JP2021075772A - Material for electric contact, its manufacturing method, connector terminal, connector, and electronic component - Google Patents

Material for electric contact, its manufacturing method, connector terminal, connector, and electronic component Download PDF

Info

Publication number
JP2021075772A
JP2021075772A JP2019205638A JP2019205638A JP2021075772A JP 2021075772 A JP2021075772 A JP 2021075772A JP 2019205638 A JP2019205638 A JP 2019205638A JP 2019205638 A JP2019205638 A JP 2019205638A JP 2021075772 A JP2021075772 A JP 2021075772A
Authority
JP
Japan
Prior art keywords
layer
main component
electrical contacts
grain boundaries
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019205638A
Other languages
Japanese (ja)
Other versions
JP7353928B2 (en
Inventor
秀一 北河
Shuichi Kitagawa
秀一 北河
達也 中津川
Tatsuya Nakatsugawa
達也 中津川
颯己 葛原
Soki KUZUHARA
颯己 葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019205638A priority Critical patent/JP7353928B2/en
Publication of JP2021075772A publication Critical patent/JP2021075772A/en
Application granted granted Critical
Publication of JP7353928B2 publication Critical patent/JP7353928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a material for an electric contact which has a low contact resistance value having a sufficient resistance level even when a high voltage and large current is applied, has a low dynamic friction coefficient, and is excellent in heat resistant adhesion after heating in heat treatment performed after laminating layers on a copper alloy base material, and to provide a method for manufacturing the same, a connector terminal, a connector and an electronic component.SOLUTION: A material for an electric contact of the present invention is characterized in that on at least one surface of a conductive base material comprising copper (Cu) as a main component, a base layer comprising at least a Ni-containing layer comprising nickel (Ni) as a main component and a surface layer comprising silver (Ag) and tin (Sn) as main components are provided, and the number of crystal grain boundaries (the number of interface grain boundaries) present at an interface formed between the surface layer and the base layer is in a range of 5 to 60 per 10 μm of an extension length of the interface, as seen in a cross section including a thickness direction of the material for an electric contact.SELECTED DRAWING: Figure 1

Description

本発明は、電気接点用材料およびその製造方法、コネクタ端子、コネクタならびに電子部品に関する。 The present invention relates to a material for electrical contacts, a method for manufacturing the same, a connector terminal, a connector, and an electronic component.

民生用および車載用の電子部品、例えばコネクタの電気接点部を構成するコネクタ端子には、黄銅やリン青銅、コルソン合金などの銅(Cu)を主成分として含有する導電性基材の表面に、ニッケル(Ni)やCuの下地めっきを施し、さらにその上に錫(Sn)やSn合金のめっきを施した電気接点用材料が使用されている。 For consumer and automotive electronic components, for example, the connector terminals that make up the electrical contacts of the connector, on the surface of a conductive substrate containing copper (Cu) as the main component, such as brass, phosphorus bronze, and Corson alloy. Materials for electrical contacts are used, which are base-plated with nickel (Ni) or Cu, and further plated with tin (Sn) or Sn alloy.

近年、省燃費化の達成のため車両駆動方式の電動化が進行し、例えば、電池−インバータ−モータ間の接続部品には高電圧大電流への耐性が求められるようになり、SnやSn合金のめっきに代わって、銀(Ag)やAg合金のめっきを使用する例が増えている。 In recent years, in order to achieve fuel saving, the electrification of vehicle drive systems has progressed, and for example, connection parts between a battery, an inverter, and a motor are required to withstand high voltage and large current, and Sn and Sn alloys have been required. There are an increasing number of cases where silver (Ag) or Ag alloy plating is used instead of the plating of.

一方で、このような用途では車両の組み立て性の向上を目的として、従来、ボルト締めであった接続部が、篏合方式のコネクタに代わりつつある。そのため、コネクタ、特にコネクタ端子の表面に形成されるめっきは、接触抵抗値が低く、かつコネクタを嵌合(接続)した際の挿入力が低いことが求められている。しかしながら、Agめっきは、金属とのなじみがよく、凝集を起こしやすいため、動摩擦係数が高まり挿入力が増大する傾向がある。 On the other hand, in such an application, for the purpose of improving the assembleability of the vehicle, the connection portion, which has been conventionally bolted, is being replaced by the merging type connector. Therefore, the plating formed on the surface of the connector, particularly the connector terminal, is required to have a low contact resistance value and a low insertion force when the connector is fitted (connected). However, Ag plating has good compatibility with metal and easily causes agglomeration, so that the coefficient of kinetic friction tends to increase and the insertion force tends to increase.

例えば、特許文献1には、銅合金基材上に、Ni層(下層)、Ag層(中層)、ε−AgSn層(上層)およびSn層(最表層)を形成し、低ウィスカ性、低凝着磨耗性および高耐久性を有する電子部品用金属材料が開示されている。 For example, in Patent Document 1, a Ni layer (lower layer), an Ag layer (middle layer), an ε-AgSn layer (upper layer) and a Sn layer (outermost layer) are formed on a copper alloy base material, and have low whisker properties and low wear. Metallic materials for electronic components that have adhesive wear resistance and high durability are disclosed.

特開2014−29007号公報Japanese Unexamined Patent Publication No. 2014-29007

しかしながら、特許文献1に記載の電子部品用金属材料は、最表層にSn層を有し、接触抵抗値がAg層に比べて高いことから、高電圧大電流への耐性を必要とするコネクタには適用できない。また、特許文献1に記載の電子部品用金属材料は、銅合金基材とAg層(中層)との間に、バリア層(下層)としてのNi層を形成し、銅合金基材の構成金属(Cu)が上層に拡散するのを防止する対策が講じられているが、Ni層の構成金属であるNiと、Ni層上に形成されたAg層の構成金属であるAgとは、化合物を形成しないため、銅合金基材上への各層の積層形成後に施される熱処理における加熱後の密着強度が低いといった問題がある。 However, the metal material for electronic components described in Patent Document 1 has a Sn layer on the outermost layer and has a higher contact resistance value than the Ag layer, so that it is suitable for a connector that requires resistance to high voltage and large current. Is not applicable. Further, the metal material for electronic parts described in Patent Document 1 forms a Ni layer as a barrier layer (lower layer) between a copper alloy base material and an Ag layer (middle layer), and is a constituent metal of the copper alloy base material. Although measures have been taken to prevent (Cu) from diffusing into the upper layer, Ni, which is a constituent metal of the Ni layer, and Ag, which is a constituent metal of the Ag layer formed on the Ni layer, are composed of a compound. Since it is not formed, there is a problem that the adhesion strength after heating in the heat treatment applied after laminating and forming each layer on the copper alloy base material is low.

本発明は、以上の実情に鑑みてなされたものであり、導電性基材上に積層形成される下地層および表層を含む各層の組成、および下地層および表層の界面に存在する結晶粒界の数(界面粒界数)の適正化を図ることにより、高電圧大電流を印加した場合であっても、十分な耐性レベルをもつ低い接触抵抗値を有するとともに、動摩擦係数も低く、さらに、銅合金基材上への各層の積層形成後に施される熱処理における加熱後の耐熱密着性にも優れた電気接点用材料、およびその製造方法、コネクタ端子、コネクタならびに電子部品を提供することを目的とする。 The present invention has been made in view of the above circumstances, and the composition of each layer including the base layer and the surface layer laminated on the conductive base material, and the grain boundaries existing at the interface between the base layer and the surface layer. By optimizing the number (number of interfacial grain boundaries), even when a high voltage and a large current are applied, it has a low contact resistance value with a sufficient resistance level, a low dynamic friction coefficient, and copper. An object of the present invention is to provide a material for electrical contacts having excellent heat-resistant adhesion after heating in a heat treatment performed after laminating and forming each layer on an alloy substrate, and a manufacturing method thereof, a connector terminal, a connector, and an electronic component. To do.

本発明者らは、上述した目的を達成するため、鋭意検討を重ねた結果、銅(Cu)を主成分として含有する導電性基材の少なくとも片面上に、ニッケル(Ni)を主成分として含有するNi含有層を少なくとも含む下地層、ならびに銀(Ag)および錫(Sn)を主成分として含有する表層を有する電気接点用材料であって、前記電気接点用材料の厚さ方向を含む断面で見て、表層と下地層とで形成される界面に存在する結晶粒界の数(界面粒界数)が、界面の延在長さ10μm当たり5〜60個の範囲であることによって、高電圧大電流を印加した場合であっても、十分な耐性レベルをもつ低い接触抵抗値を有するとともに、動摩擦係数も低く、さらに、銅合金基材上への各層の積層形成後に施される熱処理における加熱後の耐熱密着性にも優れた電気接点用材料を提供でき、そして、そのような電気接点材料は、Cuを主成分として含有する導電性基材に少なくとも圧延加工を施した後、導電性基材の表面を酸により溶解除去し、その導電性基材の少なくとも一面に、Niを主成分として含有するNi含有層をめっきによって結晶粒径が0.01〜2.0μmとなるように形成するか、または、Niを主成分として含有するNi含有層を形成し、次いで、Cuを主成分として含有するCu含有層をめっきによって結晶粒径が0.01〜2.0μmとなるように形成し、その後、前者の場合にはNi含有層上、後者の場合にはCu含有層上に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成するか、または、AgおよびSnを主成分として含有する層を積層形成し、次いで、231〜900℃の加熱温度で熱処理を施すことによって製造できることを見出し、本発明を完成するに至った。 As a result of diligent studies to achieve the above-mentioned object, the present inventors have contained nickel (Ni) as a main component on at least one surface of a conductive base material containing copper (Cu) as a main component. A material for electrical contacts having a base layer containing at least a Ni-containing layer and a surface layer containing silver (Ag) and tin (Sn) as main components, in a cross section including the thickness direction of the material for electrical contacts. As seen, the number of crystal grain boundaries (number of interface grain boundaries) existing at the interface formed by the surface layer and the base layer is in the range of 5 to 60 per 10 μm of the extending length of the interface, so that the high voltage is obtained. Even when a large current is applied, it has a low contact resistance value with a sufficient resistance level, a low dynamic friction coefficient, and heating in the heat treatment performed after the lamination of each layer is formed on the copper alloy substrate. It is possible to provide a material for electrical contacts that is also excellent in heat resistance and adhesion later, and such an electrical contact material is a conductive base material containing Cu as a main component after being at least rolled. The surface of the material is dissolved and removed with an acid, and a Ni-containing layer containing Ni as a main component is formed on at least one surface of the conductive base material by plating so that the crystal particle size is 0.01 to 2.0 μm. Alternatively, a Ni-containing layer containing Ni as a main component is formed, and then a Cu-containing layer containing Cu as a main component is formed by plating so that the crystal particle size is 0.01 to 2.0 μm. After that, on the Ni-containing layer in the former case and on the Cu-containing layer in the latter case, a layer containing Ag as a main component and a layer containing Sn as a main component are laminated or formed in no particular order. , Ag and Sn as main components are laminated and formed, and then heat treatment is performed at a heating temperature of 231 to 900 ° C. to find that the product can be produced, and the present invention has been completed.

