁座下流において負圧領域が発生しやすい弁開度(例えば0.035mm程度)においても、第4環状稜線が、確実に第2環状稜線の近傍に位置し、第2流路絞り部を形成することができ、キャビテーションに起因する振動を抑えることに優れた流体制御弁とすることができる。 According to the fluid control valve described in (7), the fourth annular ridge is surely the second annular ridge even at a valve opening (for example, about 0.035 mm) where a negative pressure region is likely to occur downstream of the valve seat. It is located in the vicinity and can form a second flow path throttle portion, and can be an excellent fluid control valve for suppressing vibration caused by cavitation.

(8)(4)乃至(7)のいずれか1つに記載の流体制御弁において、段差部の外周面から、第2段差部の外周面までの距離は、0.4mmから0.8mmの範囲内であること、を特徴とする。 (8) In the fluid control valve according to any one of (4) to (7), the distance from the outer peripheral surface of the step portion to the outer peripheral surface of the second step portion is 0.4 mm to 0.8 mm. It is characterized by being within the range.

(8)に記載の流体制御弁によれば、噴流の、弁孔側への誘導が確実になされ、噴流に起因する弁体の振動の発生を抑えることにより優れた流体制御弁とすることができることを、出願人は実験により発見した。 According to the fluid control valve described in (8), the jet flow can be reliably guided to the valve hole side, and the occurrence of vibration of the valve body due to the jet flow can be suppressed to obtain an excellent fluid control valve. The applicant has found by experiment that it can be done.

(9)(1)乃至(8)のいずれか1つに記載の流体制御弁において、弁室および弁孔を内部に有する弁本体と、弁体の当接離間方向に対して平行な方向から弁本体に積み重なるカバー部材と、中央部に弁体が接続され、中央部の外周に、弁体の当接離間の動作の際に弾性変形する薄膜部を備える薄膜部材と、を備え、弁本体は、カバー部材の側に、薄膜部材を取り付ける開口部を備え、薄膜部材は、薄膜部の外周に沿って、環状固定部を備え、環状固定部を開口部に圧入することで開口部に取り付けられた薄膜部材は、環状固定部を、当接離間方向の両側からカバー部材と弁本体とにより挟持されることで固定されること、環状固定部は、外周全周に沿って、カバー部材側の端部を残し、外周面から弁本体の側の端面までを切り欠く環状切欠部を備えること、を特徴とする。 (9) In the fluid control valve according to any one of (1) to (8), the valve body having the valve chamber and the valve hole inside and the valve body from a direction parallel to the contact separation direction of the valve body. A cover member stacked on the valve body and a thin film member having a thin film portion connected to the central portion and elastically deformed at the time of contact separation operation of the valve body are provided on the outer periphery of the central portion. Is provided with an opening for attaching the thin film member on the side of the cover member, the thin film member is provided with an annular fixing portion along the outer periphery of the thin film portion, and is attached to the opening by press-fitting the annular fixing portion into the opening. The thin film member is fixed by sandwiching the annular fixing portion between the cover member and the valve body from both sides in the contact separation direction, and the annular fixing portion is on the cover member side along the entire outer circumference. It is characterized in that it is provided with an annular notch portion that cuts out from the outer peripheral surface to the end surface on the valve body side, leaving the end portion of the valve body.

(9)に記載の流体制御弁によれば、当接離間方向の両側からカバー部材と弁本体により挟持される環状固定部は、外周全周に沿って、カバー部材側の端部を残し、外周面から弁本体の側の端面までを切り欠く環状切欠部を備えるため、環状固定部のカバー部材側の端部は、カバー部材により押さえつけられる面積を確保することができる。環状固定部に、カバー部材により押さえつけられる面積を確保することで、薄膜部材の固定を確実になすことができ、薄膜部材に接続された弁体に生じる振動を抑えることができる。また、環状切欠部により環状固定部が切り欠かれている分、弁本体の肉厚を確保することができ、弁本体の強度向上を図ることができる。 According to the fluid control valve according to (9), the annular fixing portion sandwiched between the cover member and the valve body from both sides in the contact separation direction leaves the end portion on the cover member side along the entire circumference of the outer circumference. Since the annular notch portion that cuts out from the outer peripheral surface to the end surface on the valve body side is provided, the end portion of the annular fixing portion on the cover member side can secure an area that can be pressed by the cover member. By securing an area pressed by the cover member in the annular fixing portion, the thin film member can be reliably fixed, and vibration generated in the valve body connected to the thin film member can be suppressed. Further, since the annular fixing portion is cut out by the annular notch, the wall thickness of the valve body can be secured, and the strength of the valve body can be improved.

(10)(1)乃至(9)のいずれか1つに記載の流体制御弁において、弁体の一部を挿入させて、弁体の当接離間の動作を案内するガイド部を備えること、弁体は、ガイド部の内周面に当接する摺動部を備えること、摺動部は、弾性部材からなり、内周面に押圧されることで、内周面に対して弾性反力を作用させること、を特徴とする。 (10) In the fluid control valve according to any one of (1) to (9), a guide portion for inserting a part of the valve body to guide the operation of contacting and separating the valve body is provided. The valve body is provided with a sliding portion that comes into contact with the inner peripheral surface of the guide portion, and the sliding portion is made of an elastic member and is pressed against the inner peripheral surface to exert an elastic reaction force on the inner peripheral surface. It is characterized by acting.

(10)に記載の流体制御弁によれば、弁体が備える摺動部により、ガイド部の内周面に対して弾性反力が作用するため、弁体が弁座に対して当接離間する動作の際に、弁体に発生する振動を抑えることが可能である。 According to the fluid control valve according to (10), an elastic reaction force acts on the inner peripheral surface of the guide portion due to the sliding portion provided in the valve body, so that the valve body abuts and separates from the valve seat. It is possible to suppress the vibration generated in the valve body during the operation.

(11)(1)乃至(10)のいずれか1つに記載の流体制御弁において、設置面と接地する台座と、流体制御弁を設置面に固定するための固定部材と、を備えること、固定部材は、台座に嵌合させる嵌合部と、設置面と結合可能な固定部と、を備えること、台座は、嵌合部と嵌合可能な嵌合間口と、嵌合間口より嵌合方向の奥側に、嵌合間口の幅方向に弾性変形可能であるとともに、嵌合部と係合可能な係止片と、を備えること、嵌合部を嵌合間口に嵌合させる嵌合操作により、嵌合部が係止片を初期位置から弾性変形させ、嵌合操作が完了すると、係止片が初期位置に戻ることで嵌合部と係止片とが係合され、固定部材の抜去方向の動きを規制すること、を特徴とする。 (11) The fluid control valve according to any one of (1) to (10) is provided with a pedestal that is in contact with the installation surface and a fixing member for fixing the fluid control valve to the installation surface. The fixing member includes a fitting portion to be fitted to the pedestal and a fixing portion that can be connected to the installation surface, and the pedestal is fitted from the fitting frontage that can be fitted to the fitting portion and the fitting frontage. On the back side of the direction, a locking piece that can be elastically deformed in the width direction of the fitting frontage and that can be engaged with the fitting portion is provided, and the fitting portion is fitted to the fitting frontage. By the operation, the fitting part elastically deforms the locking piece from the initial position, and when the fitting operation is completed, the locking piece returns to the initial position and the fitting part and the locking piece are engaged with each other, and the fixing member. It is characterized by regulating the movement in the removal direction of the.

(11)に記載の流体制御弁によれば、嵌合操作により固定部材を流体制御弁に組付け可能である。よって、固定部材の要不要に応じて、固定部材を流体制御弁に組付けるか否かを選択可能であり、流体制御弁の設置形態に自由度を持たせることが出来る。 According to the fluid control valve according to (11), the fixing member can be assembled to the fluid control valve by a fitting operation. Therefore, it is possible to select whether or not to assemble the fixing member to the fluid control valve according to the necessity of the fixing member, and it is possible to give a degree of freedom to the installation form of the fluid control valve.

本発明の流体制御弁によれば、制御流体の流れにより発生する振動を防止または抑制することが可能となる。 According to the fluid control valve of the present invention, it is possible to prevent or suppress vibration generated by the flow of the control fluid.

本実施形態に係るレギュレータの断面図を示す。The cross-sectional view of the regulator which concerns on this embodiment is shown. 図1の弁座付近の部分拡大図を示す。A partially enlarged view of the vicinity of the valve seat in FIG. 1 is shown. 図2の弁座付近の部分拡大図を示す。A partially enlarged view of the vicinity of the valve seat in FIG. 2 is shown. 従来技術に係るレギュレータの断面図を示す。A cross-sectional view of a regulator according to the prior art is shown. 本実施形態に係るレギュレータの、弁座付近における制御流体の圧力分布図を表す。The pressure distribution diagram of the control fluid in the vicinity of the valve seat of the regulator according to this embodiment is shown. 第2流路絞り部の隙間寸法を拡大した場合の、弁座付近における制御流体の圧力分布図を表す。The pressure distribution diagram of the control fluid in the vicinity of the valve seat when the gap dimension of the second flow path throttle portion is enlarged is shown. 従来技術に係るレギュレータの、弁座付近における制御流体の圧力分布図を表す。The pressure distribution map of the control fluid in the vicinity of the valve seat of the regulator according to the prior art is shown. 弁座付近における制御流体の圧力値を比較するグラフを示す。The graph which compares the pressure value of the control fluid in the vicinity of a valve seat is shown. 本実施形態に係るレギュレータの、弁座付近における制御流体の流速の分布図を表す。The distribution map of the flow velocity of the control fluid in the vicinity of the valve seat of the regulator according to this embodiment is shown. 弁座と段差部との距離を拡大した場合の、弁座付近における制御流体の流速の分布図を表す。The distribution map of the flow velocity of the control fluid in the vicinity of the valve seat when the distance between the valve seat and the step portion is increased is shown. 従来技術に係るレギュレータの、弁座付近における制御流体の流速の分布図を表す。The distribution map of the flow velocity of the control fluid in the vicinity of the valve seat of the regulator according to the prior art is shown. 本実施形態に係るレギュレータの第1の変形例における、弁座付近の制御流体の圧力分布図を表す。The pressure distribution diagram of the control fluid near the valve seat in the first modification of the regulator according to this embodiment is shown. 本実施形態に係るレギュレータの第2の変形例を示す図である。It is a figure which shows the 2nd modification of the regulator which concerns on this embodiment. 図13の弁座付近の部分拡大図を示す。A partially enlarged view of the vicinity of the valve seat in FIG. 13 is shown. 本実施形態に係るレギュレータの第3の変形例を示す図である。It is a figure which shows the 3rd modification of the regulator which concerns on this embodiment. 図15の弁座付近の部分拡大図を示す。A partially enlarged view of the vicinity of the valve seat in FIG. 15 is shown. 第4の変形例に係るレギュレータの断面図を示す。The cross-sectional view of the regulator which concerns on the 4th modification is shown. 摺動部材の斜視図である。It is a perspective view of a sliding member. 板ばねの斜視図である。It is a perspective view of a leaf spring. レギュレータに固定部材を取り付けた状態を表す斜視図である。It is a perspective view which shows the state which attached the fixing member to a regulator. レギュレータと固定部材を分解した状態を表す斜視図である。It is a perspective view which shows the state which disassembled a regulator and a fixing member. 固定部材を示す斜視図である。It is a perspective view which shows the fixing member. レギュレータの底面図である。It is a bottom view of a regulator. レギュレータの底面図の部分拡大図であり、固定部材を取り付けた状態を表す図である。It is a partially enlarged view of the bottom view of the regulator, and is the figure which shows the state which attached the fixing member. 図24のA−A断面図である。FIG. 24 is a sectional view taken along the line AA of FIG. 24.

本発明に係る流体制御弁の実施形態について、図面を参照しながら詳細に説明する。
本実施形態に係る流体制御機器は、半導体製造工程に用いられる薬液や純水等の制御流体の圧力制御を行うレギュレータ1であり、図1に示すように、弁本体11と、上カバー(カバー部材の一例)12と、下カバー13とを備え、弁本体11に対し、弁体14が弁座115a(図2参照)に当接離間する方向と平行な方向から、上カバー12と下カバー13が組付けられている。弁本体11には、制御流体が入力される入力ポート111と、制御流体が出力される出力ポート112とが形成されている。接液部材である弁本体11は、例えば耐腐食性の高いフッ素系合成樹脂により成形され、接液部材ではない上カバー12と下カバー13は、例えばポリプロピレン樹脂により成形されている。
An embodiment of the fluid control valve according to the present invention will be described in detail with reference to the drawings.
The fluid control device according to the present embodiment is a regulator 1 that controls the pressure of a control fluid such as a chemical solution or pure water used in a semiconductor manufacturing process, and as shown in FIG. 1, a valve body 11 and an upper cover (cover). An example of a member) 12 and a lower cover 13 are provided, and the upper cover 12 and the lower cover are provided from a direction parallel to the direction in which the valve body 14 abuts and separates from the valve body 11 with respect to the valve seat 115a (see FIG. 2). 13 is assembled. The valve body 11 is formed with an input port 111 to which the control fluid is input and an output port 112 to which the control fluid is output. The valve body 11 which is a wetted member is molded of, for example, a fluorine-based synthetic resin having high corrosion resistance, and the upper cover 12 and the lower cover 13, which are not wetted members, are molded of, for example, polypropylene resin.

