JP2021076681A - 光制御フィルター及びその製造方法 - Google Patents

光制御フィルター及びその製造方法 Download PDF

Info

Publication number
JP2021076681A
JP2021076681A JP2019202645A JP2019202645A JP2021076681A JP 2021076681 A JP2021076681 A JP 2021076681A JP 2019202645 A JP2019202645 A JP 2019202645A JP 2019202645 A JP2019202645 A JP 2019202645A JP 2021076681 A JP2021076681 A JP 2021076681A
Authority
JP
Japan
Prior art keywords
control filter
sheet
optical control
light
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019202645A
Other languages
English (en)
Inventor
堀田 真司
Shinji Hotta
真司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2019202645A priority Critical patent/JP2021076681A/ja
Publication of JP2021076681A publication Critical patent/JP2021076681A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】厚さ方向に押圧力を受けた場合にも容易には変形しないエラストマー製のシートからなる光制御フィルター、及びその製造方法を提供する。【解決手段】[A]エラストマー製のシート(1)からなる光制御フィルター(10)であり、前記シートの厚さ方向に貫通する複数の貫通孔(2)を備え、前記シートに遮光材が含まれており、前記シートが遮光部であり、前記貫通孔が透過部であり、前記シートのMD−1ゴム硬度が80よりも大きい、光制御フィルター。【選択図】図1

