JP2021069996A - Catalyst for voc treatment, voc treatment apparatus and voc treatment method - Google Patents

Catalyst for voc treatment, voc treatment apparatus and voc treatment method Download PDF

Info

Publication number
JP2021069996A
JP2021069996A JP2019199262A JP2019199262A JP2021069996A JP 2021069996 A JP2021069996 A JP 2021069996A JP 2019199262 A JP2019199262 A JP 2019199262A JP 2019199262 A JP2019199262 A JP 2019199262A JP 2021069996 A JP2021069996 A JP 2021069996A
Authority
JP
Japan
Prior art keywords
catalyst
voc
cobalt
oxide
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019199262A
Other languages
Japanese (ja)
Other versions
JP7427187B2 (en
Inventor
正一 染川
Masaichi Somekawa
正一 染川
研一郎 井上
Kenichiro Inoue
研一郎 井上
川見 佳正
Yoshimasa Kawami
佳正 川見
哲之 藤原
Hiroyuki Fujiwara
哲之 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Sankyo Kosan Co Ltd
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Sankyo Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI), Sankyo Kosan Co Ltd filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2019199262A priority Critical patent/JP7427187B2/en
Priority to CN202080075917.1A priority patent/CN114728274A/en
Priority to PCT/JP2020/040650 priority patent/WO2021085536A1/en
Publication of JP2021069996A publication Critical patent/JP2021069996A/en
Application granted granted Critical
Publication of JP7427187B2 publication Critical patent/JP7427187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

To provide a catalyst for VOC treatment that has acid resistance and can be used for a long time even in the treatment of a halogen VOC.SOLUTION: There is provided a catalyst for VOC treatment, said catalyst being obtained by having the surface of a carrier, which is mainly composed of silicon carbide (SiC), support a composite oxide of cobalt (Co) and cerium (Ce).SELECTED DRAWING: Figure 1

Description

本発明は、耐酸性を有するVOC処理用触媒と、これを有するVOC処理装置およびVOCの処理方法に関する。 The present invention relates to a VOC treatment catalyst having acid resistance, a VOC treatment apparatus having the catalyst, and a VOC treatment method.

工場等から排出される有機物成分を含む排ガスは住居環境に悪い影響を及ぼし、健康被害や悪臭苦情の原因となる。例えば塗装工場や印刷工場、化学品製造過程等から排出される揮発性有機化合物(Volatile Organic Compounds:以下「VOC」と記載する)や、皮革工場、し尿処理工場などから排出されるアンモニア化合物、塗装工場や飲食店等から排出されるヤニ類がある。これら化合物の多くは、人体や自然環境にとって有害である。 Exhaust gas containing organic substances emitted from factories, etc. has a bad influence on the living environment and causes health hazards and foul odor complaints. For example, volatile organic compounds (Volatile Organic Compounds: hereinafter referred to as "VOC") emitted from painting factories, printing factories, chemical manufacturing processes, etc., ammonia compounds emitted from leather factories, urine processing factories, etc., and coatings. Some tars are discharged from factories and restaurants. Many of these compounds are harmful to the human body and the natural environment.

VOCの処理方法としては直接燃焼法、触媒燃焼法、物理化学的吸着法、生物処理法、プラズマ法など各種のものが提案されているが、これらの中で、触媒燃焼法は装置および維持管理が簡単であることから広く採用されている。 Various VOC treatment methods such as direct combustion method, catalytic combustion method, physicochemical adsorption method, biological treatment method, and plasma method have been proposed. Among these, the catalytic combustion method is used for equipment and maintenance. Is widely used because it is easy to use.

触媒燃焼法においては、従来、触媒として白金、パラジウムなどの貴金属が使用されてきたが、貴金属は高価であるためコストを抑えることが難しく、代替材料の開発が進められてきた。 In the catalyst combustion method, precious metals such as platinum and palladium have been conventionally used as catalysts, but it is difficult to keep costs down because precious metals are expensive, and the development of alternative materials has been promoted.

そして、これまでに、本出願人らはコージェライト基材に担持させたセリウム(Ce)およびコバルト(Co)を主成分とする金属酸化物触媒について提案している(特許文献1、2)。 So far, the applicants have proposed a metal oxide catalyst containing cerium (Ce) and cobalt (Co) as main components supported on a cordierite substrate (Patent Documents 1 and 2).

特許第5422320号Patent No. 5423320 特許第5717491号Patent No. 5717491 再表2014/157721号公報Re-table 2014/157721 特開2018‐126738号公報Japanese Unexamined Patent Publication No. 2018-126738

触媒燃焼法によってVOCを処理する場合、トルエン、キシレン、ブタノール、酢酸エチルなどの炭素(C)、酸素(O)、水素(H)のみで構成される有機化合物の分解においては、完全燃焼後には二酸化炭素(CO)と水(HO)のみが生成されるため、触媒に悪い影響を与えにくい。しかしながら、塩素を含んだハロゲン系有機化合物、例えばジクロロメタン(塩化メチレン)、クロロエチレンなどが処理対象となる場合は、燃焼によって塩化水素(塩酸へと変化する。)が生じる。 When VOCs are treated by the catalytic combustion method, in the decomposition of organic compounds composed only of carbon (C), oxygen (O), hydrogen (H) such as toluene, xylene, butanol, ethyl acetate, after complete combustion, Since only carbon dioxide (CO 2 ) and water (H 2 O) are produced, it is unlikely to adversely affect the catalyst. However, when a halogen-based organic compound containing chlorine, for example, dichloromethane (methylene chloride), chloroethylene, or the like is to be treated, hydrogen chloride (changes to hydrochloric acid) is generated by combustion.

