JP2021075425A - Method for manufacturing silicon single crystal - Google Patents

Method for manufacturing silicon single crystal Download PDF

Info

Publication number
JP2021075425A
JP2021075425A JP2019203916A JP2019203916A JP2021075425A JP 2021075425 A JP2021075425 A JP 2021075425A JP 2019203916 A JP2019203916 A JP 2019203916A JP 2019203916 A JP2019203916 A JP 2019203916A JP 2021075425 A JP2021075425 A JP 2021075425A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
quartz glass
oxygen concentration
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019203916A
Other languages
Japanese (ja)
Other versions
JP7509528B2 (en
Inventor
尚 松村
Takashi Matsumura
尚 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalWafers Japan Co Ltd
Original Assignee
GlobalWafers Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalWafers Japan Co Ltd filed Critical GlobalWafers Japan Co Ltd
Priority to JP2019203916A priority Critical patent/JP7509528B2/en
Priority claimed from JP2019203916A external-priority patent/JP7509528B2/en
Priority to CN202080078286.9A priority patent/CN114616361B/en
Priority to PCT/JP2020/032354 priority patent/WO2021095324A1/en
Priority to DE112020005532.9T priority patent/DE112020005532T5/en
Priority to TW109131208A priority patent/TWI784314B/en
Publication of JP2021075425A publication Critical patent/JP2021075425A/en
Application granted granted Critical
Publication of JP7509528B2 publication Critical patent/JP7509528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

To provide a method for manufacturing a silicon single crystal, capable of manufacturing the silicon single crystal having more uniform oxygen concentration distribution in the silicon crystal length direction.SOLUTION: The method for manufacturing a silicon single crystal includes pulling the silicon single crystal from a silicon melt stored in a quartz glass crucible 3 by the Czochralski method. Within 20% is a variation in oxygen concentration in the crystal growth axis direction of the silicon single crystal pulled using the quartz glass crucible having the ratio t/T of the thickness t of the transparent inner layer to the thickness T of the side wall of the quartz glass crucible controlled from the upper part of the side wall of the quartz glass crucible to the lower portion thereof.SELECTED DRAWING: Figure 3

Description

本発明は、チョクラルスキー法(CZ法)によりシリコン単結晶を製造する方法に関し、結晶長方向により均一な酸素濃度を有するシリコン単結晶を製造することができるシリコン単結晶の製造方法に関する。 The present invention relates to a method for producing a silicon single crystal by the Czochralski method (CZ method), and relates to a method for producing a silicon single crystal capable of producing a silicon single crystal having a more uniform oxygen concentration in the crystal length direction.

CZ法によるシリコン単結晶の育成は、図8に示すようなチャンバ50内に設置した石英ガラスルツボ51に原料であるポリシリコンを充填し、石英ガラスルツボ51の周囲に設けられたヒータ52によってポリシリコンを加熱して溶融し、シリコン融液Mとした後、シードチャックに取り付けた種結晶(シード)Pを当該シリコン融液Mに浸漬し、シードチャックおよび石英ガラスルツボ51を同方向または逆方向に回転させながらシードチャックを引上げることにより行う。 In the growth of a silicon single crystal by the CZ method, polysilicon as a raw material is filled in a quartz glass crucible 51 installed in a chamber 50 as shown in FIG. 8, and a heater 52 provided around the quartz glass crucible 51 is used for poly. After heating and melting silicon to form a silicon melt M, the seed crystal (seed) P attached to the seed chuck is immersed in the silicon melt M, and the seed chuck and the quartz glass crucible 51 are placed in the same direction or in the opposite direction. This is done by pulling up the seed chuck while rotating it to.

一般に、引上げ開始に先立ち、シリコン融液Mの温度が安定すると、種結晶Pをシリコン融液Mに接触させて種結晶Pの先端部を溶解した後、ネッキングを行う。ネッキングとは、種結晶Pとシリコン融液Mとの接触で発生するサーマルショックによりシリコン単結晶に生じる転位を除去するための不可欠の工程である。
このネッキングによりネック部P1が形成される。また、このネック部P1は、例えば直径300mmの結晶の場合、直径が5mm程度で、その長さが30〜40mm以上必要とされている。
Generally, when the temperature of the silicon melt M stabilizes prior to the start of pulling, the seed crystal P is brought into contact with the silicon melt M to melt the tip of the seed crystal P, and then necking is performed. Necking is an indispensable step for removing dislocations generated in a silicon single crystal due to a thermal shock generated by contact between the seed crystal P and the silicon melt M.
The neck portion P1 is formed by this necking. Further, the neck portion P1 is required to have a diameter of about 5 mm and a length of 30 to 40 mm or more in the case of a crystal having a diameter of 300 mm, for example.

また、引上げ開始後の工程としては、ネッキング終了後、直胴部直径にまで結晶を広げる肩部C1の形成工程、製品となる単結晶を育成する直胴部C2の形成工程、直胴部形成工程後の単結晶直径を徐々に小さくするテール部(図示せず)の形成工程が行われる。 The steps after the start of pulling include a step of forming a shoulder portion C1 that spreads the crystal to the diameter of the straight body portion after the end of necking, a step of forming a straight body portion C2 that grows a single crystal to be a product, and a process of forming the straight body portion. A step of forming a tail portion (not shown) is performed in which the diameter of the single crystal after the step is gradually reduced.

ところで、石英ガラスルツボ51の内側面はシリコン融液Mと接触して溶解するため、石英ガラスルツボ51に含まれる酸素がシリコン融液M中に溶け出し、シリコン融液Mと反応してSiOxとなる。このSiOxの大部分は、融液の自由表面から蒸発し、単結晶引上装置内に導入された不活性ガス(Ar等)とともに排出される。 By the way, since the inner surface of the quartz glass crucible 51 comes into contact with the silicon melt M and dissolves, oxygen contained in the quartz glass crucible 51 dissolves in the silicon melt M and reacts with the silicon melt M to form SiOx. Become. Most of this SiOx evaporates from the free surface of the melt and is discharged together with the inert gas (Ar or the like) introduced into the single crystal pulling device.

ここで、一部のSiOxは、育成中の単結晶に取り込まれ、シリコン単結晶に取り込まれた酸素は、半導体デバイス製造過程で酸素析出物による重金属のゲッタリングやスリップ転位の抑制といった効果をもたらす。
しかしながら、半導体デバイス製造過程において前記酸素析出物が活性層に存在すると電気的特性に悪影響を与える虞があった。そのため、半導体デバイスの種類に応じて適正な酸素濃度のウェーハを製造することが求められている。
Here, some SiOx is incorporated into the growing single crystal, and the oxygen incorporated into the silicon single crystal has an effect of suppressing heavy metal gettering and slip dislocations due to oxygen precipitates in the semiconductor device manufacturing process. ..
However, if the oxygen precipitate is present in the active layer in the process of manufacturing a semiconductor device, there is a risk that the electrical characteristics will be adversely affected. Therefore, it is required to manufacture a wafer having an appropriate oxygen concentration according to the type of semiconductor device.

また、引上初期に成長した直胴部の上部は、石英ガラスルツボ内のシリコン溶融量が多く、ルツボ内壁面とシリコン融液との接触面積が大きいため、石英ガラスルツボからの酸素の溶出量が多い状態で引き上げられる。単結晶の引き上げが進むにつれ、ルツボ内のシリコン融液量が減少していくため、ルツボ内壁面とシリコン融液との接触面積がより小さくなり、石英ガラスルツボからのシリコン融液への酸素の溶出量が少なくなる。 In addition, the upper part of the straight body that grew in the early stage of pulling has a large amount of silicon melted in the quartz glass crucible, and the contact area between the inner wall surface of the crucible and the silicon melt is large, so the amount of oxygen eluted from the quartz glass crucible. It is pulled up in a state where there are many. As the single crystal is pulled up, the amount of silicon melt in the crucible decreases, so the contact area between the inner wall surface of the crucible and the silicon melt becomes smaller, and oxygen from the quartz glass crucible to the silicon melt becomes smaller. The amount of elution decreases.

そのため、シリコン融液中における酸素濃度が安定せず、単結晶の成長方向における酸素濃度分布が不均一となる傾向があった(例えば、上部ほど酸素濃度が高く下部ほど低くなる等)。この単結晶の育成工程では、歩留りを向上させるため、結晶育成軸方向の酸素濃度を均一とする制御が望まれていた。 Therefore, the oxygen concentration in the silicon melt tends to be unstable, and the oxygen concentration distribution in the growth direction of the single crystal tends to be non-uniform (for example, the oxygen concentration is higher in the upper part and lower in the lower part). In this single crystal growing step, in order to improve the yield, it has been desired to control the oxygen concentration in the crystal growing axis direction to be uniform.