Description

本発明は、光制御フィルター及びその製造方法に関する。
従来、光の透過率や視野角を調節する光制御フィルムが知られている。例えば、特許文献1には、光吸収材料を含む光硬化性樹脂を基材フィルムとして備え、基材フィルムの一方の主面から反対側の他方の主面に向けて縮径するすり鉢形状の凹部が、複数形成された光制御フィルムが提案されている。この凹部はフィルムを貫通しておらず、凹部の底面は0.1μmを超える厚さの前記光硬化性樹脂からなるランド膜によって形成されている。
ランド膜は、特許文献1の光制御フィルムの製造プロセスにおいて不可避的に形成される。その製造プロセスは、型に重合性樹脂を流し込み、硬化させることにより微細構造化層を得て、次いで、この微細構造化層を支持する可撓性層を積層する、というものである。
特開2017−54129号公報
特許文献1の光制御フィルムの凹部に入射した光はランド膜を透過する必要がある。ランド膜には光吸収材料が含まれるため、入射光の一部が吸収され、透過する光量が低減する問題がある。また、製造プロセスにおいて凹部に液状の透明材料を注入する場合、ランド膜が存在すると凹部内に気泡が残留する問題がある。このため、凹部の底面にランド膜は無いことが望ましいが、特許文献1に開示された製造方法ではランド膜は不可避的に生じてしまい、ランド膜を除去する方法は開示されていない。
特許文献1の光制御フィルムを構成する光硬化性樹脂は、合成樹脂の中では比較的脆性である。このため、光硬化性樹脂を型に流し込み、硬化させた微細構造化層を型から離型する際に割れや欠けが生じやすい。
本発明者らは、割れや欠けが生じ易い光硬化性樹脂に代えて、成形型内でエラストマーを成形することにより、エラストマー製のシートからなる光制御フィルムを得ることを検討した。後述するように、ランド膜の無い良好な光制御フィルターを得ることができた。
ところが、図7に示すように、エラストマー製の光制御フィルター100のシート101の第一面101aに、段差Gが意図せずに形成される場合があった。原因を検討したところ、製造時に第一面101aを切削したり研磨したりする際に、刃が、貫通孔102の開口部に引っかかったり、開口部の端部を巻き込んだりして段差Gが形成されることが分かった。段差Gの高低差(ギャップ長)は、例えば、0.1μm〜3μmであり得る。
このような段差Gのあるシート1の第一面101aに、粘接着層104を備えた透明部材103を貼付すると、図8に示すように、第一面101aの高い部分(シート101が厚い部分)に加わる押圧力(図中の矢印a,b)は、第一面101aの低い部分(シート101が薄い部分)に加わる押圧力(図中の矢印c,d)よりも大きくなる。この結果、シート101の厚い部分にある貫通孔102が変形する。変形した貫通孔102における光の透過性は、他の貫通孔102における透過性と異なるため、光透過性が不均一になることがある。
本発明は、上記事情を鑑みてなされたものであり、厚さ方向に押圧力を受けた場合にも容易には変形しないエラストマー製のシートからなる光制御フィルター、及びその製造方法を提供する。
[1] エラストマー製のシートからなる光制御フィルターであり、前記シートの厚さ方向に貫通する複数の貫通孔を備え、前記シートに遮光材が含まれており、前記シートが遮光部であり、前記貫通孔が透過部であり、前記シートのMD−1ゴム硬度が80よりも大きい、光制御フィルター。
[2] 前記複数の貫通孔から任意に選択される少なくとも1つの貫通孔において、前記シートの第一面に開口する第一開口部の直径r1と、前記シートの第二面に開口する第二開口部の直径r2との比(直径r1/直径r2)が、1.00〜1.05(ただし、直径r1≧直径r2)であり、前記直径r1及び前記直径r2が、それぞれ独立に2μm以上30μm以下である、[1]に記載の光制御フィルター。
[3] 前記任意に選択される少なくとも1つの貫通孔において、(前記直径r1と前記直径r2の平均値):(前記シートの厚さ)で表されるアスペクト比が、1:5〜1:30である、[2]に記載の光制御フィルター。
[4] 前記シートの平面視で、前記貫通孔の開口が400〜10000個/mmの密度で配置されている、[1]〜[3]の何れか一項に記載の光制御フィルター。
[5] 前記シートの平面視で、隣接する前記貫通孔同士のピッチが、10μm以上50μm以下である、[1]〜[4]の何れか一項に記載の光制御フィルター。
[6] 前記シートの平面視で前記複数の貫通孔の開口部が2次元アレイ状に配置されている、[1]〜[5]の何れか一項に記載の光制御フィルター。
[7] 前記貫通孔が中空である、[1]〜[6]の何れか一項に記載の光制御フィルター。
[8] [1]〜[7]の何れか一項に記載の光制御フィルターを製造する方法であって、前記光制御フィルターのシートの外形に対応する凹部と、前記凹部内に前記光制御フィルターの複数の貫通孔に対応する複数の凸部と、を備えた成形型を用い、前記成形型の凹部内でエラストマー材料を硬化させることにより、エラストマー製のMD−1ゴム硬度が80以下のシートからなり、前記各貫通孔に対応する複数の穴を備えた光制御フィルター前駆体を前記成形型内に形成することと、前記成形型内から前記光制御フィルター前駆体を取り出すことと、取り出した前記光制御フィルター前駆体に活性エネルギー線を照射し、前記光制御フィルター前駆体を構成する前記エラストマー同士を架橋させ、前記シートのMD−1ゴム硬度を80よりも大きくした光制御フィルターを得ることと、を含む、光制御フィルターの製造方法。
[9] 前記複数の凸部が柱状であり、前記複数の凸部のうち少なくとも1つの凸部において、前記凸部の直径Dが2μm以上30μm以下であり、かつ、前記凸部の高さHと直径Dとの比(高さH/直径D)で表されるアスペクト比が、1:5〜1:30である、[8]に記載の光制御フィルターの製造方法。
[10] 前記成形型の凹部内において、前記凸部が400〜10000個/mmの密度で配置されている、[8]又は[9]に記載の光制御フィルターの製造方法。
[11] 前記成形型の凹部内において、隣接する前記凸部同士のピッチが10μm以上50μmである、[8]〜[10]の何れか一項に記載の光制御フィルターの製造方法。
[12] 前記成形型の凹部に前記エラストマー材料を注入し、さらに前記凹部から前記エラストマー材料を溢れさせ、この状態で硬化させることにより、前記シートの一方の面に余分な残膜を形成し、その後、前記残膜を摘んで引っ張ることにより、前記成形型内から前記光制御フィルター前駆体を取り出す、[8]〜[11]の何れか一項に記載の光制御フィルターの製造方法。
[13] 前記光制御フィルターの厚さ方向を横切る方向にスライスカットし、前記光制御フィルター前駆体の一方の面に残存する前記残膜を除去することをさらに含む、[12]に記載の光制御フィルターの製造方法。
本発明の光制御フィルターにあっては、シートのMD−1ゴム硬度が80よりも大きく、硬度が従来よりも高いので、厚さ方向に対する押圧力を受けても、貫通孔の変形が抑制されている。この結果、本発明の光制御フィルターを別の基材に取り付けた際にも、貫通孔の変形に起因する光透過性の不均一化が抑制され、良好な光学特性が得られる。
本発明の光制御フィルターの製造方法によれば、成形型内においてエラストマー製のシートを成形するので、高精度で貫通孔の形状を制御することができる。
従来の非エラストマー製の光硬化性樹脂を用いた成形では、直径が30μm以下の貫通孔を形成することが実際には非常に困難であった。なぜならば、形成する貫通孔に対応する直径30μm以下のピンを備えた成形型内で非エラストマー製の樹脂シートを硬化させた後、これを脱型する際にピンが折れてしまい、樹脂シートの貫通孔内にピンが残留する問題があるからである。ピンの高さと直径のアスペクト比が高い場合には、この問題が特に顕著になる。その一方、本発明の製造方法にあっては、成形型内において柔軟なエラストマーを成形するので、細くて高いピンを用いて貫通孔を形成した後、これを脱型する際にエラストマー製のシートが柔軟に変形するのでピンの折れが生じ難い。このため、高アスペクト比の貫通孔を容易に形成することができる。
また、従来の非エラストマー製の光硬化性樹脂を成形型内で硬化させて樹脂シートを形成するとともに、成形型内に備えたピンによって樹脂シートを貫通する貫通孔を形成する場合、脱型を容易にするために先細りのピン(根元から先端に向けて細くなるピン)を使用することがある。そうすると、樹脂シートに形成される貫通孔の一方の開口部と他方の開口部の直径が大きく異なり、すり鉢状(テーパー形状)の貫通孔となる。このような形状の貫通孔を備えた光制御フィルターにおける光の制御性(例えば視野角制御)は、非テーパー形状の貫通孔に比べると劣る。その一方、本発明の製造方法にあっては、成形型内において柔軟なエラストマー製のシートを成形するので、根元と先端の直径が同じピンを使用して貫通孔を形成した場合にも、ピンを折らずに脱型することができる。このため、一方の開口部と他方の開口部の直径が同じ貫通孔を容易に形成することができる。このような形状の貫通孔を備えた光制御フィルターにおける光の制御性は、テーパー形状の貫通孔に比べて格段に優れる。
本発明の第一実施形態の光制御フィルター10を示す斜視図である。 図1の光制御フィルター10の中央付近のXZ平面に沿う断面図である。 図1の光制御フィルター10の一部の上面図である。 本発明の第二実施形態の光制御フィルター20のXZ平面に沿う断面図である。 本発明に係る光制御フィルター10を製造する様子を示した断面図である。(a)エラストマー材料Lを成形型Kの表面に塗布した様子。(b)成形型Kの凹部Mから溢れたエラストマー材料Lが残膜Nを形成する様子。(c)成形型Kから取り出したシート1’。(d)シート1’に活性エネルギー線Eを照射しシート1を得た様子。(e)シート1の一方の面から残膜Nを除去し、複数の貫通孔2を有するシート1からなる光制御フィルター10を得た様子。 シート1の両主面を整形する方法の一例を示す断面図である。 エラストマー製の光制御フィルター100の部分断面図であり、段差Gを有するシート101に透明基材103を貼付する様子を示す部分的な断面図である。 シート101の貫通孔102の一部が押圧力によって変形した様子を示す、エラストマー製の光制御フィルター100の部分断面図である。
《光制御フィルター》
本発明の第一態様は、エラストマー製のシートからなる光制御フィルターであり、前記シートの厚さ方向に貫通する複数の貫通孔を備え、前記シートのMD−1ゴム硬度が80よりも大きい、光制御フィルターである。
本態様の光制御フィルターは、海部分をなすシートと、複数の島部分をなす貫通孔とからなる海島構造を有する。複数の島部分は海部分によって互いに分離されている。前記貫通孔は前記シートの第一面(第一の主面)から第二面(第二の主面)へ貫通している。
本態様の光制御フィルターにおいては、海部分が遮光部であり、島部分が光透過部である構成であってもよいし、海部分が光透過部であり、島部分が遮光部である構成であってもよい。
<第一実施形態>
本発明の第一実施形態として図1〜図3に示す光制御フィルター10のシート1は、第一面1aから反対側の第二面1bに貫通する複数の貫通孔2を備えている。シート1を構成するエラストマーには遮光材が含まれており、外部から第一面1a又は第二面1bへ入射した光は貫通孔2を透過する。つまり、本実施形態では、複数の貫通孔が光透過部を形成し、シート1が遮光部を形成している。
シート1のMD−1ゴム硬度は、80よりも大きく、82以上95以下が好ましく、85以上90以下がより好ましい。
シート1のMD−1ゴム硬度が、80よりも大きく上記下限値以上であると、シート1の厚さ方向に押圧力を受けた場合にも貫通孔2の変形が抑制され、光学特性の変化を抑制することができる。前記MD−1ゴム硬度が、上記上限値以下であると、シート1の可撓性が良好となり、曲面に沿わせることも可能となる。