このため、アルミナ担体を使用した金属白金を触媒成分に利用した従来の触媒では、塩化白金が出現し触媒活性が低下する問題があった。更に担体のアルミナも塩酸による浸食により強度が無くなり形状崩壊する現象が見られ有効な触媒として活用できなかった。また、特許文献1、2の触媒においても、強い酸性によって担体の溶出とこれに伴う触媒成分の凝集や剥離が生じ、触媒が劣化してしまうという問題があった。 Therefore, in the conventional catalyst using metallic platinum using an alumina carrier as a catalyst component, there is a problem that platinum chloride appears and the catalytic activity is lowered. Furthermore, the carrier alumina also lost its strength due to erosion by hydrochloric acid and had a phenomenon of shape collapse, and could not be used as an effective catalyst. Further, the catalysts of Patent Documents 1 and 2 also have a problem that the catalyst is deteriorated due to the elution of the carrier due to the strong acidity and the aggregation and peeling of the catalyst components accompanying the elution.

本発明は、以上のような事情に鑑みてなされたものであり、耐酸性を有し、ハロゲン系VOCの処理においても長期間使用することができるVOC処理用触媒と、これを有するVOC処理装置、VOCの処理方法を提供することを課題としている。 The present invention has been made in view of the above circumstances, and is a VOC treatment catalyst which has acid resistance and can be used for a long period of time even in the treatment of halogen-based VOCs, and a VOC treatment apparatus having the catalyst. , A subject is to provide a VOC processing method.

上記の課題を解決するため、本発明のVOC処理用触媒は、炭化ケイ素(SiC)を主成分とする担体の表面に、コバルト(Co)とセリウム(Ce)の複合酸化物が担持されていることを特徴としている。 In order to solve the above problems, in the VOC treatment catalyst of the present invention, a composite oxide of cobalt (Co) and cerium (Ce) is supported on the surface of a carrier containing silicon carbide (SiC) as a main component. It is characterized by that.

本発明のVOC処理装置は、前記VOC処理用触媒と、VOC処理用触媒への通電装置とを有することを特徴としている。 The VOC processing apparatus of the present invention is characterized by having the VOC processing catalyst and an energizing device for the VOC processing catalyst.

本発明のVOCの処理方法は、前記VOC処理装置を利用したVOCの処理方法であって、前記通電装置によって前記VOC処理用触媒の担体を通電加熱する工程を含むことを特徴としている。 The VOC processing method of the present invention is a VOC processing method using the VOC processing device, and is characterized by including a step of energizing and heating the carrier of the VOC processing catalyst by the energizing device.

本発明のVOC処理用触媒は、耐酸性を有することで、ハロゲン系VOCによる触媒の劣化を抑制することができる。このため、既存の白金触媒などでは対応が困難であったハロゲン系VOCが発生する工場などにおいて、触媒燃焼式による処理が可能となる。 Since the catalyst for VOC treatment of the present invention has acid resistance, deterioration of the catalyst due to halogen-based VOC can be suppressed. Therefore, in factories and the like where halogen-based VOCs are generated, which is difficult to deal with with existing platinum catalysts and the like, it becomes possible to perform treatment by a catalyst combustion method.

本発明のVOC処理装置およびVOCの処理方法によれば、通電装置からSiC担体へ直接的に通電加熱することで、SiC担体の自己発熱能を利用してVOCを分解することができる。このため、外部の加熱装置を省略することができ、装置の小型化、処理コストの低減を図ることができる。 According to the VOC processing device and the VOC processing method of the present invention, the VOC can be decomposed by utilizing the self-heating ability of the SiC carrier by directly energizing and heating the SiC carrier from the energizing device. Therefore, the external heating device can be omitted, and the device can be downsized and the processing cost can be reduced.

SiC担体上に担持されたCo,Ce酸化物の電子顕微鏡写真である。It is an electron micrograph of a Co, Ce oxide supported on a SiC carrier. 触媒加速劣化装置の概要を示した図である。It is a figure which showed the outline of the catalyst acceleration deterioration apparatus. 触媒加速劣化試験装置における実験結果を示した図である。It is a figure which showed the experimental result in the catalyst acceleration deterioration test apparatus. 担体表面における触媒の劣化抑制機構を示した模式図である。It is a schematic diagram which showed the deterioration suppression mechanism of a catalyst on a carrier surface. Co,Ce酸化物/SiC触媒を用いた各種塩素系VOCの分解実験結果(SV 22000h−1、各VOC濃度 1000ppm)を示した図である。It is a figure which showed the decomposition experiment result (SV 22000h-1, each VOC concentration 1000ppm) of various chlorine-based VOCs using a Co, Ce oxide / SiC catalyst. Co,Ce酸化物/SiC触媒、白金担持アルミナ触媒を用いた各種塩素系VOCの分解実験結果(SV 10000h−1、各VOC濃度 2000ppm)を示した図である。It is a figure which showed the decomposition experiment result (SV 10000h-1, each VOC concentration 2000ppm) of various chlorine-based VOCs using a Co, Ce oxide / SiC catalyst, and a platinum-supported alumina catalyst. 塩酸暴露後の触媒(白金担持アルミナ触媒、Co,Ce酸化物/コージェライト触媒、Co,Ce酸化物/SiC触媒の状態を示した写真である。It is a photograph which showed the state of the catalyst (platinum-supported alumina catalyst, Co, Ce oxide / cordierite catalyst, Co, Ce oxide / SiC catalyst after exposure to hydrochloric acid.