前記課題に対し、特許文献1(特開平6−56571号)には、シリコン融液の上方に逆円錐台形状又は円筒状の熱遮蔽治具を配置し、シリコン融液面と前記熱遮蔽治具の下端との隙間を調整することによって、単結晶の酸素濃度を制御する方法が開示されている。
特許文献1に開示された方法によれば、前記熱遮蔽治具の上方から融液面に供給された不活性ガスによる融液面の冷却、及びルツボから融液面に放射される熱の遮蔽程度を正確に制御でき、その結果融液中にある酸素の拡散蒸発が制御され、単結晶への酸素供給量を制御することができる。
In response to the above problem, in Patent Document 1 (Japanese Patent Laid-Open No. 6-56571), an inverted truncated cone-shaped or cylindrical heat-shielding jig is arranged above the silicon melt, and the silicon melt surface and the heat-shielding cure are provided. A method of controlling the oxygen concentration of a single crystal by adjusting the gap with the lower end of the jig is disclosed.
According to the method disclosed in Patent Document 1, the melt surface is cooled by the inert gas supplied from above the heat shield jig to the melt surface, and the heat radiated from the ruts to the melt surface is shielded. The degree can be accurately controlled, and as a result, the diffusion evaporation of oxygen in the melt can be controlled, and the amount of oxygen supplied to the single crystal can be controlled.

また、特許文献2(再公表WO2001/063027)には、炉内に流す不活性ガスの流量及び圧力を引上げ量に応じて変化させることで酸素濃度を制御することが開示されている。
特許文献2に開示された方法によれば、炉内の不活性ガス流量あるいは圧力を変化させることにより、結晶育成界面近傍の融液表面から酸化物として蒸発する酸素の量を容易に調整することが可能となり、シリコン融液中に含まれる酸素量を容易に制御することができる。
Further, Patent Document 2 (Republished WO2001 / 063027) discloses that the oxygen concentration is controlled by changing the flow rate and pressure of the inert gas flowing into the furnace according to the amount of pulling up.
According to the method disclosed in Patent Document 2, the amount of oxygen evaporating as an oxide from the surface of the melt near the crystal growth interface can be easily adjusted by changing the flow rate or pressure of the inert gas in the furnace. The amount of oxygen contained in the silicon melt can be easily controlled.

特開平6−56571号Japanese Patent Application Laid-Open No. 6-56571 再公表WO2001/063027Republished WO 2001/063027

しかしながら、特許文献1、2に開示された方法にあっては、いずれも結晶成長軸方向の結晶酸素濃度を均一にできるが、以下の問題を抱えていた。
具体的には、特許文献1に開示された方法にあっては、シリコン融液面と熱遮蔽治具との隙間によってシリコン融液面の温度が変化し、結晶の高さ方向の温度分布が変化するため、ボイド状欠陥(COP)や酸素析出物(BMD)といった結晶欠陥の形成に影響し、結晶欠陥の分布が不均一になるという問題があった。
However, all of the methods disclosed in Patent Documents 1 and 2 can make the crystal oxygen concentration in the crystal growth axis direction uniform, but have the following problems.
Specifically, in the method disclosed in Patent Document 1, the temperature of the silicon melt surface changes due to the gap between the silicon melt surface and the heat shielding jig, and the temperature distribution in the crystal height direction changes. Since it changes, it affects the formation of crystal defects such as void-like defects (COP) and oxygen precipitates (BMD), and there is a problem that the distribution of crystal defects becomes non-uniform.

また、特許文献2に開示された方法にあっては、不活性ガスの流量と圧力とで融液からのSiOガスの蒸発量を調整するものであり、不活性ガスの流量が多い場合は排気ポンプに高排気性能の真空ポンプが必要になり、コストが高くなるという問題があった。一方、不活性ガスの流量が少ない場合は、炉内の汚れが排気されず単結晶化率が低下するという問題があった。 Further, in the method disclosed in Patent Document 2, the amount of SiO gas evaporated from the melt is adjusted by the flow rate and pressure of the inert gas, and when the flow rate of the inert gas is large, the gas is exhausted. There is a problem that a vacuum pump having high exhaust performance is required for the pump, which increases the cost. On the other hand, when the flow rate of the inert gas is small, there is a problem that the dirt in the furnace is not exhausted and the single crystallization rate is lowered.

本発明者は、特許文献1に開示された方法のように熱遮蔽治具を用いるものでなく、特許文献2に開示された方法のように、不活性ガスの流量と圧力とで融液からのSiOガスの蒸発量を調整するものでもなく、新たな方法を検討した。
その結果、石英ガラスルツボの高さ方向に沿って、前記石英ガラスルツボの壁の厚さTに対する前記透明内層の厚さtの比率t/Tを調整することによって、引き上げるシリコン単結晶の結晶成長軸方向の酸素濃度を制御できることを知見し、本発明を完成するに至った。
The present inventor does not use a heat shield jig as in the method disclosed in Patent Document 1, but uses the flow rate and pressure of the inert gas from the melt as in the method disclosed in Patent Document 2. The amount of evaporation of SiO gas in the above was not adjusted, and a new method was examined.
As a result, the crystal growth of the silicon single crystal to be pulled up by adjusting the ratio t / T of the thickness t of the transparent inner layer to the wall thickness T of the quartz glass crucible along the height direction of the quartz glass crucible. It has been found that the oxygen concentration in the axial direction can be controlled, and the present invention has been completed.

本発明は、前記したような事情の下になされたものであり、石英ガラスルツボの壁の厚さTに対する前記透明内層の厚さtの比率t/Tを調整することによって、シリコン結晶長方向に、より均一な酸素濃度分布を有するシリコン単結晶を製造できるシリコン単結晶の製造方法を提供することを目的とする。 The present invention has been made under the above-mentioned circumstances, and by adjusting the ratio t / T of the thickness t of the transparent inner layer to the wall thickness T of the quartz glass rut, the silicon crystal length direction. An object of the present invention is to provide a method for producing a silicon single crystal capable of producing a silicon single crystal having a more uniform oxygen concentration distribution.

前記課題を解決するためになされた、本発明に係るシリコン単結晶の製造方法は、不透明外層と透明内層を有する石英ガラスルツボを用いて、前記石英ガラスルツボ内に収容されたシリコン融液から、チョクラルスキー法によってシリコン単結晶を引き上げるシリコン単結晶の製造方法であって、前記石英ガラスルツボの側壁の厚さTに対する前記透明内層の厚さtの比率t/Tが、石英ガラスルツボ側壁の上部から下部にかけて調整された石英ガラスルツボを用い、引き上げるシリコン単結晶の結晶成長軸方向の酸素濃度のばらつきが20%以内であることに特徴を有する。
ここで、前記石英ガラスルツボが、石英ガラスルツボ側壁の上部から下部に向かって、複数の領域に区分され、石英ガラスルツボの側壁の厚さTに対する前記透明内層の厚さtの比率t/Tが、前記複数の領域ごとに調整されていることが望ましい。
また、前記石英ガラスルツボの側壁の厚さTに対する前記透明内層の厚さtの比率t/Tは、0.05より大きく0.8未満の範囲内であることが望ましい。
The method for producing a silicon single crystal according to the present invention, which has been made to solve the above problems, uses a quartz glass turret having an opaque outer layer and a transparent inner layer from a silicon melt contained in the quartz glass rug. A method for producing a silicon single crystal in which a silicon single crystal is pulled up by the Czochralski method, wherein the ratio t / T of the thickness t of the transparent inner layer to the thickness T of the side wall of the quartz glass rutsubo is the side wall of the quartz glass rutsubo. It is characterized in that the variation of the oxygen concentration in the crystal growth axis direction of the silicon single crystal to be pulled up is within 20% by using the quartz glass rutsubo adjusted from the upper part to the lower part.
Here, the quartz glass crucible is divided into a plurality of regions from the upper part to the lower part of the side wall of the quartz glass crucible, and the ratio t / T of the thickness t of the transparent inner layer to the thickness T of the side wall of the quartz glass crucible. However, it is desirable that the adjustment is made for each of the plurality of regions.
Further, it is desirable that the ratio t / T of the thickness t of the transparent inner layer to the thickness T of the side wall of the quartz glass crucible is in the range of more than 0.05 and less than 0.8.

このように本発明に係るシリコン単結晶の製造方法によれば、前記石英ガラスルツボの高さ方向に沿って、前記石英ガラスルツボの壁の厚さTに対する前記透明内層の厚さtの比率t/Tを調整し、引き上げるシリコン単結晶の結晶成長軸方向の酸素濃度を制御することにより、引き上げるシリコン単結晶の結晶成長軸方向の酸素濃度のばらつきを抑制し、酸素濃度をより均一にすることができる。 As described above, according to the method for producing a silicon single crystal according to the present invention, the ratio t of the thickness t of the transparent inner layer to the wall thickness T of the quartz glass crucible along the height direction of the quartz glass crucible. By adjusting / T and controlling the oxygen concentration in the crystal growth axis direction of the silicon single crystal to be pulled up, the variation in the oxygen concentration in the crystal growth axis direction of the silicon single crystal to be pulled up is suppressed, and the oxygen concentration is made more uniform. Can be done.