シート1のMD−1ゴム硬度は、マイクロゴム硬度計を使用して、温度21〜25℃、好ましくは23℃にて、シート1の海部分を厚さ方向に押圧して測定した値である。測定において、マイクロゴム硬度計に備えられた押針が試験片の表面に変形を与える際に生じる変位量を検出器で読み取ることにより、硬さを測定する。押針が押圧する箇所は、無作為に選択される海部分の10ヵ所以上とし、その平均値を測定値とする。通常、MD−1ゴム硬度は、JIS K6253−3:2012に規定される、タイプAデュロメーターで測定した値(ショアA硬度)に近い値を示す。マイクロゴム硬度計を使用することにより、薄い試験片の硬度を容易に測定することができる。ただし、シート1(試験片)の厚さが1.0mm未満である場合、同じシート1を複数枚重ねて積層体とし、1.0mm以上となる最小の枚数を重ねて得た積層体の厚さ方向の硬度を測定する。
使用するマイクロゴム硬度計は、高分子計器株式会社製の「マイクロゴム硬度計」商品名:MD−1capaが好ましい。このマイクロゴム硬度計の荷重方式は片持ち梁形板ばねである。押針形状はタイプA(高さ0.50mm、φ0.16mm、円柱形)、加圧脚寸法はタイプA(外径4.0mm、内径1.5mm)、スプリング荷重は22mN(2.24g)、測定モードはノーマルモード、にそれぞれ設定して測定する。
後述するように貫通孔2に光透過性部材又は遮光部材が充填されている場合には、例えば、貫通孔2内の光透過性部材をレーザ照射や化学エッチング等により除去し、海部分のみからなるシート1を得て、これを試験片とする。MD−1ゴム硬度を測定する試験片および試験室の温度は、21〜25℃、好ましくは23℃とする。
前記エラストマーとしては、例えば、ウレタンゴム、イソプレンゴム、エチレンプロピレンゴム、天然ゴム、エチレンプロピレンジエンゴム、スチレンブタジエンゴム、シリコーンゴム等の熱硬化性エラストマー;ウレタン系、エステル系、スチレン系、オレフィン系、ブタジエン系又はフッ素系等の熱可塑性エラストマー;或いはそれらの複合物等が挙げられる。これらの中でも、後述の成形型から取り出した後の寸法変化が小さく、成形型から取り出した後の反りが生じず、圧縮永久歪が小さく、耐熱性が高く、耐候性及び耐寒性にも優れる、シリコーンゴムが好ましい。シート1を形成するエラストマーは1種でもよいし、2種以上でもよい。
一般に、ここで例示したエラストマーは、JIS K6253−3:2012に従い、デュロメーターを用いて測定したショアA硬度がA80以下の値を示す。ところが、本態様のシート1は、後述する通り、活性エネルギー線の照射により、シート1を構成するエラストマー同士が架橋されているので、一般的なエラストマーよりも硬度が高い。シート1の硬度が高いことにより、シート1の厚さ方向に押圧力を受けた場合にも、貫通孔2の変形が抑制され、光制御フィルター10の光学特性が維持される。
光制御フィルター10のシート1は、矩形状であり、その長手方向をX方向、その短手方向をY方向、その主面に対する垂線方向(すなわちシートの厚さ方向)をZ方向とする。
シート1の平面視の形状は矩形に限定されず、円形、楕円形、多角形、その他の任意の形状が採用できる。
シート1の縦×横のサイズは特に限定されず、例えば、5mm×5mm〜100cm×100cmとすることができる。
光制御フィルター10のシート1の厚さは、例えば、50μm以上1000μm以下が好ましく、80μm以上500μm以下がより好ましく、100μm以上300μm以下がさらに好ましい。
前記厚さが前記下限値以上であれば、シート1を透過する光の透過角(視野角)の制御がより容易になる。前記厚さが前記上限値以下であれば、可撓性がより高くなる。
シート1の厚さは、その断面を無作為に選択した10カ所以上で測定した値の平均値として求められる。測定には測定顕微鏡等の公知の微細構造観察手段が適用される。
光制御フィルター10のシート1を平面視したとき、貫通孔2の開口部(光透過部)を含む第一面1aの全面積に対する、エラストマー部分(遮光部)の合計面積は、例えば、36〜99.2%が好ましく、49〜96%がより好ましく、65〜91%がさらに好ましい。第二面1bにおけるエラストマー部分の合計面積も、第一面1aにおけるエラストマー部分の合計面積と同様であることが好ましい。
上記の各面積は、各面を撮影した画像を公知の方法で画像処理することにより求められる。
(光透過部)
複数の貫通孔2はシート1を厚さ方向に貫通しているので、各貫通孔2の第一開口部は、シート1の第一面1aに開口し、各貫通孔2の第二開口部は、シート1の第二面1bに開口している。各貫通孔2は、シート1の面方向に沿って一定のピッチで配置されている。
光透過部の貫通孔2は空気で満たされていてもよく、光透過性材料が充填されていてもよい。貫通孔2が空気で満たされている場合には、貫通孔2が透明樹脂等によって充填されている場合よりも透過する光の屈折率が小さいので、同じフィルターの厚みの場合では中空の方が光制御フィルター10を透過する視野角θを小さくすることができ、同じ視野角にする場合には中空の方が厚みを薄くすることができる。
前記光透過性材料としては、例えば、透明樹脂、ガラスが挙げられる。光制御フィルター10の可撓性を高める観点から、透明エラストマーが好ましい。透明エラストマーの具体例としては、例えば、シリコーン、ポリウレタン等が挙げられる。貫通孔2に充填される透明エラストマーは1種でもよいし、2種以上でもよい。透明性及び耐熱性等に優れる点から、前記透明エラストマーは、シリコーンゴムが好ましい。
貫通孔2の形状は、柱状であることが好ましい。貫通孔2をシート1の面方向で切断した断面形状は、例えば、円形、楕円形、四角形、その他の多角形等が挙げられる。
複数の貫通孔2の開口部の形状および前記断面形状は、互いに同じでもよく、異なってもよいが、光透過の制御の容易さの観点から、同じであることが好ましい。
光制御フィルター10が有する複数の貫通孔2から任意に選択される少なくとも1つの貫通孔2において、第一面1aに開口する第一開口部の形状(第一面1aを平面視した開口の形状)と、第二面1bに開口する第二開口部の形状(第二面1bを平面視した開口の形状)は、互いに同じでもよく、異なってもよいが、光透過の制御の容易さの観点から、同じであることが好ましい。
個々の貫通孔2について、各面に開口する開口部の直径は、前記開口部を含む最小円の直径である。前記直径は、シート1を透過する光の透過角の制御の容易さの観点から、例えば、2μm〜100μmが好ましく、2μm〜30μmがより好ましく、2μm〜20μmがさらに好ましく、2μm〜15μmが特に好ましく、2μm〜10μmが最も好ましい。
前記直径は、測定顕微鏡等の公知の微細構造観察手段によって測定することができる。
シート1の任意の面における複数の貫通孔2から無作為に選択した10個以上の貫通孔2の前記直径の平均は、2μm〜100μmが好ましく、2μm〜30μmがより好ましく、2μm〜20μmがさらに好ましく、2μm〜15μmが特に好ましく、2μm〜10μmが最も好ましい。
光制御フィルター10が有する複数の貫通孔2から任意に選択される少なくとも1つの貫通孔2において、貫通孔2の各面に開口する2つ(1対)の開口部の直径は、互いに同じでもよいし、異なっていてもよいが、光透過の制御を高精度で行えることから、同じであることが好ましい。
本明細書において、貫通孔2の開口の直径が同じであるとは、シート1を平面視したとき、測定対象の貫通孔2の第一の開口部を含む最小円の直径r1と、第二の開口部を含む最小円の直径r2(ただし、直径r1≧直径r2)との差(直径r1−直径r2)が、直径r2の5%以内であることを意味する。つまり、(直径r1/直径r2)で表される比が、1.00〜1.05であることを意味する。ここで、第一の開口部と第二の開口部は、単一の貫通孔2における両端の開口部であってもよいし、個別の貫通孔2における任意の開口部であってもよい。
光制御フィルター10が有する複数の貫通孔2のうち、個々の貫通孔2における両方の開口部が同じである割合は、70〜100%が好ましく、80〜100%がより好ましく、90〜100%がさらに好ましい。
上記のように単一の貫通孔2における両方の開口部の直径が互いに同じあり、かつ、その貫通孔2の両方の開口部の直径がそれぞれ独立に2μm以上30μm以下とする微細精密成形の製造技術は高度であるが、後述するように成形型内でエラストマーを硬化する成形方法により比較的容易に製造することができる。
柱状の貫通孔2の中心軸の軸線(中心線)は、第一面1a及び第二面1bに対して、垂直でもよいし、傾いていてもよく、製造の容易さ及び光透過角の制御の容易さの観点から、略垂直であることが好ましい。ここで、略垂直とは、90°±2°で交わることである。略垂直である場合、柱状の貫通孔2の高さは、シート1の厚さHとほぼ同じである。
前記中心線とシート1の表面とがなす角、及びシート1の厚さHは、貫通孔2及びシート1の第一面1a及び第二面1bを含む断面を、測定顕微鏡等の公知の微細構造観察手段によって測定することにより求められる。
任意に選択される単一の貫通孔2において、第一開口部の直径r1と第二開口部の直径r2の平均値を直径Rと表す(図3のR参照)。
柱状の貫通孔2の(直径R:シートの厚さH)で表されるアスペクト比は、1:5〜1:30が好ましく、1:8.5〜1:25.5がより好ましく、1:15〜1:20がさらに好ましい。
前記アスペクト比が1:5〜1:30であり、貫通孔2の中心線が各面に対して垂直であり、貫通孔2が中空である場合、視野角θは22.6°〜3.6°となる。前記アスペクト比が1:8.5〜1:25.5の場合、視野角θは13.4°〜4.5°となる。
なお、貫通孔2に透明材料が充填されている場合、透明材料の屈折率は通常空気よりも大きいので、上記で示した中空の場合の範囲よりも視野角θは広がる。よって、視野角θを狭める観点から、貫通孔2は中空であることが好ましい。
上記範囲の下限値以上であるとシート1の貫通孔2を透過する光の透過角の制御が容易になる。上記範囲の上限値以下であるとシート1の貫通孔2を透過する光量を大きくすることができる。また、比較的容易に製造することができる。
単一の貫通孔2における両方の開口部の直径が互いに同じあり、かつ、その貫通孔2の両方の開口部の直径がそれぞれ独立に2μm以上30μm以下であり、かつ、上記のように高いアスペクト比で貫通孔2を形成する製造技術は高度であるが、後述するように成形型内でエラストマーを硬化する成形方法により比較的容易に製造することができる。
シート1の第一面1aの平面視で、貫通孔2の開口の配置密度は、400〜10000個/mmが好ましく、800〜7000個/mmがより好ましく、1600〜4500個/mmがさらに好ましい。
上記範囲の下限値以上の配置密度であると、より緻密な光学的制御が可能となる。上記範囲の上限値以下の配置密度であると、シート1の海部分を充分に確保できるので、シート1の硬度を充分に保てる。
前記配置密度は、シート1の第一面1a又は第二面1bを撮像し、無作為に選択される5箇所について、5mm×5mmの正方形の領域を設定し、その領域内に含まれる完全な開口(欠けの無い開口)の個数を25mmで除した値の平均値として求められる。
単一の貫通孔2における両方の開口部の直径が互いに同じあり、かつ、その貫通孔2の両方の開口部の直径がそれぞれ独立に2μm以上30μm以下であり、かつ上記のように高い配置密度で貫通孔2を形成する製造技術は高度であるが、後述するように成形型内でエラストマーを硬化する成形方法により比較的容易に製造することができる。
第一面1a及び第二面1bにおける貫通孔2の配置のピッチ、すなわち各面に開口する貫通孔2の隣接する端部同士のピッチは、個々の開口部を含む各最小円同士の中心間距離である(図3のP参照)。このピッチは、シート1を透過する光の透過角の制御の容易さの観点から、例えば、10μm〜50μmが好ましく、12μm〜35μmがより好ましく、15μm〜25μmがさらに好ましい。
前記ピッチは、各面において一定であることが好ましい。各面同士のピッチは、互いに同じでもよいし、異なっていてもよい。