弁本体11の中央部には、入力流路111aによって入力ポート111に連通する弁室113が、弁本体11の下カバー13の側の端面から上カバー12の側に向かって穿設されている。そして、弁室113には、弁孔114が連通しており、弁室113の弁孔側内面113aには、弁孔114の外周に沿って環状突出部115が突設されている。 A valve chamber 113 communicating with the input port 111 by the input flow path 111a is formed in the central portion of the valve body 11 from the end surface on the side of the lower cover 13 of the valve body 11 toward the side of the upper cover 12. .. A valve hole 114 communicates with the valve chamber 113, and an annular protrusion 115 projects along the outer circumference of the valve hole 114 on the valve hole side inner surface 113a of the valve chamber 113.

環状突出部115の先端には、図2に示すように、後述する弁体14が当接離間する弁座115aが形成されており、環状突出部115の内径側全周には、環状突出部115の内径を弁孔114に向かって縮径させる環状縮径面115bが形成されている。そして、環状縮径面115bと、弁孔114の内周面は、環状縮径面115bから弁孔114の側に向かって穿設された、弁孔114と同軸の環状窪み部117により接続されている。 As shown in FIG. 2, a valve seat 115a is formed at the tip of the annular protrusion 115 so that the valve body 14 described later abuts and separates from the tip of the annular protrusion 115. An annular reduced diameter surface 115b is formed that reduces the inner diameter of 115 toward the valve hole 114. Then, the annular reduced diameter surface 115b and the inner peripheral surface of the valve hole 114 are connected by an annular recessed portion 117 coaxial with the valve hole 114, which is formed from the annular reduced diameter surface 115b toward the valve hole 114 side. ing.

さらに、弁本体11には、図1に示すように、弁孔114と連通している開口部116が、上カバー12側の端面に穿設されている。開口部116は、後述する薄膜部材15によって、出力流路112aにより出力ポート112に連通する下流側流体室116aと、圧力作用室116bと、に分割されている。なお、入力流路111aと、弁室113と、弁孔114と、下流側流体室116aと、出力流路112aとによって、入力ポート111から出力ポート112への流路が構成される。 Further, as shown in FIG. 1, the valve body 11 is provided with an opening 116 communicating with the valve hole 114 on the end surface on the upper cover 12 side. The opening 116 is divided into a downstream fluid chamber 116a communicating with the output port 112 by an output flow path 112a and a pressure acting chamber 116b by a thin film member 15 described later. The input flow path 111a, the valve chamber 113, the valve hole 114, the downstream fluid chamber 116a, and the output flow path 112a form a flow path from the input port 111 to the output port 112.

弁室113には、上カバー12と下カバー13との組み付け方向と平行な方向に往復動可能な円柱状の弁体14が収容されている。弁体14には、その軸線方向の中央部に、他の部分よりも径の大きい拡径部141が形成されている。拡径部141の、弁座115aに対向する端面は、図2に示すように、弁座115aに当接する当接面141aとなって
いる。弁体14が環状突出部115の側へ移動すると、当接面141aが弁座115aに当接し、入力ポート111から出力ポート112への流路が遮断される。一方、弁体14が環状突出部115の側とは反対側へ移動すると、当接面141aが弁座115aから離間し、入力ポート111から出力ポート112への流路が連通される。
The valve chamber 113 houses a columnar valve body 14 that can reciprocate in a direction parallel to the assembling direction of the upper cover 12 and the lower cover 13. The valve body 14 is formed with a diameter-expanded portion 141 having a diameter larger than that of other portions at the central portion in the axial direction thereof. As shown in FIG. 2, the end surface of the enlarged diameter portion 141 facing the valve seat 115a is a contact surface 141a that abuts on the valve seat 115a. When the valve body 14 moves toward the annular protrusion 115, the contact surface 141a comes into contact with the valve seat 115a, and the flow path from the input port 111 to the output port 112 is blocked. On the other hand, when the valve body 14 moves to the side opposite to the side of the annular protrusion 115, the contact surface 141a is separated from the valve seat 115a, and the flow path from the input port 111 to the output port 112 is communicated.

また、当接面141aには、弁座115aの内周側に、円柱状の段差部143が弁孔114の側に向かって突設されている。段差部143は、弁孔114の内径よりも大きい径を有し、弁孔114と同軸に位置している。 Further, on the contact surface 141a, a columnar step portion 143 is provided so as to project toward the valve hole 114 side on the inner peripheral side of the valve seat 115a. The step portion 143 has a diameter larger than the inner diameter of the valve hole 114 and is located coaxially with the valve hole 114.

図3に示すように、段差部143の外周面と、段差部143の弁孔114の側の端面(上端面)とが交わる第1環状稜線145(環状稜線の一例)の近傍には、環状窪み部117の内周面と環状縮径面115bとが交わる第3環状稜線118が位置し、第1環状稜線145と第3環状稜線118とが、流路絞り部17を形成している。流路絞り部17により、当接面141aと弁座115aにより狭められた流路の断面積が、当接面141aと段差部143の外周面と環状縮径面115bとにより囲まれた空間(第1空間)により一度拡大された後、再び狭められることとなる。 As shown in FIG. 3, an annular shape is formed in the vicinity of the first annular ridge line 145 (an example of the annular ridge line) where the outer peripheral surface of the step portion 143 and the end surface (upper end surface) of the step portion 143 on the valve hole 114 side intersect. The third annular ridge line 118 where the inner peripheral surface of the recessed portion 117 and the annular reduced diameter surface 115b intersect is located, and the first annular ridge line 145 and the third annular ridge line 118 form the flow path narrowing portion 17. A space in which the cross-sectional area of the flow path narrowed by the contact surface 141a and the valve seat 115a by the flow path narrowing portion 17 is surrounded by the contact surface 141a, the outer peripheral surface of the step portion 143, and the annular diameter reduction surface 115b. After being expanded once by the first space), it will be narrowed again.

さらに、段差部143の上端面には、図2に示すように、段差部143の外径よりも小さい径を有する円柱状の第2段差部144が弁孔114側に向かって突設されている。第2段差部144は、弁孔114と同軸に位置している。 Further, as shown in FIG. 2, a columnar second step portion 144 having a diameter smaller than the outer diameter of the step portion 143 is projected from the upper end surface of the step portion 143 toward the valve hole 114 side. There is. The second step portion 144 is located coaxially with the valve hole 114.

図3に示すように、第2段差部144の外周面と、第2段差部144の弁孔114の側の端面(上端面)とが交わる第2環状稜線146の近傍には、環状窪み部117の弁孔114の側の内面と弁孔114の内周面とが交わる第4環状稜線119が位置し、第2環状稜線146と第4環状稜線119とが、第2流路絞り部18を形成している。第2流路絞り部18により、流路絞り部17により狭められた流路の断面積が、段差部143の上端面と第2段差部144の外周面と環状窪み部117とに囲まれた空間(第2空間)により拡大された後、再び狭められることとなる。 As shown in FIG. 3, an annular recess portion is provided in the vicinity of the second annular ridge line 146 where the outer peripheral surface of the second step portion 144 and the end surface (upper end surface) of the second step portion 144 on the valve hole 114 side intersect. The fourth annular ridge line 119 where the inner surface of 117 on the valve hole 114 side and the inner peripheral surface of the valve hole 114 intersect is located, and the second annular ridge line 146 and the fourth annular ridge line 119 are the second flow path throttle portion 18 Is forming. The cross-sectional area of the flow path narrowed by the flow path throttle portion 17 by the second flow path throttle portion 18 is surrounded by the upper end surface of the step portion 143, the outer peripheral surface of the second step portion 144, and the annular recess portion 117. After being expanded by the space (second space), it will be narrowed again.

流路絞り部17の、第1環状稜線145の直径方向の隙間寸法C1は、隙間寸法C1に、環状突出部115の、弁座115aの中心部(中心線CL11)における直径寸法D1(図2参照)を乗じた値が、0.6から1.2の間となるように設定するのが望ましく、例えば、本実施形態においては当該乗じた値が0.83となるようにされている。 The clearance dimension C1 in the radial direction of the first annular ridge line 145 of the flow path throttle portion 17 has the diameter dimension D1 (FIG. 2) of the annular protrusion 115 at the center portion (center line CL11) of the valve seat 115a in the gap dimension C1. It is desirable to set the value multiplied by (see) to be between 0.6 and 1.2. For example, in the present embodiment, the multiplied value is set to 0.83.

また、第2流路絞り部18の、第2環状稜線146の直径方向の隙間寸法C2は、隙間寸法C2に、環状突出部115の、弁座115aの中心部(中心線CL11)における直径寸法D1を乗じた値が、0.6から1.2の間となるように設定するのが望ましく、例えば、本実施形態においては当該乗じた値が0.83となるようにされている。 Further, the gap dimension C2 in the radial direction of the second annular ridge line 146 of the second flow path throttle portion 18 is the diameter dimension of the annular protrusion 115 at the center portion (center line CL11) of the valve seat 115a in the gap dimension C2. It is desirable that the value multiplied by D1 is set to be between 0.6 and 1.2. For example, in the present embodiment, the multiplied value is set to 0.83.

弁座115aの中心部(中心線CL11)から、段差部143の外周面までの距離d1は、0.4mmから0.8mmの範囲内であることが望ましく、例えば、本実施形態においては、0.5mmとされている。さらに、段差部143の外周面から、第2段差部144の外周面までの距離d2は、0.4mmから0.8mmの範囲内であることが望ましく、例えば、本実施形態においては、0.4mmとされている。 The distance d1 from the central portion (center line CL11) of the valve seat 115a to the outer peripheral surface of the step portion 143 is preferably in the range of 0.4 mm to 0.8 mm. For example, in the present embodiment, it is 0. It is said to be 5.5 mm. Further, the distance d2 from the outer peripheral surface of the step portion 143 to the outer peripheral surface of the second step portion 144 is preferably in the range of 0.4 mm to 0.8 mm. For example, in the present embodiment, 0. It is said to be 4 mm.

弁座115aから、環状窪み部117の弁孔114の側の内面までの距離d3は、当接面141aから第2段差部144の上端面までの距離d4よりも0.03mmから0.13mm小さいことが望ましく、例えば、本実施形態においては、0.1mm小さく設定されている。 The distance d3 from the valve seat 115a to the inner surface of the annular recess 117 on the valve hole 114 side is 0.03 mm to 0.13 mm smaller than the distance d4 from the contact surface 141a to the upper end surface of the second step portion 144. It is desirable, for example, in the present embodiment, it is set to be 0.1 mm smaller.

さらに、弁体14は、図1に示すように、下カバー13側の端部に、弁体14と一体に
成形された薄膜部142を備えるとともに、上カバー12側の端部には、薄膜部152を備える薄膜部材15が結合されている。弁体14の薄膜部142と、薄膜部材15の薄膜部152は、弁体14が弁座115aに当接離間する運動に合わせて弾性変形する。なお、接液部材である弁体14と、薄膜部材15は、耐腐食性の高い、例えばフッ素系合成樹脂により成形されている。
Further, as shown in FIG. 1, the valve body 14 is provided with a thin film portion 142 integrally molded with the valve body 14 at the end portion on the lower cover 13 side, and the thin film portion 142 is provided at the end portion on the upper cover 12 side. The thin film member 15 including the portion 152 is bonded. The thin film portion 142 of the valve body 14 and the thin film portion 152 of the thin film member 15 are elastically deformed in accordance with the movement of the valve body 14 in contact with and separated from the valve seat 115a. The valve body 14 which is a wetted member and the thin film member 15 are molded of, for example, a fluorine-based synthetic resin having high corrosion resistance.