本発明によれば、石英ガラスルツボの壁の厚さTに対する前記透明内層の厚さtの比率t/Tを調整することによって、シリコン結晶長方向に、より均一な酸素濃度分布を有するシリコン単結晶を製造できるシリコン単結晶の製造方法を得ることができる。 According to the present invention, by adjusting the ratio t / T of the thickness t of the transparent inner layer to the wall thickness T of the quartz glass rut, silicon single silicon having a more uniform oxygen concentration distribution in the silicon crystal length direction. A method for producing a silicon single crystal capable of producing a crystal can be obtained.

図1は、本発明に係るシリコン単結晶の製造方法が実施される単結晶引上装置の断面図である。FIG. 1 is a cross-sectional view of a single crystal pulling device in which the method for producing a silicon single crystal according to the present invention is carried out. 図2は、図1の単結晶引上装置が備える石英ガラスルツボの断面図である。FIG. 2 is a cross-sectional view of a quartz glass crucible included in the single crystal pulling device of FIG. 図3は、図2の石英ガラスルツボを一部拡大した断面図である。FIG. 3 is a partially enlarged cross-sectional view of the quartz glass crucible of FIG. 図4は、本発明に係るシリコン単結晶の製造方法の流れを示すフローである。FIG. 4 is a flow showing a flow of a method for producing a silicon single crystal according to the present invention. 図5(a)、(b)、(c)は、結晶引上に伴い変化するシリコン融液量とルツボとの関係を示す断面図である。5 (a), (b), and (c) are cross-sectional views showing the relationship between the amount of silicon melt and the crucible, which changes with crystal pulling. 図6は、実施例(実験1)の結果を示すグラフである。FIG. 6 is a graph showing the results of Example (Experiment 1). 図7は、実施例(実験2)の結果を示すグラフである。FIG. 7 is a graph showing the results of Example (Experiment 2). 図8は、チョクラルスキー法によりシリコン単結晶を引き上げる工程を説明するための断面図である。FIG. 8 is a cross-sectional view for explaining a process of pulling up a silicon single crystal by the Czochralski method.

以下、本発明に係るシリコン単結晶の製造方法について図面を用いながら説明する。図1は、本発明に係るシリコン単結晶の製造方法が実施される単結晶引上装置の断面図である。図2は、図1の単結晶引上装置が備える石英ガラスルツボの断面図である。
この単結晶引上装置1は、円筒形状のメインチャンバ10aの上にプルチャンバ10bを重ねて形成された炉体10を備え、この炉体10内に鉛直軸回りに回転可能、且つ昇降可能に設けられたカーボンサセプタ(或いは黒鉛サセプタ)2と、前記カーボンサセプタ2によって保持された石英ガラスルツボ3(以下、単にルツボ3と称する)とを具備している。このルツボ3は、カーボンサセプタ2の回転とともに鉛直軸回りに回転可能となされている。
Hereinafter, a method for producing a silicon single crystal according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a single crystal pulling device in which the method for producing a silicon single crystal according to the present invention is carried out. FIG. 2 is a cross-sectional view of a quartz glass crucible included in the single crystal pulling device of FIG.
The single crystal pulling device 1 includes a furnace body 10 formed by superimposing a pull chamber 10b on a cylindrical main chamber 10a, and is provided in the furnace body 10 so as to be rotatable and elevating around a vertical axis. It includes a carbon susceptor (or graphite susceptor) 2 and a quartz glass crucible 3 (hereinafter, simply referred to as a crucible 3) held by the carbon susceptor 2. The crucible 3 can rotate around a vertical axis as the carbon susceptor 2 rotates.

ここで図2、図3を用いてルツボ3の構成について詳しく説明する。
ルツボ3は、例えば口径800mmに形成され、所定の曲率を有する底部31と、前記底部31の周りに形成され、所定の曲率を有するコーナー部32と、前記コーナー部32から上方に延びる直胴部33とを有する。前記直胴部33の上端には、ルツボ開口(上端開口)が形成されている。
ルツボ3は、図2に示すように、不透明外層3A(不透明層)と透明内層3B(透明層)との2層構造である。
Here, the configuration of the crucible 3 will be described in detail with reference to FIGS. 2 and 3.
The crucible 3 is formed, for example, with a bottom portion 31 having a diameter of 800 mm and having a predetermined curvature, a corner portion 32 formed around the bottom portion 31 and having a predetermined curvature, and a straight body portion extending upward from the corner portion 32. It has 33 and. A crucible opening (upper end opening) is formed at the upper end of the straight body portion 33.
As shown in FIG. 2, the crucible 3 has a two-layer structure consisting of an opaque outer layer 3A (opaque layer) and a transparent inner layer 3B (transparent layer).

このうち、不透明外層3Aは天然原料石英ガラスからなり、透明内層3Bは例えば高純度の合成原料石英ガラスからなる。
ここで不透明とは、石英ガラス中に多数の気泡(気孔)が内在し、見かけ上、白濁した状態を意味する。また、天然原料石英ガラスとは水晶等の天然質原料を溶融して製造されるシリカガラスを意味し、合成原料石英ガラスとは、例えばシリコンアルコキシドの加水分解により合成された合成原料を溶融して製造されるシリカガラスを意味する。
Of these, the opaque outer layer 3A is made of natural raw material quartz glass, and the transparent inner layer 3B is made of, for example, high-purity synthetic raw material quartz glass.
Here, opaque means a state in which a large number of bubbles (pores) are contained in the quartz glass and the quartz glass is apparently cloudy. Further, the natural raw material quartz glass means silica glass produced by melting a natural material such as crystal, and the synthetic raw material quartz glass means, for example, a synthetic raw material synthesized by hydrolysis of silicon alkoxide is melted. It means the silica glass to be manufactured.

そして、この製造方法では、前記石英ガラスルツボの壁の厚さTに対する前記透明内層の厚さtの比率t/Tが、ルツボ高さ方向において調整(設定)された石英ガラスルツボが用いられる。
前述したように、単結晶を引き上げる過程において、シリコン融液中における酸素濃度は安定せず、単結晶の成長方向における酸素濃度分布が不均一となる傾向がある。どのように不均一になるかは、融液中の酸素濃度の変化の他、磁場強度、磁場中心位置、不活性ガスの流量や炉内圧、石英ガラスルツボ3の回転、単結晶の回転等のパラメータに影響されて決まる。
Then, in this manufacturing method, a quartz glass crucible in which the ratio t / T of the thickness t of the transparent inner layer to the wall thickness T of the quartz glass crucible is adjusted (set) in the crucible height direction is used.
As described above, in the process of pulling up the single crystal, the oxygen concentration in the silicon melt is not stable, and the oxygen concentration distribution in the growth direction of the single crystal tends to be non-uniform. In addition to changes in the oxygen concentration in the melt, how it becomes non-uniform depends on the magnetic field strength, magnetic field center position, inert gas flow rate and furnace pressure, quartz glass crucible 3, rotation, single crystal rotation, etc. It is influenced by the parameters.

そのため、本発明においては、ある単結晶引上装置において、引き上げた単結晶の不均一となる酸素濃度分布の傾向(例えば、結晶上部の酸素濃度が下部よりも高くなる分布など)を予め把握しておき、それに基づき前記比率t/Tが調整される。
本実施形態においては、前記酸素濃度分布の傾向が、結晶上部の酸素濃度が下部よりも高くなる分布となる場合を例に説明する。
Therefore, in the present invention, in a certain single crystal pulling device, the tendency of the oxygen concentration distribution in which the pulled single crystal becomes non-uniform (for example, the distribution in which the oxygen concentration in the upper part of the crystal is higher than that in the lower part) is grasped in advance. Then, the ratio t / T is adjusted based on the ratio.
In the present embodiment, the case where the tendency of the oxygen concentration distribution is such that the oxygen concentration in the upper part of the crystal is higher than that in the lower part will be described as an example.