前記ピッチは、任意の面を撮影した画像を公知の方法で画像処理することにより求められる。
第一面1a及び第二面1bにおける貫通孔2の開口部の配置は、例えば、X列×Y行の2次元アレイ状の配置とすることができる。貫通孔2の配置はこの例に限定されず、任意の配置パターンが採用される。X列×Y行において、例えば、X,Yはそれぞれ独立に10〜1000の任意の整数とすることができる。配置パターンは、2次元アレイ状でもよく、ジグザグ状でもよく、その他の任意のパターンでもよく、無作為なランダム配置でもよい。
貫通孔2によって構成される光透過部の光線透過率は、貫通孔2が中空である場合には実質的に100%といえる。
一方、光透過性の部材(例えば透明シリコーンゴム)が充填された貫通孔2によって光透過部が構成されている場合、その光線透過率は70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましく、100%であってもよい。
シート1によって構成される遮光部の光線透過率は70%未満が好ましく、50%未満がより好ましく、30%未満がさらに好ましく、10%未満が特に好ましい。遮光部の光線透過率は0%であってもよい。前記光線透過率が上記上限値未満であると、光制御フィルター10による視野角の制御が充分に行われる。
例えば、光透過部の光線透過率が70%以上100%以下、且つ遮光部の光線透過率が0%以上70%未満であることが好ましく、光透過部の光線透過率が80%以上100%以下、且つ遮光部の光線透過率が0%以上50%未満であることがより好ましく、光透過部の光線透過率が90%以上100%以下、且つ遮光部の光線透過率が0%以上30%未満であることがさらに好ましい。
ここで、「光線透過率」の値は、光源としてJIS Z 8720:2012に規定されるD65を用い、光源から出射された検査光の強度を受光センサで測定する装置において、前記検査光の光路上に被測定物が無い状態での受光センサの出力値をA、検査光の光路上に被測定物をセットし、被測定物を透過した透過光が受光センサにおいて受光される状態での出力値をBとするとき、光線透過率=(B/A)×100(単位;%)で求められる値とする。
(遮光部)
シート1の遮光部は、海島構造のうちの海部分であり、貫通孔2を除いた不透明部分である。遮光部の厚さは、シート1の厚さと同じである。
エラストマー製のシート1における遮光部の全質量に対するエラストマーの含有量は、50〜99質量%が好ましく、60〜97質量%がより好ましく、70〜95質量%がさらに好ましい。
前記含有量が50質量%以上であることにより、シート1の可撓性が充分に高まる。前記含有量が99質量%以下であることにより、遮光部に遮光材を充分に含ませる余地ができる。前記全質量のうちエラストマーの含有量を除いた残部を遮光材に割り当てることができる。
シート1を構成する遮光部は、エラストマー以外に、遮光材を含むことが好ましい。遮光材としては、光吸収性材料及び光反射性材料の少なくとも一方が使用される。
光吸収性材料は光吸収剤を含有する。光吸収剤としては、カーボン、染料、顔料等が挙げられる。光吸収剤のなかでも、光吸収性に優れることから、カーボンが好ましい。カーボンとしては、例えば、カーボンブラック、黒鉛、炭素繊維等が挙げられ、光吸収剤として汎用的であることから、カーボンブラックが好ましい。
光反射性材料としては、金属が挙げられる。金属としては、アルミニウム、銀、金、クロム、ニッケル等が挙げられる。
<第二実施形態>
本発明の第二実施形態として図4に示す光制御フィルター20は、本体として第一実施形態のシート1を備え、シート1の第一面1a及び第二面1bにはそれぞれ第一透明部材7及び第二透明部材8が、直接的に又は間接的に接着(密着)されている。間接的に接着される場合、例えば、接着剤、粘着剤、プライマー層等を介在して接着され得る。
光制御フィルター20の各透明部材は、シート1の各主面を覆い、本体を保護している。
各透明部材が存在すると、貫通孔2が空洞である場合には、貫通孔2内に外部から異物が侵入することを防止することができる。
各透明部材の構成材料は透明であればよく、例えば、ガラス、透明な合成樹脂が挙げられる。具体的には、例えば、シリコーン、ポリウレタン、アクリル樹脂、エポキシ樹脂、ポリエステル、ポリカーボネート、シクロオレフィン、液晶ポリマー等が挙げられる。
シート1との接着性を高める観点から、透明部材を構成する材料は、シート1を構成するエラストマーと同類のエラストマーであることが好ましい。また、透明部材がガラスであると光制御フィルター20に剛性を付与することができる。
透明部材がガラスである場合、ガラスと本体の各主面との接着性を高める観点から、ガラスの接触面及び各主面の少なくとも一方に表面処理が施されていることが好ましい。
前記表面処理としては、例えば、エキシマUV照射処理、プラズマ処理、シランカップリング剤等のプライマー塗布処理が挙げられる。
第一透明部材7及び第二透明部材8はそれぞれ同じ透明材料によって形成されていてもよく、異なる透明材料によって形成されてもよい。
第一透明部材7及び第二透明部材8の形状は、シート1の第一面1a及び第二面1bを覆うことができる形状であれば特に制限されず、例えば板状、フィルム状等の層状が挙げられる。
第一透明部材7及び第二透明部材8はそれぞれ複数の透明層が積層された積層体であってもよい。前記複数層において、各層はそれぞれ同じ透明材料によって形成されていてもよいし、異なる材料によって形成されていてもよい。例えば、ガラス層と透明樹脂層の積層体が上記の透明封止層を形成していてもよい。前記積層体のうち、ガラス層が前記シートの主面に接していてもよいし、透明樹脂層が前記シートの主面に接していてもよい。
各透明部材が層状である場合、その厚さは、1μm以上200μm以下であることが好ましく、3μm以上175μm以下であることがより好ましく、5μm以上150μm以下であることがさらに好ましい。透明部材の厚さが前記下限値以上であれば、シート1を充分に保護できる。各透明部材の厚さが前記上限値以下であれば、充分な光透過性を確保でき、良好な光学特性が得られる。
透明部材の厚さは、その断面を無作為に選択した10カ所以上で測定した値の平均値として求められる。測定には測定顕微鏡等の公知の微細構造観察手段が適用される。
本実施形態の光制御フィルター20のシート1のMD−1ゴム硬度は、第一透明部材7及び第二透明部材8を除去し、シート1のみの形態としたうえで、前述した方法により測定される値である。
以上で説明した第一及び第二実施形態の光制御フィルターは、島部分からなる光透過部と、海部分からなる遮光部とを備える。第一面1aに入射した光線のうち、貫通孔2に入射した光線はこれを透過して第二面1bから出射する。一方、海部分からなる遮光部に入射した光線はこれに吸収されるか反射される。
光透過部をなす複数の貫通孔2の配列、ピッチP、直径R、アスペクト比を適宜調整することにより、光線の視野角(透過角)θ、透過する光量を制御することができる。
<第三及び第四実施形態;光透過部と遮光部の反転>
本発明の第三及び第四実施形態の光制御フィルターは、島部分(貫通孔)である遮光部と、海部分(シート本体)である光透過部とを備える。遮光部と光透過部が反転していること以外は、第一及び第二実施形態の光制御フィルターと同じであるので図示は省略する。
海部分の全質量のうち少なくとも70質量%、好ましくは80〜100質量%が透明なエラストマーによって形成されていることが好ましい。海部分には、エラストマー以外の材料が含まれてもよい。島部分には前述した遮光材が含まれ、その他に公知のバインダー樹脂が含まれてもよい。海部分と島部分の密着性を高める観点から、海部分を構成するエラストマーと同じ種類のエラストマーが、島部分にも含まれることが好ましい。
以上で説明した第三及び第四実施形態の光制御フィルターにおいて、第一面に入射した光線のうち、柱状の島部分に入射した光線はこれに吸収されるか反射され、海部分に入射した光線はこれを透過して第二面から出射する。
遮光部をなす複数の貫通孔の配列、ピッチP、直径R、アスペクト比を適宜調整することにより、光線の視野角(透過角)、透過する光量を制御することができる。
(光制御フィルターの用途)
本発明に係る光制御フィルターは、例えば、視野角制御、輝度向上、防眩等を目的として、液晶表示装置等の画像表示装置に取り付けられて使用され得る。また、光制御フィルターは、例えば、発光ダイオード、有機エレクトロルミネッセンス素子等の発光体、光センサ等の受光体に取り付けられて使用され得る。
《光制御フィルターの製造方法》
本発明の第二態様は、第一態様の光制御フィルターを製造する方法であり、次の成形工程、離型工程、照射工程を含む。
成形工程は、前記光制御フィルターのシートの外形に対応する凹部と、前記凹部内に前記光制御フィルターの複数の貫通孔に対応する複数の凸部と、を備えた成形型を用い、前記成形型の凹部内でエラストマー材料を硬化させることにより、エラストマー製のMD−1ゴム硬度が80以下のシートからなり、前記各貫通孔に対応する複数の穴を備えた光制御フィルター前駆体を前記成形型内に形成する工程である。
離型工程は、前記成形型内から前記光制御フィルター前駆体を取り出す工程である。
照射工程は、取り出した前記光制御フィルター前駆体に活性エネルギー線を照射し、前記光制御フィルター前駆体を構成する前記エラストマー同士を架橋させ、前記シートのMD−1ゴム硬度を80よりも大きくした光制御フィルターを得る工程である。
以下、各工程の実施形態の一例を説明する。
[成形工程]
本実施形態で用いる成形型Kは、図5(a)に示すように、シート1の本体を形成するための凹部Mと、凹部M内においてシート1の本体に貫通孔2を形成するための複数の柱状の凸部(非凹部)Jと、が形成された平板である。凹部Mの深さと各凸部Jの高さは同じである。凸部J同士のピッチが貫通孔2同士のピッチに対応し、凸部Jの高さは貫通孔2の高さに対応し、凸部Jの直径(太さ)等の形状が貫通孔2の直径等の形状に対応する。成形型Kの凹部M内において、各凸部Jの中心軸の軸線方向及び凸部Jの側面が凹部Mの底面に対して垂直に配置されている。このような成形型Kを用いることにより、得られるシート1における貫通孔2の側面を、シート1の各面に対して垂直に形成することができる。
第一態様の光制御フィルターが有する貫通孔2における両方の開口部の直径が互いに同じあり、かつ、その貫通孔2の両方の開口部の直径がそれぞれ独立に2μm以上30μm以下とすることが容易になる観点から、次の成形型Kを使用することが好ましい。
成形型Kが有する複数の凸部Jが柱状であり、前記複数の凸部Jのうち少なくとも1つの凸部において、前記凸部の直径Dが2μm以上30μm以下であり、かつ、前記凸部の高さHと直径Dとの比(高さH/直径D)で表されるアスペクト比が、1:5〜1:30であることが好ましい。
凸部Jの前記アスペクト比は形成する貫通孔2の前述したアスペクト比に反映される。よって、このアスペクト比は、1:8.5〜1:25.5がより好ましく、15〜20がさらに好ましい。
凸部Jの直径Dは形成する貫通孔2の直径Rに反映される。よって、前記直径Dは、2μm〜20μmがより好ましく、2μm〜15μmがさらに好ましく、2μm〜10μmが最も好ましい。
凸部Jの直径Dは、測定対象の単一の凸部Jの基部から頂部までの最大直径(高さ方向に直交する最大の差し渡しの長さ)と、最小直径(高さ方向に直交する最小の差し渡しの長さ)との平均値である。この最大直径および最小直径は、測定顕微鏡等の拡大観察手段を用いて測定される。
また、凸部Jの高さHは、測定対象の単一の凸部Jの基部(凹部Mの底面)から頂部(凹部Mの底面から最も離れた点)までの長さである。この高さHは、測定顕微鏡等の拡大観察手段を用いて測定される。
測定対象の単一の凸部Jの最大直径d1と、最小直径d2との差(最大直径d1−最小直径d2)が、最小直径r2の5%以内であることが好ましい。つまり、(最大直径d1/最小直径d2)で表される比が、1.00〜1.05であることがこのましい。このような凸部Jによって形成された単一の貫通孔2における両端の開口部の直径は、確実に同じとなる。