すなわち、本発明の要旨構成は以下のとおりである。
(1)銅(Cu)を主成分として含有する導電性基材の少なくとも片面上に、ニッケル(Ni)を主成分として含有するNi含有層を少なくとも含む下地層、ならびに銀(Ag)および錫(Sn)を主成分として含有する表層を有する電気接点用材料であって、前記電気接点用材料の厚さ方向を含む断面で見て、前記表層と前記下地層とで形成される界面に存在する結晶粒界の数(界面粒界数)が、前記界面の延在長さ10μm当たり5〜60個の範囲であることを特徴とする電気接点用材料。
(2)前記電気接点用材料の厚さ方向を含む断面で見て、前記界面粒界数は、前記表層の表面に存在する結晶粒界の数(表面粒界数)よりも多いことを特徴とする上記(1)に記載の電気接点用材料。
(3)前記表面粒界数に対する前記界面粒界数の比(界面粒界数/表面粒界数)が、1.1〜2.0の範囲であることを特徴とする上記(2)に記載の電気接点用材料。
(4)前記下地層は、前記Ni含有層であることを特徴とする上記(1)、(2)または(3)に記載の電気接点用材料。
(5)前記下地層は、前記Ni含有層と、前記Ni含有層上に形成された、銅(Cu)を主成分として含有するCu含有層との2層の積層体で構成されることを特徴とする上記(1)、(2)または(3)に記載の電気接点用材料。
(6)前記表層をX線回折法で測定したとき、2θ=38〜41°の範囲に現れる全てのピークのX線強度の合計面積に対する、2θ=39.7〜40.3°の範囲に現れるピークのX線強度の面積の比率が50%以上であることを特徴とする上記(1)〜(5)のいずれかに記載の電気接点用材料。
(7)上記(1)〜(6)のいずれかに記載の電気接点用材料を用いたコネクタ端子。
(8)上記(7)に記載のコネクタ端子を有するコネクタ。
(9)上記(8)に記載のコネクタを有する電子部品。
(10)上記(4)に記載の電気接点用材料を製造する方法であって、Cuを主成分として含有する導電性基材に少なくとも圧延加工を施した後、前記導電性基材の表面を酸により溶解除去し、前記導電性基材の少なくとも一面に、Niを主成分として含有するNi含有層をめっきによって結晶粒径が0.01〜2.0μmとなるように形成し、その後、前記Ni含有層上に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成するか、または、AgおよびSnを主成分として含有する層を積層形成した後、次いで231〜900℃の加熱温度で熱処理を施すことを特徴とする電気接点用材料の製造方法。
(11)上記(5)に記載の電気接点用材料を製造する方法であって、Cuを主成分として含有する導電性基材に少なくとも圧延加工を施した後、前記導電性基材の表面を酸により溶解除去し、前記導電性基材の少なくとも一面に、Niを主成分として含有するNi含有層を形成し、次いで、Cuを主成分として含有するCu含有層をめっきによって結晶粒径が0.01〜2.0μmとなるように形成し、その後、前記Cu層上に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成するか、または、AgおよびSnを主成分として含有する層を積層形成した後、次いで231〜900℃の加熱温度で熱処理を施すことを特徴とする電気接点用材料の製造方法。
That is, the gist structure of the present invention is as follows.
(1) On at least one surface of a conductive base material containing copper (Cu) as a main component, a base layer containing at least a Ni-containing layer containing nickel (Ni) as a main component, and silver (Ag) and tin (Ag) and tin ( A material for electrical contacts having a surface layer containing Sn) as a main component, which exists at an interface formed by the surface layer and the base layer when viewed in a cross section including the thickness direction of the electrical contact material. A material for electrical contacts, wherein the number of crystal grain boundaries (the number of interfacial grain boundaries) is in the range of 5 to 60 per 10 μm of the extending length of the interface.
(2) The number of interfacial grain boundaries is larger than the number of crystal grain boundaries (number of surface grain boundaries) existing on the surface of the surface layer when viewed in a cross section including the thickness direction of the material for electrical contacts. The material for electrical contacts according to (1) above.
(3) In the above (2), the ratio of the number of interfacial grain boundaries to the number of surface grain boundaries (number of interfacial grain boundaries / number of surface grain boundaries) is in the range of 1.1 to 2.0. The material for electrical contacts described.
(4) The material for electrical contacts according to (1), (2) or (3) above, wherein the base layer is the Ni-containing layer.
(5) The base layer is composed of a two-layer laminate of the Ni-containing layer and a Cu-containing layer containing copper (Cu) as a main component formed on the Ni-containing layer. The material for electrical contacts according to (1), (2) or (3) above.
(6) When the surface layer is measured by the X-ray diffraction method, it is in the range of 2θ = 39.7 to 40.3 ° with respect to the total area of the X-ray intensities of all the peaks appearing in the range of 2θ = 38 to 41 °. The material for electrical contacts according to any one of (1) to (5) above, wherein the ratio of the area of the X-ray intensity of the appearing peak is 50% or more.
(7) A connector terminal using the material for electrical contacts according to any one of (1) to (6) above.
(8) A connector having the connector terminal according to (7) above.
(9) An electronic component having the connector according to (8) above.
(10) The method for producing an electrical contact material according to (4) above, wherein the conductive base material containing Cu as a main component is at least rolled, and then the surface of the conductive base material is coated. It is dissolved and removed with an acid, and a Ni-containing layer containing Ni as a main component is formed on at least one surface of the conductive base material by plating so that the crystal particle size is 0.01 to 2.0 μm. A layer containing Ag as a main component and a layer containing Sn as a main component are laminated in no particular order on the Ni-containing layer, or a layer containing Ag and Sn as a main component is laminated and then formed. A method for producing a material for electrical contacts, which comprises performing heat treatment at a heating temperature of 231 to 900 ° C.
(11) The method for producing an electrical contact material according to (5) above, wherein the conductive base material containing Cu as a main component is at least rolled, and then the surface of the conductive base material is subjected to at least rolling processing. It is dissolved and removed with an acid to form a Ni-containing layer containing Ni as a main component on at least one surface of the conductive substrate, and then a Cu-containing layer containing Cu as a main component is plated to have a crystal particle size of 0. It is formed to be 0.01 to 2.0 μm, and then a layer containing Ag as a main component and a layer containing Sn as a main component are laminated on the Cu layer in no particular order, or Ag and A method for producing a material for electrical contacts, which comprises laminating and forming a layer containing Sn as a main component, and then performing heat treatment at a heating temperature of 231 to 900 ° C.

本発明によれば、高電圧大電流を印加した場合であっても、十分な耐性レベルをもつ低い接触抵抗値を有するとともに、動摩擦係数も低く、さらに、銅合金基材上への各層の積層形成後に施される熱処理における加熱後の耐熱密着性にも優れた電気接点用材料およびその製造方法、コネクタ端子、コネクタならびに電子部品を提供することができる。 According to the present invention, even when a high voltage and a large current are applied, it has a low contact resistance value having a sufficient resistance level, a low dynamic friction coefficient, and further, lamination of each layer on a copper alloy base material. It is possible to provide an electric contact material having excellent heat-resistant adhesion after heating in a heat treatment performed after formation, a method for manufacturing the same, a connector terminal, a connector, and an electronic component.

本発明の電気接点用材料の厚さ方向を含む断面の模式図である。It is a schematic diagram of the cross section including the thickness direction of the material for electrical contacts of this invention. 界面粒界数および表面粒界数の算出方法を説明するための模式図であって、電気接点用材料1の厚さ方向を含む断面を模式的に示したものである。It is a schematic diagram for demonstrating the calculation method of the number of interfacial grain boundaries and the number of surface grain boundaries, and schematically shows the cross section including the thickness direction of the material 1 for electrical contact. 本発明の電気接点用材料の表層のX線回折パターンの一例である。This is an example of the X-ray diffraction pattern on the surface layer of the material for electrical contacts of the present invention. 本発明の電気接点用材料の変形例の厚さ方向を含む断面の模式図である。It is a schematic diagram of the cross section including the thickness direction of the modification of the material for electrical contacts of this invention.

以下、本発明の好ましい実施形態について詳細に説明するが、本発明は以下の実施形態に限定されない。 Hereinafter, preferred embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments.

なお、本発明において「Mを主成分として含有する」(Mは一種類の金属元素の場合)とは、基材または各層に含まれる全金属元素に占める金属元素Mの含有量が50at%以上であることをいう。 In the present invention, "containing M as a main component" (when M is one kind of metal element) means that the content of the metal element M in the total metal elements contained in the base material or each layer is 50 at% or more. It means that.

1.電気接点用材料
本発明の電気接点用材料は、銅(Cu)を主成分として含有する導電性基材の少なくとも片面上に、ニッケル(Ni)を主成分として含有するNi含有層を少なくとも含む下地層、ならびに銀(Ag)および錫(Sn)を主成分として含有する表層を有する電気接点用材料であって、この電気接点用材料の厚さ方向を含む断面で見て、表層と下地層とで形成される界面に存在する結晶粒界の数(界面粒界数)が、界面の延在長さ10μm当たり5〜60個の範囲であることを特徴とする。
1. 1. Material for electrical contacts The material for electrical contacts of the present invention contains at least a Ni-containing layer containing nickel (Ni) as a main component on at least one surface of a conductive base material containing copper (Cu) as a main component. A material for electrical contacts having a stratum and a surface layer containing silver (Ag) and tin (Sn) as main components, and the surface layer and the base layer when viewed in a cross section including the thickness direction of the electrical contact material. The number of crystal grain boundaries (number of interfacial grain boundaries) existing at the interface formed by is in the range of 5 to 60 per 10 μm of the extending length of the interface.