図3に拡大して示すようにルツボ3の直胴部33の高さ方向に沿って、例えばルツボ上部33Aとルツボ中間部33Bとルツボ下部33Cとで、ルツボ壁厚さ(不透明外層3Aと不透明内層3Bとを合わせた厚さ)Tに対する透明内層3Bの厚さtの比率t/Tが0.05より大きく0.8未満の間で設定されている。
例えば、上部33Aから下部33Cに向かって前記比率t/Tが小さい値から大きい値に設定されている。具体的には、例えば、上部33Aではルツボ壁厚さTに対する透明内層3Bの厚さtの比率t/Tが0.10とされ、中間部33Bの比率t/Tが0.3とされ、下部33Cの比率t/Tが0.6とされる。
As shown enlarged in FIG. 3, along the height direction of the straight body portion 33 of the crucible 3, for example, the crucible upper portion 33A, the crucible middle portion 33B, and the crucible lower portion 33C have a crucible wall thickness (opaque outer layer 3A and opaque). The ratio t / T of the thickness t of the transparent inner layer 3B to T) T, which is the total thickness of the inner layer 3B, is set to be greater than 0.05 and less than 0.8.
For example, the ratio t / T is set from a small value to a large value from the upper 33A to the lower 33C. Specifically, for example, in the upper portion 33A, the ratio t / T of the thickness t of the transparent inner layer 3B to the crucible wall thickness T is set to 0.10, and the ratio t / T of the intermediate portion 33B is set to 0.3. The ratio t / T of the lower 33C is set to 0.6.

尚、前記比率t/Tが0.05以下の場合(透明内層3Bの厚さが薄すぎる場合)、結晶育成中に透明内層3Bがすべて溶けてしまい、気泡を含む不透明外層3Aがシリコン融液M側に露出し、微小な石英パーティクルが剥がれる虞がある。その場合、パーティクルが融液表面に到達し、有転位化率が上昇する、或いは気泡が結晶中に取り込まれてエアポケットが形成される不良が発生する等の虞がある。
一方、前記比率t/Tが0.8以上の場合(透明内層3Bの厚さが厚すぎる場合)、不透明外層3Aによる熱の均一拡散が不十分になり、温度制御が困難になる、或いは製品価格が高くなるなどの欠点がある。
When the ratio t / T is 0.05 or less (when the thickness of the transparent inner layer 3B is too thin), all the transparent inner layer 3B is melted during crystal growth, and the opaque outer layer 3A containing bubbles is a silicon melt. It is exposed on the M side, and there is a risk that minute quartz particles will come off. In that case, there is a risk that the particles will reach the surface of the melt and the dislocation rate will increase, or that air bubbles will be taken into the crystal and air pockets will be formed.
On the other hand, when the ratio t / T is 0.8 or more (when the thickness of the transparent inner layer 3B is too thick), the uniform diffusion of heat by the opaque outer layer 3A becomes insufficient, making temperature control difficult, or the product. There are drawbacks such as high price.

上記のように比率t/Tを規定するのは、不透明外層3Aと透明内層3Bの熱伝達率が異なることによる。不透明外層3Aは、多量の気泡を含むため、熱を均一に拡散し均一な温度分布となる。一方、透明内層3Bは、熱伝導率が高く、温度制御が難しい。 The ratio t / T is defined as described above because the heat transfer coefficients of the opaque outer layer 3A and the transparent inner layer 3B are different. Since the opaque outer layer 3A contains a large amount of bubbles, heat is uniformly diffused and a uniform temperature distribution is obtained. On the other hand, the transparent inner layer 3B has a high thermal conductivity and it is difficult to control the temperature.

そのため、ルツボ3の肉厚Tに対し透明内層3Bの比率t/Tが小さい場合には、熱を均一に拡散する不透明外層3Aが厚くなり、必要以上にルツボ3を加熱する必要がなく、ルツボ内表面温度を低くすることができるため、シリコン融液Mへの石英の溶解量を少なくすることができる。
一方、ルツボ3の肉厚Tに対し透明内層3Bの比率t/Tが大きい場合には、熱伝導が大きいため、ルツボ内表面温度が高くなり、石英の溶解量が多くなり、シリコン融液Mへの石英の溶解量を多くすることができる。
Therefore, when the ratio t / T of the transparent inner layer 3B to the wall thickness T of the crucible 3 is small, the opaque outer layer 3A that uniformly diffuses heat becomes thick, and it is not necessary to heat the crucible 3 more than necessary. Since the inner surface temperature can be lowered, the amount of quartz dissolved in the silicon melt M can be reduced.
On the other hand, when the ratio t / T of the transparent inner layer 3B to the wall thickness T of the crucible 3 is large, the heat conduction is large, so that the inner surface temperature of the crucible becomes high, the amount of quartz dissolved increases, and the silicon melt M The amount of quartz dissolved in the material can be increased.

結晶育成が進むとともにシリコン融液量が減少するため、育成する単結晶に対する酸素濃度の影響は、シリコン融液面M1が位置するルツボ上部33Aから中間部33B、下部33Cへと移行する。
また、上述したように石英ガラスルツボ中のシリコン融液量が多い引き上げ初期ほど、シリコン融液中の酸素量が多いため、単結晶上部ほど酸素濃度が高くなる傾向を有する。
そこで、本発明に係る実施形態にあっては、結晶酸素濃度に最も影響するシリコン融液面M1が順に移動するルツボ上部33A、中間部33B、下部33Cの比率t/Tを、一例として石英ガラスルツボの上部から下部に向かって、大きくなるように、それぞれ設定することにより結晶成長軸方向の酸素濃度が、より均一となるよう制御する構成となっている。
Since the amount of the silicon melt decreases as the crystal growth progresses, the influence of the oxygen concentration on the single crystal to be grown shifts from the upper part 33A of the crucible where the silicon melt surface M1 is located to the middle part 33B and the lower part 33C.
Further, as described above, since the amount of oxygen in the silicon melt is large in the initial stage of pulling up when the amount of silicon melt in the quartz glass crucible is large, the oxygen concentration tends to be higher in the upper part of the single crystal.
Therefore, in the embodiment of the present invention, the ratio t / T of the upper part 33A, the middle part 33B, and the lower part 33C of the crucible in which the silicon melt surface M1 that most affects the crystal oxygen concentration moves in order is, as an example, quartz glass. By setting the crucible so that it increases from the upper part to the lower part, the oxygen concentration in the crystal growth axis direction is controlled to be more uniform.

次に図1の説明に戻り、カーボンサセプタ2の下方には、このカーボンサセプタ2を鉛直軸回りに回転させる回転モータなどの回転駆動部14と、カーボンサセプタ2を昇降移動させる昇降駆動部15とが設けられている。
尚、回転駆動部14には回転駆動制御部14aが接続され、昇降駆動部15には昇降駆動制御部15aが接続されている。
Next, returning to the description of FIG. 1, below the carbon susceptor 2, a rotary drive unit 14 such as a rotary motor that rotates the carbon susceptor 2 around a vertical axis, and an elevating drive unit 15 that moves the carbon susceptor 2 up and down. Is provided.
The rotation drive control unit 14a is connected to the rotation drive unit 14, and the lift drive control unit 15a is connected to the lift drive unit 15.

また単結晶引上装置1は、ルツボ3に装填された半導体原料(原料ポリシリコン)を溶融してシリコン溶融液M(以下、単に溶融液Mと呼ぶ)とする抵抗加熱によるサイドヒータ4と、ワイヤ6を巻き上げ、育成される単結晶Cを引き上げる引き上げ機構9とを備えている。前記引き上げ機構9が有するワイヤ6の先端には、種結晶Pが取り付けられている。 Further, the single crystal pulling device 1 includes a side heater 4 by resistance heating that melts the semiconductor raw material (raw polysilicon) loaded in the crucible 3 into a silicon melt M (hereinafter, simply referred to as melt M). It is provided with a pulling mechanism 9 that winds up the wire 6 and pulls up the single crystal C to be grown. A seed crystal P is attached to the tip of the wire 6 of the pulling mechanism 9.

尚、サイドヒータ4には供給電力量を制御するヒータ駆動制御部4aが接続され、引き上げ機構9には、その回転駆動の制御を行う回転駆動制御部9aが接続されている。
また、この単結晶引上装置1においては、例えば、炉体2の外側に磁場印加用電磁コイル8が設置される。この磁場印加用電磁コイル8に所定の電流が印加されると、ルツボ3内のシリコン溶融液Mに対し所定強度の水平磁場が印加されるようになっている。磁場印加用電磁コイル8には、その動作制御を行う電磁コイル制御部8aが接続されている。
A heater drive control unit 4a for controlling the amount of power supplied is connected to the side heater 4, and a rotation drive control unit 9a for controlling the rotation drive thereof is connected to the pulling mechanism 9.
Further, in the single crystal pulling device 1, for example, an electromagnetic coil 8 for applying a magnetic field is installed outside the furnace body 2. When a predetermined current is applied to the magnetic field application electromagnetic coil 8, a horizontal magnetic field having a predetermined strength is applied to the silicon melt M in the crucible 3. An electromagnetic coil control unit 8a that controls the operation of the electromagnetic coil 8 for applying a magnetic field is connected to the electromagnetic coil 8.