本発明者らは、特許文献1、2などで提案したコバルト(Co)とセリウム(Ce)の複合酸化物(コバルト・セリウム系複合酸化物)が容易に炭化ケイ素(SiC)を主成分とする基材に付着するという新規な知見を得て、本発明を完成させるに至った。SiCは、濡れ性の悪さや高温耐性を有する材料であり、物質が付着し難い(はじく性質を有する)ことが知られている。このため、SiC基材にコバルト・セリウム系複合酸化物が付着することは予期できないことであった。 The present inventors easily use silicon carbide (SiC) as a main component in the composite oxide (cobalt-cerium-based composite oxide) of cobalt (Co) and cerium (Ce) proposed in Patent Documents 1 and 2, etc. The present invention has been completed by obtaining a novel finding that it adheres to a base material. SiC is a material having poor wettability and high temperature resistance, and is known to have a substance that is difficult to adhere to (has a repellent property). Therefore, it was unpredictable that the cobalt-cerium-based composite oxide would adhere to the SiC base material.

以下、本発明のVOC処理用触媒、VOC処理装置およびVOCの処理方法の一実施形態について説明する。 Hereinafter, an embodiment of the VOC treatment catalyst, the VOC treatment apparatus, and the VOC treatment method of the present invention will be described.

本発明のVOC処理用触媒の対象となるVOCとしては、例えば、トルエン、アセトアルデヒド、ホルムアルデヒド、ベンゼン、キシレン、酢酸エチル、ジクロロメタン(塩化メチレン)、クロロエチレンなどのうちの1種または2種以上を例示することができる。 Examples of the VOC to be the target of the VOC treatment catalyst of the present invention include one or more of toluene, acetaldehyde, formaldehyde, benzene, xylene, ethyl acetate, dichloromethane (methylene chloride), chloroethylene and the like. can do.

本発明のVOC処理用触媒は、炭化ケイ素(SiC)を主成分とする担体の表面に、コバルト(Co)とセリウム(Ce)の複合酸化物(コバルト・セリウム系複合酸化物)が担持されている。 In the catalyst for VOC treatment of the present invention, a composite oxide of cobalt (Co) and cerium (Ce) (cobalt-cerium-based composite oxide) is supported on the surface of a carrier containing silicon carbide (SiC) as a main component. There is.

コバルト・セリウム系複合酸化物は、特に限定されないが、特許文献3、4を参照することができる。 The cobalt-cerium-based composite oxide is not particularly limited, but Patent Documents 3 and 4 can be referred to.

その一例を示すと、VOC処理用触媒は、
(A)平均粒子径0.8〜2.0μmのコバルト酸化物粒子を、コバルトイオン生成可能な塩又は化合物、セリウムイオンを生成可能な塩又は化合物および水と混合して触媒浸漬液を調製する工程、
(B)得られた触媒浸漬液に炭化ケイ素(SiC)を主成分とする担体を浸漬処理する工程、及び
(C)浸漬処理後の担体を焼成する工程
を含む方法によって製造することができる。これにより、SiC担体に、触媒粒子(コバルト・セリウム系複合酸化物)が担持される。触媒粒子は、平均粒子径0.8〜2.0μmのコバルト酸化物粒子のまわりがコバルトイオンを前駆体とするコバルト酸化物およびセリウムイオンを前駆体とするセリウム酸化物で覆われている。ここで平均粒子径は、レーザー回折法によって求めた粒度分布における積算値50%での粒径(d0.5)を意味する。また、「コバルト酸化物粒子のまわりがコバルト酸化物及びセリウム酸化物で覆われている」とは、コバルト酸化物粒子の表面にコバルト酸化物及びセリウム酸化物が形成されていることを意味する。したがって、触媒粒子は、平均粒子径0.8〜2.0μmのコバルト酸化物粒子と、コバルトイオンを前駆体とするコバルト酸化物と、セリウムイオンを前駆体とするセリウム酸化物と、を有している。
As an example, the catalyst for VOC treatment is
(A) Cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm are mixed with a salt or compound capable of producing cobalt ions, a salt or compound capable of producing cerium ions, and water to prepare a catalyst immersion liquid. Process,
It can be produced by a method including (B) a step of immersing a carrier containing silicon carbide (SiC) as a main component in the obtained catalyst immersion liquid, and (C) a step of calcining the carrier after the immersion treatment. As a result, catalyst particles (cobalt-cerium-based composite oxide) are supported on the SiC carrier. The catalyst particles are covered with cobalt oxide having a cobalt ion as a precursor and cerium oxide having a cerium ion as a precursor around cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm. Here, the average particle size means the particle size (d0.5) at an integrated value of 50% in the particle size distribution obtained by the laser diffraction method. Further, "the circumference of the cobalt oxide particles is covered with the cobalt oxide and the cerium oxide" means that the cobalt oxide and the cerium oxide are formed on the surface of the cobalt oxide particles. Therefore, the catalyst particles include cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm, cobalt oxide having cobalt ion as a precursor, and cerium oxide having cerium ion as a precursor. ing.

触媒粒子は、コバルト酸化物粒子のまわりがコバルト酸化物及びセリウム酸化物の他、銅イオンを前駆体とする銅酸化物で覆われていてもよい。すなわち、触媒粒子は、さらに銅イオンを前駆体とする銅酸化物を有して構成され、前記コバルト酸化物、前記セリウム酸化物、および前記銅酸化物が前記コバルト酸化物粒子の表面に形成されていてもよい。担持触媒は、触媒粒子の分散性向上のために、複合ケイ酸塩を主体とする粘土鉱物を有してもよく、触媒粒子同士が分散された構造であってもよい。 The catalyst particles may be covered with a copper oxide having a copper ion as a precursor, in addition to the cobalt oxide and the cerium oxide, around the cobalt oxide particles. That is, the catalyst particles are further composed of a copper oxide having a copper ion as a precursor, and the cobalt oxide, the cerium oxide, and the copper oxide are formed on the surface of the cobalt oxide particles. You may be. The supported catalyst may have a clay mineral mainly composed of a composite silicate in order to improve the dispersibility of the catalyst particles, or may have a structure in which the catalyst particles are dispersed.