成形型Kが有する複数の凸部Jのうち、個々の凸部Jにおける最大直径d1/最小直径d2で表される比が1.00〜1.05である割合は、70〜100%が好ましく、80〜100%がより好ましく、90〜100%がさらに好ましい。
成形型Kの作製方法としては、例えば、平板状の基材の一方の面をドライエッチング又はウェットエッチングにより凹部M及び凸部Jを形成する方法、平板状の基材の一方の面を切削して凹部M及び凸部Jを形成する方法が挙げられる。平板状の基材としては、例えば、シリコンウェハ、石英基板が挙げられる。ドライエッチングとしては、例えば、プラズマエッチング、レーザエッチング、イオンエッチング等が挙げられる。プラズマエッチングの方法としては、基材の表面にマスクを配置し、マスクを通して基板表面にプラズマを照射し、マスクで覆われていない表面のみをエッチングすることにより、凹部M及び凸部Jを形成する方法が挙げられる。
成形型を用いてエラストマー製のシートからなる光制御フィルター前駆体を成形する具体的な方法としては、例えば、下記の(a−1)〜(a−5)の方法が挙げられる。
(a−1):液状のエラストマー材料Lを、支持フィルムの平らな表面上に塗布してエラストマー材料Lの膜を形成した後、その膜に成形型Kの凹部Mを押し当て、エラストマー材料Lを硬化させ、光制御フィルター前駆体を形成する方法。
(a−2):液状のエラストマー材料Lを、成形型Kの凹部Mに流下し、へら等を用いて凹部M内に充填した後、エラストマー材料Lを硬化させ、光制御フィルター前駆体を形成する方法。
(a−3):液状のエラストマー材料Lを成形型Kの凹部Mに塗布し、塗布したエラストマー材料Lを押し型で押圧し、エラストマー材料Lを凹部M内に充填した後、エラストマー材料Lを硬化させ、光制御フィルター前駆体を形成する方法。
(a−4):予め作製したエラストマーのシートを加熱しながら成形型Kの凹部Mに押圧し、熱によって軟化したシートに凹凸を転写して、光制御フィルター前駆体を形成する方法。
(a−5):成形型Kを射出成形機に取り付け、エラストマーを射出成形して、光制御フィルター前駆体を形成する方法。
(a−1)〜(a−3)の方法において、液状のエラストマー材料Lとしては、例えば、硬化性シリコーン、イソシアネート及びポリオール等の硬化性化合物が挙げられる。エラストマー材料Lには、重合触媒を添加してもよい。エラストマー材料Lが熱硬化性である場合には、熱重合触媒を添加し、エラストマー材料Lが光重合性である場合には、光重合触媒を使用する。また、エラストマー材料Lには、前述の遮光材を添加してもよい。遮光材を添加すれば、エラストマー部分が充分な遮光性を備える。エラストマー材料Lには、必要に応じてさらに溶媒等の他の成分を混合してもよい。
前記支持フィルムとしては、得られた光制御フィルター前駆体から容易に剥離できるフィルムが好ましく、例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等が挙げられる。エラストマー材料Lを支持フィルムに塗布する方法としては、公知のコーターを用いる方法が挙げられる。支持フィルム上に塗布するエラストマー材料Lの量は、目的とする光制御フィルター前駆体の作製に充分な量に調整する。
支持フィルム上に形成したエラストマー材料Lの膜に成形型Kの凹部Mを押し当てることにより、凹部Mにエラストマー材料Lを充填させて、凹凸形状が反転した凸凹を前記膜に形成する。エラストマー材料Lを熱硬化させる方法として、例えば、前記膜に押し当てた成形型Kを加熱する方法、成形型Kとは別に設けた外部ヒータを用いて加熱する方法が挙げられる。エラストマー材料Lを光硬化させる場合、例えば、紫外線の照射により硬化させることができる。
エラストマー材料Lを硬化させることにより、光制御フィルター前駆体を形成することができる。
(a−2)の方法において、成形型Kの凹部M上に流下するエラストマー材料Lの量は、目的とする光制御フィルター前駆体が得られる量に調整する。
成形型Kの凹部M上に液状のエラストマー材料Lを流下した後、エラストマー材料Lの表面をへら等で均すことにより、エラストマー材料Lを凹部M内に充填させる。その後、エラストマー材料Lを硬化させることにより、光制御フィルター前駆体を形成する。硬化方法は、前述の(a−1)と同様の方法を採用できる。
(a−3)の方法におけるエラストマー材料Lの塗布方法としては、例えば、成形型Kの凹部Mの任意の位置に付着させた液状のエラストマー材料Lに、押し型を押圧してエラストマー材料Lを押し延ばし、エラストマー材料Lを凹部M内に充填する方法が挙げられる。また、前記塗布方法として、公知のコーターを採用してもよい。硬化方法は、前述の(a−1)と同様の方法が採用できる。
(a−4)の方法は、公知のプレス成形機を用いたプレス成形法である。プレス成形機に成形型Kを取り付けて、エラストマー材料をプレス成形することにより、光制御フィルター前駆体を形成できる。
(a−5)の方法は、公知の射出成形機を用いた射出成形法である。射出成形機に成形型Kを取り付けて、エラストマー材料を成形することにより、光制御フィルター前駆体を形成できる。
図5(b)に示すように、工程(a−1)〜(a−5)の方法において、成形型Kの凹部M内に光制御フィルター前駆体のシート1’を形成する際、凹部M内に入らずに溢れたエラストマー材料Lが残膜Nになる。残膜Nはシート1’の一方の面に形成されたバリである。残膜Nを形成する利点として、エラストマー材料Lが硬化する際に、凸部Jの先端の形状が形成するシート1の貫通孔2の開口部の形状に反映され易いこと、すなわち、凹部M及び凸部Jの形状を反映した貫通孔2を精度良く形成できることが挙げられる。
残膜Nが光制御フィルター前駆体をなすシート1’の一方の面の全体を覆う場合、シート1’に形成された貫通孔2に対応する複数の穴2’の一方の開口部が残膜Nによって覆われているため、複数の穴2’は非貫通状態である。この残膜Nは後述するように、シート1’の一方の面に沿って(シート1’の厚さ方向を横切るように)スライスカットすることにより除去することができる。残膜Nが除去されると、前記複数の穴2’は貫通孔2となる。
以上で例示した成形工程において使用するエラストマー材料Lとしては、硬化後のエラストマーのショアA硬度が、A25以上A80以下であるものが好ましく、A40以上A75以下であるものがより好ましく、A50以上A70以下であるものがさらに好ましい。ここで、ショアA硬度は、JIS K6253−3:2012に従い、デュロメーターを用いて測定した値である。
上記のショアA硬度が上記範囲の上限値以下であると、硬化したシート1’を成形型Kから取り出す際に凸部Jが破損することを防止できる。
上記のショアA硬度が上記範囲の下限値以上であると、硬化したシート1’を成形型Kから取り出す際にシート1’が断裂することを防止できる。
具体的なエラストマー材料としては、硬化後に次のエラストマーとなるものが挙げられる。例えば、ウレタンゴム、イソプレンゴム、エチレンプロピレンゴム、天然ゴム、エチレンプロピレンジエンゴム、スチレンブタジエンゴム、シリコーンゴム等の熱硬化性エラストマー;ウレタン系、エステル系、スチレン系、オレフィン系、ブタジエン系又はフッ素系等の熱可塑性エラストマー;或いはそれらの複合物等が挙げられる。これらの中でも、硬化後に成形型からの取り出しが容易であり、成形型から取り出した後の寸法変化が小さく、成形型から取り出した後の反りが生じず、圧縮永久歪が小さく、耐熱性が高く、耐候性及び耐寒性にも優れる、シリコーンゴムが好ましい。光制御フィルター前駆体の形成に用いられるエラストマー材料は1種でもよいし、2種以上でもよい。
以上で例示した成形工程により、エラストマー製のMD−1ゴム硬度が70以下のシート1’からなり、各貫通孔2に対応する複数の穴2’を備えた光制御フィルター前駆体10’を成形型Kの凹部M内に形成することができる。
[離型工程]
光制御フィルター前駆体をなすシート1’を成形型Kの凹部から取り出す方法は特に限定されず、例えばシート1’の端部からめくり上げて取り出す方法が挙げられる。シート1’の一方の面に残膜Nが存在する場合には、残膜Nが成形型Kの凹部Mの外部に存在するので、この残膜Nを摘んで引っ張ることにより、シート1’を容易に取り出すことができる(図5(c)参照)。シート1’は可撓性を有し、弾性変形するので、成形型Kからシート1’を取り外すことは比較的容易であり、取り外しの際に成形型Kの凹凸が破損することを防止できる。
残膜Nは成形型から取り出した直後に除去してもよいし、次の照射工程によりシート1’及び残膜Nの硬度を高めた後で除去してもよい。切削や研磨によって残膜Nを除去することが容易になる観点から、照射工程の後で残膜Nを除去することが好ましい。
[照射工程]
成形型Kから取り出した光制御フィルター前駆体のシート1’に活性エネルギー線(図5(d)の符号E)を照射する。活性エネルギー線は、シート1’を構成するエラストマー同士を架橋させ得る放射線であればよく、例えば、電子線、ガンマ線、陽子、重イオン等が挙げられる。なかでも、線源の取り扱いが容易であり、エラストマー同士を容易に架橋させられる観点から電子線が好ましい。
シート1’に活性エネルギー線を照射する方法としては、公知の電子線照射装置やコバルト60のガンマ線を利用した公知のガンマ線照射装置を使用する方法が挙げられる。電子線のエネルギーの目安として、例えば1〜10MeV程度が好ましい。エラストマーを構成する炭素や水素の核外電子と照射した電子線とのクーロン相互作用により、二次電子が発生し、周囲のエラストマー分子をイオン化したり電子励起したりすることにより、エラストマー同士が架橋する。また、一部のエラストマーの分子鎖が切断されることもある。
活性エネルギー線の照射により、エラストマーの内部では、架橋点の増加、すなわち架橋密度の増加が起こる。エラストマーの架橋密度の増加は、そのエラストマーの硬度の増加として現れる。架橋密度の増加の程度(架橋硬化の程度)は、溶媒に浸漬したエラストマーが膨潤することに基づく、エラストマーの体積変化率によって確認できる。活性エネルギー線照射によって架橋が進む程、溶媒浸漬による体積変化率は小さくなる。溶媒としてはトルエン、キシレンなどエラストマーを膨潤させ得るものが使用される。
電子線の線量(単位:kGy)は、例えば、10〜5000程度が挙げられ、20〜2000が好ましく、50〜1000がより好ましい。
上記範囲の下限値以上であると、厚さ100μm程度の光制御フィルター前駆体のMD−1硬度を80よりも大きくすることができる。
上記範囲の上限値以下であると、エラストマーの劣化を抑制することができる。
電子線照射を行う際のシート1’の雰囲気は、真空中、不活性ガス中、空気中のいずれでもよいが、シート1’の硬化の制御が容易であることから、不活性ガス中で行うことが好ましい。
空気中で電子線照射すると、シート1’の表面に酸化層が形成され得る。酸化層はシート1’の硬度の上昇に寄与する。シート1’は複数の穴2’(光制御フィルターの貫通孔2に対応する穴2’)を有するが、この穴2’の壁面に酸化層が形成されることにより、光制御フィルターが厚さ方向に押圧力を受けた場合に、貫通孔2の変形がより一層抑制され得る。
以上で例示した照射工程により、光制御フィルター前駆体を構成するシート1’のMD−1ゴム硬度を80よりも大きくしたシート1を得ることができる(図5(d)参照)。ここで得たシート1が備える前記複数の穴2’が残膜Nに覆われておらず、複数の貫通孔2である場合には、目的の光制御フィルター10を得たことになる。
一方、シート1が残膜Nを有する場合には、余分な残膜Nを切削や研磨によって取り除き、前記複数の穴2’を複数の貫通孔2とすることにより、目的の光制御フィルター10をなすシート1が得られる(図5(e)参照)。また、必要に応じて、シート1の第一面1a又は第二面1bを切削又は研磨することにより、シート1の厚さを調整する。また、シート1の平面視のサイズを所望のサイズに裁断して用いる。