即ち、本実施形態においては、溶融液M内に磁場を印加して単結晶を育成するMCZ法(Magnetic field applied CZ法)が実施され、それによりシリコン溶融液Mの対流を制御し、単結晶化の安定を図るようになされる。 That is, in the present embodiment, the MCZ method (Magnetic field applied CZ method) in which a magnetic field is applied into the melt M to grow a single crystal is carried out, thereby controlling the convection of the silicon melt M and causing the single crystal. It is designed to stabilize the crystallization.

また、ルツボ3内に形成される溶融液Mの上方には、単結晶Cの周囲を包囲する輻射シールド7が配置されている。この輻射シールド7は、上部と下部が開口形成され、育成中の単結晶Cに対するサイドヒータ4や溶融液M等からの余計な輻射熱を遮蔽すると共に、炉内のガス流を整流するものである。
尚、輻射シールド7の下端と溶融液面との間のギャップは、育成する単結晶の所望の特性に応じて所定の距離を一定に維持するよう制御される。
Further, above the melt M formed in the crucible 3, a radiation shield 7 surrounding the circumference of the single crystal C is arranged. The radiant shield 7 has openings formed at the upper and lower portions, shields excess radiant heat from the side heater 4 and the melt M, etc. with respect to the growing single crystal C, and rectifies the gas flow in the furnace. ..
The gap between the lower end of the radiation shield 7 and the surface of the molten liquid is controlled so as to maintain a constant distance according to the desired characteristics of the single crystal to be grown.

また、この単結晶引上装置1は、記憶装置11aと演算制御装置11bとを有するコンピュータ11を備え、回転駆動制御部14a、昇降駆動制御部15a、電磁コイル制御部8a、回転駆動制御部9aは、それぞれ演算制御装置11bに接続されている。 Further, the single crystal pulling device 1 includes a computer 11 having a storage device 11a and an arithmetic control device 11b, and includes a rotation drive control unit 14a, an elevating drive control unit 15a, an electromagnetic coil control unit 8a, and a rotation drive control unit 9a. Are connected to the arithmetic control device 11b, respectively.

このように構成された単結晶引上装置1において、例えば、直径300mmの単結晶Cを育成する場合、次のように引き上げが行われる。即ち、最初にルツボ3に原料ポリシリコン(例えば350kg)を装填し、コンピュータ11の記憶装置11aに記憶されたプログラムに基づき結晶育成工程が開始される。 In the single crystal pulling device 1 configured in this way, for example, when growing a single crystal C having a diameter of 300 mm, pulling is performed as follows. That is, first, the raw material polysilicon (for example, 350 kg) is loaded into the crucible 3, and the crystal growth step is started based on the program stored in the storage device 11a of the computer 11.

先ず、炉体10内が所定の雰囲気(主にアルゴンガスなどの不活性ガス)となされ、ルツボ3が所定の回転速度(rpm)で回転動作された状態で、ルツボ3内に装填された原料ポリシリコンが、サイドヒータ4による加熱によって溶融され、溶融液Mとされる(図4のステップS1)。 First, the raw material loaded in the crucible 3 with the inside of the furnace body 10 having a predetermined atmosphere (mainly an inert gas such as argon gas) and the crucible 3 being rotated at a predetermined rotation speed (rpm). The polysilicon is melted by heating by the side heater 4 to form a melt M (step S1 in FIG. 4).

次いで、磁場印加用電磁コイル8に所定の電流が流され、溶融液M内に1000〜4000Gaussの範囲内で設定された磁束密度(例えば2500Gauss)で水平磁場が印加開始される(図4のステップS2)。
また、ワイヤ6が降ろされて種結晶Pが溶融液Mに接触され、種結晶Pの先端部を溶解した後、ネッキングが行われ、ネック部P1が形成開始される(図4のステップS3)。
ネック部P1が形成されると、サイドヒータ4への供給電力や、引き上げ速度、磁場印加強度などをパラメータとして引き上げ条件が調整され、ルツボ3の回転方向とは逆方向に所定の回転速度で種結晶Pが回転開始される。
Next, a predetermined current is passed through the magnetic field application electromagnetic coil 8, and a horizontal magnetic field is started to be applied into the melt M at a magnetic flux density (for example, 2500 Gauss) set in the range of 1000 to 4000 Gauss (step of FIG. 4). S2).
Further, the wire 6 is lowered, the seed crystal P is brought into contact with the melt M, the tip portion of the seed crystal P is melted, and then necking is performed and the neck portion P1 is started to be formed (step S3 in FIG. 4). ..
When the neck portion P1 is formed, the pulling conditions are adjusted with the power supplied to the side heater 4, the pulling speed, the magnetic field application strength, and the like as parameters, and the seeds are seeded at a predetermined rotation speed in the direction opposite to the rotation direction of the rutsubo 3. The crystal P starts rotating.

そして、結晶径が徐々に拡径されて肩部C1が形成され(図4のステップS4)、製品部分となる直胴部C2を形成する工程に移行する(図4のステップS5)。
ここで、ルツボ3から溶出した酸素が導入されたシリコン融液Mから育成される単結晶中の酸素濃度は、例えば、磁場強度、磁場中心位置、不活性ガスの流量や炉内圧、石英ガラスルツボ3の回転、単結晶の回転等のパラメータが影響する。
Then, the crystal diameter is gradually increased to form the shoulder portion C1 (step S4 in FIG. 4), and the process proceeds to the step of forming the straight body portion C2 to be the product portion (step S5 in FIG. 4).
Here, the oxygen concentration in the single crystal grown from the silicon melt M into which the oxygen eluted from the crucible 3 is introduced is, for example, the magnetic field strength, the magnetic field center position, the flow rate of the inert gas, the furnace pressure, and the quartz glass crucible. Parameters such as rotation of 3 and rotation of a single crystal have an effect.

結晶成長軸方向の酸素濃度分布は、上記パラメータに影響されるが、従来は、上記パラメータ制御のみで結晶成長軸方向の酸素濃度を均一にすることは困難である。
そこで、本発明に係る実施形態においては、上記パラメータ条件に加え、ルツボ3の高さ方向におけるルツボ壁厚さTに対する透明内層3Bの厚さtの比率t/Tを調整することにより結晶成長軸方向における結晶酸素濃度を制御する。
The oxygen concentration distribution in the crystal growth axis direction is affected by the above parameters, but conventionally, it is difficult to make the oxygen concentration in the crystal growth axis direction uniform only by controlling the above parameters.
Therefore, in the embodiment of the present invention, in addition to the above parameter conditions, the crystal growth axis is adjusted by adjusting the ratio t / T of the thickness t of the transparent inner layer 3B to the crucible wall thickness T in the height direction of the crucible 3. Control the crystal oxygen concentration in the direction.

具体的には、磁場強度、磁場中心位置、不活性ガスの流量や炉内圧、ベースとなる石英ガラスルツボ3の回転、単結晶の回転等の上記パラメータにより引き上げられた単結晶Cの成長軸方向の酸素濃度の傾向は、事前にデータとして記憶装置11aに記録しておき、それに合わせて前記石英ガラスルツボ3における比率t/Tを決定し、それに基づくルツボを製造して使用することとなる。 Specifically, the growth axis direction of the single crystal C raised by the above parameters such as the magnetic field strength, the magnetic field center position, the flow rate of the inert gas and the pressure inside the furnace, the rotation of the base quartz glass crucible 3, and the rotation of the single crystal. The tendency of the oxygen concentration is recorded in the storage device 11a as data in advance, the ratio t / T in the quartz glass crucible 3 is determined accordingly, and the crucible based on the ratio t / T is manufactured and used.

直胴部C2の育成初期では、シリコン融液面M1は、図5(a)に示すようにルツボ上部33Aに位置する。単結晶Cに取り込まれる酸素量は、シリコン融液面M1付近の融液M中の酸素濃度が最も影響する。
ここで、直胴部C2の育成初期では、シリコン融液量が多く、ルツボ内表面との接触面積が大きいために、融液中の酸素濃度は全体的に高いが、ルツボ上部33Aでは、ルツボ壁厚さTに対する透明内層3Bの厚さtの比率t/Tが例えば0.08と小さく設定されている。即ち、透明内層3Bの厚さが薄く形成されているため、不透明外層3Aが厚く、それにより熱が拡散して均一化される。それにより、ルツボ内表面の温度が低くなり、ルツボ3からシリコン融液Mへの石英の溶解量が抑制される。
At the initial stage of growing the straight body portion C2, the silicon melt surface M1 is located at the upper portion 33A of the crucible as shown in FIG. 5 (a). The amount of oxygen taken into the single crystal C is most affected by the oxygen concentration in the melt M near the silicon melt surface M1.
Here, in the initial stage of growing the straight body portion C2, the amount of silicon melt is large and the contact area with the inner surface of the crucible is large, so that the oxygen concentration in the melt is high as a whole. The ratio t / T of the thickness t of the transparent inner layer 3B to the wall thickness T is set as small as 0.08, for example. That is, since the transparent inner layer 3B is formed to be thin, the opaque outer layer 3A is thick, whereby heat is diffused and made uniform. As a result, the temperature of the inner surface of the crucible is lowered, and the amount of quartz dissolved in the silicon melt M from the crucible 3 is suppressed.