薄膜部材15は、弁体14が結合される中央部151の外周に、薄膜部152を備え、さらに、薄膜部152の外周に沿って、環状固定部153を備える。環状固定部153は、外周全周に沿って、上カバー12側の端部(上端面153b)を残し、外周面から弁本体11の側の端面(下端面)までを切り欠く環状切欠部153cを備える。環状固定部153の下端面には、圧入部153aが設けられており、弁本体11の開口部116に圧入可能となっている。開口部116に圧入された薄膜部材15は、環状固定部153を、弁体14が弁座115aに当接離間する方向の両側から上カバー12と弁本体11とにより挟持されることで固定されている。環状固定部153の上端面153bと、上カバー12の間には、Oリング19が配設されており、圧力作用室116bの気密を保っている。 The thin film member 15 includes a thin film portion 152 on the outer periphery of the central portion 151 to which the valve body 14 is bonded, and further includes an annular fixing portion 153 along the outer periphery of the thin film portion 152. The annular fixing portion 153 has an annular notch portion 153c that cuts out from the outer peripheral surface to the end surface (lower end surface) on the valve body 11 side, leaving the end portion (upper end surface 153b) on the upper cover 12 side along the entire circumference. To be equipped. A press-fitting portion 153a is provided on the lower end surface of the annular fixing portion 153 so that it can be press-fitted into the opening 116 of the valve body 11. The thin film member 15 press-fitted into the opening 116 is fixed by sandwiching the annular fixing portion 153 between the upper cover 12 and the valve body 11 from both sides in the direction in which the valve body 14 abuts and separates from the valve seat 115a. ing. An O-ring 19 is arranged between the upper end surface 153b of the annular fixing portion 153 and the upper cover 12 to maintain the airtightness of the pressure acting chamber 116b.

環状切欠部153cが設けられることで、弁本体11の肉厚を、環状固定部153が環状切欠部153cにより切り欠かれている分だけ厚くすることができ、弁本体11の強度を保つことができる。また、環状切欠部153cは、環状固定部153の上端面153bを残して、外周面から下端面までを切り欠くものであるため、上端面153bにおいて、上カバー12により押さえつけられる面積を確保することができる。 By providing the annular notch 153c, the wall thickness of the valve body 11 can be increased by the amount that the annular fixing portion 153 is cut out by the annular notch 153c, and the strength of the valve body 11 can be maintained. it can. Further, since the annular cutout portion 153c cuts out from the outer peripheral surface to the lower end surface while leaving the upper end surface 153b of the annular fixing portion 153, it is necessary to secure an area pressed by the upper cover 12 on the upper end surface 153b. Can be done.

下カバー13には、薄膜部142を挟んで弁室113と反対側にばね収容室131が形成されている。ばね収容室131には圧縮コイルばね16が収容されている。この圧縮コイルばね16の付勢力により、弁体14は常時弁座115aに当接する方向へ付勢されている。これにより、弁体14の当接面141aが弁座115aに当接する状態が保持されることとなる。 A spring accommodating chamber 131 is formed in the lower cover 13 on the side opposite to the valve chamber 113 with the thin film portion 142 interposed therebetween. The compression coil spring 16 is housed in the spring accommodating chamber 131. Due to the urging force of the compression coil spring 16, the valve body 14 is constantly urged in the direction of contacting the valve seat 115a. As a result, the state in which the contact surface 141a of the valve body 14 is in contact with the valve seat 115a is maintained.

上カバー12には、圧力作用室116bに連通する導入ポート121が形成されており、導入ポート121を通じて圧力作用室116bに操作エアが導入される。圧力作用室116bの操作エアの圧力を制御することにより、弁体14の位置が調節される。 The upper cover 12 is formed with an introduction port 121 communicating with the pressure acting chamber 116b, and operating air is introduced into the pressure acting chamber 116b through the introduction port 121. The position of the valve body 14 is adjusted by controlling the pressure of the operating air in the pressure acting chamber 116b.

以上のような構成を有するレギュレータ1の弁体14の当接面141aおよび弁座115a付近の制御流体の流れ具合について、以下に説明する。
まずは従来技術において問題となっていたキャビテーションの発生について、図5〜図8を用いて説明する。
The flow condition of the control fluid in the vicinity of the contact surface 141a and the valve seat 115a of the valve body 14 of the valve body 14 of the regulator 1 having the above configuration will be described below.
First, the occurrence of cavitation, which has been a problem in the prior art, will be described with reference to FIGS. 5 to 8.

図5および図6に示すのは、レギュレータ1の入力側と出力側で制御流体の圧力の差圧が、例えば200kPa程度に制御され、弁開度が0.035mm程度となった当接面141aおよび弁座115a付近の圧力分布図であり、コンピュータによる有限要素法を用いて解析した結果を表すものである。また、図7は、従来技術に係るレギュレータ50において、弁開度が0.035mm程度となった当接面54aおよび弁座515付近の圧力分布図であり、コンピュータによる有限要素法を用いて解析した結果を表すものである。図5〜図7は、ドット密度が高い部分が制御流体の圧力が低い部分を示し、ドット密度が
低い部分が制御流体の圧力が高い部分を示している。
5 and 6 show the contact surface 141a in which the pressure difference of the control fluid between the input side and the output side of the regulator 1 is controlled to, for example, about 200 kPa, and the valve opening degree is about 0.035 mm. It is a pressure distribution map near the valve seat 115a and shows the result of analysis using the finite element method by a computer. Further, FIG. 7 is a pressure distribution diagram of the contact surface 54a and the valve seat 515 where the valve opening degree is about 0.035 mm in the regulator 50 according to the prior art, and is analyzed by using the finite element method by a computer. It represents the result of the above. In FIGS. 5 to 7, a portion having a high dot density indicates a portion where the pressure of the control fluid is low, and a portion having a low dot density indicates a portion where the pressure of the control fluid is high.

なお、弁座115aの下流側における圧力が低いほど、キャビテーションが発生しやすくなり、例えば圧力値P11(図8参照)以下となった状態が、キャビテーションが発生しやすい状態である。 The lower the pressure on the downstream side of the valve seat 115a, the more likely it is that cavitation will occur. For example, a state where the pressure value is P11 (see FIG. 8) or less is a state in which cavitation is likely to occur.

弁開度が0.035mm程度であると、そのような小さい隙間を通る制御流体は、流速が速くなる。制御流体の流速が速くなった場合において、従来技術に係るレギュレータ50の弁座515の下流側における制御流体の圧力を、例えば、図7に示すように、測定点A21,A22,A23の3点において見てみると、全て負圧状態となっていることが分かる。これは、流速の増加により圧力が低下するためである(ベルヌーイの定理)。そして、測定点A21,A22,A23の圧力値は、図8のグラフに示すように、全てが圧力値P11以下となっており、キャビテーションが発生しやすい状態であることが分かる。 When the valve opening degree is about 0.035 mm, the flow velocity of the control fluid passing through such a small gap becomes high. When the flow velocity of the control fluid becomes high, the pressure of the control fluid on the downstream side of the valve seat 515 of the regulator 50 according to the prior art is measured at three points A21, A22, and A23, for example, as shown in FIG. If you look at, you can see that they are all in a negative pressure state. This is because the pressure decreases as the flow velocity increases (Bernoulli's theorem). Then, as shown in the graph of FIG. 8, the pressure values of the measurement points A21, A22, and A23 are all equal to or less than the pressure value P11, and it can be seen that cavitation is likely to occur.

一方、本実施形態に係るレギュレータ1では、図5に示すように、弁体14および弁座115aの隙間付近においては負圧状態となっているものの、測定点A21の位置に相当する、第1空間における測定点A11においては、負圧状態が解消され、圧力値は正の値となっている。これは図8に示すグラフにおいても明らかである。 On the other hand, in the regulator 1 according to the present embodiment, as shown in FIG. 5, although the pressure is negative near the gap between the valve body 14 and the valve seat 115a, the first regulator 1 corresponds to the position of the measurement point A21. At the measurement point A11 in space, the negative pressure state is eliminated and the pressure value becomes a positive value. This is also clear in the graph shown in FIG.

また、測定点A22の位置に相当する、第2空間における測定点A12においても、負圧状態が解消され、圧力値は正の値となっている。これは図8に示すグラフにおいても明らかである。 Further, at the measurement point A12 in the second space, which corresponds to the position of the measurement point A22, the negative pressure state is eliminated and the pressure value becomes a positive value. This is also clear in the graph shown in FIG.

測定点A23の位置に相当する測定点A13においては、圧力分布図を見ると、負圧状態であることが分かるものの、図8のグラフに示されるように圧力値P11を超えた値となっており、キャビテーションが発生しやすい状態は解消されていると言える。 At the measurement point A13, which corresponds to the position of the measurement point A23, the pressure distribution map shows that the pressure is in a negative pressure state, but the value exceeds the pressure value P11 as shown in the graph of FIG. Therefore, it can be said that the condition where cavitation is likely to occur has been resolved.

即ち、本実施形態に係るレギュレータ1においては、測定点A11,A12,A13全てにおいて、圧力値P11以上の圧力を示しており、キャビテーションが発生しにくい状態となっている。 That is, in the regulator 1 according to the present embodiment, the pressure values P11 or higher are shown at all the measurement points A11, A12, and A13, and cavitation is unlikely to occur.

ここで、先述の通り、流路絞り部17の、第1環状稜線145の直径方向の隙間寸法C1は、隙間寸法C1に、環状突出部115の、弁座115aの中心部(中心線CL11)における直径寸法D1を乗じた値が、0.6から1.2の間となるのが望ましく、第2流路絞り部18の、第2環状稜線146の直径方向の隙間寸法C2は、隙間寸法C2に、環状突出部115の、弁座115aの中心部(中心線CL11)における直径寸法D1を乗じた値が、0.6から1.2の間となるように設定するのが望ましい。例えば、隙間寸法C2を拡大し、隙間寸法C2に、環状突出部115の、弁座115aの中心部(中心線CL11)における直径寸法D1を乗じた値を、0.6から1.2の範囲から逸脱させた場合、図6に示すように、第1空間における測定点A11および第2空間における測定点A12がそれぞれ負圧状態となってしまう。そして、測定点A11および測定点A12の圧力値は、図8(C2拡大)に示す通り、P11を下回る値となっており、キャビテーションが発生するおそれがあることが分かる。 Here, as described above, the clearance dimension C1 in the diameter direction of the first annular ridge line 145 of the flow path narrowing portion 17 has the clearance dimension C1 and the central portion (center line CL11) of the valve seat 115a of the annular protrusion 115. It is desirable that the value obtained by multiplying the diameter dimension D1 in the above is between 0.6 and 1.2, and the gap dimension C2 in the diameter direction of the second annular ridge line 146 of the second flow path throttle portion 18 is the gap dimension. It is desirable that the value obtained by multiplying C2 by the diameter dimension D1 of the annular protrusion 115 at the center portion (center line CL11) of the valve seat 115a is set to be between 0.6 and 1.2. For example, the gap dimension C2 is enlarged, and the value obtained by multiplying the gap dimension C2 by the diameter dimension D1 of the annular protrusion 115 at the center portion (center line CL11) of the valve seat 115a is in the range of 0.6 to 1.2. When deviating from the above, as shown in FIG. 6, the measurement point A11 in the first space and the measurement point A12 in the second space are in a negative pressure state, respectively. Then, as shown in FIG. 8 (enlarged C2), the pressure values of the measurement points A11 and the measurement points A12 are lower than P11, and it can be seen that cavitation may occur.

なお、図12に示す第1の変形例に係るレギュレータのように、環状縮径面115bに環状窪み部117を設けないものとしても良い。この場合、第2空間において負圧状態となるものの、第1空間および弁孔114付近において、キャビテーションが発生しない程度の圧力値に保たれ、キャビテーションの発生を抑えるのに効果がある。 It should be noted that, unlike the regulator according to the first modification shown in FIG. 12, the annular recessed portion 117 may not be provided on the annular reduced diameter surface 115b. In this case, although a negative pressure state is generated in the second space, the pressure value is maintained at a level at which cavitation does not occur in the first space and in the vicinity of the valve hole 114, which is effective in suppressing the occurrence of cavitation.