(1)一の実施形態の電気接点用材料
図1は、一の実施形態の電気接点用材料の厚さ方向を含む断面を模式的に示したものである。図1に示す電気接点用材料1は、銅(Cu)を主成分として含有する導電性基材11の少なくとも片面上に、ニッケル(Ni)を主成分として含有するNi含有層である下地層12、ならびに銀(Ag)および錫(Sn)を主成分として含有する表層13を有する。そして、この電気接点用材料1の厚さ方向を含む断面(図1に示すような断面)で見て、表層13と下地層12(この実施形態においてはNi含有層)とで形成される界面に存在する結晶粒界の数(界面粒界数)が、界面の延在長さ10μm当たり5〜60個の範囲であることを特徴とするものである。
(1) Material for Electrical Contact of One Embodiment FIG. 1 schematically shows a cross section including the thickness direction of the material for electrical contact of one embodiment. The material 1 for electrical contacts shown in FIG. 1 is a base layer 12 which is a Ni-containing layer containing nickel (Ni) as a main component on at least one surface of a conductive base material 11 containing copper (Cu) as a main component. , And a surface layer 13 containing silver (Ag) and tin (Sn) as main components. Then, when viewed in cross section (cross section as shown in FIG. 1) including the thickness direction of the electrical contact material 1, the interface formed by the surface layer 13 and the base layer 12 (Ni-containing layer in this embodiment). The number of crystal grain boundaries (number of interfacial grain boundaries) present in the interface is in the range of 5 to 60 per 10 μm of extending length of the interface.

以下、本発明の電気接点用材料の各部について詳細に説明する。 Hereinafter, each part of the material for electrical contacts of the present invention will be described in detail.

(導電性基材)
導電性基材11は、銅を主成分として含有するものである。
(Conductive base material)
The conductive base material 11 contains copper as a main component.

具体的に、導電性基材11は、(純)銅または銅合金の銅系材料で構成されている。銅合金としては、特に限定されないが、例えばCu−Zn系、Cu−Ni−Si系、Cu−Sn−Ni系、Cu−Cr−Mg系、Cu−Ni−Si−Zn−Sn−Mg系などが挙げられる。 Specifically, the conductive base material 11 is made of a copper-based material of (pure) copper or a copper alloy. The copper alloy is not particularly limited, but for example, Cu-Zn-based, Cu-Ni-Si-based, Cu-Sn-Ni-based, Cu-Cr-Mg-based, Cu-Ni-Si-Zn-Sn-Mg-based, etc. Can be mentioned.

導電性基材11の形状としては、特に限定されず、用途に応じて適宜選択すればよいが、好ましくは条材もしくは板材であり、棒材や線材とすることもできる。 The shape of the conductive base material 11 is not particularly limited and may be appropriately selected depending on the intended use, but is preferably a strip material or a plate material, and may be a bar material or a wire material.

導電性基材11の導電率としては、特に限定されないが、20%IACS以上であることが好ましく、40%IACS以上であることがより好ましい。これにより、導電材全体として優れた導電性を有することができる。ここで、導電率(IACS;International Annealed Copper Standard)は、四端子法を用いて、20℃(±1℃)に管理された恒温槽中で測定することにより求めることができる。 The conductivity of the conductive base material 11 is not particularly limited, but is preferably 20% IACS or more, and more preferably 40% IACS or more. As a result, the conductive material as a whole can have excellent conductivity. Here, the conductivity (ICAS; International Annealed Copper Standard) can be determined by measuring in a constant temperature bath controlled at 20 ° C. (± 1 ° C.) using the four-terminal method.

(下地層)
本実施形態の電気接点材料1では、下地層12が、ニッケル(Ni)を主成分として含有するNi含有層からなるものである。この下地層12としてのNi含有層は、導電性基材11中のCuが、後述する表層13などの隣接する層(後述する他の実施形態の場合、Cu層)に拡散することによって生じる電気接点用材料1の導電性の劣化を防止することができる。
(Underground layer)
In the electrical contact material 1 of the present embodiment, the base layer 12 is composed of a Ni-containing layer containing nickel (Ni) as a main component. The Ni-containing layer as the base layer 12 is an electricity generated by the diffusion of Cu in the conductive base material 11 into an adjacent layer (in the case of other embodiments described later, the Cu layer) such as the surface layer 13 described later. It is possible to prevent deterioration of the conductivity of the contact material 1.

具体的に、本実施形態の電気接点材料1では、下地層12は、金属ニッケルまたはニッケル合金のニッケル系材料で構成されている。ニッケル合金としては、特に限定されないが、例えばNi−P系、Ni−Fe系などが挙げられる。 Specifically, in the electrical contact material 1 of the present embodiment, the base layer 12 is made of a nickel-based material of metallic nickel or a nickel alloy. The nickel alloy is not particularly limited, and examples thereof include Ni-P type and Ni-Fe type.

下地層12の厚さとしては、特に限定されないが、例えば0.1〜3.0μmであることが好ましく、0.3〜2.0μmであることがより好ましい。なお、下地層の厚さの算出方法は後述する。 The thickness of the base layer 12 is not particularly limited, but is preferably 0.1 to 3.0 μm, more preferably 0.3 to 2.0 μm, for example. The method of calculating the thickness of the base layer will be described later.

なお、下地層12には、ニッケル系材料で構成されたNi含有層の代わりに、コバルト(Co)含有層または鉄(Fe)含有層を用いても、Ni含有層と同様の効果が得られる。 Even if a cobalt (Co) -containing layer or an iron (Fe) -containing layer is used as the base layer 12 instead of the Ni-containing layer made of a nickel-based material, the same effect as that of the Ni-containing layer can be obtained. ..

(表層)
表層13は、銀(Ag)および錫(Sn)を主成分として含有するものである。なお、「銀(Ag)および錫(Sn)を主成分として含有する」とは、表層13に含まれる全金属元素に占める、銀の含有量が40at%以上、かつ錫の含有量が10at%以上であって、さらに銀および錫の各含有量が銀および錫の合計割合が50at%以上であることをいう。
(surface)
The surface layer 13 contains silver (Ag) and tin (Sn) as main components. In addition, "containing silver (Ag) and tin (Sn) as main components" means that the content of silver in the total metal elements contained in the surface layer 13 is 40 at% or more and the content of tin is 10 at%. It means that the total content of silver and tin is 50 at% or more.

表層13は、多数の粒状析出物を有するものである。そして、この表層13においては、電気接点用材料1の厚さ方向を含む断面で見て、表層13と下地層12とで形成される界面に存在する結晶粒界の数(界面粒界数)が、界面の延在長さ10μm当たり5〜60個の範囲である。これにより、電気接点用材料1は、動摩擦係数が低く、また優れた曲げ加工性を示すものとなる。 The surface layer 13 has a large number of granular precipitates. Then, in the surface layer 13, the number of crystal grain boundaries existing at the interface formed by the surface layer 13 and the base layer 12 (the number of interface grain boundaries) when viewed in cross section including the thickness direction of the electrical contact material 1. However, the range is 5 to 60 per 10 μm of the extending length of the interface. As a result, the material 1 for electrical contacts has a low coefficient of dynamic friction and exhibits excellent bending workability.

また、表層13においては、電気接点用材料の厚さ方向を含む断面で見て、界面粒界数が、表層13の表面に存在する結晶粒界の数(表面粒界数)よりも多い、すなわち、表面粒界数に対する界面粒界数の比(界面粒界数/表面粒界数)が1超であることが好ましく、1.1〜2.0であることがより好ましい。 Further, in the surface layer 13, the number of interfacial grain boundaries is larger than the number of crystal grain boundaries (number of surface grain boundaries) existing on the surface of the surface layer 13 when viewed in a cross section including the thickness direction of the material for electrical contacts. That is, the ratio of the number of interfacial grain boundaries to the number of surface grain boundaries (number of interfacial grain boundaries / number of surface grain boundaries) is preferably more than 1, and more preferably 1.1 to 2.0.

以下、界面粒界数および表面粒界数の算出方法を、図を用いて詳細に説明する。図2は、界面粒界数および表面粒界数の算出方法を説明するための模式図であって、電気接点用材料1の厚さ方向を含む断面を模式的に示したものである。図2に示すように、表層13の内部には、結晶粒界131が多数存在している。このうち「◎」で示した部分が、表層13と下地層12とで形成される界面に存在する結晶粒界を示したものである。したがって、図2の模式図の例においては、界面粒界数が、界面の延在長さ10μm当たり5個である。一方で、「〇」で示した部分が、表層の表面に存在する結晶粒界を示したものである。したがって、図2の模式図の例においては、表面粒界数が、界面の延在長さ10μm当たり6個である。 Hereinafter, the calculation method of the number of interfacial grain boundaries and the number of surface grain boundaries will be described in detail with reference to the drawings. FIG. 2 is a schematic view for explaining a method of calculating the number of interfacial grain boundaries and the number of surface grain boundaries, and schematically shows a cross section including the thickness direction of the material 1 for electrical contacts. As shown in FIG. 2, a large number of grain boundaries 131 are present inside the surface layer 13. Of these, the portion indicated by “⊚” indicates the crystal grain boundary existing at the interface formed by the surface layer 13 and the base layer 12. Therefore, in the example of the schematic diagram of FIG. 2, the number of interfacial grain boundaries is 5 per 10 μm of the extending length of the interface. On the other hand, the portion indicated by "○" indicates the grain boundary existing on the surface of the surface layer. Therefore, in the example of the schematic diagram of FIG. 2, the number of surface grain boundaries is 6 per 10 μm of the extending length of the interface.

また、表層13は、X線回折法で測定したとき、2θ=38〜41°の範囲に現れる全てのピークのX線強度の合計面積に対する、2θ=39.7〜40.3°の範囲に現れるピークのX線強度の面積の比率が50%以上であることが好ましい。 Further, the surface layer 13 is in the range of 2θ = 39.7 to 40.3 ° with respect to the total area of the X-ray intensities of all the peaks appearing in the range of 2θ = 38 to 41 ° when measured by the X-ray diffraction method. The ratio of the area of the X-ray intensity of the appearing peak is preferably 50% or more.