直胴部の育成が進み、図5(b)に示すようにシリコン溶融液面M1が減少してルツボ中部33Bの位置になると、このルツボ中部33Bでは、ルツボ壁厚さTに対する透明内層3Bの厚さtの比率t/Tが例えば0.3に設定されている。
ここで、ルツボ内のシリコン融液量は減少しているため、シリコン融液中の酸素濃度は低下傾向となるが、シリコン融液面M1が位置するルツボ中部33Bは、ルツボ上部33Aよりも透明内層3Bの厚さが厚いため、ルツボ3からシリコン融液Mへの石英の溶解量が増加する。
As the growth of the straight body portion progresses and the silicon melt surface M1 decreases to the position of the crucible central portion 33B as shown in FIG. 5 (b), in this crucible central portion 33B, the transparent inner layer 3B with respect to the crucible wall thickness T The ratio t / T of the thickness t is set to, for example, 0.3.
Here, since the amount of the silicon melt in the crucible is decreasing, the oxygen concentration in the silicon melt tends to decrease, but the middle part 33B of the crucible where the silicon melt surface M1 is located is more transparent than the upper part 33A of the crucible. Since the inner layer 3B is thick, the amount of quartz dissolved in the crucible 3 into the silicon melt M increases.

更に直胴部の育成が進み、図5(c)に示すようにシリコン溶融液面M1がルツボ下部33Cの位置になると、このルツボ下部33Cでは、ルツボ壁厚さTに対する透明内層3Bの厚さtの比率t/Tが例えば0.6と高めに設定されている。
ここで、ルツボ内のシリコン融液量は更に減少し少量となっているため、シリコン融液中の酸素濃度は低いが、ルツボ下部33Cでは、透明内層3Bの厚さが厚く形成されているため、熱伝導率が高くなっている。それにより、ルツボ内表面の温度が高くなり、ルツボ3からシリコン融液への石英の溶解量が多くなる。
Further growth of the straight body portion progresses, and when the silicon melt surface M1 reaches the position of the crucible lower portion 33C as shown in FIG. 5C, the thickness of the transparent inner layer 3B with respect to the crucible wall thickness T in this crucible lower portion 33C. The ratio t / T of t is set as high as 0.6, for example.
Here, since the amount of the silicon melt in the crucible is further reduced to a small amount, the oxygen concentration in the silicon melt is low, but the transparent inner layer 3B is formed thicker in the lower part 33C of the crucible. , The thermal conductivity is high. As a result, the temperature of the inner surface of the crucible rises, and the amount of quartz dissolved in the silicon melt from the crucible 3 increases.

このように直胴部C2の育成を行うことにより、直胴部C2の成長軸方向において酸素濃度が均一になるように矯正される。
そして、所定の長さまで直胴部C2が形成されると、最終のテール部工程に移行する(図2のステップS6)。このテール部工程においては、結晶下端と溶融液Mとの接触面積が徐々に小さくなり、単結晶Cと溶融液Mとが切り離され、シリコン単結晶が製造される。
By growing the straight body portion C2 in this way, the oxygen concentration is corrected to be uniform in the growth axis direction of the straight body portion C2.
Then, when the straight body portion C2 is formed to a predetermined length, the process proceeds to the final tail portion step (step S6 in FIG. 2). In this tail portion step, the contact area between the lower end of the crystal and the melt M is gradually reduced, the single crystal C and the melt M are separated, and a silicon single crystal is produced.

以上のように、本実施の形態によれば、前記石英ガラスルツボの高さ方向に沿って、前記石英ガラスルツボの壁の厚さTに対する前記透明内層の厚さtの比率t/Tを調整し、引き上げるシリコン単結晶の結晶成長軸方向の酸素濃度を制御することにより、結晶成長軸方向の酸素濃度を所望の値に近づけ、且つ均一にすることができる。
また、従来一般的な単結晶引上装置の構成に対し、ルツボ3の壁厚さTに対する透明内層3Bの厚さtを調整するのみでよいため、かかるコストを抑えることができる。
また、シリコン融液面の温度は一定に保つ制御が可能であるため、結晶欠陥の分布が不均一になることを防止することができる。
As described above, according to the present embodiment, the ratio t / T of the thickness t of the transparent inner layer to the wall thickness T of the quartz glass crucible is adjusted along the height direction of the quartz glass crucible. By controlling the oxygen concentration in the crystal growth axis direction of the silicon single crystal to be pulled up, the oxygen concentration in the crystal growth axis direction can be brought close to a desired value and made uniform.
Further, since it is only necessary to adjust the thickness t of the transparent inner layer 3B with respect to the wall thickness T of the crucible 3, the cost can be suppressed as compared with the configuration of the conventional general single crystal pulling device.
Further, since the temperature of the silicon melt surface can be controlled to be kept constant, it is possible to prevent the distribution of crystal defects from becoming non-uniform.

尚、前記実施の形態においては、ルツボ壁厚さTに対する透明内層3Bの厚さtの比率t/Tを、0.08、0.3、0.6と設定した場合を示したが、磁場強度、磁場中心位置、不活性ガスの流量や炉内圧、石英ガラスルツボの回転、単結晶の回転等のパラメータを変えることにより、比率t/Tを適宜変えることができる。 In the above embodiment, the ratio t / T of the thickness t of the transparent inner layer 3B to the crucible wall thickness T is set to 0.08, 0.3, 0.6, but the magnetic field is shown. The ratio t / T can be appropriately changed by changing parameters such as strength, magnetic field center position, flow rate and furnace pressure of inert gas, rotation of quartz glass crucible, and rotation of single crystal.

また、前記実施の形態においては、石英ガラスルツボ3の高さ方向に3つの領域(33A,33B,33C)に分けて各領域に比率t/Tを設定したが、本発明にあっては、前記領域の数は限定されるものではなく、適宜設定することができる。
また各領域に分けて、特定の比率t/Tを設定するのではなく、石英ガラスルツボ3の高さ方向において、徐々に比率t/Tを変化させても良い。
Further, in the above-described embodiment, the quartz glass crucible 3 is divided into three regions (33A, 33B, 33C) in the height direction, and the ratio t / T is set in each region. However, in the present invention, the ratio t / T is set. The number of the regions is not limited and can be set as appropriate.
Further, instead of setting a specific ratio t / T separately for each region, the ratio t / T may be gradually changed in the height direction of the quartz glass crucible 3.

また、石英ガラスルツボ3を不透明外層3Aと透明内層3Bとの2層構造としたが、本発明にあっては、その構成に限定されるものではなく、内層が透明層であれば、層の数は限定されない。 Further, the quartz glass crucible 3 has a two-layer structure of an opaque outer layer 3A and a transparent inner layer 3B, but the present invention is not limited to the structure, and if the inner layer is a transparent layer, the layer can be formed. The number is not limited.

更に、本発明を実施するに際し、特許文献1に開示された方法のように熱遮蔽治具を用いる方法、特許文献2に開示された方法のように不活性ガスの流量と圧力とで融液からのSiOガスの蒸発量を調整する方法を併用しても良い。 Further, when carrying out the present invention, a method using a heat shielding jig as in the method disclosed in Patent Document 1 and a melt using the flow rate and pressure of an inert gas as in the method disclosed in Patent Document 2. A method of adjusting the amount of evaporation of SiO gas from the gas may be used in combination.

本発明に係るシリコン単結晶の製造方法について、実施例に基づきさらに説明する。
(実験1)
実験1では、ルツボ壁厚さTに対する透明内層の厚さtの比率t/Tをルツボ高さ方向で変化させることにより、引き上げたシリコン単結晶の引き上げ方向の酸素濃度分布に対し、どのように影響するかを検証した。
The method for producing a silicon single crystal according to the present invention will be further described based on Examples.
(Experiment 1)
In Experiment 1, by changing the ratio t / T of the thickness t of the transparent inner layer to the crucible wall thickness T in the crucible height direction, how is the oxygen concentration distribution in the pulling direction of the pulled silicon single crystal? We verified whether it would affect it.

実験1では、上述の実施形態に示した構成の単結晶引上装置において、ルツボに350kgの原料ポリシリコンを投入し、直径300mmのシリコン単結晶の引上げを行なった。シリコン溶融液の自然対流を抑制するために、引上中に印加する水平磁場の磁束密度は2500Gaussに設定した。
また、不活性ガスの流量は、90L/minとし、炉内圧を50torrとした。
更に、ルツボの回転数を1rpmとし、単結晶の回転数を10rpmとした(回転方向は互いに逆方向とした)。
In Experiment 1, in the single crystal pulling device having the configuration shown in the above-described embodiment, 350 kg of raw material polysilicon was put into the crucible to pull up a silicon single crystal having a diameter of 300 mm. In order to suppress the natural convection of the silicon melt, the magnetic flux density of the horizontal magnetic field applied during pulling was set to 2500 Gauss.
The flow rate of the inert gas was 90 L / min, and the pressure inside the furnace was 50 torr.
Further, the rotation speed of the crucible was set to 1 rpm, and the rotation speed of the single crystal was set to 10 rpm (the rotation directions were opposite to each other).