シート1から余分な残膜Nを除去する方法として、前述したように金属製の刃をシート平面に沿って切削する方法の他、例えば、一般的な基板の表面を切削又は研磨する接触式の公知方法、レーザ加工、プラズマ処理等の非接触式の公知方法が挙げられる。
以上で例示した各工程により得られた光制御フィルター10が有する複数の貫通孔2の形状は、成形型Kの凸部Jの形状に対応しているので、貫通孔2の第一面1aの開口部の形状と第二面1bの開口部の形状を同じにすることが容易である。例えば成形型の凸部Jの形状を円柱形にすれば、貫通孔2の第一面1a及び第二面1bの開口部の形状を同じ直径の円形にすることができる。
[貫通孔2の内部への部材の充填]
光制御フィルター10の複数の貫通孔2に、光透過性材料又は遮光材を充填する方法としては、例えば、下記の(b−1)〜(b−3)の方法が挙げられる。
(b−1):光制御フィルター10の貫通孔2が開口する第一面1aに、材料を含む塗料を流下し、へら等を用いて貫通孔に掻き入れて充填する方法。
(b−2):光制御フィルター10の貫通孔2が開口する第一面1aに材料を含む塗料を付着させ、前記塗料に押し型を押圧して前記塗料を貫通孔に押し込み、充填する方法。
(b−3):材料を含む塗料の中に、光制御フィルター10を浸漬して、貫通孔2に前記塗料を流入させる方法。
前記貫通孔に充填された前記塗料は常法により硬化する。
前記塗料には、硬化性の樹脂前駆体又はバインダーが含まれていることが好ましい。透明な樹脂を形成する公知の樹脂前駆体を適用すれば、貫通孔2に光透過部を形成できる。不透明な樹脂を形成する公知の樹脂前駆体、又は透明な樹脂を形成する公知の樹脂前駆体に前記遮光材を添加した組成物を用いれば、貫通孔2に遮光部を形成できる。
前記樹脂前駆体としては、例えば、熱硬化性シリコーン、ポリウレタンを形成するイソシアネート及びポリオール、アクリル化合物、エポキシ化合物、不飽和ポリエステル等が挙げられる。
また、貫通孔2に嵌合する樹脂製又はガラス製の光ファイバーを貫通孔2に挿通することにより、貫通孔2に光透過部材を設置してもよい。
光制御フィルター10の貫通孔2には、前記ランド膜が存在しないので、前記塗料を貫通孔2に流入させること及び前記光透過部材を貫通孔2内に挿通することが容易である。
[透明部材の貼付]
用途に応じて、図4に示すように、光制御フィルター10の第一面1a及び第二面1bの少なくとも一方に透明部材7,8を貼付してもよい。
光制御フィルター10の第一面1a及び第二面1bの各々に対して、第一透明部材7及び第二透明部材8のうち少なくとも一方を形成する方法は、一般的な基板の表面に透明部材を設置する際の常法が適用される。具体的には、例えば、下記の(c−1)〜(c−2)の方法が挙げられる。
(c−1):第一面1a又は第二面1bに、熱硬化性化合物又は光硬化性化合物等を含む塗料を塗布し、加熱又は光照射して、硬化させる方法。
(c−2):第一面1a又は第二面1bに、透明樹脂フィルム又は透明ガラスを積層する方法。
前記熱硬化性化合物及び前記光硬化性化合物としては、例えば、アクリル化合物、エポキシ化合物、熱硬化性シリコーン、ポリウレタンを形成するイソシアネート及びポリオール等が挙げられる。これらの硬化性化合物を含む塗料には、重合開始剤が含まれてもよい。重合開始剤としては、有機過酸化物、アゾ化合物等が挙げられる。前記塗料には、公知の有機溶剤が含まれてもよい。
前記透明樹脂フィルム又は透明ガラスは、例えば、シート1側の表面に予め粘接着剤を塗工して、粘接着層を形成しておき、粘接着層を介して貼付することができる。粘接着層は公知方法で形成される。
また、シート1の貼付面又は透明部材の貼付面のうち少なくとも一方に前記表面処理を施し、粘接着層を介在させずに直接貼付することもできる。この際、圧着や加熱等の公知方法によって貼付することができる。
[シート1の主面の整形]
シート1の貫通孔2に対応する穴2’内に光透過部材又は遮光部材を設置する前又は後で、シート1の一方の面に残膜Nが残る場合、これを除去するとともに、第一面1aを第二面1bに平行とする好適な方法として、以下に例示する方法が挙げられる。以下の図ではシート1の穴2’内に光透過部材又は遮光部材を設置した後で、シート1が有する残膜Nを除去する場合を示す。この場合を参照して、貫通孔2に対応する穴2’が中空(空洞)であるシート1や、活性エネルギー線を照射する前のシート1’についても同様の方法で残膜Nを除去したり、主面同士を平行としたりすることができる。
まず、図6(a)の断面図に示すように、シート1の第二面1bに残る残膜Nを、支持台が有する平らな支持面Sに密着させて固定する。残膜Nの厚さは不均一である場合があり、図では紙面右側に向かって残膜Nが厚くなることを強調して描いている。
次に、支持面Sと平行に切断用の刃又はレーザを動かして、残膜Nを含まないように、且つ、残膜Nと第二面1bの境界になるべく近い位置(例えば図の破線C1で示す位置)でシート1を薄切りするように切断し、平面化された新たな第二面1bを形成する。
ここで図6(b)に示すように、切り出したシート1の第一面1aと第二面1bは、非平行であっても構わない。
次に、図6(c)に示すように、シート1の新たな第二面1bを、支持台が有する平らな支持面Sに密着させて固定する。再び、支持面Sと平行に切断用の刃又はレーザを動かして、元の第一面1aを残さないように、且つ、元の第一面1aになるべく近い位置(例えば図の破線C2で示す位置)でシート1を切断し、平面化された新たな第一面1aを形成する。
図6(d)に示すように、切り出したシート1の第一面1aと第二面1bは、この段階で平行になっている。また、第一面1a及び第二面1bに対する、各貫通孔2の第一端部と第二端部を結ぶ中心線のなす角度は、残膜Nの厚さの不均一さに起因して、残膜Nを切除する前と後で変化している。図示した例では、貫通孔2は、図6(a)に示す元の第一面1aに対しては垂直であるが、図6(d)に示す新たな第一面1aに対しては傾いている。
以上で説明した光制御フィルター10をなすシート1の各主面の整形方法によれば、残膜Nを容易に切除でき、平滑で互いに平行な第一面1a及び第二面1bを形成し、貫通孔2の第一端部及び第二端部がそれぞれ第一面1a及び第二面1bに露出した、厚さが薄い光制御フィルター10を容易に得ることができる。
なお、図6に例示した実施形態では、支持台Sにシート1の残膜Nを密着させて固定したが、この方法に代えて、シート1の第一面1aを密着させて固定してもよい。この場合においても、まず、支持面Sと平行に切断用の刃又はレーザを動かして、残膜Nを含まないように、且つ、残膜Nと第二面1bの境界になるべく近い位置でシート1を薄切りするように切断し、平面化された新たな第二面1bを形成する。この1回のスライスカットにより、第一面1aと第二面1bとが平行にされたシート1からなる光制御フィルター10が得られる。成形型Kから取り出したシート1の第一面1aが平滑である場合には、1回のスライスカットで目的の光制御フィルター10を得る方が効率的である。
以下、実施例を示して本発明をより具体的に説明するが、本発明は以下の実施例に限定されない。
[実施例1]
光制御フィルターのエラストマー製のシートを作製するための成形型として、縦×横×深さが20mm×20mm×180μmの凹部が表面に形成され、凹部内にX−Y方向に沿って800×800個の円柱状(直径15μm、高さ180μm)の凸部が25μmピッチでグリッド状に配列した、シリコン製(Si製)の成形型を用意した。
また、液状の熱硬化性シリコーン(信越化学工業株式会社製、KE−1935)と、カーボンブラックとを混合して遮光部形成用塗料を得た。この塗料の総質量に対する熱硬化性シリコーンの含有量は、塗料の硬化後に得られる硬化物の総質量に対して約95質量%となるように調整した。
ポリエチレンテレフタレートフィルムの表面に、前記遮光部形成用塗料を塗布して、熱硬化性シリコーンの膜を形成した。
次いで、その熱硬化性シリコーンの膜に前記成形型の凹部Mが形成された面を押し当て、130℃で5分間加熱し、熱硬化性シリコーンを硬化させた。
次いで、成形型の凹部内からエラストマー製のシートを取り出した後、エラストマー製のシートに形成する平面に沿って金属製の刃を入れて凹部M内に入らなかった余剰の熱硬化性シリコーンからなる残膜を切削により除去した。この結果、直径R=15μm、高さ150μmの円筒形状の複数の貫通孔(アスペクト比=10)が25μmピッチで、貫通孔の開口が1600個/mmの密度でグリッド状に配列したエラストマー製の光制御フィルター前駆体を得た。
光制御フィルター前駆体が有する複数の貫通孔から任意に選択した単一の貫通孔2の第一開口部の直径r1と第二開口部の直径r2との比(r1/r2)は1.02であった。
上記で得た光制御フィルター前駆体のシートを7枚重ねた積層体(厚さ:1050μm)を試験片として、高分子計器株式会社製の「マイクロゴム硬度計」商品名:MD−1capaを使用して、そのMD−1ゴム硬度を上述の測定方法(押針形状:タイプA、加圧脚寸法:タイプA、スプリング荷重:22mN、測定モード:ノーマルモード)に従って23 ℃の環境で測定した。その結果、光制御フィルター前駆体1枚当たりのMD−1ゴム硬度は63.5であった。
続いて、電子線照射装置(岩崎電気社製、型番:EC250/30/90LS)を使用して、光制御フィルター前駆体の一方の主面に、次の条件で電子線を照射した。
・電子線の照射電圧(kV):250
・電子線の線量(kGy):600
・電子線照射時の雰囲気ガス:N
・電子線照射の雰囲気温度(℃):23
上記の電子線照射によりエラストマーを架橋硬化して得られた、目的の光制御フィルターのシートを7枚重ねた積層体(厚さ:1050μm)を試験片として、高分子計器株式会社製の「マイクロゴム硬度計」商品名:MD−1capaを使用して、そのMD−1ゴム硬度を上述の測定方法(押針形状:タイプA、加圧脚寸法:タイプA、スプリング荷重:22mN、測定モード:ノーマルモード)に従って23 ℃の環境で測定した。その結果、光制御フィルター1枚当たりのMD−1ゴム硬度は86.1であった。
上記で得た光制御フィルターが有する複数の貫通孔から任意に選択した単一の貫通孔2の第一開口部の直径r1と第二開口部の直径r2との比(r1/r2)は1.02であった。
上記で得た光制御フィルターの主面の正面から見ると、光制御フィルターの反対側を透かして見ることが可能であり、光制御フィルターの主面に対して斜めの角度から見ると、光制御フィルターの反対側を透かして見ることができなかった。つまり、光制御フィルターは視野角(光透過角)を充分に制御することができた。
次に、光制御フィルターの一方の主面にコロナ処理を行った後、厚み50μmのアクリル系の粘接着剤を有した両面テープを介してポリエチレンテレフタレート製の透明フィルムを貼付した。この際、光制御フィルターの厚さ方向に、貼付に必要な押圧力を加えた。
透明フィルムを貼付した光制御フィルターにおいては、一部の貫通孔の変形による光ムラは生じておらず、優れた視野角(光透過角)制御の効果が得られた。
[比較例1]
実施例1で得た光制御フィルター前駆体について、電子線照射処理を行わずに、実施例1と同様の方法により透明フィルムを貼付した。
透明フィルムを貼付した光制御フィルター前駆体においては、一部の貫通孔の変形による光ムラが目立ち、実施例1の光制御フィルターと比べると光学特性に劣っていた。
以上の実施例で示した通り、本発明にかかる光制御フィルターは、MD−1ゴム硬度が高いエラストマー製のシート本体を備えているので、厚さ方向の押圧力を受けた場合に貫通孔の変形が抑制されており、優れた光学特性を有することが明らかである。
1 エラストマー製のシート
1’ エラストマー製のシート
2 貫通孔
3 光透過材料
10 光制御フィルター
20 光制御フィルター
L エラストマー材料
K 成形型
M 凹部
J 凸部
N 残膜