次に従来技術において問題となっていた噴流の発生について、図9〜図11を用いて説明する。図9および図10に示すのは、レギュレータ1の入力側と出力側で制御流体の圧力の差圧が、例えば200kPa程度に制御され、弁開度が0.035mm程度となった当接面141aおよび弁座115a付近における制御流体の流速を表した分布図であり、コンピュータによる有限要素法を用いて解析した結果を表すものである。また、図7は、従来技術に係るレギュレータ50において、弁開度が0.035mm程度となった当接面54aおよび弁座515付近における制御流体の流速を表した分布図であり、コンピュータによる有限要素法を用いて解析した結果を表すものである。図9〜図11は、ドット密度が高い部分が制御流体の流速が速い部分を示し、ドット密度が低い部分が制御流体の流速が遅い部分を示している。 Next, the generation of jets, which has been a problem in the prior art, will be described with reference to FIGS. 9 to 11. 9 and 10 show the contact surface 141a in which the pressure difference of the control fluid between the input side and the output side of the regulator 1 is controlled to, for example, about 200 kPa, and the valve opening degree is about 0.035 mm. It is a distribution map showing the flow velocity of the control fluid in the vicinity of the valve seat 115a, and shows the result of analysis using the finite element method by a computer. Further, FIG. 7 is a distribution diagram showing the flow velocity of the control fluid in the vicinity of the contact surface 54a and the valve seat 515 where the valve opening degree is about 0.035 mm in the regulator 50 according to the prior art, and is finite by a computer. It represents the result of analysis using the element method. In FIGS. 9 to 11, a portion having a high dot density indicates a portion where the flow velocity of the control fluid is high, and a portion having a low dot density indicates a portion where the flow velocity of the control fluid is low.

図11に示す従来のレギュレータ50の解析結果を見てみると、制御流体の流速の高い部分が、弁体54の当接面54aに沿って伸びていることが分かる。これは、噴流が当接面54aに沿って発生していることを示している。当接面54aに沿って発生する噴流は、弁体54を振動させる原因となる。 Looking at the analysis results of the conventional regulator 50 shown in FIG. 11, it can be seen that the portion of the control fluid having a high flow velocity extends along the contact surface 54a of the valve body 54. This indicates that the jet is generated along the contact surface 54a. The jet flow generated along the contact surface 54a causes the valve body 54 to vibrate.

一方、本実施形態に係るレギュレータ1においては、図9に示す通り、制御流体の流速の高い部分が、当接面141aと弁座115aとの隙間から、環状縮径面115bに沿って伸びており、従来技術において噴流が当接面54aに沿って発生していた状態が解消されていることが分かる。これは、段差部143により、噴流が、弁孔114側へ誘導され、弁体14から剥離されているためである。噴流が弁体14から剥離されることで、噴流に起因する弁体14の振動の発生を抑えることができるのである。 On the other hand, in the regulator 1 according to the present embodiment, as shown in FIG. 9, a portion having a high flow velocity of the control fluid extends from the gap between the contact surface 141a and the valve seat 115a along the annular reduced diameter surface 115b. It can be seen that the state in which the jet flow is generated along the contact surface 54a in the prior art has been eliminated. This is because the jet flow is guided to the valve hole 114 side by the step portion 143 and is separated from the valve body 14. By separating the jet from the valve body 14, it is possible to suppress the generation of vibration of the valve body 14 due to the jet flow.

ここで、先述の通り、弁座115aの中心部(中心線CL11)から、段差部143の外周面までの距離d1は、0.4mmから0.8mmの範囲内であることが望ましく、段差部143の外周面から、第2段差部144の外周面までの距離d2は、0.4mmから0.8mmの範囲内であることが望ましい。例えば、距離d1を拡大し、0.4mmから0.8mmの範囲内から逸脱させた場合、図10に示すように、制御流体の流速の高い部分が、弁体14の当接面141aに沿って伸びており、噴流が弁体14から剥離されていないことが分かる。この状態では、噴流に起因する弁体14の振動の発生を抑えることができないおそれがある。 Here, as described above, the distance d1 from the central portion (center line CL11) of the valve seat 115a to the outer peripheral surface of the stepped portion 143 is preferably in the range of 0.4 mm to 0.8 mm, and the stepped portion The distance d2 from the outer peripheral surface of the 143 to the outer peripheral surface of the second step portion 144 is preferably in the range of 0.4 mm to 0.8 mm. For example, when the distance d1 is expanded and deviated from the range of 0.4 mm to 0.8 mm, as shown in FIG. 10, the portion where the flow velocity of the control fluid is high is along the contact surface 141a of the valve body 14. It can be seen that the jet flow is not separated from the valve body 14. In this state, it may not be possible to suppress the generation of vibration of the valve body 14 due to the jet flow.

なお、本実施例の第2の変形例として、図13および図14に示すように、弁本体21の環状突出部215の先端に設けられた弁座215aに対して当接する、弁体24の拡径部241に設けられた当接面241aを、弁体24の軸心に対して傾斜させるものとしても良い。また、環状窪み部217の弁孔214の側の内面や、段差部243および第2段差部244の弁孔214の側の端面(上端面)も、傾斜させるものとしても良い。 As a second modification of this embodiment, as shown in FIGS. 13 and 14, the valve body 24 comes into contact with the valve seat 215a provided at the tip of the annular protrusion 215 of the valve body 21. The contact surface 241a provided on the enlarged diameter portion 241 may be inclined with respect to the axial center of the valve body 24. Further, the inner surface of the annular recess 217 on the valve hole 214 side and the end surface (upper end surface) of the step portion 243 and the second step portion 244 on the valve hole 214 side may also be inclined.

このとき、段差部243の外周面と、段差部243の上端面とが交わる第1環状稜線245(環状稜線の一例)の近傍には、環状窪み部217の内周面と環状縮径面215bとが交わる第3環状稜線218が位置し、第1環状稜線245と第3環状稜線218とが、流路絞り部27を形成している。さらに、第2段差部244の外周面と、第2段差部244の上端面とが交わる第2環状稜線246の近傍には、環状窪み部217の弁孔114の側の内面と弁孔214の内周面とが交わる第4環状稜線219が位置し、第2環状稜線246と第4環状稜線219とが、第2流路絞り部28を形成している。 At this time, in the vicinity of the first annular ridge line 245 (an example of the annular ridge line) where the outer peripheral surface of the step portion 243 and the upper end surface of the step portion 243 intersect, the inner peripheral surface of the annular recess portion 217 and the annular reduced diameter surface 215b The third annular ridge line 218 that intersects with the third annular ridge line 218 is located, and the first annular ridge line 245 and the third annular ridge line 218 form the flow path narrowing portion 27. Further, in the vicinity of the second annular ridge line 246 where the outer peripheral surface of the second step portion 244 and the upper end surface of the second step portion 244 intersect, the inner surface of the annular recess 217 on the valve hole 114 side and the valve hole 214 The fourth annular ridge line 219 that intersects the inner peripheral surface is located, and the second annular ridge line 246 and the fourth annular ridge line 219 form the second flow path narrowing portion 28.

さらにまた、第3の変形例として、図15および図16に示すように、第3段差部345と第2環状窪み部318を設けることで、第3流路絞り部39を設けるものとしても良い。 Furthermore, as a third modification, as shown in FIGS. 15 and 16, the third flow path narrowing portion 39 may be provided by providing the third step portion 345 and the second annular recess portion 318. ..

まず弁本体31について説明すると、弁本体31が環状突出部315を備え、その先端に弁座315aを有するとともに、縮径面315bおよび環状窪み部317を備える点は、上記の第1の実施形態と同様である。弁本体31は、環状窪み部317の弁孔314側の内面から、弁孔314側に穿設された第2環状窪み部318を有している。 First, the valve body 31 will be described. The point that the valve body 31 is provided with an annular protrusion 315, a valve seat 315a at the tip thereof, a reduced diameter surface 315b, and an annular recess 317 is the first embodiment described above. Is similar to. The valve body 31 has a second annular recess 318 formed on the valve hole 314 side from the inner surface of the annular recess 317 on the valve hole 314 side.

次に弁体34について説明すると、弁体34が拡径部341を備え、拡径部341が、弁座315aと当接する当接面341aを備えるとともに、段差部343が当接面341aから弁孔314側に向かって突設され、第2段差部344が、段差部343の弁孔314側の端面(上端面)から、弁孔314側に向かって突設されている点は、上記の第1の実施形態と同様である。第3段差部345は、第2段差部344の弁孔314側の端面(上端面)から、弁孔314の側に向かって突設されており、第2段差部344よりも小さい径を有するとともに、弁孔314に同軸に位置している。 Next, the valve body 34 will be described. The valve body 34 is provided with a diameter-expanded portion 341, the diameter-expanded portion 341 is provided with a contact surface 341a that abuts on the valve seat 315a, and the step portion 343 is a valve from the contact surface 341a. The point that the second step portion 344 is projected toward the hole 314 side and the second step portion 344 is projected from the end surface (upper end surface) of the step portion 343 on the valve hole 314 side toward the valve hole 314 side is described above. It is the same as the first embodiment. The third step portion 345 projects from the end surface (upper end surface) of the second step portion 344 on the valve hole 314 side toward the valve hole 314 side, and has a diameter smaller than that of the second step portion 344. At the same time, it is located coaxially with the valve hole 314.

このとき、段差部343の外周面と、段差部343の上端面とが交わる第1環状稜線346(環状稜線の一例)の近傍には、環状窪み部317の内周面と環状縮径面315bとが交わる第3環状稜線319が位置し、第1環状稜線346と第3環状稜線319とが、流路絞り部37を形成している。また、第2段差部344の外周面と、第2段差部344の上端面とが交わる第2環状稜線347の近傍には、環状窪み部317の弁孔314の側の内面と第2環状窪み部318の内周面とが交わる第4環状稜線320が位置し、第2環状稜線347と第4環状稜線320とが、第2流路絞り部38を形成している。さらにまた、第3段差部345の外周面と、第3段差部345の弁孔314側の端面とが交わる第5環状稜線348の近傍には、第2環状窪み部318の弁孔314の側の内面と弁孔314の内周面とが交わる第6環状稜線322が位置し、第5環状稜線348と第6環状稜線322とが、第3流路絞り部39を形成している。 At this time, in the vicinity of the first annular ridge line 346 (an example of the annular ridge line) where the outer peripheral surface of the step portion 343 and the upper end surface of the step portion 343 intersect, the inner peripheral surface of the annular recess portion 317 and the annular reduced diameter surface 315b The third annular ridge line 319 where the above intersects is located, and the first annular ridge line 346 and the third annular ridge line 319 form the flow path narrowing portion 37. Further, in the vicinity of the second annular ridge line 347 where the outer peripheral surface of the second step portion 344 and the upper end surface of the second step portion 344 intersect, the inner surface of the annular recess portion 317 on the valve hole 314 side and the second annular recess are formed. The fourth annular ridge line 320 that intersects the inner peripheral surface of the portion 318 is located, and the second annular ridge line 347 and the fourth annular ridge line 320 form the second flow path narrowing portion 38. Furthermore, in the vicinity of the fifth annular ridge line 348 where the outer peripheral surface of the third step portion 345 and the end surface of the third step portion 345 on the valve hole 314 side intersect, the side of the valve hole 314 of the second annular recess 318. The sixth annular ridge line 322 where the inner surface of the valve hole 314 intersects with the inner peripheral surface of the valve hole 314 is located, and the fifth annular ridge line 348 and the sixth annular ridge line 322 form the third flow path narrowing portion 39.

さらに弁体14の振動を抑えるためには、第4の変形例として、図17に示すようなレギュレータ1が考えられる。 Further, in order to suppress the vibration of the valve body 14, a regulator 1 as shown in FIG. 17 can be considered as a fourth modification.

下カバー13のばね収容室131には、弁孔114と同軸に、凹状のガイド部132が穿設されている。そして、弁体14の下カバー13側の端部には、弁体14と一体とされ、ガイド部132に挿入された摺動部147が設けられている。弁体14の弁座115aに対する当接離間の動作は、摺動部147がガイド部132に挿入されていることで、ガイド部132によって案内される。 A concave guide portion 132 is bored in the spring accommodating chamber 131 of the lower cover 13 coaxially with the valve hole 114. A sliding portion 147 integrated with the valve body 14 and inserted into the guide portion 132 is provided at the end of the valve body 14 on the lower cover 13 side. The operation of contacting and separating the valve body 14 with respect to the valve seat 115a is guided by the guide portion 132 by inserting the sliding portion 147 into the guide portion 132.

弁体14の摺動部147は、弾性部材としての、摺動部材40および板ばね41からなる。 The sliding portion 147 of the valve body 14 is composed of a sliding member 40 and a leaf spring 41 as elastic members.