図3に示したルツボ壁厚さTに対する透明内層3Bの厚さtの比率t/Tは、実施例1、実施例2、比較例1において、表1に示すように設定した。
実施例1では、引き上げた単結晶の上部の酸素濃度が下部の酸素濃度よりも高くなる傾向を有する引上装置の条件下において石英ルツボの比率t/Tを設定した。
実施例2では、引き上げた単結晶の上部の酸素濃度が下部の酸素濃度よりも高くなる傾向を有する引上装置の条件下において石英ルツボの比率t/Tを設定した。
また、比較例1では、引き上げた単結晶の上部の酸素濃度が下部の酸素濃度よりも高くなる傾向を有する引上装置の条件下において石英ルツボの比率t/Tを変えずに実施した。
実験1の結果を図6のグラフに示す。図6のグラフの縦軸は酸素濃度(×1018/cm)、横軸は固化率である。また、実施例1,2、及び比較例1の条件に基づき引き上げた単結晶の軸方向における酸素濃度のばらつきを、表1に示す。
The ratio t / T of the thickness t of the transparent inner layer 3B to the crucible wall thickness T shown in FIG. 3 was set as shown in Table 1 in Example 1, Example 2, and Comparative Example 1.
In Example 1, the ratio t / T of the quartz crucible was set under the condition of the pulling device in which the oxygen concentration in the upper part of the pulled single crystal tended to be higher than the oxygen concentration in the lower part.
In Example 2, the ratio t / T of the quartz crucible was set under the condition of the pulling device in which the oxygen concentration in the upper part of the pulled single crystal tended to be higher than the oxygen concentration in the lower part.
Further, in Comparative Example 1, the quartz crucible ratio t / T was not changed under the condition of the pulling device in which the oxygen concentration in the upper part of the pulled single crystal tended to be higher than the oxygen concentration in the lower part.
The result of Experiment 1 is shown in the graph of FIG. The vertical axis of the graph of FIG. 6 is the oxygen concentration (× 10 18 / cm 3 ), and the horizontal axis is the solidification rate. Table 1 shows the variation in the oxygen concentration in the axial direction of the single crystal pulled up based on the conditions of Examples 1, 2 and Comparative Example 1.

(表1)

Figure 2021075425
(Table 1)
Figure 2021075425

図6のグラフに示すように実施例1では、結晶引上初期の酸素濃度が抑えられ、低酸素濃度で結晶成長軸方向に均一な酸素濃度を有する単結晶が得られた。また、表1に示すように酸素濃度のばらつきは14%に抑えられた。
また、実施例2では、結晶引上後期の酸素濃度が向上し、高酸素濃度で結晶成長軸方向に均一な酸素濃度を有する単結晶が得られた。また、表1に示すように酸素濃度のばらつきは13%に抑えられた。
また、比較例1では、結晶上部ほど酸素濃度が高い単結晶が得られた。また、表1に示すように酸素濃度のばらつきは30%と大きくなった。
この実験1の結果から、本発明によれば結晶成長軸方向に酸素濃度を、より均一に制御でき、酸素濃度のばらつきを20%以内に抑えられることが確認された。
As shown in the graph of FIG. 6, in Example 1, the oxygen concentration at the initial stage of crystal pulling was suppressed, and a single crystal having a low oxygen concentration and a uniform oxygen concentration in the crystal growth axis direction was obtained. Further, as shown in Table 1, the variation in oxygen concentration was suppressed to 14%.
Further, in Example 2, the oxygen concentration in the late stage of crystal pulling was improved, and a single crystal having a high oxygen concentration and a uniform oxygen concentration in the crystal growth axis direction was obtained. Further, as shown in Table 1, the variation in oxygen concentration was suppressed to 13%.
Further, in Comparative Example 1, a single crystal having a higher oxygen concentration was obtained in the upper part of the crystal. Further, as shown in Table 1, the variation in oxygen concentration was as large as 30%.
From the results of this experiment 1, it was confirmed that according to the present invention, the oxygen concentration can be controlled more uniformly in the crystal growth axis direction, and the variation in oxygen concentration can be suppressed within 20%.

(実験2)
実験2では、引き上げた単結晶の上部の酸素濃度が下部の酸素濃度よりも低くなる傾向を有する引上装置の条件下において、石英ルツボのルツボ壁厚さTに対する透明内層の厚さtの比率t/Tをルツボ高さ方向で変化させ、引き上げられる単結晶の高さ方向における酸素濃度のばらつきを検証した。単結晶引き上げの条件は、実験1と同じである。
実施例3、4、及び比較例2におけるルツボ上部、中部、下部における比率t/T、及びそれらの条件に基づき引き上げた単結晶の軸方向における酸素濃度のばらつきを、表2に示す。
また、図7のグラフに、実施例3、4及び比較例2における単結晶酸素濃度の変化を示す。図7のグラフにおいて、縦軸は酸素濃度(×1018/cm)、横軸は固化率である。
(Experiment 2)
In Experiment 2, the ratio of the thickness t of the transparent inner layer to the crucible wall thickness T of the quartz crucible under the condition of the pulling device in which the oxygen concentration in the upper part of the pulled single crystal tends to be lower than the oxygen concentration in the lower part. The t / T was changed in the crucible height direction, and the variation in oxygen concentration in the height direction of the single crystal to be pulled up was verified. The conditions for pulling up the single crystal are the same as in Experiment 1.
Table 2 shows the ratio t / T in the upper part, the middle part, and the lower part of the crucible in Examples 3, 4 and Comparative Example 2, and the variation in the oxygen concentration in the axial direction of the single crystal pulled up based on those conditions.
Further, the graph of FIG. 7 shows changes in the single crystal oxygen concentration in Examples 3 and 4 and Comparative Example 2. In the graph of FIG. 7, the vertical axis is the oxygen concentration (× 10 18 / cm 3 ), and the horizontal axis is the solidification rate.

(表2)

Figure 2021075425
(Table 2)
Figure 2021075425

図7のグラフ、及び表2に示すように、実施例3、4ではルツボ上部における比率t/Tをルツボ下部よりも大きく設定することにより、単結晶の引き上げ軸方向における酸素濃度分布のばらつきが小さく(10%以下)に抑えられた。
一方、比較例2では、ルツボ高さ方向において透明内層の厚さの比率t/Tを略一定に設定したが、引き上げた単結晶の上部の酸素濃度が下部よりも低くなり(ベースと同じ)、酸素濃度のばらつきが大きく(22%)なる結果となった。
As shown in the graph of FIG. 7 and Table 2, in Examples 3 and 4, by setting the ratio t / T in the upper part of the crucible to be larger than that in the lower part of the crucible, the variation in the oxygen concentration distribution in the pulling axis direction of the single crystal becomes large. It was kept small (10% or less).
On the other hand, in Comparative Example 2, the ratio t / T of the thickness of the transparent inner layer was set to be substantially constant in the crucible height direction, but the oxygen concentration at the upper part of the pulled-up single crystal was lower than that at the lower part (same as the base). As a result, the variation in oxygen concentration was large (22%).

(実験3)
実験3では、ルツボ壁厚さTに対する透明内層の厚さtの比率t/Tの適切な範囲について検証した。適切か否かの判定は、結晶の有転位化率、温度変動量の大きさにより判定した。
表3に実施例5〜7、比較例3〜6における条件である比率t/T、及び結果としての結晶の有転位化率、融液の温度変動量を示す。実験3の実施例5〜7、比較例3〜6では、引き上げた単結晶の引上軸方向の酸素濃度分布を均一とするために比率t/Tを設定した。その他の条件は、実験1と同じである。
(Experiment 3)
In Experiment 3, the appropriate range of the ratio t / T of the thickness t of the transparent inner layer to the crucible wall thickness T was verified. Judgment as to whether or not it was appropriate was made based on the dislocation rate of the crystal and the magnitude of the amount of temperature fluctuation.
Table 3 shows the ratio t / T, which is the condition in Examples 5 to 7 and Comparative Examples 3 to 6, the resulting dislocation rate of the crystal, and the amount of temperature fluctuation of the melt. In Examples 5 to 7 and Comparative Examples 3 to 6 of Experiment 3, the ratio t / T was set in order to make the oxygen concentration distribution in the pulling axis direction of the pulled single crystal uniform. Other conditions are the same as in Experiment 1.