Claims (13)

  1. エラストマー製のシートからなる光制御フィルターであり、
    前記シートの厚さ方向に貫通する複数の貫通孔を備え、
    前記シートに遮光材が含まれており、
    前記シートが遮光部であり、前記貫通孔が光透過部であり、
    前記シートのMD−1ゴム硬度が80よりも大きい、光制御フィルター。
  2. 前記複数の貫通孔から任意に選択される少なくとも1つの貫通孔において、
    前記シートの第一面に開口する第一開口部の直径r1と、
    前記シートの第二面に開口する第二開口部の直径r2との比(直径r1/直径r2)が、1.00〜1.05(ただし、直径r1≧直径r2)であり、
    前記直径r1及び前記直径r2が、それぞれ独立に2μm以上30μm以下である、
    請求項1に記載の光制御フィルター。
  3. 前記任意に選択される少なくとも1つの貫通孔において、(前記直径r1と前記直径r2の平均値):(前記シートの厚さ)で表されるアスペクト比が、1:5〜1:30である、請求項2に記載の光制御フィルター。
  4. 前記シートの平面視で、前記貫通孔の開口が400〜10000個/mmの密度で配置されている、請求項1〜3の何れか一項に記載の光制御フィルター。
  5. 前記シートの平面視で、隣接する前記貫通孔同士のピッチが、10μm以上50μm以下である、請求項1〜4の何れか一項に記載の光制御フィルター。
  6. 前記シートの平面視で前記複数の貫通孔の開口部が2次元アレイ状に配置されている、請求項1〜5の何れか一項に記載の光制御フィルター。
  7. 前記貫通孔が中空である、請求項1〜6の何れか一項に記載の光制御フィルター。
  8. 請求項1〜7の何れか一項に記載の光制御フィルターを製造する方法であって、
    前記光制御フィルターのシートの外形に対応する凹部と、前記凹部内に前記光制御フィルターの複数の貫通孔に対応する複数の凸部と、を備えた成形型を用い、
    前記成形型の凹部内でエラストマー材料を硬化させることにより、エラストマー製のMD−1ゴム硬度が80以下のシートからなり、前記各貫通孔に対応する複数の穴を備えた光制御フィルター前駆体を前記成形型内に形成することと、
    前記成形型内から前記光制御フィルター前駆体を取り出すことと、
    取り出した前記光制御フィルター前駆体に活性エネルギー線を照射し、前記光制御フィルター前駆体を構成する前記エラストマー同士を架橋させ、前記シートのMD−1ゴム硬度を80よりも大きくした光制御フィルターを得ることと、
    を含む、光制御フィルターの製造方法。
  9. 前記複数の凸部が柱状であり、
    前記複数の凸部のうち少なくとも1つの凸部において、前記凸部の直径Dが2μm以上30μm以下であり、かつ、前記凸部の高さHと直径Dとの比(高さH/直径D)で表されるアスペクト比が、1:5〜1:30である、請求項8に記載の光制御フィルターの製造方法。
  10. 前記成形型の凹部内において、前記凸部が400〜10000個/mmの密度で配置されている、請求項8又は9に記載の光制御フィルターの製造方法。
  11. 前記成形型の凹部内において、隣接する前記凸部同士のピッチが10μm以上50μmである、請求項8〜10の何れか一項に記載の光制御フィルターの製造方法。
  12. 前記成形型の凹部に前記エラストマー材料を注入し、さらに前記凹部から前記エラストマー材料を溢れさせ、この状態で硬化させることにより、前記シートの一方の面に余分な残膜を形成し、その後、前記残膜を摘んで引っ張ることにより、前記成形型内から前記光制御フィルター前駆体を取り出す、請求項8〜11の何れか一項に記載の光制御フィルターの製造方法。
  13. 前記光制御フィルターの厚さ方向を横切る方向にスライスカットし、前記光制御フィルター前駆体の一方の面に残存する前記残膜を除去することをさらに含む、請求項12に記載の光制御フィルターの製造方法。
JP2019202645A 2019-11-07 2019-11-07 光制御フィルター及びその製造方法 Pending JP2021076681A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019202645A JP2021076681A (ja) 2019-11-07 2019-11-07 光制御フィルター及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019202645A JP2021076681A (ja) 2019-11-07 2019-11-07 光制御フィルター及びその製造方法