図3は、本実施形態の電気接点用材料の表層(の表面)のX線回折パターンの一例である。銀(Ag)および錫(Sn)を主成分として含有する化合物のうち、2θ=39.7〜40.3°の範囲にピークを示す化合物は、ζ−AgSnである。一方で、2θ=38〜41°の範囲には、AgSn(ε−AgSn)など、他の化合物のピークも現れる。したがって、表層13についてX線回折法で測定したとき、2θ=38〜41°の範囲に現れる全てのピークのX線強度の合計面積に対する、2θ=39.7〜40.3°の範囲に現れるピークのX線強度の面積の比率が50%以上であることは、表層13が、特定量以上のζ−AgSn相を有するものであることを意味する。ここで、ζ−AgSnとは、Agに対するSnの原子数比(Sn/Ag)が0.13〜0.30の範囲にあって、AgSnを主成分とするAgとSnの金属間化合物の相を意味する。ζ−AgSnは、硬度が高いため、ζ−AgSnで表層13の表面を形成することにより、動摩擦係数を低下させることができる。また、ζ−AgSnは、導電性に優れるため、接触抵抗を低くすることもできる。さらに、ζ−AgSnは、加熱しても下地層に存在するCuがその内部に拡散しにくいため、Cuが表層の表面まで拡散し、外気と接触して酸化することにより生じる導電性の低下を抑制することができる。 FIG. 3 is an example of an X-ray diffraction pattern of the surface layer (surface) of the material for electrical contacts of the present embodiment. Among the compounds containing silver (Ag) and tin (Sn) as main components, the compound showing a peak in the range of 2θ = 39.7 to 40.3 ° is ζ-AgSn. On the other hand, peaks of other compounds such as Ag 3 Sn (ε-AgSn) also appear in the range of 2θ = 38 to 41 °. Therefore, when the surface layer 13 is measured by the X-ray diffraction method, it appears in the range of 2θ = 39.7 to 40.3 ° with respect to the total area of the X-ray intensities of all the peaks appearing in the range of 2θ = 38 to 41 °. When the ratio of the area of the peak X-ray intensity is 50% or more, it means that the surface layer 13 has a specific amount or more of the ζ-AgSn phase. Here, ζ-AgSn is an intermetallic compound of Ag and Sn whose main component is Ag 4 Sn, in which the atomic number ratio (Sn / Ag) of Sn to Ag is in the range of 0.13 to 0.30. Means the phase of. Since ζ-AgSn has a high hardness, the coefficient of kinetic friction can be reduced by forming the surface of the surface layer 13 with ζ-AgSn. Further, since ζ-AgSn is excellent in conductivity, the contact resistance can be lowered. Further, in ζ-AgSn, since Cu existing in the base layer is hard to diffuse inside even when heated, the Cu diffuses to the surface of the surface layer, and the decrease in conductivity caused by contacting with the outside air and oxidizing is reduced. It can be suppressed.

2θ=38〜41°の範囲に現れる全てのピークのX線強度の合計面積に対する、2θ=39.7〜40.3°の範囲に現れるピークのX線強度の面積の比率としては、50%以上であれば特に限定されないが、60%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましい。 The ratio of the area of the X-ray intensity of the peak appearing in the range of 2θ = 39.7 to 40.3 ° to the total area of the X-ray intensity of all the peaks appearing in the range of 2θ = 38 to 41 ° is 50%. The above is not particularly limited, but is preferably 60% or more, more preferably 70% or more, and further preferably 75% or more.

また、表層13において、2θ=39.7〜40.3°の範囲にピークを示す化合物のAgに対するSnの原子数比(Sn/Ag)としては、特に限定されないが、0.15〜0.28であることが好ましく、0.20〜0.27であることがより好ましく、0.22〜0.26であることがさらに好ましく、0.245〜0.255であることが特に好ましい。 The atomic number ratio (Sn / Ag) of Sn to Ag of the compound showing a peak in the range of 2θ = 39.7 to 40.3 ° in the surface layer 13 is not particularly limited, but is 0.15 to 0. It is preferably 28, more preferably 0.20 to 0.27, further preferably 0.22 to 0.26, and particularly preferably 0.245 to 0.255.

一実施形態において、2θ=39.7〜40.3°の範囲にピークを示す化合物は、AgSnであることが好ましい。AgSnの含有量が多いほど、より低い接触抵抗および動摩擦係数を示し、電気接点用材料として有用である。 In one embodiment, the compound showing a peak in the range of 2θ = 39.7 to 40.3 ° is preferably Ag 4 Sn. The higher the content of Ag 4 Sn, the lower the contact resistance and the coefficient of dynamic friction, and it is useful as a material for electrical contacts.

表層13の厚さとしては、特に限定されないが、例えば0.1〜30.0μmであることが好ましく、0.5〜10.0μmであることがより好ましく、1.0〜5.0μmであることがさらに好ましい。表層13がこのような厚さを有することにより、より優れた導電性を有し、また、優れた曲げ加工性を示すものとなる。なお、表層13の厚さの算出方法は後述する。 The thickness of the surface layer 13 is not particularly limited, but is preferably 0.1 to 30.0 μm, more preferably 0.5 to 10.0 μm, and 1.0 to 5.0 μm, for example. Is even more preferable. When the surface layer 13 has such a thickness, it has more excellent conductivity and exhibits excellent bending workability. The method of calculating the thickness of the surface layer 13 will be described later.

(2)他の実施形態の電気接点用材料
図4は、他の実施形態の電気接点用材料の厚さ方向を含む断面を模式的に示したものである。図4に示す電気接点用材料1Aは、銅(Cu)を主成分として含有する導電性基材11Aの少なくとも片面上に、ニッケル(Ni)を主成分として含有するNi層である下地層12A、ならびに銀(Ag)および錫(Sn)を主成分として含有する表層13Aを有する。このうち、下地層12Aが、図1に示す電気接点用材料1と異なり、具体的に、下地層12Aは、Ni含有層121Aと、Ni含有層上に形成された、銅(Cu)を主成分として含有するCu含有層122Aとの2層の積層体で構成されるものである。
(2) Material for Electrical Contact of Other Embodiments FIG. 4 schematically shows a cross section including the thickness direction of the material for electrical contact of another embodiment. The material 1A for electrical contacts shown in FIG. 4 is a base layer 12A which is a Ni layer containing nickel (Ni) as a main component on at least one surface of a conductive base material 11A containing copper (Cu) as a main component. It also has a surface layer 13A containing silver (Ag) and tin (Sn) as main components. Of these, the base layer 12A is different from the material 1 for electrical contacts shown in FIG. 1, and specifically, the base layer 12A is mainly composed of a Ni-containing layer 121A and copper (Cu) formed on the Ni-containing layer. It is composed of a two-layer laminate with a Cu-containing layer 122A contained as a component.

この実施形態の電気接点用材料1Aにおいて、導電性基材11Aおよび表層13Aは、上述した電気接点用材料1の導電性基材11および表層13と同様であるため、以下ではこれらの説明を省略し、下地層12Aについてのみ説明する。 In the electrical contact material 1A of this embodiment, the conductive base material 11A and the surface layer 13A are the same as the conductive base material 11 and the surface layer 13 of the electrical contact material 1 described above, and thus the description thereof will be omitted below. However, only the base layer 12A will be described.

(他の実施形態の下地層)
下地層12Aは、Ni含有層121Aと、Ni含有層上に形成された、銅(Cu)を主成分として含有するCu含有層122Aとの2層の積層体で構成されるものである。すなわち、このCu含有層122Aは、Ni含有層121Aと表層13Aとの間に存在しており、これらの密着性をより向上させるものである。
(Underground layer of other embodiments)
The base layer 12A is composed of a two-layer laminate of a Ni-containing layer 121A and a Cu-containing layer 122A formed on the Ni-containing layer and containing copper (Cu) as a main component. That is, the Cu-containing layer 122A exists between the Ni-containing layer 121A and the surface layer 13A, and further improves the adhesion between them.

このような構成を有するため、この実施形態の電気接点用材料1Aにおける界面粒界数は、表層13AとCu含有層122Aの界面に存在する結晶粒界の数をいう。 Since it has such a configuration, the number of interfacial grain boundaries in the electrical contact material 1A of this embodiment means the number of crystal grain boundaries existing at the interface between the surface layer 13A and the Cu-containing layer 122A.

具体的に、Cu含有層122Aは、金属銅または銅合金の銅系材料で構成されている。銅合金としては、特に限定されないが、例えばCu−Zn系などが挙げられる。 Specifically, the Cu-containing layer 122A is made of a copper-based material such as metallic copper or a copper alloy. The copper alloy is not particularly limited, and examples thereof include Cu—Zn type.

Cu含有層122Aの厚さとしては、特に限定されないが、例えば0.01〜1.0μmであることが好ましく、0.03〜0.5μmであることがより好ましい。なお、Cu含有層122Aの厚さの算出方法は後述する。 The thickness of the Cu-containing layer 122A is not particularly limited, but is preferably 0.01 to 1.0 μm, more preferably 0.03 to 0.5 μm, for example. The method of calculating the thickness of the Cu-containing layer 122A will be described later.

以上のように構成した電気接点用材料1,1Aは、高電圧大電流を印加した場合であっても、十分な耐性レベルをもつ低い接触抵抗値を有するとともに、動摩擦係数も低く、さらに、銅合金基材上への各層の積層形成後に施される熱処理における加熱後の耐熱密着性にも優れている。そして、このような電気接点用材料は、コネクタ端子に用いることができる。このようなコネクタ端子は表面の動摩擦係数が低く、挿入力が低いものであるから、車両などの組み立て性を向上させるコネクタに用いることができる。さらにこのようなコネクタは、各種電子部品に用いることができる。なお、本発明では、導電性基材上に積層形成される各層の形成は、導電性基材の少なくとも片面に形成されていればよい。例えば、導電性基材上に積層形成される各層の形成は、コネクタの接続(嵌合)時に、相手側コネクタの端子に対して摺動接触して電気接続される電気接点部に設ければよく、導電性基材の片面または両面に形成することができる。 The electrical contact materials 1, 1A configured as described above have a low contact resistance value having a sufficient resistance level, a low dynamic friction coefficient, and copper even when a high voltage and a large current are applied. It also has excellent heat-resistant adhesion after heating in the heat treatment performed after laminating and forming each layer on the alloy base material. Then, such an electric contact material can be used for the connector terminal. Since such a connector terminal has a low coefficient of dynamic friction on the surface and a low insertion force, it can be used for a connector that improves assembleability of a vehicle or the like. Further, such a connector can be used for various electronic components. In the present invention, each layer laminated on the conductive base material may be formed on at least one surface of the conductive base material. For example, the formation of each layer laminated on the conductive base material may be provided at the electrical contact portion that is electrically connected by sliding contact with the terminal of the mating connector at the time of connecting (fitting) the connector. Often, it can be formed on one or both sides of a conductive substrate.