コバルト酸化物粒子は、各種のコバルト化合物、例えば炭酸塩、硝酸塩、硫酸塩、塩化物等の無機酸塩やアルコラート、カルボン酸塩、錯塩等の有機化合物や有機塩等の焼成物、乾固物であってよい。なかでも炭酸塩を前駆体とした化合物を空気中250〜400℃で低温焼成することで作製したものが好ましい。また、コバルト酸化物粒子は、平均粒子径が0.8〜2.0μmの範囲内に粉砕処理されたものであることも好ましい。粉砕処理は乾式粉砕処理でもよいし湿式粉砕処理でもよくその処理方法は問わない。例えば、乾式ジェットミルを用いて粉砕処理を行ってもよいし、乾式ビーズミル法や湿式回転ボールミル法等によって粉砕処理を行ってもよい。コバルト酸化物粒子の平均粒子径が0.8μm未満の場合には、コバルトの酸化物粒子同士が凝集しやすくなり、加熱下でその比表面積低下を招き、活性が低下しやすいので好ましくない。また、2.0μmを超える場合には、担体との接着面積が小さく、剥離しやすくなるため好ましくない。かかる観点から、活性が低下しにくく耐久性が良好でありしかも剥離性が良好な、耐久性と剥離性とのバランスが良好な担持触媒を得るためには、コバルト酸化物粒子の平均粒子径は0.8〜2.0μmの範囲が好ましい。 Cobalt oxide particles include various cobalt compounds such as inorganic acid salts such as carbonates, nitrates, sulfates and chlorides, organic compounds such as alcoholates, carboxylates and complex salts, calcined products such as organic salts, and dry products. May be. Of these, a compound prepared by calcining a compound using a carbonate as a precursor at a low temperature of 250 to 400 ° C. in the air is preferable. Further, it is also preferable that the cobalt oxide particles are pulverized within the range of an average particle diameter of 0.8 to 2.0 μm. The pulverization treatment may be a dry pulverization treatment or a wet pulverization treatment, and the treatment method is not limited. For example, the pulverization treatment may be performed using a dry jet mill, or the pulverization treatment may be performed by a dry bead mill method, a wet rotary ball mill method, or the like. When the average particle size of the cobalt oxide particles is less than 0.8 μm, the cobalt oxide particles tend to agglomerate with each other, which causes a decrease in the specific surface area under heating and a decrease in activity, which is not preferable. On the other hand, if it exceeds 2.0 μm, the adhesion area with the carrier is small and the peeling is easy, which is not preferable. From this point of view, in order to obtain a supported catalyst that does not easily decrease in activity, has good durability, and has good peelability, and has a good balance between durability and peelability, the average particle size of the cobalt oxide particles should be set. The range of 0.8 to 2.0 μm is preferable.

そして、本発明での前記コバルトイオン、セリウムイオンは、コバルト、そしてセリウムが塩もしくは化合物として水溶性のものとして形成される。例えば、硝酸塩、硫酸塩等である。このようなコバルトイオン、セリウムイオンには、銅イオンを共存させてもよい。銅イオンを共存させて製造した担持触媒は、コバルト酸化物粒子のまわりがコバルト酸化物及びセリウム酸化物の他、銅イオンを前駆体とする銅酸化物で覆われたものとなる。銅イオンは、触媒粒子の酸化物質量比で0.1〜30質量%の範囲になるようにコバルトイオン及びセリウムイオンに共存させるのがより好ましい。これによって、触媒性能がより良好な担持触媒を得ることができる。 Then, the cobalt ion and cerium ion in the present invention are formed as cobalt and cerium being water-soluble as a salt or a compound. For example, nitrates, sulfates and the like. Copper ions may coexist with such cobalt ions and cerium ions. In the supported catalyst produced in the coexistence of copper ions, the cobalt oxide particles are covered with a copper oxide having a copper ion as a precursor in addition to the cobalt oxide and the cerium oxide. It is more preferable that the copper ion coexists with the cobalt ion and the cerium ion so that the oxide mass ratio of the catalyst particles is in the range of 0.1 to 30% by mass. Thereby, a supported catalyst having better catalytic performance can be obtained.

そして、本発明において用いられる担体は、炭化ケイ素(SiC)を主成分とする各種形状のものである。具体的には、ボール型やハニカム型の形状を例示することができる。また、担体については、直径5μm〜50μm程度の気孔を表面に有する多孔質構造体を採用することもできる。 The carrier used in the present invention has various shapes containing silicon carbide (SiC) as a main component. Specifically, a ball-shaped or honeycomb-shaped shape can be exemplified. Further, as the carrier, a porous structure having pores having a diameter of about 5 μm to 50 μm on the surface can also be adopted.

より具体的なVOC処理用触媒の製造方法としては、例えば、平均粒子径0.8〜2.0μmのコバルト酸化物粒子を、コバルトイオン生成可能な塩や化合物、セリウムイオン生成可能な塩や化合物、そして水とともに混合して触媒浸漬液を調製する。必要に応じて、銅イオン生成可能な塩や化合物や、カオリン、活性白土等の複合ケイ酸塩を主体とする粘土鉱物を混合して触媒浸漬液を調製してもよい。次いで、これをSiC担体に浸漬処理し、脱水後に焼成する。この焼成によってコバルトイオン、セリウムイオンは各々酸化物に変換されることになる。触媒浸漬液に銅イオンが含まれる場合には、この焼成によって銅イオンも酸化物に変換されることになる。 As a more specific method for producing a catalyst for VOC treatment, for example, cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm are used as a salt or compound capable of producing cobalt ions, or a salt or compound capable of producing cerium ions. , And mix with water to prepare a catalytic immersion solution. If necessary, a catalyst dipping solution may be prepared by mixing salts and compounds capable of producing copper ions and clay minerals mainly composed of complex silicates such as kaolin and activated clay. Next, this is immersed in a SiC carrier, dehydrated and then fired. By this firing, cobalt ions and cerium ions are each converted into oxides. When the catalyst immersion liquid contains copper ions, the copper ions are also converted into oxides by this firing.