(表3)

Figure 2021075425
(Table 3)
Figure 2021075425

表3に示すように、実施例5〜7において設定した比率t/Tでは、有転位化率が10%以下、温度変動量が±3℃と良好な結果が得られた。
一方、比較例3、4のように比率t/Tが0.05と低い部位がある場合には、不透明層の気泡が露出し、微小な石英パーティクルが発生して有転位化率が上昇した。
また、比較例5、6のように比率t/Tが0.80以上の部位がある場合には、不透明外層による熱の均一拡散が不十分になり、温度制御が困難になってシリコン融液の温度変動量が大きくなった。
この結果より、ルツボ壁厚さTに対する透明内層の厚さtの比率t/Tの範囲は、0.05より大きく0.80未満であることが望ましいことを確認した。
As shown in Table 3, at the ratio t / T set in Examples 5 to 7, good results were obtained with the dislocation rate being 10% or less and the temperature fluctuation amount being ± 3 ° C.
On the other hand, when there is a portion where the ratio t / T is as low as 0.05 as in Comparative Examples 3 and 4, bubbles in the opaque layer are exposed, fine quartz particles are generated, and the dislocation rate increases. ..
Further, when there is a portion having a ratio t / T of 0.80 or more as in Comparative Examples 5 and 6, the uniform diffusion of heat by the opaque outer layer becomes insufficient, the temperature control becomes difficult, and the silicon melt The amount of temperature fluctuation has increased.
From this result, it was confirmed that the range of the ratio t / T of the thickness t of the transparent inner layer to the crucible wall thickness T is preferably larger than 0.05 and less than 0.80.

1 単結晶引上装置
2 カーボンサセプタ
3 石英ガラスルツボ(ルツボ)
4 サイドヒータ
6 ワイヤ
7 輻射シールド
8 磁場印加用電磁コイル
9 引き上げ機構
10 炉体
11 コンピュータ
11a 記憶装置
11b 演算制御装置
14 回転駆動部
15 昇降駆動部
C シリコン単結晶
M シリコン融液
C1 肩部
C2 直胴部
1 Single crystal pulling device 2 Carbon susceptor 3 Quartz glass crucible (crucible)
4 Side heater 6 Wire 7 Radiation shield 8 Electromagnetic coil for applying magnetic field 9 Pulling mechanism 10 Furnace 11 Computer 11a Storage device 11b Arithmetic control device 14 Rotation drive unit 15 Lifting drive unit C Silicon single crystal M Silicon melt C1 Shoulder C2 Straight Body

Claims (3)

不透明外層と透明内層を有する石英ガラスルツボを用いて、前記石英ガラスルツボ内に収容されたシリコン融液から、チョクラルスキー法によってシリコン単結晶を引き上げるシリコン単結晶の製造方法であって、
前記石英ガラスルツボの側壁の厚さTに対する前記透明内層の厚さtの比率t/Tが、石英ガラスルツボ側壁の上部から下部にかけて調整された石英ガラスルツボを用い、
引き上げるシリコン単結晶の結晶成長軸方向の酸素濃度のばらつきが20%以内であることを特徴とするシリコン単結晶の製造方法。
A method for producing a silicon single crystal in which a silicon single crystal is pulled up from a silicon melt contained in the quartz glass crucible by a Czochralski method using a quartz glass crucible having an opaque outer layer and a transparent inner layer.
Using a quartz glass crucible in which the ratio t / T of the thickness t of the transparent inner layer to the thickness T of the side wall of the quartz glass crucible was adjusted from the upper part to the lower part of the side wall of the quartz glass crucible.
A method for producing a silicon single crystal, characterized in that the variation in oxygen concentration in the crystal growth axis direction of the silicon single crystal to be pulled up is within 20%.
前記石英ガラスルツボが、
石英ガラスルツボ側壁の上部から下部に向かって、複数の領域に区分され、石英ガラスルツボの側壁の厚さTに対する前記透明内層の厚さtの比率t/Tが、前記複数の領域ごとに調整されていることを特徴とする請求項1記載のシリコン単結晶の製造方法。
The quartz glass crucible
From the upper part to the lower part of the side wall of the quartz glass crucible, it is divided into a plurality of regions, and the ratio t / T of the thickness t of the transparent inner layer to the thickness T of the side wall of the quartz glass crucible is adjusted for each of the plurality of regions. The method for producing a silicon single crystal according to claim 1, wherein the silicon single crystal is produced.
前記石英ガラスルツボの側壁の厚さTに対する前記透明内層の厚さtの比率t/Tは、0.05より大きく0.8未満の範囲内であることを特徴とする請求項1または請求項2に記載されたシリコン単結晶の製造方法。 Claim 1 or claim, wherein the ratio t / T of the thickness t of the transparent inner layer to the thickness T of the side wall of the quartz glass crucible is greater than 0.05 and less than 0.8. 2. The method for producing a silicon single crystal according to 2.
JP2019203916A 2019-11-11 2019-11-11 Method for producing silicon single crystals Active JP7509528B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019203916A JP7509528B2 (en) 2019-11-11 Method for producing silicon single crystals
CN202080078286.9A CN114616361B (en) 2019-11-11 2020-08-27 Method for producing silicon single crystal
PCT/JP2020/032354 WO2021095324A1 (en) 2019-11-11 2020-08-27 Method for producing silicon single crystal
DE112020005532.9T DE112020005532T5 (en) 2019-11-11 2020-08-27 Process for producing a silicon single crystal
TW109131208A TWI784314B (en) 2019-11-11 2020-09-11 Manufacturing method of single crystal silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203916A JP7509528B2 (en) 2019-11-11 Method for producing silicon single crystals

Publications (2)

Publication Number Publication Date
JP2021075425A true JP2021075425A (en) 2021-05-20
JP7509528B2 JP7509528B2 (en) 2024-07-02

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959880A (en) * 2022-05-27 2022-08-30 西安奕斯伟材料科技有限公司 Quartz crucible, crucible assembly and crystal pulling furnace for producing single crystal silicon rods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106247A1 (en) * 2003-05-30 2004-12-09 Shin-Etsu Quartz Products Co., Ltd. Quartz glass crucible for pulling up silicon single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106247A1 (en) * 2003-05-30 2004-12-09 Shin-Etsu Quartz Products Co., Ltd. Quartz glass crucible for pulling up silicon single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959880A (en) * 2022-05-27 2022-08-30 西安奕斯伟材料科技有限公司 Quartz crucible, crucible assembly and crystal pulling furnace for producing single crystal silicon rods
CN114959880B (en) * 2022-05-27 2024-02-13 西安奕斯伟材料科技股份有限公司 Quartz crucible, crucible assembly and crystal pulling furnace for producing monocrystalline silicon rod

Also Published As

Publication number Publication date
DE112020005532T5 (en) 2022-09-01
WO2021095324A1 (en) 2021-05-20
CN114616361A (en) 2022-06-10
CN114616361B (en) 2023-12-26
TWI784314B (en) 2022-11-21
TW202132633A (en) 2021-09-01

Similar Documents

Publication Publication Date Title
JP4919343B2 (en) Single crystal pulling device
JP5240191B2 (en) Silicon single crystal pulling device
EP1498517B1 (en) Method of manufacturing silicon single crystal
CN114318500A (en) Crystal pulling furnace and method for pulling single crystal silicon rod and single crystal silicon rod
JP5782323B2 (en) Single crystal pulling method
JP2020114802A (en) Method for manufacturing silicon single crystal
JP4408148B2 (en) Single crystal manufacturing method and apparatus therefor
WO2021095324A1 (en) Method for producing silicon single crystal
JP7509528B2 (en) Method for producing silicon single crystals
KR101218664B1 (en) Semiconductor Single Crystal Ingot dopped by carbon and Method of manufacturing the same
JP4151148B2 (en) Method for producing silicon single crystal
JP2004161566A (en) Method for manufacturing silicon wafer, apparatus for manufacturing the same, and silicon wafer
JP6597857B1 (en) Heat shielding member, single crystal pulling apparatus and single crystal manufacturing method
JP3528888B2 (en) Apparatus and method for producing silicon single crystal
JP3635694B2 (en) Single crystal manufacturing method
WO2022254885A1 (en) Method for producing silicon monocrystal
JP7439723B2 (en) How to grow silicon single crystals
JP4801869B2 (en) Single crystal growth method
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
JP2024088149A (en) Single crystal pulling apparatus and method
JPH01160892A (en) Method for controlling oxygen concentration in silicon single crystal
JPH01160893A (en) Method for controlling oxygen concentration in silicon single crystal
JP2002249397A (en) Method for manufacturing silicon single crystal
JP2002137987A (en) Silicon single crystal pull up device, method of manufacturing silicon single crystal using that device and silicon single crystal
JP2013199387A (en) Apparatus and method for pulling single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240620