摺動部材40は、摺動性の高いフッ素樹脂(例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエアーテル共重合体(PFA)、ポリフッ化ビニリデン(PVDF)等)からなる。摺動部材40の、ガイド部132に挿入されている部分には、中空部402が設けられている。中空部402を囲む壁部にはスリット403(図18参照)が設けられており、当該壁部は片持ちばね401とされている。 The sliding member 40 is made of highly slidable fluororesin (for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl airtel copolymer (PFA), polyvinylidene fluoride (PVDF), etc.). Become. A hollow portion 402 is provided in a portion of the sliding member 40 that is inserted into the guide portion 132. A slit 403 (see FIG. 18) is provided in the wall portion surrounding the hollow portion 402, and the wall portion is a cantilever spring 401.

摺動部材40の、ガイド部132に挿入されている部分(片持ちばね401の部分)の直径は、ガイド部132の内周の直径よりも微少に大きくされており、片持ちばね401は、ガイド部132の内周面に押圧された状態となっている。この押圧により、片持ちばね401は弾性変形する。 The diameter of the portion of the sliding member 40 inserted into the guide portion 132 (the portion of the cantilever spring 401) is slightly larger than the diameter of the inner circumference of the guide portion 132. It is in a state of being pressed against the inner peripheral surface of the guide portion 132. Due to this pressing, the cantilever spring 401 is elastically deformed.

また、中空部402には、板ばね41が中空部402の内周面に密着された状態で嵌装されている。これにより、片持ちばね401が補強されている。 Further, the leaf spring 41 is fitted in the hollow portion 402 in a state of being in close contact with the inner peripheral surface of the hollow portion 402. As a result, the cantilever spring 401 is reinforced.

板ばね41は、バネ用ステンレス鋼(例えばSUS304CSP)の板材をC型状に形成したものである(図19参照)。摺動部材40の片持ちばね401が、ガイド部132の内周面に押圧されると、板ばね41の外周面412が、片持ちばね401によって押圧される。板ばね41は、スリット411が設けられているため、外周面412が片持ちばね401によって押圧されると、スリット411の幅が小さくなり、板ばね41は弾性変形する。 The leaf spring 41 is formed by forming a plate material of stainless steel for spring (for example, SUS304CSP) into a C shape (see FIG. 19). When the cantilever spring 401 of the sliding member 40 is pressed against the inner peripheral surface of the guide portion 132, the outer peripheral surface 412 of the leaf spring 41 is pressed by the cantilever spring 401. Since the leaf spring 41 is provided with the slit 411, when the outer peripheral surface 412 is pressed by the cantilever spring 401, the width of the slit 411 is reduced and the leaf spring 41 is elastically deformed.

片持ちばね401は、ガイド部132の内周面に、押圧された状態とされているため、片持ちばね401および板ばね41の弾性力が、常時、ガイド部132の内周面に対して弾性反力を作用させる。このようにガイド部132の内周面に対して弾性反力が作用していることで、弁体14が弁座115aに対して当接離間する動作の際に、弁体14に発生する振動を抑えることが可能となる。 Since the cantilever spring 401 is pressed against the inner peripheral surface of the guide portion 132, the elastic force of the cantilever spring 401 and the leaf spring 41 is always applied to the inner peripheral surface of the guide portion 132. Apply elastic reaction force. Since the elastic reaction force acts on the inner peripheral surface of the guide portion 132 in this way, the vibration generated in the valve body 14 when the valve body 14 comes into contact with and separates from the valve seat 115a. Can be suppressed.

ここで、以上説明したレギュレータ1の、設置面への固定構造について説明する。レギュレータ1のような流体制御弁は、半導体製造装置の高密度化などにより、機器が密集した箇所に取り付けられるケースが多いため、取付方法の自由度が高いことが求められている。そこで、レギュレータ1は、下カバー13(台座の一例)を設置面60(図20参照)に直接結合することで、設置面60に固定することができる他、図20および図21に示すように、固定部材20をレギュレータ1に装着し、下カバー13を設置面60に接地させた状態で、下カバー13に嵌合された固定部材20を設置面60に固定することで、設置面60に固定することが出来る。 Here, the structure of the regulator 1 described above to be fixed to the installation surface will be described. A fluid control valve such as the regulator 1 is often mounted in a place where equipment is densely packed due to a high density of semiconductor manufacturing equipment, and therefore, a high degree of freedom in mounting method is required. Therefore, the regulator 1 can be fixed to the installation surface 60 by directly connecting the lower cover 13 (an example of the pedestal) to the installation surface 60 (see FIG. 20), and as shown in FIGS. 20 and 21. , The fixing member 20 is attached to the regulator 1, and the fixing member 20 fitted to the lower cover 13 is fixed to the installation surface 60 in a state where the lower cover 13 is grounded to the installation surface 60. Can be fixed.

固定部材20は、例えば、ポリプロピレン(PP)またはポリフッ化ビニリデン(PVDF)の射出成型品であり、図21に示すように、下カバー13に嵌合させる嵌合部201と、設置面60と結合可能な固定部208と、からなる。 The fixing member 20 is, for example, an injection-molded product of polypropylene (PP) or polyvinylidene fluoride (PVDF), and is coupled to the fitting portion 201 to be fitted to the lower cover 13 and the installation surface 60 as shown in FIG. It comprises a possible fixing portion 208.

固定部材20の嵌合部201は、誤嵌合防止部202と、一対の係合部203と、からなる。誤嵌合防止部202は、幅方向の両端に斜面204を有しており、この斜面204により、誤嵌合防止部202は、下方に向かうほど幅が減少される台形状に形成されている。 The fitting portion 201 of the fixing member 20 includes a misfit preventing portion 202 and a pair of engaging portions 203. The misfit prevention portion 202 has slopes 204 at both ends in the width direction, and the slopes 204 form the misfit prevention portion 202 in a trapezoidal shape in which the width decreases toward the bottom. ..

一対の係合部203は、誤嵌合防止部202の固定部208が設けられている側とは反対側の端面から突設されている。一対の係合部203のそれぞれは、先端部(誤嵌合防止部202側とは反対側の端部)に、第1係止突起205を備える。第1係止突起205には、先端部に向かうほど、その高さが低くなるように、斜面状の押動部206が設けられている。また、嵌合部201には、一対の係合部203に挟まれるようにして、円弧状部207が設けられている。 The pair of engaging portions 203 are projected from the end faces on the side opposite to the side where the fixing portion 208 of the misfit prevention portion 202 is provided. Each of the pair of engaging portions 203 is provided with a first locking projection 205 at a tip portion (end portion on the side opposite to the misfit prevention portion 202 side). The first locking projection 205 is provided with a slope-shaped pushing portion 206 so that the height thereof decreases toward the tip portion. Further, the fitting portion 201 is provided with an arc-shaped portion 207 so as to be sandwiched between the pair of engaging portions 203.

固定部材20の固定部208は、高さ方向に貫通する貫通孔209を備えることで、リング状に形成されている。貫通孔209には、例えばボルトを挿通することができ、貫通孔209に挿通されたボルトを、設置面60に結合させることで、レギュレータ1が設置面60に固定される。 The fixing portion 208 of the fixing member 20 is formed in a ring shape by providing a through hole 209 penetrating in the height direction. For example, a bolt can be inserted into the through hole 209, and the regulator 1 is fixed to the installation surface 60 by connecting the bolt inserted through the through hole 209 to the installation surface 60.

下カバー13は、図21に示すように、側面に、固定部材20の嵌合部201と嵌合可能な嵌合間口137を備えている。さらに、図23乃至図25に示すように、嵌合間口137より嵌合方向の奥側に、嵌合間口137の幅方向に弾性変形可能であるとともに、固定部材20の嵌合部201と係合可能な一対の係止片138と、を備えている。 As shown in FIG. 21, the lower cover 13 is provided with a fitting frontage 137 that can be fitted with the fitting portion 201 of the fixing member 20 on the side surface. Further, as shown in FIGS. 23 to 25, the fitting frontage 137 is elastically deformable in the width direction of the fitting frontage 137 and is engaged with the fitting portion 201 of the fixing member 20. It includes a pair of locking pieces 138 that can be combined.

嵌合間口137は、幅方向の両端に斜面136を有しており、この斜面136により、下方に向かうほど幅が減少されるように形成されている。つまり、嵌合間口137は、台形状に形成されている。さらに詳しく説明すると、嵌合間口137の台形状は、誤嵌合防止部202と略相似形であり、微少な隙間を持って、誤嵌合防止部202を嵌合間口137にはめ込むことが可能となっている。 The fitting frontage 137 has slopes 136 at both ends in the width direction, and the slope 136 is formed so that the width decreases toward the lower side. That is, the fitting frontage 137 is formed in a trapezoidal shape. More specifically, the trapezoidal shape of the fitting frontage 137 is substantially similar to the misfitting prevention portion 202, and the misfitting prevention portion 202 can be fitted into the fitting frontage 137 with a minute gap. It has become.

一対の係止片138のそれぞれは、先端部(嵌合間口137側の端部)に、固定部材20の第1係止突起205と係合可能な第2係止突起133を備えている。また、第2係止突起133には、先端部に向かうほど、その高さが低くなるように、斜面状の被押動部134が設けられている。また、下カバー13には、一対の係止片138に挟まれるようにして、筒状壁部135が設けられている。なお、この筒状壁部135の内周面135aは、雌ねじとなっており、ボルト等を螺合可能である。 Each of the pair of locking pieces 138 is provided with a second locking projection 133 that can be engaged with the first locking projection 205 of the fixing member 20 at the tip end portion (the end portion on the fitting frontage 137 side). Further, the second locking projection 133 is provided with a slope-shaped pushed portion 134 so that the height thereof decreases toward the tip portion. Further, the lower cover 13 is provided with a tubular wall portion 135 so as to be sandwiched between a pair of locking pieces 138. The inner peripheral surface 135a of the tubular wall portion 135 is a female screw, and a bolt or the like can be screwed into the inner peripheral surface 135a.

次に、固定部材20の下カバー13への嵌合操作について説明する。
まず、固定部材20の誤嵌合防止部202と、下カバー13の嵌合間口137とは、ともに台形状に形成されているため、その方向を合わせる。つまり、嵌合間口137が下方に向かうほど幅が減少するようにされているため、誤嵌合防止部202が下方に向かうほど幅が減少する方向とする。ここで、誤った方向で嵌合操作を行ったとしても、誤嵌合防止部202と嵌合間口137とが干渉し、組付けることが出来ないため、誤嵌合を防止することが出来る。
Next, the fitting operation of the fixing member 20 to the lower cover 13 will be described.
First, since the misfitting prevention portion 202 of the fixing member 20 and the fitting frontage 137 of the lower cover 13 are both formed in a trapezoidal shape, their directions are aligned. That is, since the width is reduced as the fitting frontage 137 is directed downward, the width is reduced as the misfitting prevention portion 202 is directed downward. Here, even if the fitting operation is performed in the wrong direction, the misfitting prevention portion 202 and the fitting frontage 137 interfere with each other and cannot be assembled, so that the misfitting can be prevented.

嵌合部を嵌合間口137に挿入させていくと、第1係止突起205の押動部206が、第2係止突起133の被押動部134と接触する。そのまま、さらに嵌合部を嵌合間口に挿入させていくと、押動部206が被押動部134を押し広げていき、係止片138を第1係止突起205に対して脱離方向に弾性変形させる。そして、第1係止突起205が第2係止突起133を乗り越えると、係止片138が弾性変形前の状態に戻り、嵌合部201と係止片138とが係合される。つまり、第1係止突起205と第2係止突起133とがかみ合う。これにより、嵌合操作が完了され、固定部材20の抜去方向の動きが規制される。 When the fitting portion is inserted into the fitting frontage 137, the pushing portion 206 of the first locking projection 205 comes into contact with the pushed portion 134 of the second locking projection 133. As it is, when the fitting portion is further inserted into the fitting frontage, the pushing portion 206 pushes the pushed portion 134 apart, and the locking piece 138 is detached from the first locking projection 205. Elastically deforms to. Then, when the first locking projection 205 gets over the second locking projection 133, the locking piece 138 returns to the state before elastic deformation, and the fitting portion 201 and the locking piece 138 are engaged with each other. That is, the first locking projection 205 and the second locking projection 133 mesh with each other. As a result, the fitting operation is completed, and the movement of the fixing member 20 in the removing direction is restricted.

また、嵌合操作が完了された状態では、円弧状部207が筒状壁部135と、接触または近接して、同心上に位置しており、これにより、固定部材20の幅方向の動きが規制される。さらに、誤嵌合防止部202は、嵌合間口137に微少な隙間を持ってはめ込まれるため、誤嵌合防止部202と嵌合間口137とによって、固定部材20の幅方向および高さ方向の動きの規制が行われる。 Further, in the state where the fitting operation is completed, the arcuate portion 207 is located concentrically in contact with or close to the tubular wall portion 135, whereby the movement of the fixing member 20 in the width direction is performed. Be regulated. Further, since the erroneous fitting prevention portion 202 is fitted into the fitting frontage 137 with a minute gap, the erroneous fitting prevention portion 202 and the fitting frontage 137 allow the fixing member 20 to be fitted in the width direction and the height direction. Movement is regulated.