本発明のVOC処理用触媒において、(i)平均粒子径0.8〜2.0μmのコバルト酸化物粒子、(ii)コバルトイオンを前駆体とするコバルト酸化物、(iii)セリウムイオンを前駆体とするセリウム酸化物の質量比については、特に限定されないが、(i):20〜50質量%、(ii):6〜12質量%、(iii):39〜66質量%が考慮される。また焼成温度については、特に限定されないが、200〜500℃が考慮される。また、SiC担体への担持量についても、触媒の使用対象のVOCの種類や処理条件等を考慮して適宜に定めることができるが、一般的には、質量比として、SiC担体に対して10〜30質量%の範囲が好ましく考慮される。 In the VOC treatment catalyst of the present invention, (i) cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm, (ii) cobalt oxide having cobalt ions as a precursor, and (iii) cerium ions as precursors. The mass ratio of the cerium oxide to be used is not particularly limited, but (i): 20 to 50% by mass, (ii): 6 to 12% by mass, and (iii): 39 to 66% by mass are taken into consideration. The firing temperature is not particularly limited, but 200 to 500 ° C. is considered. The amount carried on the SiC carrier can also be appropriately determined in consideration of the type of VOC to be used for the catalyst, treatment conditions, etc., but in general, the mass ratio is 10 with respect to the SiC carrier. A range of ~ 30% by weight is preferably considered.

本発明のVOC処理用触媒を用いて気相中に含まれるVOCを分解する場合は、VOCを含むガスを150℃〜350℃、好ましくは200℃〜300℃で本発明のVOC処理用触媒と接触させればよい。 When the VOC treatment catalyst of the present invention is used to decompose the VOC contained in the gas phase, the gas containing the VOC is mixed with the VOC treatment catalyst of the present invention at 150 ° C. to 350 ° C., preferably 200 ° C. to 300 ° C. You just have to make contact.

本発明のVOC処理用触媒は、担体が炭化ケイ素(SiC)で構成されており、このSiCとCo,Ce触媒の相乗効果によって耐酸性を有している。このため、本発明のVOC処理用触媒は、ハロゲン系VOCの分解に伴って生じる塩化水素や硫黄酸化物などによる触媒性能の劣化が抑制され、長期間使用することができる。なお、発生した塩化水素や硫黄酸化物は別途水処理などを行うことで除去が可能である。 In the VOC treatment catalyst of the present invention, the carrier is composed of silicon carbide (SiC), and the catalyst has acid resistance due to the synergistic effect of the SiC and the Co and Ce catalysts. Therefore, the catalyst for VOC treatment of the present invention can be used for a long period of time because the deterioration of the catalyst performance due to hydrogen chloride, sulfur oxides, etc. generated by the decomposition of the halogen-based VOC is suppressed. The generated hydrogen chloride and sulfur oxides can be removed by performing a separate water treatment or the like.

本発明のVOC処理用触媒によれば、既存の白金触媒では対応が困難であったハロゲン系VOCが発生する工場等のVOCの処理現場において、触媒燃焼式の適応が可能となる。これにより、環境触媒や排ガス処理装置市場の活性化、労働環境の改善、住居環境の改善等への貢献が期待される。 According to the VOC treatment catalyst of the present invention, the catalyst combustion type can be applied at a VOC treatment site such as a factory where halogen-based VOCs are generated, which was difficult to deal with with the existing platinum catalyst. This is expected to contribute to revitalizing the market for environmental catalysts and exhaust gas treatment equipment, improving the working environment, and improving the living environment.

また、本発明のVOC処理装置は、上述した本発明のVOC処理用触媒と、VOC処理用触媒への通電装置とを有している。本発明のVOC処理方法は、VOCを含むガスとVOC処理用触媒とを接触させる工程と、通電装置によってVOC処理用触媒の担体を通電加熱する工程を含む。 Further, the VOC processing apparatus of the present invention includes the above-mentioned VOC processing catalyst of the present invention and an energizing device for the VOC processing catalyst. The VOC treatment method of the present invention includes a step of bringing the gas containing VOC into contact with the VOC treatment catalyst, and a step of energizing and heating the carrier of the VOC treatment catalyst by an energizing device.

通電装置からVOC処理用触媒のSiC担体へ直接的に通電加熱することで、SiC担体の自己発熱能を利用して所定の温度まで直ちに昇温させてVOCを分解することができる。このため、外部の加熱装置を省略することができ、装置の小型化、処理コストの低減を図ることができる。 By directly energizing and heating the SiC carrier of the VOC treatment catalyst from the energizing device, the VOC can be decomposed by immediately raising the temperature to a predetermined temperature by utilizing the self-heating ability of the SiC carrier. Therefore, the external heating device can be omitted, and the device can be downsized and the processing cost can be reduced.

本発明のVOC処理用触媒、VOC処理装置およびVOCの処理方法は、以上の実施形態に限定されることはない。 The VOC treatment catalyst, VOC treatment apparatus, and VOC treatment method of the present invention are not limited to the above embodiments.

以下、実施例とともに本発明について説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described together with Examples, but the present invention is not limited to the following Examples.