3.電気接点用材料の製造方法
本発明の電気接点用材料の製造方法は、上述した電気接点用材料を製造する方法であって、Cuを主成分として含有する導電性基材に少なくとも圧延加工を施した後、導電性基材の表面を酸により溶解除去し、その導電性基材の少なくとも一面に、Niを主成分として含有するNi含有層をめっきによって結晶粒径が0.01〜2.0μmとなるように形成するか、または、Niを主成分として含有するNi含有層を形成し、次いで、Cuを主成分として含有するCu含有層をめっきによって結晶粒径が0.01〜2.0μmとなるように形成し、その後、前者の場合にはNi含有層上、後者の場合にはCu含有層上に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成するか、または、AgおよびSnを主成分として含有する層を積層形成し、次いで、231〜900℃の加熱温度で熱処理を施すことを特徴とするものである。なお、圧延加工後かつ導電性基材の表面の溶解除去の前に、例えば200〜700℃で熱処理を施してもよい。
3. 3. Method for manufacturing electric contact material The method for manufacturing an electric contact material of the present invention is the above-mentioned method for manufacturing an electric contact material, in which at least a conductive base material containing Cu as a main component is rolled. After that, the surface of the conductive base material is dissolved and removed with an acid, and a Ni-containing layer containing Ni as a main component is plated on at least one surface of the conductive base material to have a crystal particle size of 0.01 to 2.0 μm. A Ni-containing layer containing Ni as a main component is formed, and then a Cu-containing layer containing Cu as a main component is plated to have a crystal grain size of 0.01 to 2.0 μm. After that, on the Ni-containing layer in the former case and on the Cu-containing layer in the latter case, a layer containing Ag as a main component and a layer containing Sn as a main component are formed in no particular order. It is characterized in that it is laminated or formed by laminating a layer containing Ag and Sn as main components, and then heat-treated at a heating temperature of 231 to 900 ° C. The heat treatment may be performed at, for example, 200 to 700 ° C. after the rolling process and before the dissolution and removal of the surface of the conductive substrate.

より具体的に電気接点用材料の製造方法について説明する。まず、導電性基材に少なくとも圧延加工を施す。圧延加工によって、その表面に加工変質層が生じる。この加工変質層は、非常に微細な結晶粒を持つ(加工変質層)ので、これが表面に存在すると、各めっき層の結晶粒径を調整することができなくなり、各層の間で密着性が低下することもある。そこで、この加工変質層を除去するために酸処理を施して、溶解させて除去する。次いで、このようにして得られた導電性基材上に、めっきにより、Niを主成分として含有するNi含有層を積層形成するか、または、Niを主成分として含有するNi含有層およびCuを主成分として含有するCu含有層をこの順で積層形成する。なお、以下においては、Ni含有層単独の層、またはNi含有層とCu含有層の2つの層を、「下地層」と表記することもある。このとき、前者の場合にはNi含有層、後者の場合にはCu含有層の結晶粒径が0.01〜2.0μmとなるように、これらの層を形成する。具体的に、結晶粒系の制御方法としては、めっき時の温度や電流密度などによって制御する。Ni含有層またはCu含有層の結晶粒径を0.01〜2.0μmとすることで、その直上に形成される表層の界面における結晶粒径が同様に0.01〜2.0μmとなり、Ni含有層またはCu含有層と表層の界面がなす線分10μmあたりに、結晶粒界が5〜60個存在するような材料を得ることができる。 More specifically, a method for manufacturing a material for electrical contacts will be described. First, the conductive substrate is at least rolled. Rolling produces a work-altered layer on its surface. Since this processed altered layer has very fine crystal grains (processed altered layer), if it is present on the surface, the crystal grain size of each plating layer cannot be adjusted, and the adhesion between the layers is reduced. Sometimes. Therefore, in order to remove this processed altered layer, an acid treatment is performed to dissolve and remove the layer. Next, a Ni-containing layer containing Ni as a main component is laminated or formed on the conductive substrate thus obtained by plating, or a Ni-containing layer containing Ni as a main component and Cu are formed. The Cu-containing layer contained as the main component is laminated and formed in this order. In the following, the Ni-containing layer alone or the two layers of the Ni-containing layer and the Cu-containing layer may be referred to as a "base layer". At this time, these layers are formed so that the crystal grain size of the Ni-containing layer in the former case and the Cu-containing layer in the latter case is 0.01 to 2.0 μm. Specifically, as a control method of the crystal grain system, it is controlled by the temperature at the time of plating, the current density, and the like. By setting the crystal grain size of the Ni-containing layer or the Cu-containing layer to 0.01 to 2.0 μm, the crystal grain size at the interface of the surface layer formed immediately above the Ni-containing layer is similarly 0.01 to 2.0 μm, and Ni It is possible to obtain a material in which 5 to 60 crystal grain boundaries are present per 10 μm of the line segment formed by the containing layer or the interface between the Cu-containing layer and the surface layer.

その後、前者の場合にはNi含有層上、後者の場合にはCu含有層上に、めっきによりAgを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成する(すなわち、Agを主成分として含有する層を形成した後、Snを主成分として含有する層を形成するか、または、Snを主成分として含有する層を形成した後、Agを主成分として含有する層を形成する)か、または、AgおよびSnを主成分として含有する層(例えば、Ag−Sn共析層)を積層形成する。次いで、231℃(Snの融点)〜900℃で加熱処理を施す。その後、冷却して、電気接点用材料を得る。 After that, a layer containing Ag as a main component and a layer containing Sn as a main component are laminated in no particular order on a Ni-containing layer in the former case and on a Cu-containing layer in the latter case (that is,). , After forming a layer containing Ag as a main component, a layer containing Sn as a main component is formed, or a layer containing Sn as a main component is formed and then a layer containing Ag as a main component. , Or a layer containing Ag and Sn as main components (for example, Ag—Sn eutectoid layer) is laminated. Next, heat treatment is performed at 231 ° C. (melting point of Sn) to 900 ° C. After that, it is cooled to obtain a material for electrical contacts.

各層を形成するためのめっき法としては、特に限定されないが、例えば電解めっきや無電解めっきのような湿式めっき、蒸着やスパッタのような乾式めっき等を用いることができる。これらの中でも、湿式めっきを用いることが好ましく、電解めっきを用いることがより好ましい。この際、めっき条件としては、めっき方法や、めっき層の種類やその厚さ、その後の熱処理の温度や保持時間などに応じて適宜調整すればよい。 The plating method for forming each layer is not particularly limited, and for example, wet plating such as electrolytic plating and electroless plating, and dry plating such as vapor deposition and sputtering can be used. Among these, wet plating is preferably used, and electrolytic plating is more preferable. At this time, the plating conditions may be appropriately adjusted according to the plating method, the type and thickness of the plating layer, the temperature and holding time of the subsequent heat treatment, and the like.

Agを主成分として含有する層およびSnを主成分として含有する層をそれぞれ異なる層として形成する場合、Snを主成分として含有する層の厚さに対する、Agを主成分として含有する層の厚さの比(Ag/Sn)としては、2.1〜7.0であることが好ましく、2.8〜5.0であることがより好ましい。このような比が2.1〜7.0であることにより、近接する層との界面がなす線分10μmあたりに、結晶粒界が5〜60個存在する表層が得られやすくなり、このような電気接点用材料は、接触抵抗および動摩擦係数が低く、優れたものとなる。 When the layer containing Ag as the main component and the layer containing Sn as the main component are formed as different layers, the thickness of the layer containing Ag as the main component is relative to the thickness of the layer containing Sn as the main component. The ratio (Ag / Sn) of is preferably 2.1 to 7.0, and more preferably 2.8 to 5.0. When such a ratio is 2.1 to 7.0, it becomes easy to obtain a surface layer having 5 to 60 grain boundaries per 10 μm of the line segment formed by the interface with the adjacent layer. The material for electrical contacts has a low contact resistance and a coefficient of dynamic friction, and is excellent.

導電性基材に上記各層を積層形成した後に施される熱処理は、加熱温度が、231℃(錫の融点)〜900℃であればよく、特に250〜700℃であることが好ましい。 The heat treatment performed after laminating and forming each of the above layers on the conductive substrate may have a heating temperature of 231 ° C. (melting point of tin) to 900 ° C., particularly preferably 250 to 700 ° C.

熱処理は、加熱時間が5秒以上8時間以下であることが好ましい。なお、熱処理では、加熱温度によって加熱時間を上記の範囲内で変化させることが好ましい。具体的には、例えば250℃では10分以上3時間以下であることが好ましく、700℃では5秒以上10分以下であることが好ましい。 The heat treatment preferably has a heating time of 5 seconds or more and 8 hours or less. In the heat treatment, it is preferable to change the heating time within the above range depending on the heating temperature. Specifically, for example, at 250 ° C., it is preferably 10 minutes or more and 3 hours or less, and at 700 ° C., it is preferably 5 seconds or more and 10 minutes or less.

熱処理は、不活性ガス雰囲気下または還元ガス雰囲気下で行うことが好ましい。具体的に、不活性ガスとしては、N、Ar、Heなどを用いることができる。また、還元ガスとしては、H、CO、CH、H+COなどを用いることができる。不活性ガス雰囲気下または還元ガス雰囲気下で熱処理を施すことにより、各層の金属の酸化を防止することができる。 The heat treatment is preferably carried out in an inert gas atmosphere or a reducing gas atmosphere. Specifically, as the inert gas, N 2 , Ar, He or the like can be used. Further, as the reducing gas, H 2 , CO, CH 4 , H 2 + CO and the like can be used. Oxidation of the metal in each layer can be prevented by performing the heat treatment in an atmosphere of an inert gas or an atmosphere of a reducing gas.

次に、本発明の効果をさらに明確にするために、実施例および比較例について説明するが、本発明はこれらの実施例に限定されるものではない。 Next, in order to further clarify the effect of the present invention, Examples and Comparative Examples will be described, but the present invention is not limited to these Examples.

以下に示す製造方法A〜Fのいずれかにより、実施例1〜48の試料を作製した。また、以下に示す製造方法G〜Mのいずれかにより、比較例1〜8の試料を作製した。作製した試料について、その構造および特性について評価し、その製造条件とともに表1に示した。 Samples of Examples 1 to 48 were prepared by any of the following production methods A to F. In addition, the samples of Comparative Examples 1 to 8 were prepared by any of the following production methods GM. The prepared samples were evaluated for their structure and characteristics, and are shown in Table 1 together with their production conditions.

(Ag層、Sn層、Ni層およびCu層)の厚さの測定)
JIS H8501:1999の蛍光X線式試験方法にしたがい、作製した各試料の表面から蛍光X線分析を行い測定した。また、各層の厚さの確認のため、断面について画像解析法によっても厚さの測定を行った。画像解析法はJIS H8501:1999の走査型電子顕微鏡試験方法にしたがい行った。
(Measurement of thickness of Ag layer, Sn layer, Ni layer and Cu layer)
According to the fluorescent X-ray test method of JIS H8501: 1999, fluorescent X-ray analysis was performed from the surface of each prepared sample for measurement. In addition, in order to confirm the thickness of each layer, the thickness of the cross section was also measured by an image analysis method. The image analysis method was performed according to the scanning electron microscope test method of JIS H8501: 1999.