Publications (1)

Publication Number Publication Date
JP2021076681A true JP2021076681A (ja) 2021-05-20

Family

ID=75898939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019202645A Pending JP2021076681A (ja) 2019-11-07 2019-11-07 光制御フィルター及びその製造方法

Country Status (1)

Country Link
JP (1) JP2021076681A (ja)

Similar Documents

Publication Publication Date Title
US10052798B2 (en) Light-transmitting imprinting mold and method for manufacturing large-area mold
EP3401711B1 (en) Diffractive optical element and light irradiation apparatus
JP2006337985A (ja) ハイサグレンズの製作方法及びこれを利用し製作されたレンズ
EP3196924B1 (en) Method for manufacturing microscopic structural body
US10464255B2 (en) Lipophilic laminate, manufacturing method therefor, and article
WO2021256452A1 (ja) 細胞培養用シリコーンゴムシート及び細胞培養用容器
KR102004630B1 (ko) 성형체
EP3816680A1 (en) Light control filter
JP4371777B2 (ja) 樹脂硬化方法及び樹脂成型品の製造方法
JP2021076681A (ja) 光制御フィルター及びその製造方法
JP6820969B2 (ja) 光制御フィルター
JP7064549B2 (ja) 光制御フィルターの製造方法
JP7407654B2 (ja) 光制御フィルターの製造方法
KR101390700B1 (ko) 미세채널 제조방법
JP2021076682A (ja) 光制御フィルター
US12001037B2 (en) Light control filter
JP2009031582A (ja) 光導波路の製造方法
JP5499553B2 (ja) ナノインプリントパターン形成方法およびそれに用いられる基材
JP2876277B2 (ja) 複合型成形品
JP2021085933A (ja) 光制御フィルターの製造方法
JP2021092692A (ja) 光制御フィルターの製造方法
JP4279772B2 (ja) 光導波路の製造方法
JP6343224B2 (ja) ゴーグル及びその製造方法
JP2021015181A (ja) 光学フィルターの製造方法
JPWO2020194816A1 (ja) 凹凸構造体の製造方法及び凹凸構造体