<実施例1>触媒の作製
触媒の製造方法は、本発明者らが創案した方法(特許文献2)を参考にした。具体的にはコバルト炭酸塩を空気中で300℃〜500℃の範囲内の一定温度で5時間焼成した後、ジェットミル法にて粉砕を行った。粉砕後のコバルト酸化物に対して蒸留水、硝酸コバルト、硝酸セリウム等を加えてよく攪拌混合し、コバルト・セリウム系前駆体溶液を調製した。この前駆体溶液の貯留容器中にハニカム型のSiCセラミックス担体を1分間浸漬した後、エアブローし、空気中において500℃で1時間焼成することにより、コバルト・セリウム系複合酸化物を担持した担持触媒(以下、「Co,Ce酸化物/SiC触媒」と記載する)を得た。
<Example 1> Preparation of catalyst As the method for producing the catalyst, the method devised by the present inventors (Patent Document 2) was referred to. Specifically, cobalt carbonate was calcined in air at a constant temperature in the range of 300 ° C. to 500 ° C. for 5 hours, and then pulverized by a jet mill method. Distilled water, cobalt nitrate, cerium nitrate and the like were added to the pulverized cobalt oxide and mixed well with stirring to prepare a cobalt-cerium-based precursor solution. A carrier catalyst carrying a cobalt-cerium-based composite oxide was immersed in a storage container for this precursor solution for 1 minute, then air-blown and calcined in air at 500 ° C. for 1 hour. (Hereinafter referred to as "Co, Ce oxide / SiC catalyst") was obtained.

同様に、ハニカム型のコージェライトセラミックス担体を、前駆体溶液の貯留容器中に1分間浸漬し、エアブローした後、セラミックス担体を空気中において500℃で1時間焼成することにより担持触媒(以下、「Co,Ce酸化物/コージェライト触媒」と記載する)を得た。 Similarly, a honeycomb-type cordierite ceramic carrier is immersed in a storage container for a precursor solution for 1 minute, air-blown, and then the ceramic carrier is calcined in air at 500 ° C. for 1 hour to support a catalyst (hereinafter, “” Co, Ce oxide / corderite catalyst ”) was obtained.

<実施例2>剥離性評価
実施例1で得た触媒の剥離性評価を行うため、試料を蒸留水に浸し、超音波洗浄機(アズワン株式会社製 USK−1R)を用いて、水中で10秒間超音波処理した後、試料を乾燥させた。乾燥後、触媒の付着状態を目視にて観察した。
<Example 2> Evaluation of peelability In order to evaluate the peelability of the catalyst obtained in Example 1, the sample was immersed in distilled water and used in water using an ultrasonic cleaner (USK-1R manufactured by AS ONE Co., Ltd.). After sonication for seconds, the sample was dried. After drying, the adhesion state of the catalyst was visually observed.

また、比較のため、コバルト・セリウム系前駆体溶液に変えてアルミナスラッジを前駆体とした担持触媒も作製し、同様の剥離性評価を行った。具体的には、公知文献(国際公開番号: WO2010103669 A1)を参考にしてアルミナスラリーを作製し、SiC担体とコージェライト担体にコーティングした。 For comparison, a supported catalyst using alumina sludge as a precursor instead of a cobalt-cerium-based precursor solution was also prepared, and the same peelability evaluation was performed. Specifically, an alumina slurry was prepared with reference to a publicly known document (International Publication No .: WO2010103669 A1), and the SiC carrier and the cordierite carrier were coated.

結果を表1に示す。また、図1にコバルト・セリウム系複合酸化物をSiC担体表面に担持した触媒の走査電子顕微鏡写真を示す。 The results are shown in Table 1. Further, FIG. 1 shows a scanning electron micrograph of a catalyst in which a cobalt-cerium-based composite oxide is supported on the surface of a SiC carrier.

Figure 2021069996
Figure 2021069996

表1に示したように、コバルト・セリウム系前駆体溶液では、SiC担体を用いた場合もコージェライト担体を用いた場合も、剥離は確認されなかった。一方、SiC担体上にコーティングしたアルミナ粒子は水中での超音波で剥離し、コージェライト担体上ではアルミナは剥離し難いことが確認された。 As shown in Table 1, no exfoliation was confirmed in the cobalt-cerium-based precursor solution when either the SiC carrier or the cordierite carrier was used. On the other hand, it was confirmed that the alumina particles coated on the SiC carrier were peeled off by ultrasonic waves in water, and that the alumina was difficult to peel off on the cordierite carrier.

<実施例3>加速劣化試験
実施例1で得たCo,Ce酸化物/SiC触媒とCo,Ce酸化物/コージェライト触媒について性能評価を行った。
<Example 3> Accelerated deterioration test The performance of the Co, Ce oxide / SiC catalyst and the Co, Ce oxide / cordierite catalyst obtained in Example 1 was evaluated.

図2は、触媒加速劣化装置の概要を示した図である。触媒加速劣化装置は、触媒を設置する触媒部と溶剤を揮発する揮発部とを備えており、触媒部と揮発部は、それぞれ400℃程度に加熱可能とされている。ファンによって一方方向にガスを逃がしながら、加熱された揮発部で揮発した有機成分を加熱した触媒に高濃度で吹き付けるという機構である。触媒部と揮発部の温度はモニターしており、有機物が触媒によって分解されるとその反応熱により、触媒部の温度が上昇することを利用して、触媒に活性があるかどうかを簡易的に評価した。実験条件としては、触媒部および揮発部の温度設定:400℃、溶剤流入速度:500μl/min、設置触媒量:0.5 g、被毒前駆体(ジクロロメタン)濃度:5 vol%/トルエンとした。 FIG. 2 is a diagram showing an outline of the catalyst accelerated deterioration apparatus. The catalyst accelerated aging apparatus includes a catalyst part for installing a catalyst and a volatile part for volatilizing a solvent, and each of the catalyst part and the volatile part can be heated to about 400 ° C. It is a mechanism in which the organic component volatilized in the heated volatile part is sprayed at a high concentration on the heated catalyst while the gas is released in one direction by a fan. The temperature of the catalyst part and the volatile part is monitored, and when the organic matter is decomposed by the catalyst, the temperature of the catalyst part rises due to the heat of reaction, so it is easy to check whether the catalyst is active or not. evaluated. The experimental conditions were the temperature setting of the catalyst part and the volatile part: 400 ° C., the solvent inflow rate: 500 μl / min, the installed catalyst amount: 0.5 g, and the poisoning precursor (dichloromethane) concentration: 5 vol% / toluene.