(Ag−Sn共析層、表層の厚さの測定)
JIS H8501:1999の電解式試験方法により測定した。また、上記Ag層、Sn層、Ni層およびCu層の厚さの測定と同様に、画像解析法によっても厚さの測定を行った。
(Measurement of Ag-Sn eutectoid layer and surface layer thickness)
It was measured by the electrolytic test method of JIS H8501: 1999. Further, the thickness was measured by the image analysis method in the same manner as the measurement of the thickness of the Ag layer, Sn layer, Ni layer and Cu layer.

(界面粒界数、表面粒界数)
作製した各試料の断面を、走査型電子顕微鏡により観察し、図2を用いて上述した方法にしたがい、10カ所の界面粒界数および表面粒界数を測定し、算術平均を算出した。この10カ所の平均の値をそれぞれ「界面粒界数」および「表面粒界数」と表記する。また、測定した(10カ所の平均の)界面粒界数および表面粒界数に基づき、界面粒界数/表面粒界数を算出した。
(Number of interfacial grain boundaries, number of surface grain boundaries)
The cross section of each of the prepared samples was observed with a scanning electron microscope, the number of interfacial grain boundaries and the number of surface grain boundaries at 10 locations were measured according to the method described above using FIG. 2, and the arithmetic mean was calculated. The average values of these 10 locations are referred to as "interfacial grain boundary number" and "surface grain boundary number", respectively. In addition, the number of interfacial grain boundaries / the number of surface grain boundaries was calculated based on the measured number of interfacial grain boundaries (average of 10 locations) and the number of surface grain boundaries.

(ピークのX線強度面積の比率の測定方法)
各試料の表層の表面を、X線回折法を用いて分析し、2θ=38〜41°の範囲に現れる全てのピークのX線強度の合計面積に対する、2θ=39.7〜40.3°の範囲に現れるピークのX線強度の面積の比率を算出した。X線回折測定は、以下の条件で行った。
試料の大きさ:15mm×15mm
測定装置:リガク株式会社 Geigerflex RAD−A
N数:n=10
(Measurement method of the ratio of peak X-ray intensity area)
The surface of the surface layer of each sample is analyzed by X-ray diffraction method, and 2θ = 39.7 to 40.3 ° with respect to the total area of X-ray intensities of all peaks appearing in the range of 2θ = 38 to 41 °. The ratio of the area of the X-ray intensity of the peak appearing in the range of was calculated. The X-ray diffraction measurement was performed under the following conditions.
Sample size: 15 mm x 15 mm
Measuring device: Rigaku Co., Ltd. Geigerflex RAD-A
Number of N: n = 10

(粒状析出物の平均粒径(結晶粒径)の測定方法)
試料の表面を走査型電子顕微鏡で観察し、切片法にて平均粒径を求めた。具体的に、矩形の視野範囲に、縦横一辺あたりにそれぞれ20個以上(合計で400個以上)の粒状析出物が入るように設定し、この状態で対角線を引き、引いた対角線が通過する粒状析出物の数を測定し、測定した粒状析出物の数で、対角線長さを割ることにより、粒状析出物の平均粒径(結晶粒径)を算出した。
(Measuring method of average particle size (crystal particle size) of granular precipitate)
The surface of the sample was observed with a scanning electron microscope, and the average particle size was determined by the section method. Specifically, it is set so that 20 or more (400 or more in total) granular precipitates are contained in each of the vertical and horizontal sides in the rectangular viewing range, and a diagonal line is drawn in this state, and the drawn diagonal line passes through the grain size. The number of precipitates was measured, and the average particle size (crystal grain size) of the granular precipitates was calculated by dividing the diagonal length by the number of the measured granular precipitates.

(接触抵抗値の測定)
導電材(各試料)と、Ag表面被覆張り出し加工材(表層に膜厚3μmのAg層を有する無酸素銅C1020、張り出し加工部の曲率半径が5mm)との間の接触抵抗を、四端子法により測定して求めた。DC電流源として株式会社TFF ケースレーインスツルメンツ社製 6220型DC電流ソースを用い、電気抵抗の測定には電流測定器(同社製 2182A型ナノボルトメータ)を用いた。任意の5箇所における接触抵抗値を測定し、各々平均値(n=5)を算出し、以下の基準で評価した。
◎:10mΩ未満
〇:10mΩ以上20mΩ未満
×:20mΩ以上
(Measurement of contact resistance value)
The contact resistance between the conductive material (each sample) and the Ag surface coating overhanging material (oxygen-free copper C1020 having an Ag layer with a film thickness of 3 μm on the surface layer, the radius of curvature of the overhanging portion is 5 mm) is controlled by the four-terminal method. It was obtained by measuring with. A 6220 type DC current source manufactured by TFF Caseley Instruments Co., Ltd. was used as the DC current source, and a current measuring device (2182A type nanovolt meter manufactured by the same company) was used to measure the electrical resistance. The contact resistance values at any five points were measured, the average value (n = 5) was calculated for each, and the evaluation was performed according to the following criteria.
⊚: less than 10 mΩ 〇: 10 mΩ or more and less than 20 mΩ ×: 20 mΩ or more

(動摩擦係数の測定)
表面性測定機(新東科学株式会社製、TYPE:14)を用い、各試料の表層を形成した表面を、Ag表面被覆張り出し加工材(表層に膜厚3μmのAg層を有する無酸素銅C1020、張り出し加工部の曲率半径が5mm)に対し、移動速度100mm/min、摺動距離5mm、接触荷重を5Nで、導電材を15回往復摺動させ、15回目の摺動時の数値を動摩擦係数として測定し、以下の基準で評価した。
◎:0.5未満
〇:0.5以上0.8未満
×:0.8以上
(Measurement of dynamic friction coefficient)
Using a surface measuring machine (manufactured by Shinto Kagaku Co., Ltd., TYPE: 14), the surface on which the surface layer of each sample was formed was subjected to an Ag surface coating overhanging material (an oxygen-free copper C1020 having an Ag layer having a film thickness of 3 μm on the surface layer). , The radius of curvature of the overhanging part is 5 mm), the moving speed is 100 mm / min, the sliding distance is 5 mm, the contact load is 5 N, the conductive material is slid back and forth 15 times, and the numerical value at the 15th sliding is dynamic friction. It was measured as a coefficient and evaluated according to the following criteria.
⊚: less than 0.5 〇: 0.5 or more and less than 0.8 ×: 0.8 or more

(耐熱試験)
各試料を大気雰囲気下において150℃で1000時間加熱した。加熱後、上記接触抵抗値の測定の方法にしたがい、加熱後の接触抵抗値を求めた。評価基準も同様とした。また、加熱後に測定した耐熱密着性は、JIS H 8504:1999にしたがってテープ試験方法を行い、以下の基準で評価した。
◎:150℃で1000時間加熱後の各試料についてテープ剥離試験を行い、表層等のめっきが剥がれなかった場合
×:150℃で1000時間加熱後の各試料についてテープ剥離試験を行い、表層等のめっきが剥がれた場合
(Heat resistance test)
Each sample was heated at 150 ° C. for 1000 hours in an air atmosphere. After heating, the contact resistance value after heating was determined according to the method for measuring the contact resistance value. The evaluation criteria were the same. The heat-resistant adhesion measured after heating was evaluated according to the following criteria by performing a tape test method according to JIS H 8504: 1999.
⊚: When the tape peeling test was performed on each sample after heating at 150 ° C. for 1000 hours and the plating on the surface layer, etc. did not peel off. ×: When the tape peeling test was performed on each sample after heating at 150 ° C. for 1000 hours, the surface layer, etc. When the plating is peeled off

[実施例1〜8:製造方法A]
圧延および熱処理した後、酸によって表面の加工変質層を除去した無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸銅浴によって銅めっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、不活性ガスまたは還元ガス雰囲気下、設定温度250〜300℃の熱処理炉中で、10分〜8時間加熱して、銀めっきと錫めっきを合金化し、その後、冷却することで、表層としてのAg−Sn合金層を形成した。
[Examples 1 to 8: Manufacturing method A]
After rolling and heat treatment, oxygen-free copper C1020 whose surface processing alteration layer has been removed with acid is electrolytically degreased and acid-cleaned, then nickel-plated in a sulfamic acid bath, copper-plated in a copper sulfate bath, and silver in an alkaline cyanide silver bath. Plating and tin plating in a tin sulfate bath were performed in this order so as to have a predetermined thickness. Then, in an atmosphere of an inert gas or a reducing gas, the silver plating and the tin plating are alloyed by heating in a heat treatment furnace at a set temperature of 250 to 300 ° C. for 10 minutes to 8 hours, and then cooled to form a surface layer. Ag—Sn alloy layer was formed.

[実施例9〜16:製造方法B]
圧延および熱処理した後、酸によって表面の加工変質層を除去した銅合金条を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸銅浴によって銅めっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、不活性ガスまたは還元ガス雰囲気下、設定温度300〜700℃の熱処理炉中で、5秒〜600秒間加熱して、銀めっきと錫めっきを合金化し、その後、冷却することで、表層としてのAg−Sn合金層を形成した。
[Examples 9 to 16: Manufacturing method B]
After rolling and heat treatment, copper alloy strips from which the surface processing alteration layer has been removed with acid are electrolytically degreased and acid-cleaned, then nickel-plated in a sulfamic acid bath, copper-plated in a copper sulfate bath, and silver-plated in an alkali cyan silver bath. , Tin plating was performed in this order in a tin sulfate bath so as to have a predetermined thickness. Then, in an atmosphere of an inert gas or a reducing gas, the silver plating and the tin plating are alloyed by heating in a heat treatment furnace at a set temperature of 300 to 700 ° C. for 5 to 600 seconds, and then cooled to form a surface layer. Ag—Sn alloy layer was formed.

[実施例17〜24:製造方法C]
圧延および熱処理した後、酸によって表面の加工変質層を除去した無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、不活性ガスまたは還元ガス雰囲気下、設定温度250〜300℃の熱処理炉中で、10分〜8時間加熱して、銀めっきと錫めっきを合金化し、その後、冷却することで、表層としてのAg−Sn合金層を形成した。
[Examples 17 to 24: Manufacturing method C]
After rolling and heat treatment, oxygen-free copper C1020 whose surface processing alteration layer has been removed with acid is electrolytically degreased and acid-cleaned, then nickel-plated in a sulfamic acid bath, silver-plated in an alkali cyan-silver bath, and in a tin sulfate bath. Tin plating was applied in this order so as to have a predetermined thickness. Then, in an atmosphere of an inert gas or a reducing gas, the silver plating and the tin plating are alloyed by heating in a heat treatment furnace at a set temperature of 250 to 300 ° C. for 10 minutes to 8 hours, and then cooled to form a surface layer. Ag—Sn alloy layer was formed.