以上のように、嵌合操作により固定部材20をレギュレータ1に組付け可能であるため、固定部材20の要不要に応じて、固定部材20をレギュレータ1に組付けるか否かを選択可能である。よって、レギュレータ1の設置形態に自由度を持たせることが出来る。なお、レギュレータ1を複数の機器が密集するような狭小部に固定する場合には、固定部材20を用いずに、例えば、設置面60にレギュレータ1を設置する側とは反対側からボルトを挿通させ、筒状壁部135の内周面135aに螺合させることで、レギュレータ1を設置面60に固定可能となっている。固定部材20を用いないことで、レギュレータ1から突出する部分がなくなり、狭小部にも設置可能となる。 As described above, since the fixing member 20 can be assembled to the regulator 1 by the fitting operation, it is possible to select whether or not to assemble the fixing member 20 to the regulator 1 according to the necessity of the fixing member 20. .. Therefore, it is possible to give a degree of freedom to the installation form of the regulator 1. When fixing the regulator 1 to a narrow portion where a plurality of devices are densely packed, for example, a bolt is inserted from the side opposite to the side where the regulator 1 is installed on the installation surface 60 without using the fixing member 20. The regulator 1 can be fixed to the installation surface 60 by screwing the regulator 1 onto the inner peripheral surface 135a of the tubular wall portion 135. By not using the fixing member 20, there is no portion protruding from the regulator 1, and it can be installed even in a narrow portion.

以上説明したように、本実施形態のレギュレータ1によれば、
(1)弁体14と、弁体14が収容される上流側の弁室113と、弁室113に連通する下流側の弁孔114と、弁孔114の外周に沿って、弁室113の弁孔114の側の内面から突設され、先端に弁座115aを有する環状突出部115と、を有し、弁体14が弁座115aと当接離間することで、流体制御を行うレギュレータ1において、環状突出部115は、環状突出部115の内径側全周に、環状突出部115の内径を弁孔114に向かって縮径させる環状縮径面115bを備え、弁体14は、弁座115aと当接する当接面141aを備え、弁座115aの内周側に、当接面141aから弁孔114側に向かって突設された、弁孔114の内径よりも大きい径を有し、弁孔114と同軸の円柱状の段差部143を備え、段差部143の外周面と段差部143の弁孔114の側の端面とが交わる第1環状稜線145は、環状縮径面115bの近傍に位置し、流路絞り部17を形成すること、を特徴とする。
As described above, according to the regulator 1 of the present embodiment.
(1) The valve body 14, the valve chamber 113 on the upstream side in which the valve body 14 is housed, the valve hole 114 on the downstream side communicating with the valve chamber 113, and the valve chamber 113 along the outer periphery of the valve hole 114. A regulator 1 that has an annular protrusion 115 that is projected from the inner surface on the side of the valve hole 114 and has a valve seat 115a at the tip thereof, and the valve body 14 is brought into contact with and separated from the valve seat 115a to control fluid. The annular protrusion 115 is provided with an annular reduced diameter surface 115b that reduces the inner diameter of the annular protrusion 115 toward the valve hole 114 on the entire circumference of the annular protrusion 115 on the inner diameter side, and the valve body 14 is a valve seat. It has a contact surface 141a that comes into contact with 115a, and has a diameter larger than the inner diameter of the valve hole 114, which is projected from the contact surface 141a toward the valve hole 114 side on the inner peripheral side of the valve seat 115a. The first annular ridge line 145, which is provided with a columnar stepped portion 143 coaxial with the valve hole 114 and where the outer peripheral surface of the stepped portion 143 and the end surface of the stepped portion 143 on the valve hole 114 side intersect, is in the vicinity of the annular reduced diameter surface 115b. It is characterized in that it is located in and forms a flow path narrowing portion 17.

(1)に記載のレギュレータ1によれば、弁室113から弁孔114へ流れる制御流体は、弁体14と弁座115aにより流路面積が絞られた箇所、環状縮径面115bと当接面141aと段差部143の外周面とにより囲まれた空間(第1空間)により流路面積が広げられた箇所、流路絞り部17により流路面積が絞られた箇所を順に通過する。これにより、弁座115aの下流側での負圧状態が軽減されることを、出願人は実験により発見した。 According to the regulator 1 described in (1), the control fluid flowing from the valve chamber 113 to the valve hole 114 comes into contact with a portion where the flow path area is narrowed by the valve body 14 and the valve seat 115a, and the annular diameter-reduced surface 115b. It passes through a place where the flow path area is widened by the space (first space) surrounded by the surface 141a and the outer peripheral surface of the step portion 143, and a place where the flow path area is narrowed by the flow path narrowing part 17. The applicant has experimentally found that this reduces the negative pressure state on the downstream side of the valve seat 115a.

負圧状態が軽減されることで、キャビテーションの発生の抑制や、キャビテーションが発生したとしても、気泡の発生から消滅までの時間の短縮化が可能である。これらにより、キャビテーションに起因する振動の発生を抑えることができ、当該振動に起因する騒音の発生を抑えることが可能となる。 By reducing the negative pressure state, it is possible to suppress the occurrence of cavitation and shorten the time from the generation of bubbles to the disappearance even if cavitation occurs. As a result, it is possible to suppress the generation of vibration caused by cavitation, and it is possible to suppress the generation of noise caused by the vibration.

さらに、当接面141aから弁孔114側に向かって突設された段差部143により、噴流が、弁孔114側へ誘導され、弁体14から剥離される。噴流が弁体14から剥離されることで、噴流に起因する弁体14の振動の発生を抑えることができ、騒音の発生を抑えることが可能となる。 Further, the jet flow is guided to the valve hole 114 side by the stepped portion 143 projecting from the contact surface 141a toward the valve hole 114 side, and is separated from the valve body 14. By separating the jet flow from the valve body 14, it is possible to suppress the generation of vibration of the valve body 14 due to the jet flow, and it is possible to suppress the generation of noise.

(2)(1)に記載のレギュレータ1において、流路絞り部17の、第1環状稜線145の直径方向の隙間寸法C1に、環状突出部115の、弁座115aの中心部(中心線CL11)における直径寸法D1を乗じた値が、0.6から1.2の間であること、を特徴とする。 (2) In the regulator 1 according to (1), the central portion (center line CL11) of the valve seat 115a of the annular protrusion 115 has the clearance dimension C1 in the radial direction of the first annular ridge line 145 of the flow path throttle portion 17. ), The value obtained by multiplying the diameter dimension D1 is between 0.6 and 1.2.

(2)に記載のレギュレータ1によれば、キャビテーションに起因する振動を抑えることに優れたレギュレータ1とすることができることを、出願人は実験により発見した。 The applicant has experimentally found that the regulator 1 described in (2) can be an excellent regulator 1 for suppressing vibration caused by cavitation.

(3)(1)または(2)に記載のレギュレータ1において、弁座115aから、段差部143の外周面までの距離は、0.4mmから0.8mmの範囲内であること、を特徴とする。 (3) The regulator 1 according to (1) or (2) is characterized in that the distance from the valve seat 115a to the outer peripheral surface of the step portion 143 is within the range of 0.4 mm to 0.8 mm. To do.

(3)に記載のレギュレータ1によれば、噴流に起因する振動を抑えることに優れたレギュレータ1とすることができることを、出願人は実験により発見した。 The applicant has found through experiments that the regulator 1 described in (3) can be an excellent regulator 1 for suppressing vibration caused by a jet flow.

(4)(1)乃至(3)のいずれか1つに記載のレギュレータ1において、弁体14は、段差部143の弁孔114の側の端面から弁孔114側に向かって突設された、段差部143の外径よりも小さい径を有し、弁孔114と同軸の円柱状の第2段差部144を備え、第2段差部144の外周面と第2段差部144の弁孔114の側の端面とが交わる第2環状稜線146は、弁孔114の内周面近傍に位置し、第2流路絞り部18を形成すること、を特徴とする。 (4) In the regulator 1 according to any one of (1) to (3), the valve body 14 is projected from the end surface of the step portion 143 on the valve hole 114 side toward the valve hole 114 side. A columnar second step portion 144 having a diameter smaller than the outer diameter of the step portion 143 and coaxial with the valve hole 114 is provided, and the outer peripheral surface of the second step portion 144 and the valve hole 114 of the second step portion 144 are provided. The second annular ridge line 146, which intersects the end face on the side of the valve hole 114, is located near the inner peripheral surface of the valve hole 114 and forms the second flow path narrowing portion 18.

(4)に記載のレギュレータ1によれば、弁室113から弁孔114へ流れる制御流体は、弁体14と弁座115aにより流路面積が絞られた箇所、環状縮径面115bと当接面141aと段差部143の外周面とにより囲まれた空間(第1空間)により流路面積が広げられた箇所、流路絞り部17により流路面積が絞られた箇所を通過した後、さらに、段差部143の弁孔114の側の端面と第2段差部144の外周面とにより流路面積が広げられた箇所、第2流路絞り部18により流路面積が絞られた箇所を順に通過する。これにより、弁座115aの下流側での負圧状態がさらに軽減されることを、出願人は実験により発見した。 According to the regulator 1 described in (4), the control fluid flowing from the valve chamber 113 to the valve hole 114 comes into contact with the annular diameter-reduced surface 115b, where the flow path area is narrowed by the valve body 14 and the valve seat 115a. After passing through a place where the flow path area is widened by the space (first space) surrounded by the surface 141a and the outer peripheral surface of the step portion 143, and a place where the flow path area is narrowed by the flow path narrowing part 17, further. The part where the flow path area is widened by the end surface of the step portion 143 on the valve hole 114 side and the outer peripheral surface of the second step portion 144, and the place where the flow path area is narrowed by the second flow path narrowing portion 18 are sequentially arranged. pass. The applicant has experimentally found that this further reduces the negative pressure state on the downstream side of the valve seat 115a.

負圧状態が軽減されることで、キャビテーションの発生を抑えることができる。キャビテーションの発生を抑えることができれば、キャビテーションに起因する振動の発生を抑えることができ、当該振動に起因する騒音の発生を抑えることが可能となる。 By reducing the negative pressure state, the occurrence of cavitation can be suppressed. If the occurrence of cavitation can be suppressed, the generation of vibration caused by cavitation can be suppressed, and the generation of noise caused by the vibration can be suppressed.

(5)(4)に記載のレギュレータ1において、第2流路絞り部18の、第2環状稜線146の直径方向の隙間寸法C2に、環状突出部115の、弁座115aの中心部(中心線CL11)における直径寸法D1を乗じた値が、0.6から1.2の間であること、を特徴とする。 (5) In the regulator 1 according to (4), the central portion (center) of the valve seat 115a of the annular protrusion 115 at the gap dimension C2 in the radial direction of the second annular ridge line 146 of the second flow path throttle portion 18. The value obtained by multiplying the diameter dimension D1 on the line CL11) is between 0.6 and 1.2.

(5)に記載のレギュレータ1によれば、キャビテーションに起因する振動を抑えることに優れた流体制御弁とすることができることを、出願人は実験により発見した。 The applicant has experimentally found that the regulator 1 described in (5) can be an excellent fluid control valve for suppressing vibration caused by cavitation.

(6)(4)または(5)に記載のレギュレータ1において、環状縮径面115bと、弁孔114の内周面は、環状縮径面115bから弁孔114の側に向かって穿設された、弁孔114と同軸の環状窪み部117により接続され、環状窪み部117の内周面と環状縮径面115bとが交わる第3環状稜線118は、第1環状稜線145の近傍に位置し、第1環状稜線145とともに流路絞り部17を形成すること、環状窪み部117の弁孔114の側の内面と弁孔114の内周面とが交わる第4環状稜線119は、第2環状稜線146の近傍に位置し、第2環状稜線146とともに第2流路絞り部18を形成すること、を特徴とする。 (6) In the regulator 1 according to (4) or (5), the annular reduced diameter surface 115b and the inner peripheral surface of the valve hole 114 are bored from the annular reduced diameter surface 115b toward the valve hole 114 side. The third annular ridge line 118, which is connected by the annular recess 117 coaxial with the valve hole 114 and where the inner peripheral surface of the annular recess 117 and the annular reduced diameter surface 115b intersect, is located in the vicinity of the first annular ridge 145. , The flow path narrowing portion 17 is formed together with the first annular ridge line 145, and the fourth annular ridge line 119 at which the inner surface of the annular recess portion 117 on the valve hole 114 side and the inner peripheral surface of the valve hole 114 intersect is the second annular ridge line 119. It is located in the vicinity of the ridge line 146 and is characterized by forming a second flow path narrowing portion 18 together with the second annular ridge line 146.