結果を図3に示す。図3(a)、(b)はトルエンのみを溶剤に用いた結果であり、図3(c)、(d)はトルエンにジクロロメタンを混ぜた溶剤を用いた結果である。また、図3(a)、(c)はCo,Ce酸化物/コージェライト触媒、図3(b)、(d)はCo,Ce酸化物/SiC触媒を用いた結果である。 The results are shown in FIG. 3 (a) and 3 (b) are the results of using only toluene as a solvent, and FIGS. 3 (c) and 3 (d) are the results of using a solvent in which toluene is mixed with dichloromethane. Further, FIGS. 3 (a) and 3 (c) show results using a Co, Ce oxide / carbide catalyst, and FIGS. 3 (b) and 3 (d) show results using a Co, Ce oxide / SiC catalyst.

Co,Ce酸化物/コージェライト触媒では、Cl系物質の混入によって活性が劣化している様子が確認された。一方、Co,Ce酸化物/SiC触媒では、劣化が途中で止まり、活性が維持されていることが確認された。下地にSiC担体を用いることで塩素系VOCに対する耐酸性が付与され、触媒の劣化が抑制されたことが示されている。 It was confirmed that the activity of the Co and Ce oxide / cordierite catalysts deteriorated due to the mixing of Cl-based substances. On the other hand, it was confirmed that the deterioration of the Co and Ce oxide / SiC catalysts stopped in the middle and the activity was maintained. It has been shown that the use of a SiC carrier as a base imparts acid resistance to chlorine-based VOCs and suppresses deterioration of the catalyst.

図4は、担体表面における触媒の劣化抑制機構を示した模式図である。図4に示したように、SiCにはHClガスが染み込みづらく、反応の活性サイト以外の部分で触媒にダメージを与える影響が小さいことが要因の一つと考えられた。 FIG. 4 is a schematic view showing a mechanism for suppressing deterioration of the catalyst on the surface of the carrier. As shown in FIG. 4, it was considered that one of the factors was that HCl gas was difficult to permeate into SiC and the influence of damaging the catalyst in the portion other than the active site of the reaction was small.

<実施例4>触媒活性試験
実施例1で得たCo,Ce酸化物/SiC触媒について、各種塩素系VOCの分解実験(触媒活性試験)を行った。
<Example 4> Catalytic activity test A decomposition experiment (catalytic activity test) of various chlorine-based VOCs was carried out on the Co, Ce oxide / SiC catalyst obtained in Example 1.

触媒活性試験については、所定の空間速度(SV)となるように流量を設定したコンプレッサーより供給された空気を、常時、触媒と接触するように送り込み続ける装置を用いた。目的のVOCは送液ポンプにて200℃に加熱した注入管の中に注入することで加熱した空気とガス状で混合させた。触媒は外部ヒーターにて最大450℃までの任意の温度に加熱した。ヒーター温度を調整して反応温度を変化させながら、反応槽に入る前のガスと、反応槽を通過したガスをGC−MS(質量分析装置付きガスクロマトグラフ)で分析し、それぞれのガスの濃度を求めた(反応層に入る前のガスの濃度をC1、反応層を通過したガスの濃度をC2とする)。分解率c(%)をc=C2/C1×100の式から求めた。 For the catalyst activity test, an apparatus was used in which the air supplied from the compressor whose flow rate was set so as to have a predetermined space velocity (SV) was constantly sent so as to be in contact with the catalyst. The target VOC was mixed with heated air in the form of gas by injecting it into an injection tube heated to 200 ° C. with a liquid feed pump. The catalyst was heated to any temperature up to 450 ° C. with an external heater. While adjusting the heater temperature and changing the reaction temperature, the gas before entering the reaction tank and the gas that passed through the reaction tank are analyzed by GC-MS (gas chromatograph with mass spectrometer), and the concentration of each gas is determined. It was determined (the concentration of gas before entering the reaction layer is C1, and the concentration of gas that has passed through the reaction layer is C2). The decomposition rate c (%) was calculated from the formula c = C2 / C1 × 100.

結果を図5〜図7に示す。なお、空間速度(SV)は、図5は22000h−1、図6では10000h−1となるように風量を調整した。 The results are shown in FIGS. 5 to 7. The air volume was adjusted so that the space velocity (SV) was 22000 h-1 in FIG. 5 and 10000 h-1 in FIG.