[実施例25〜32:製造方法D]
圧延および熱処理した後、酸によって表面の加工変質層を除去した銅合金条を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、不活性ガスまたは還元ガス雰囲気下、設定温度300〜700℃の熱処理炉中で、5秒〜600秒間加熱して、銀めっきと錫めっきを合金化し、その後、冷却することで、表層としてのAg−Sn合金層を形成した。
[Examples 25 to 32: Manufacturing method D]
After rolling and heat treatment, copper alloy strips from which the surface processing alteration layer has been removed with acid are electrolytically degreased and acid-cleaned, then nickel-plated in a sulfamic acid bath, silver-plated in an alkaline cyanide silver bath, and tin in a tin sulfate bath. Plating was performed in this order so as to have a predetermined thickness. Then, in an atmosphere of an inert gas or a reducing gas, the silver plating and the tin plating are alloyed by heating in a heat treatment furnace at a set temperature of 300 to 700 ° C. for 5 to 600 seconds, and then cooled to form a surface layer. Ag—Sn alloy layer was formed.

[実施例33〜40:製造方法E]
圧延および熱処理した後、酸によって表面の加工変質層を除去した銅合金条を電解脱脂、酸洗浄した後に、ニッケル−リン合金めっき、シアン化銅−亜鉛浴にて銅−亜鉛合金めっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、不活性ガスまたは還元ガス雰囲気下、設定温度300〜700℃の熱処理炉中で、5秒〜600秒間加熱して、銀めっきと錫めっきを合金化し、その後、冷却することで、表層としてのAg−Sn合金層を形成した。
[Examples 33 to 40: Manufacturing method E]
After rolling and heat treatment, copper alloy strips from which the surface processing alteration layer has been removed with acid are electrolytically degreased and acid-cleaned, and then nickel-phosphorus alloy plating, copper-zinc alloy plating in a copper cyanide-zinc bath, and alkali cyan. Silver plating was performed in a silver bath and tin plating was performed in a tin sulfate bath in this order so as to have a predetermined thickness. Then, in an atmosphere of an inert gas or a reducing gas, the silver plating and the tin plating are alloyed by heating in a heat treatment furnace at a set temperature of 300 to 700 ° C. for 5 to 600 seconds, and then cooled to form a surface layer. Ag—Sn alloy layer was formed.

[実施例41〜48:製造方法F]
圧延および熱処理した、酸によって表面の加工変質層を除去した無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸銅浴によって銅めっき、そこに銀と錫の共析めっきをこの順にそれぞれ所定の厚さとなるように施した。熱処理は行っていない。
[Examples 41 to 48: Manufacturing method F]
Oxygen-free copper C1020, which has been rolled and heat-treated and has its surface processed and altered layer removed by acid, is electrolytically degreased and acid-cleaned, then nickel-plated in a sulfamic acid bath, copper-plated in a copper sulfate bath, and co-deposited with silver and tin. Plating was performed in this order so as to have a predetermined thickness. No heat treatment was performed.

[比較例1:製造方法G]
無酸素銅C1020を電解脱脂、酸洗浄した後に、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、還元ガス雰囲気下、設定温度250℃の熱処理炉中で、60分間加熱した後、冷却した。ニッケルめっきと銅めっきは形成していない。
[Comparative Example 1: Manufacturing Method G]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, silver plating was performed in an alkaline cyanide silver bath and tin plating was performed in a tin sulfate bath in this order so as to have a predetermined thickness. Then, in a heat treatment furnace having a set temperature of 250 ° C. under a reducing gas atmosphere, the mixture was heated for 60 minutes and then cooled. Nickel plating and copper plating are not formed.

[比較例2:製造方法H]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した。次いで、還元ガス雰囲気下、設定温度250℃の熱処理炉中で、60分間加熱した後、冷却した。銅めっきは形成していない。
[Comparative Example 2: Manufacturing Method H]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, nickel plating was performed in a sulfamic acid bath, silver plating in an alkaline cyanide silver bath, and tin plating in a tin sulfate bath in this order so as to have a predetermined thickness. Then, in a heat treatment furnace having a set temperature of 250 ° C. under a reducing gas atmosphere, the mixture was heated for 60 minutes and then cooled. No copper plating is formed.

[比較例3:製造方法I]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した後、還元ガス雰囲気下、設定温度400℃の熱処理炉中で、20秒間加熱した後、冷却した。銅めっきおよびAgめっきは形成していない。
[Comparative Example 3: Manufacturing Method I]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, nickel plating is performed in a sulfamic acid bath and tin plating is performed in a tin sulfate bath in this order to a predetermined thickness, and then the set temperature is 400 under a reducing gas atmosphere. It was heated in a heat treatment furnace at ° C. for 20 seconds and then cooled. No copper plating or Ag plating is formed.

[比較例4:製造方法J]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸銅浴によって銅めっき、アルカリシアン銀浴にて銀めっきをこの順にそれぞれ所定の厚さとなるように施した。Snめっきは形成せず、また、熱処理も行っていない。
[Comparative Example 4: Manufacturing Method J]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, nickel plating was performed in a sulfamic acid bath, copper plating in a copper sulfate bath, and silver plating in an alkali cyan silver bath in this order so as to have a predetermined thickness. Sn plating was not formed and no heat treatment was performed.

[比較例5〜6:製造方法K]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸銅浴によって銅めっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した後、不活性ガス雰囲気下、設定温度を200℃の低温にした熱処理炉中で、60秒間加熱した後、冷却した。
[Comparative Examples 5 to 6: Manufacturing Method K]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, nickel plating is performed in a sulfamic acid bath, copper plating is performed in a copper sulfate bath, silver plating is performed in an alkali cyan silver bath, and tin plating is performed in a tin sulfate bath in this order. After that, the plating was carried out in an inert gas atmosphere in a heat treatment furnace in which the set temperature was set to a low temperature of 200 ° C. for 60 seconds and then cooled.

[比較例7:製造方法L]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸銅浴によって銅めっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した後、不活性ガス雰囲気下、設定温度を200℃の低温にした熱処理炉中で、60分間加熱した後、冷却した。
[Comparative Example 7: Manufacturing Method L]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, nickel plating is performed in a sulfamic acid bath, copper plating is performed in a copper sulfate bath, silver plating is performed in an alkali cyan silver bath, and tin plating is performed in a tin sulfate bath in this order. After the plating, the plating was performed in an inert gas atmosphere in a heat treatment furnace in which the set temperature was set to a low temperature of 200 ° C. for 60 minutes and then cooled.

[比較例8:製造方法M]
無酸素銅C1020を電解脱脂、酸洗浄した後に、スルファミン酸浴によってニッケルめっき、硫酸銅浴によって銅めっき、アルカリシアン銀浴にて銀めっき、硫酸錫浴にて錫めっきをこの順にそれぞれ所定の厚さとなるように施した後、不活性ガス雰囲気下、設定温度を200℃の低温にした熱処理炉中で、20秒間加熱した後、冷却した。
[Comparative Example 8: Manufacturing Method M]
After electrolytic degreasing and acid cleaning of oxygen-free copper C1020, nickel plating is performed in a sulfamic acid bath, copper plating is performed in a copper sulfate bath, silver plating is performed in an alkali cyan silver bath, and tin plating is performed in a tin sulfate bath in this order. After the plating was performed so as to be the same, the plating was cooled for 20 seconds in a heat treatment furnace in which the set temperature was set to a low temperature of 200 ° C. in an inert gas atmosphere.

Figure 2021075772
Figure 2021075772

上記表1から分かるように、実施例1〜48の試料は、接触抵抗値および動摩擦係数が低く、しかも、熱処理における加熱後の耐熱密着性も優れていた。加えて、実施例1〜48の試料は、加熱後の接触抵抗も、加熱前の接触抵抗と変わらず、低いままであった。 As can be seen from Table 1 above, the samples of Examples 1 to 48 had a low contact resistance value and a dynamic friction coefficient, and also had excellent heat-resistant adhesion after heating in the heat treatment. In addition, in the samples of Examples 1 to 48, the contact resistance after heating was not different from the contact resistance before heating, and remained low.

これに対し、導電性基材の表面を酸により溶解除去しなかった比較例1の試料は、加工変質層が残っており、また、Ni層(下地層)を備えず、加熱後の接触抵抗が高く、耐熱密着性が劣っていた。 On the other hand, the sample of Comparative Example 1 in which the surface of the conductive base material was not dissolved and removed by acid had a processed alteration layer remaining and did not have a Ni layer (base layer), and had contact resistance after heating. Was high, and the heat resistance and adhesion were inferior.

導電性基材の表面を酸により溶解除去しなかった比較例2の試料は、界面粒界数が97個であり、加熱処理後に接触抵抗が高く、耐熱密着性が劣っていた。 The sample of Comparative Example 2 in which the surface of the conductive substrate was not dissolved and removed by an acid had 97 interfacial grain boundaries, had high contact resistance after heat treatment, and was inferior in heat adhesion.

導電性基材の表面を酸により溶解除去せず、また、錫(Sn)のみにより表層を形成した比較例3の試料は、界面粒界数が68個であり、加熱処理前後のいずれの接触抵抗も高く、耐熱密着性も劣っていた。 The sample of Comparative Example 3 in which the surface of the conductive base material was not dissolved and removed by acid and the surface layer was formed only by tin (Sn) had 68 interfacial grain boundaries, and any contact before or after heat treatment was performed. The resistance was high and the heat resistance was inferior.

導電性基材の表面を酸により溶解除去せず、また、銀(Ag)のみにより表層を形成し、かつその製造工程において加熱処理を施さなかった比較例4の試料は、界面粒界数が78であり、動摩擦係数が高く、加熱後の接触抵抗が高かった。 The sample of Comparative Example 4 in which the surface of the conductive base material was not dissolved and removed by an acid, the surface layer was formed only of silver (Ag), and the heat treatment was not performed in the manufacturing process thereof, had a number of interfacial grain boundaries. It was 78, the coefficient of dynamic friction was high, and the contact resistance after heating was high.

導電性基材の表面を酸により溶解除去しなかった比較例5〜8の試料は、表層において、その表層と近接する層との界面がなす線分10μmあたりに、界面粒界数がそれぞれ73個、97個、91個、80個であり、加熱処理前後のいずれにおいても接触抵抗が高いことが分かった。また、比較例6〜7の試料においては、動摩擦係数も高かった。 The samples of Comparative Examples 5 to 8 in which the surface of the conductive substrate was not dissolved and removed by an acid had 73 interfacial grain boundaries per 10 μm of the line segment formed by the interface between the surface layer and the adjacent layer in the surface layer. The number was 97, 91, and 80, and it was found that the contact resistance was high before and after the heat treatment. In addition, the dynamic friction coefficient was also high in the samples of Comparative Examples 6 to 7.