(6)に記載のレギュレータ1によれば、環状窪み部117により、流路絞り部17と第2流路絞り部18の間の空間(第2空間)が拡大され、キャビテーションに起因する振動を抑えることに、より優れたレギュレータ1とすることができることを、出願人は実験により発見した。 According to the regulator 1 described in (6), the annular recess 117 expands the space (second space) between the flow path throttle portion 17 and the second flow path throttle portion 18, and causes vibration caused by cavitation. The applicant has experimentally found that a better regulator 1 can be made to suppress it.

(7)(6)に記載のレギュレータ1において、弁座115aから、環状窪み部117の弁孔114の側の内面までの距離は、当接面141aから第2段差部144の弁孔114の側の端面までの距離よりも0.03mmから0.13mm小さいこと、を特徴とする。 (7) In the regulator 1 according to (6), the distance from the valve seat 115a to the inner surface of the annular recess 117 on the valve hole 114 side is the distance from the contact surface 141a to the valve hole 114 of the second step portion 144. It is characterized in that it is 0.03 mm to 0.13 mm smaller than the distance to the side end face.

(7)に記載のレギュレータ1によれば、弁座115aの下流側において負圧領域が発生しやすい弁開度(例えば0.035mm程度)においても、第4環状稜線119が、確実に第2環状稜線146の近傍に位置し、第2流路絞り部18を形成することができ、キャビテーションに起因する振動を抑えることに優れたレギュレータ1とすることができる。 According to the regulator 1 described in (7), the fourth annular ridge line 119 is surely second even at a valve opening degree (for example, about 0.035 mm) where a negative pressure region is likely to occur on the downstream side of the valve seat 115a. The regulator 1 is located in the vicinity of the annular ridge line 146 and can form the second flow path narrowing portion 18, and can be an excellent regulator 1 for suppressing vibration caused by cavitation.

(8)(4)乃至(7)のいずれか1つに記載のレギュレータ1において、段差部143の外周面から、第2段差部144の外周面までの距離は、0.4mmから0.8mmの範囲内であること、を特徴とする。 (8) In the regulator 1 according to any one of (4) to (7), the distance from the outer peripheral surface of the step portion 143 to the outer peripheral surface of the second step portion 144 is 0.4 mm to 0.8 mm. It is characterized by being within the range of.

(8)に記載のレギュレータ1によれば、噴流の、弁孔114の側への誘導が確実になされ、噴流に起因する弁体14の振動の発生を抑えることにより優れたレギュレータ1とすることができることを、出願人は実験により発見した。 According to the regulator 1 described in (8), the jet flow is surely guided to the valve hole 114 side, and the occurrence of vibration of the valve body 14 due to the jet flow is suppressed to make the regulator 1 excellent. The applicant has found through experiments that this can be done.

(9)(1)乃至(8)のいずれか1つに記載のレギュレータ1において、弁室113および弁孔114を内部に有する弁本体11と、弁体14の当接離間方向に対して平行な方向から弁本体11に積み重なる上カバー12と、中央部151に弁体14が接続され、中央部151の外周に、弁体14の当接離間の動作の際に弾性変形する薄膜部152を備える薄膜部材15と、を備え、弁本体11は、上カバー12の側に、薄膜部材15を取り付ける開口部116を備え、薄膜部材15は、薄膜部152の外周に沿って、環状固定部153を備え、環状固定部153を開口部116に圧入することで開口部116に取り付けられた薄膜部材15は、環状固定部153を、当接離間方向の両側から上カバー12と弁本体11とにより挟持されることで固定されること、環状固定部153は、外周全周に沿って、上カバー12の側の端部を残し、外周面から弁本体11の側の端面までを切り欠く環状切欠部153cを備えること、を特徴とする。 (9) In the regulator 1 according to any one of (1) to (8), the valve body 11 having the valve chamber 113 and the valve hole 114 inside is parallel to the contact separation direction of the valve body 14. The upper cover 12 that is stacked on the valve body 11 from various directions, and the valve body 14 that is connected to the central portion 151, and the thin film portion 152 that elastically deforms when the valve body 14 is abutted and separated from the outer periphery of the central portion 151. The valve body 11 is provided with an opening 116 for attaching the thin film member 15 on the side of the upper cover 12, and the thin film member 15 is provided with an annular fixing portion 153 along the outer periphery of the thin film portion 152. The thin film member 15 attached to the opening 116 by press-fitting the annular fixing portion 153 into the opening 116 has the annular fixing portion 153 attached to the annular fixing portion 153 from both sides in the contact separation direction by the upper cover 12 and the valve body 11. It is fixed by being sandwiched, and the annular fixing portion 153 is an annular notch that cuts out from the outer peripheral surface to the end surface on the valve body 11 side along the entire circumference of the outer circumference, leaving the end on the side of the upper cover 12. It is characterized by including a portion 153c.

(9)に記載のレギュレータ1によれば、当接離間方向の両側から上カバー12と弁本体11により挟持される環状固定部153は、外周全周に沿って、上カバー12側の端部を残し、外周面から弁本体11の側の端面までを切り欠く環状切欠部153cを備えるため、環状固定部153の上カバー12側の上端面153bは、上カバー12により押さえつけられる面積を確保することができる。環状固定部153に、上カバー12により押さえつけられる面積を確保することで、薄膜部材15の固定を確実になすことができ、薄膜部材15に接続された弁体14に生じる振動を抑えることができる。また、環状切欠部153cにより環状固定部153が切り欠かれている分、弁本体11の肉厚を確保することができ、弁本体11の強度向上を図ることができる。 According to the regulator 1 described in (9), the annular fixing portion 153 sandwiched between the upper cover 12 and the valve body 11 from both sides in the contact separation direction is an end portion on the upper cover 12 side along the entire outer circumference. The upper end surface 153b on the upper cover 12 side of the annular fixing portion 153 secures an area to be pressed by the upper cover 12 because the annular notch portion 153c that cuts out from the outer peripheral surface to the end surface on the valve body 11 side is provided. be able to. By securing an area pressed by the upper cover 12 on the annular fixing portion 153, the thin film member 15 can be reliably fixed, and vibration generated in the valve body 14 connected to the thin film member 15 can be suppressed. .. Further, since the annular fixing portion 153 is cut out by the annular notch portion 153c, the wall thickness of the valve main body 11 can be secured, and the strength of the valve main body 11 can be improved.

(10)(1)乃至(9)のいずれか1つに記載の流体制御弁において、弁体の一部を挿入させて、弁体の当接離間の動作を案内するガイド部を備えること、弁体は、ガイド部の内周面に当接する摺動部を備えること、摺動部は、弾性部材からなり、内周面に押圧されることで、内周面に対して弾性反力を作用させること、を特徴とする。 (10) In the fluid control valve according to any one of (1) to (9), a guide portion for inserting a part of the valve body to guide the operation of contacting and separating the valve body is provided. The valve body is provided with a sliding portion that comes into contact with the inner peripheral surface of the guide portion, and the sliding portion is made of an elastic member and is pressed against the inner peripheral surface to exert an elastic reaction force on the inner peripheral surface. It is characterized by acting.

(10)に記載の流体制御弁によれば、弁体が備える摺動部により、ガイド部の内周面に対して弾性反力が作用するため、弁体が弁座に対して当接離間する動作の際に、弁体に発生する振動を抑えることが可能である。 According to the fluid control valve according to (10), an elastic reaction force acts on the inner peripheral surface of the guide portion due to the sliding portion provided in the valve body, so that the valve body abuts and separates from the valve seat. It is possible to suppress the vibration generated in the valve body during the operation.

(11)(1)乃至(10)のいずれか1つに記載のレギュレータ1において、設置面60と接地する台座(例えば下カバー13)と、レギュレータ1を設置面60に固定するための固定部材20と、を備えること、固定部材20は、下カバー13に嵌合させる嵌合部201と、設置面60と結合可能な固定部208と、を備えること、下カバー13は、嵌合部201と嵌合可能な嵌合間口137と、嵌合間口137より嵌合方向の奥側に、嵌合間口137の幅方向に弾性変形可能であるとともに、嵌合部201と係合可能な係止片138と、を備えること、嵌合部201を嵌合間口137に嵌合させる嵌合操作により、嵌合部201が係止片138を初期位置から弾性変形させ、嵌合操作が完了すると、係止片138が初期位置に戻ることで嵌合部201と係止片138とが係合され、固定部材20の抜去方向の動きを規制すること、を特徴とする。 (11) In the regulator 1 according to any one of (1) to (10), a pedestal (for example, a lower cover 13) that is grounded to the installation surface 60 and a fixing member for fixing the regulator 1 to the installation surface 60. The fixing member 20 includes a fitting portion 201 to be fitted to the lower cover 13 and a fixing portion 208 to be coupled to the installation surface 60. The lower cover 13 has a fitting portion 201. And the fitting frontage 137 that can be fitted with, and the locking that can be elastically deformed in the width direction of the fitting frontage 137 and can be engaged with the fitting portion 201 on the back side of the fitting frontage 137 in the fitting direction. When the fitting portion 201 elastically deforms the locking piece 138 from the initial position and the fitting operation is completed by the fitting operation of fitting the fitting portion 201 to the fitting frontage 137 by providing the piece 138. When the locking piece 138 returns to the initial position, the fitting portion 201 and the locking piece 138 are engaged with each other, and the movement of the fixing member 20 in the removal direction is restricted.

(11)に記載のレギュレータ1によれば、嵌合操作により固定部材20をレギュレータ1に組付け可能である。よって、固定部材20の要不要に応じて、固定部材20をレギュレータ1に組付けるか否かを選択可能であり、レギュレータ1の設置形態に自由度を持たせることが出来る。 According to the regulator 1 described in (11), the fixing member 20 can be assembled to the regulator 1 by a fitting operation. Therefore, it is possible to select whether or not to assemble the fixing member 20 to the regulator 1 according to the necessity of the fixing member 20, and it is possible to give a degree of freedom to the installation form of the regulator 1.

なお、上記の実施形態は単なる例示にすぎず、本発明を何ら限定するものではない。したがって本発明は当然に、その要旨を逸脱しない範囲内で様々な改良、変形が可能である。
例えば、本実施形態において、第1環状稜線145、第2環状稜線146、第3環状稜線118、第4環状稜線119は、エッジ状に図示しているが、R面取りまたはC面取り状としても良い。
It should be noted that the above embodiment is merely an example and does not limit the present invention in any way. Therefore, as a matter of course, the present invention can be improved and modified in various ways without departing from the gist thereof.
For example, in the present embodiment, the first annular ridge line 145, the second annular ridge line 146, the third annular ridge line 118, and the fourth annular ridge line 119 are shown in an edge shape, but may be R chamfered or C chamfered. ..