1,1A 電気接点用材料
11、11A 導電性基材
12、12A 下地層
121A Ni層
122A Cu層
13、13A 表層
131 結晶粒界
1,1A Materials for electrical contacts 11, 11A Conductive base materials 12, 12A Base layer 121A Ni layer 122A Cu layer 13, 13A Surface layer 131 Grain boundaries

Claims (11)

銅(Cu)を主成分として含有する導電性基材の少なくとも片面上に、
ニッケル(Ni)を主成分として含有するNi含有層を少なくとも含む下地層、ならびに
銀(Ag)および錫(Sn)を主成分として含有する表層
を有する電気接点用材料であって、
前記電気接点用材料の厚さ方向を含む断面で見て、前記表層と前記下地層とで形成される界面に存在する結晶粒界の数(界面粒界数)が、前記界面の延在長さ10μm当たり5〜60個の範囲であることを特徴とする電気接点用材料。
On at least one side of a conductive substrate containing copper (Cu) as the main component,
A material for electrical contacts having a base layer containing at least a Ni-containing layer containing nickel (Ni) as a main component and a surface layer containing silver (Ag) and tin (Sn) as main components.
The number of crystal grain boundaries (the number of interface grain boundaries) existing at the interface formed by the surface layer and the base layer when viewed in a cross section including the thickness direction of the material for electrical contacts is the extending length of the interface. A material for electrical contacts, characterized in that the range is 5 to 60 per 10 μm.
前記電気接点用材料の厚さ方向を含む断面で見て、前記界面粒界数は、前記表層の表面に存在する結晶粒界の数(表面粒界数)よりも多いことを特徴とする請求項1に記載の電気接点用材料。 A claim characterized in that the number of interfacial grain boundaries is larger than the number of crystal grain boundaries (number of surface grain boundaries) existing on the surface of the surface layer when viewed in a cross section including the thickness direction of the material for electrical contacts. Item 2. The material for electrical contacts according to item 1. 前記表面粒界数に対する前記界面粒界数の比(界面粒界数/表面粒界数)が、1.1〜2.0の範囲であることを特徴とする請求項2に記載の電気接点用材料。 The electrical contact according to claim 2, wherein the ratio of the number of interfacial grain boundaries to the number of surface grain boundaries (number of interfacial grain boundaries / number of surface grain boundaries) is in the range of 1.1 to 2.0. Material for. 前記下地層は、前記Ni含有層であることを特徴とする請求項1、2または3に記載の電気接点用材料。 The material for electrical contacts according to claim 1, 2 or 3, wherein the base layer is the Ni-containing layer. 前記下地層は、前記Ni含有層と、前記Ni含有層上に形成された、銅(Cu)を主成分として含有するCu含有層との2層の積層体で構成されることを特徴とする請求項1、2または3に記載の電気接点用材料。 The base layer is characterized by being composed of a two-layer laminate of the Ni-containing layer and a Cu-containing layer containing copper (Cu) as a main component formed on the Ni-containing layer. The material for electrical contacts according to claim 1, 2 or 3. 前記表層をX線回折法で測定したとき、2θ=38〜41°の範囲に現れる全てのピークのX線強度の合計面積に対する、2θ=39.7〜40.3°の範囲に現れるピークのX線強度の面積の比率が50%以上であることを特徴とする請求項1〜5のいずれか1項に記載の電気接点用材料。 When the surface layer is measured by the X-ray diffraction method, the peaks appearing in the range of 2θ = 39.7 to 40.3 ° with respect to the total area of the X-ray intensities of all the peaks appearing in the range of 2θ = 38 to 41 °. The material for electrical contacts according to any one of claims 1 to 5, wherein the ratio of the area of the X-ray intensity is 50% or more. 請求項1〜6のいずれか1項に記載の電気接点用材料を用いたコネクタ端子。 A connector terminal using the material for electrical contacts according to any one of claims 1 to 6. 請求項7に記載のコネクタ端子を有するコネクタ。 A connector having the connector terminal according to claim 7. 請求項8に記載のコネクタを有する電子部品。 An electronic component having the connector according to claim 8. 請求項4に記載の電気接点用材料を製造する方法であって、
Cuを主成分として含有する導電性基材に少なくとも圧延加工を施した後、前記導電性基材の表面を酸により溶解除去し、前記導電性基材の少なくとも一面に、Niを主成分として含有するNi含有層をめっきによって結晶粒径が0.01〜2.0μmとなるように形成し、その後、前記Ni含有層上に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成するか、または、AgおよびSnを主成分として含有する層を積層形成した後、次いで231〜900℃の加熱温度で熱処理を施すことを特徴とする電気接点用材料の製造方法。
The method for manufacturing the material for electrical contacts according to claim 4.
After at least rolling the conductive base material containing Cu as a main component, the surface of the conductive base material is dissolved and removed with an acid, and at least one surface of the conductive base material contains Ni as a main component. The Ni-containing layer to be rolled is formed by plating so that the crystal particle size is 0.01 to 2.0 μm, and then a layer containing Ag as a main component and Sn as a main component are contained on the Ni-containing layer. Manufacture of a material for electrical contacts, characterized in that the layers are laminated in no particular order, or layers containing Ag and Sn as main components are laminated and then heat-treated at a heating temperature of 231 to 900 ° C. Method.
請求項5に記載の電気接点用材料を製造する方法であって、
Cuを主成分として含有する導電性基材に少なくとも圧延加工を施した後、前記導電性基材の表面を酸により溶解除去し、前記導電性基材の少なくとも一面に、Niを主成分として含有するNi含有層を形成し、次いで、Cuを主成分として含有するCu含有層をめっきによって結晶粒径が0.01〜2.0μmとなるように形成し、その後、前記Cu含有層上に、Agを主成分として含有する層およびSnを主成分として含有する層を順不同で積層形成するか、または、AgおよびSnを主成分として含有する層を積層形成した後、次いで231〜900℃の加熱温度で熱処理を施すことを特徴とする電気接点用材料の製造方法。
The method for manufacturing the material for electrical contacts according to claim 5.
After at least rolling the conductive base material containing Cu as a main component, the surface of the conductive base material is dissolved and removed with an acid, and at least one surface of the conductive base material contains Ni as a main component. Then, a Cu-containing layer containing Cu as a main component is formed by plating so that the crystal particle size is 0.01 to 2.0 μm, and then, on the Cu-containing layer, A layer containing Ag and Sn as a main component and a layer containing Sn as a main component are laminated in no particular order, or a layer containing Ag and Sn as a main component is laminated and then heated at 231 to 900 ° C. A method for producing a material for electrical contacts, which comprises performing heat treatment at a temperature.
JP2019205638A 2019-11-13 2019-11-13 Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components Active JP7353928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019205638A JP7353928B2 (en) 2019-11-13 2019-11-13 Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019205638A JP7353928B2 (en) 2019-11-13 2019-11-13 Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components

Publications (2)

Publication Number Publication Date
JP2021075772A true JP2021075772A (en) 2021-05-20
JP7353928B2 JP7353928B2 (en) 2023-10-02

Family

ID=75899255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019205638A Active JP7353928B2 (en) 2019-11-13 2019-11-13 Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components

Country Status (1)

Country Link
JP (1) JP7353928B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5280957B2 (en) 2009-07-28 2013-09-04 三菱伸銅株式会社 Conductive member and manufacturing method thereof
JP5749113B2 (en) 2011-08-05 2015-07-15 古河電気工業株式会社 Covering composite material for movable contact part, movable contact part, switch, and manufacturing method thereof
JP6553333B2 (en) 2014-06-05 2019-07-31 Jx金属株式会社 Metal material for electronic parts, connector terminal using the same, connector and electronic parts
JP6281451B2 (en) 2014-09-11 2018-02-21 株式会社オートネットワーク技術研究所 TERMINAL MEMBER, ITS MANUFACTURING METHOD, AND CONNECTOR TERMINAL
JP6825360B2 (en) 2016-12-27 2021-02-03 三菱マテリアル株式会社 Plated copper terminal material and terminals
JP6309124B1 (en) 2017-02-15 2018-04-11 Jx金属株式会社 METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
JP7121881B2 (en) 2017-08-08 2022-08-19 三菱マテリアル株式会社 Terminal material with silver film and terminal with silver film
JP2018123422A (en) 2017-12-20 2018-08-09 Jx金属株式会社 Surface treatment plating material, connector terminal, connector, ffc terminal, ffc, fpc and electronic part
JP7306879B2 (en) 2019-05-31 2023-07-11 古河電気工業株式会社 Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP7281970B2 (en) 2019-05-31 2023-05-26 古河電気工業株式会社 Electrical contact material and its manufacturing method, connector terminal, connector and electronic component

Also Published As

Publication number Publication date
JP7353928B2 (en) 2023-10-02

Similar Documents

Publication Publication Date Title
CN1318647C (en) Metal-plated material and method for preparation, and electric and electronic parts using same
EP2759622B1 (en) Metal material for electronic components
JP5355935B2 (en) Metal materials for electrical and electronic parts
JP4934456B2 (en) Plating material and electric / electronic component using the plating material
JP4653133B2 (en) Plating material and electric / electronic component using the plating material
JP4814552B2 (en) Surface treatment method
EP2896724B1 (en) Tin-plated copper-alloy terminal material
JP2003171790A (en) Plating material, production method therefor, and electrical and electronic part obtained by using the same
EP2905357A1 (en) Metal material for use in electronic component, and method for producing same
JP2009135097A (en) Metal material for electric and electronic equipment, method of manufacturing metal material for electric and electronic equipment
EP2905356B1 (en) Metal material for use in electronic component
JP2007092173A (en) Cu-Ni-Si-Zn BASED ALLOY TINNED STRIP
JPH0855521A (en) Conductive member and its manufacture
JP2005344188A (en) Method for producing plating material and electrical/electronic component using the plating material
JP7060514B2 (en) Conductive strip
JP7121232B2 (en) Copper terminal material, copper terminal, and method for producing copper terminal material
JP7281970B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
CN113166964A (en) Anti-corrosion terminal material, terminal and wire terminal structure
JP7306879B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP7353928B2 (en) Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components
JP2011012350A (en) Coating film and electric and electronic component
JP6932860B1 (en) Metallic materials for sliding contacts and their manufacturing methods, brush materials for motors and vibration motors
JP2003328157A (en) Plated material, production method thereof and electrical and electronic parts obtained by using the same
JP2012057212A (en) Composite plated material, and electric component and electronic component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230920

R151 Written notification of patent or utility model registration

Ref document number: 7353928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151