1 レギュレータ(流体制御弁の一例)
14 弁体
17 流路絞り部
113 弁室
114 弁孔
115 環状突出部
115a 弁座
115b 環状縮径面
143 段差部
145 第1環状稜線(環状稜線の一例)
1 Regulator (an example of fluid control valve)
14 Valve body 17 Flow path throttle part 113 Valve chamber 114 Valve hole 115 Circular protrusion 115a Valve seat 115b Circular diameter reduction surface 143 Step portion 145 First annular ridge line (example of annular ridge line)

Claims (11)

弁体と、前記弁体が収容される上流側の弁室と、前記弁室に連通する下流側の弁孔と、前記弁孔の外周に沿って、前記弁室の弁孔側内面から突設され、先端に弁座を有する環状突出部と、を有し、前記弁体が前記弁座と当接離間することで、流体制御を行う流体制御弁において、
前記環状突出部は、前記環状突出部の内径側全周に、前記環状突出部の内径を前記弁孔に向かって縮径させる環状縮径面を備え、
前記弁体は、前記弁座と当接する当接面を備え、前記弁座の内周側に、前記当接面から前記弁孔側に向かって突設された、前記弁孔の内径よりも大きい径を有し、前記弁孔と同軸の円柱状の段差部を備え、
前記段差部の外周面と前記段差部の前記弁孔の側の端面とが交わる環状稜線は、前記環状縮径面の近傍に位置し、流路絞り部を形成すること、
を特徴とする流体制御弁。
A valve body, an upstream valve chamber in which the valve body is housed, a downstream valve hole communicating with the valve chamber, and a protrusion from the valve hole side inner surface of the valve chamber along the outer circumference of the valve hole. In a fluid control valve that is provided and has an annular protrusion having a valve seat at its tip, and that controls the fluid by contacting and separating the valve body from the valve seat.
The annular protrusion is provided with an annular reduced diameter surface that reduces the inner diameter of the annular protrusion toward the valve hole on the entire circumference of the annular protrusion on the inner diameter side.
The valve body has a contact surface that comes into contact with the valve seat, and is projected from the contact surface toward the valve hole side on the inner peripheral side of the valve seat, rather than the inner diameter of the valve hole. It has a large diameter and has a columnar step portion coaxial with the valve hole.
The annular ridge line at which the outer peripheral surface of the step portion and the end surface of the step portion on the valve hole side intersect is located in the vicinity of the annular reduced diameter surface to form a flow path narrowing portion.
A fluid control valve characterized by.
請求項1に記載の流体制御弁において、
前記流路絞り部の、前記環状稜線の直径方向の隙間寸法に、前記環状突出部の、前記弁座の中心部における直径寸法を乗じた値が、0.6から1.2の間であること、
を特徴とする流体制御弁。
In the fluid control valve according to claim 1,
The value obtained by multiplying the clearance dimension in the radial direction of the annular ridge of the flow path throttle portion by the diameter dimension of the annular protrusion at the center of the valve seat is between 0.6 and 1.2. thing,
A fluid control valve characterized by.
請求項1または2に記載の流体制御弁において、
前記弁座から、前記段差部の外周面までの距離は、0.4mmから0.8mmの範囲内であること、
を特徴とする流体制御弁。
In the fluid control valve according to claim 1 or 2.
The distance from the valve seat to the outer peripheral surface of the step portion shall be within the range of 0.4 mm to 0.8 mm.
A fluid control valve characterized by.
請求項1乃至3のいずれか1つに記載の流体制御弁において、
前記弁体は、前記段差部の前記弁孔の側の端面から前記弁孔の側に向かって突設された、前記段差部の外径よりも小さい径を有し、前記弁孔と同軸の円柱状の第2段差部を備え、
前記第2段差部の外周面と前記第2段差部の前記弁孔の側の端面とが交わる第2環状稜線は、前記弁孔の内周面近傍に位置し、第2流路絞り部を形成すること、
を特徴とする流体制御弁。
The fluid control valve according to any one of claims 1 to 3.
The valve body has a diameter smaller than the outer diameter of the step portion, which is projected from the end surface of the step portion on the valve hole side toward the valve hole side, and is coaxial with the valve hole. Equipped with a columnar second step,
The second annular ridge line where the outer peripheral surface of the second step portion and the end surface of the second step portion on the valve hole side intersect is located near the inner peripheral surface of the valve hole, and the second flow path narrowing portion is formed. To form,
A fluid control valve characterized by.
請求項4に記載の流体制御弁において、
前記第2流路絞り部の、前記第2環状稜線の直径方向の隙間寸法に、前記環状突出部の、前記弁座の中心部における直径寸法を乗じた値が、0.6から1.2の間であること、
を特徴とする流体制御弁。
In the fluid control valve according to claim 4,
The value obtained by multiplying the gap dimension of the second flow path throttle portion in the radial direction of the second annular ridge line by the diameter dimension of the annular protrusion portion at the central portion of the valve seat is 0.6 to 1.2. Being between
A fluid control valve characterized by.
請求項4または5に記載の流体制御弁において、
前記環状縮径面と、前記弁孔の内周面は、前記環状縮径面から前記弁孔の側に向かって穿設された、前記弁孔と同軸の環状窪み部により接続され、
前記環状窪み部の内周面と前記環状縮径面とが交わる第3環状稜線は、前記環状稜線の近傍に位置し、前記環状稜線とともに前記流路絞り部を形成すること、
前記環状窪み部の前記弁孔の側の内面と前記弁孔の内周面とが交わる第4環状稜線は、前記第2環状稜線の近傍に位置し、前記第2環状稜線とともに前記第2流路絞り部を形成すること、
を特徴とする流体制御弁。
In the fluid control valve according to claim 4 or 5.
The annular reduced diameter surface and the inner peripheral surface of the valve hole are connected by an annular recess portion coaxial with the valve hole, which is formed from the annular reduced diameter surface toward the valve hole side.
The third annular ridge line at which the inner peripheral surface of the annular recess portion and the annular reduced diameter surface intersect is located in the vicinity of the annular ridge line, and forms the flow path narrowing portion together with the annular ridge line.
The fourth annular ridge line where the inner surface of the annular recess portion on the valve hole side and the inner peripheral surface of the valve hole intersect is located in the vicinity of the second annular ridge line, and the second flow together with the second annular ridge line. Forming a road narrowing section,
A fluid control valve characterized by.
請求項6に記載の流体制御弁において、
前記弁座から、前記環状窪み部の前記弁孔の側の内面までの距離は、前記当接面から前記第2段差部の前記弁孔の側の端面までの距離よりも0.03mmから0.13mm小さいこと、
を特徴とする流体制御弁。
In the fluid control valve according to claim 6,
The distance from the valve seat to the inner surface of the annular recess on the valve hole side is 0.03 mm to 0 than the distance from the contact surface to the end surface of the second step portion on the valve hole side. .13mm smaller,
A fluid control valve characterized by.
請求項4乃至7のいずれか1つに記載の流体制御弁において、
前記段差部の外周面から、前記第2段差部の外周面までの距離は、0.4mmから0.8mmの範囲内であること、
を特徴とする流体制御弁。
In the fluid control valve according to any one of claims 4 to 7.
The distance from the outer peripheral surface of the stepped portion to the outer peripheral surface of the second stepped portion shall be within the range of 0.4 mm to 0.8 mm.
A fluid control valve characterized by.
請求項1乃至8のいずれか1つに記載の流体制御弁において、
前記弁室および前記弁孔を内部に有する弁本体と、
前記弁体の当接離間方向に対して平行な方向から前記弁本体に積み重なるカバー部材と、
中央部に前記弁体が接続され、前記中央部の外周に、前記弁体の当接離間の動作の際に弾性変形する薄膜部を備える薄膜部材と、を備え、
前記弁本体は、前記カバー部材の側に、前記薄膜部材を取り付ける開口部を備え、
前記薄膜部材は、前記薄膜部の外周に沿って、環状固定部を備え、
前記環状固定部を前記開口部に圧入することで前記開口部に取り付けられた前記薄膜部材は、前記環状固定部を、前記当接離間方向の両側から前記カバー部材と前記弁本体とにより挟持されることで固定されること、
前記環状固定部は、外周全周に沿って、前記カバー部材側の端部を残し、外周面から前記弁本体の側の端面までを切り欠く環状切欠部を備えること、
を特徴とする流体制御弁。
In the fluid control valve according to any one of claims 1 to 8.
A valve body having the valve chamber and the valve hole inside,
A cover member stacked on the valve body from a direction parallel to the contact separation direction of the valve body,
The valve body is connected to the central portion, and a thin film member having a thin film portion elastically deformed during the contact separation operation of the valve body is provided on the outer periphery of the central portion.
The valve body is provided with an opening for attaching the thin film member on the side of the cover member.
The thin film member includes an annular fixing portion along the outer circumference of the thin film portion.
The thin film member attached to the opening by press-fitting the annular fixing portion into the opening sandwiches the annular fixing portion between the cover member and the valve body from both sides in the contact separation direction. To be fixed by
The annular fixing portion is provided with an annular notch portion that cuts out from the outer peripheral surface to the end surface on the valve body side, leaving the end portion on the cover member side along the entire circumference of the outer circumference.
A fluid control valve characterized by.
請求項1乃至9のいずれか1つに記載の流体制御弁において、
前記弁体の一部を挿入させて、前記弁体の当接離間の動作を案内するガイド部を備えること、
前記弁体は、前記ガイド部の内周面に当接する摺動部を備えること、
前記摺動部は、弾性部材からなり、前記内周面に押圧されることで、前記内周面に対して弾性反力を作用させること、
を特徴とする流体制御弁。
In the fluid control valve according to any one of claims 1 to 9.
Provided with a guide portion for guiding the operation of contacting and separating the valve body by inserting a part of the valve body.
The valve body is provided with a sliding portion that comes into contact with the inner peripheral surface of the guide portion.
The sliding portion is made of an elastic member, and by being pressed against the inner peripheral surface, an elastic reaction force is applied to the inner peripheral surface.
A fluid control valve characterized by.
請求項1乃至10のいずれか1つに記載の流体制御弁において、
設置面と接地する台座と、前記流体制御弁を前記設置面に固定するための固定部材と、を備えること、
前記固定部材は、前記台座に嵌合させる嵌合部と、前記設置面と結合可能な固定部と、を備えること、
前記台座は、前記嵌合部と嵌合可能な嵌合間口と、前記嵌合間口より嵌合方向の奥側に、前記嵌合間口の幅方向に弾性変形可能であるとともに、前記嵌合部と係合可能な係止片と、を備えること、
前記嵌合部を前記嵌合間口に嵌合させる嵌合操作により、前記嵌合部が前記係止片を初期位置から弾性変形させ、前記嵌合操作が完了すると、前記係止片が前記初期位置に戻ることで前記嵌合部と前記係止片とが係合され、前記固定部材の抜去方向の動きを規制すること、
を特徴とする流体制御弁。
In the fluid control valve according to any one of claims 1 to 10.
A pedestal that is in contact with the installation surface and a fixing member for fixing the fluid control valve to the installation surface are provided.
The fixing member includes a fitting portion to be fitted to the pedestal and a fixing portion capable of being coupled to the installation surface.
The pedestal has a fitting frontage that can be fitted with the fitting portion, and is elastically deformable in the width direction of the fitting frontage to the back side of the fitting frontage in the fitting direction, and the fitting portion. With a locking piece that can be engaged with,
By the fitting operation of fitting the fitting portion to the fitting frontage, the fitting portion elastically deforms the locking piece from the initial position, and when the fitting operation is completed, the locking piece is subjected to the initial setting. By returning to the position, the fitting portion and the locking piece are engaged to regulate the movement of the fixing member in the removal direction.
A fluid control valve characterized by.
JP2020188673A 2019-11-21 2020-11-12 Fluid Control Valve Active JP7472000B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/099,336 US11199268B2 (en) 2019-11-21 2020-11-16 Fluid control valve
TW109140053A TWI792095B (en) 2019-11-21 2020-11-17 Fluid control valve
KR1020200154490A KR102425974B1 (en) 2019-11-21 2020-11-18 Fluid control valve
CN202011306472.1A CN112824721B (en) 2019-11-21 2020-11-19 Fluid control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019210288 2019-11-21
JP2019210288 2019-11-21

Publications (2)

Publication Number Publication Date
JP2021089070A true JP2021089070A (en) 2021-06-10
JP7472000B2 JP7472000B2 (en) 2024-04-22

Family

ID=

Also Published As

Publication number Publication date
TW202129180A (en) 2021-08-01
TWI792095B (en) 2023-02-11

Similar Documents

Publication Publication Date Title
JP4237781B2 (en) Flow control valve
KR102009242B1 (en) Piezoelectric linear actuators, piezoelectric drive valves and flow control devices
JP6333052B2 (en) Shut-off valve
US9810327B2 (en) Pressure reducing valve
KR102425974B1 (en) Fluid control valve
CN106979337B (en) Control member for fluid control device
US9651162B2 (en) Relief valve
KR20160081891A (en) Fluid regulators having corrugated diaphragms
JP2013096553A (en) Check valve
CN109854428B (en) Axial fluid pressure regulator
JP2017198386A (en) Expansion valve
JP2021089070A (en) Fluid control valve
JP7472000B2 (en) Fluid Control Valve
JP6697976B2 (en) Expansion valve
US20140252261A1 (en) Flow regulating device
CN108019450B (en) Spring seat damping device for use with a pressure regulator
JP6289979B2 (en) Check valve
KR20010093116A (en) Constant pressure regulator
JP2007034452A (en) Pressure regulator
JP4255892B2 (en) Expansion valve
JP2019199926A (en) Valve gear
JP2022161509A (en) Flor control unit and flow control valve
JP2021139312A (en) Connector with pulsation absorption function
JP2784379B2 (en) Pressure reducing valve
JP2005061482A (en) Liquid seal vibration insulating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402