図5(各VOC濃度1000ppm)に示したように、Co,Ce酸化物/SiC触媒は、分解温度500℃以上において3成分とも90%以上分解できることが確認された。特に、塩化メチレン・1,2-ジクロロエタンについては400〜450℃で95%以上の分解率を示した。また、図6(各VOC濃度2000ppm)に示したように、Co,Ce系/SiC触媒は、各種塩素系VOCが高濃度の場合であっても500℃程度でほぼ分解できることが確認され、従来の白金担持アルミナ触媒と比べ分解率が高いことが示された。 As shown in FIG. 5 (each VOC concentration 1000 ppm), it was confirmed that the Co, Ce oxide / SiC catalyst can decompose all three components by 90% or more at a decomposition temperature of 500 ° C. or higher. In particular, methylene chloride and 1,2-dichloroethane showed a decomposition rate of 95% or more at 400 to 450 ° C. Further, as shown in FIG. 6 (each VOC concentration 2000 ppm), it was confirmed that the Co, Ce-based / SiC catalyst can be substantially decomposed at about 500 ° C. even when various chlorine-based VOCs have a high concentration. It was shown that the decomposition rate was higher than that of the platinum-supported alumina catalyst of.

<実施例5>塩酸暴露試験
酸性ガス存在下での触媒の耐久性を試験するため、従来の白金担持アルミナ触媒、Co,Ce酸化物/コージェライト触媒、Co,Ce酸化物/SiC触媒の塩酸暴露雰囲気下での劣化状況を比較した。方法としては、40mL 濃塩酸を入れた瓶をデシケーター中に置き、塩酸暴露雰囲気を調整した。さらに、上記3種類の触媒をデシケーター内に置いて室温で2週間静置させた。
<Example 5> Hydroxide exposure test In order to test the durability of the catalyst in the presence of acid gas, the conventional platinum-supported alumina catalyst, Co, Ce oxide / cordierite catalyst, and Co, Ce oxide / SiC catalyst hydrochloric acid The deterioration conditions under the exposed atmosphere were compared. As a method, a bottle containing 40 mL of concentrated hydrochloric acid was placed in a desiccator to adjust the hydrochloric acid exposure atmosphere. Further, the above three kinds of catalysts were placed in a desiccator and allowed to stand at room temperature for 2 weeks.

図7に示したように、従来の白金担持アルミナ触媒は黄色に変色し、Co,Ce酸化物/コージェライト触媒は変色し表面がぼろぼろになったが、Co,Ce酸化物/SiC触媒では劣化は確認されなかった。 As shown in FIG. 7, the conventional platinum-supported alumina catalyst discolored yellow, the Co, Ce oxide / cordierite catalyst discolored and the surface became shabby, but the Co, Ce oxide / SiC catalyst deteriorated. Was not confirmed.

Claims (5)

炭化ケイ素(SiC)を主成分とする担体の表面に、コバルト(Co)とセリウム(Ce)の複合酸化物が担持されていることを特徴とするVOC処理用触媒。 A catalyst for VOC treatment, characterized in that a composite oxide of cobalt (Co) and cerium (Ce) is supported on the surface of a carrier containing silicon carbide (SiC) as a main component. VOCがハロゲン系有機化合物であることを特徴とする請求項1のVOC処理用触媒。 The catalyst for VOC treatment according to claim 1, wherein the VOC is a halogen-based organic compound. 請求項1のVOC処理用触媒と、VOC処理用触媒への通電装置とを有することを特徴とするVOC処理装置。 A VOC processing apparatus according to claim 1, further comprising a VOC processing catalyst and an energizing device for the VOC processing catalyst. 請求項3のVOC処理装置を利用したVOCの処理方法であって、
VOCを含むガスと前記VOC処理用触媒とを接触させる工程、および、
前記通電装置によって前記VOC処理用触媒の担体を通電加熱する工程、
を含むことを特徴とするVOCの処理方法。
A VOC processing method using the VOC processing apparatus according to claim 3.
The step of bringing the gas containing VOC into contact with the VOC treatment catalyst, and
A step of energizing and heating the carrier of the VOC treatment catalyst by the energizing device.
A VOC processing method comprising.
VOCがハロゲン系有機化合物であることを特徴とする請求項4のVOCの処理方法。
The method for treating VOC according to claim 4, wherein the VOC is a halogen-based organic compound.
JP2019199262A 2019-10-31 2019-10-31 VOC treatment catalyst, VOC treatment device, and VOC treatment method Active JP7427187B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019199262A JP7427187B2 (en) 2019-10-31 2019-10-31 VOC treatment catalyst, VOC treatment device, and VOC treatment method
CN202080075917.1A CN114728274A (en) 2019-10-31 2020-10-29 Catalyst for VOC treatment, VOC treatment device, and VOC treatment method
PCT/JP2020/040650 WO2021085536A1 (en) 2019-10-31 2020-10-29 Catalyst for voc treatment, voc treatment apparatus and voc treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199262A JP7427187B2 (en) 2019-10-31 2019-10-31 VOC treatment catalyst, VOC treatment device, and VOC treatment method

Publications (2)

Publication Number Publication Date
JP2021069996A true JP2021069996A (en) 2021-05-06
JP7427187B2 JP7427187B2 (en) 2024-02-05

Family

ID=75712581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199262A Active JP7427187B2 (en) 2019-10-31 2019-10-31 VOC treatment catalyst, VOC treatment device, and VOC treatment method

Country Status (3)

Country Link
JP (1) JP7427187B2 (en)
CN (1) CN114728274A (en)
WO (1) WO2021085536A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2818039B2 (en) * 1991-03-06 1998-10-30 シャープ株式会社 Air purifier also serves as a heater
JPH06343827A (en) * 1993-06-02 1994-12-20 Sumitomo Metal Mining Co Ltd Treatment of fluorocarbon-containing gas
JP2001054723A (en) 1999-06-07 2001-02-27 Nkk Corp Method and device for decomposing gaseous halogenated hydrocarbon
JP2002028486A (en) 2000-07-14 2002-01-29 Toyobo Co Ltd Adsorption and decomposition agent of aldehydes and producing method thereof
JP2007117911A (en) 2005-10-28 2007-05-17 Shimane Pref Gov Catalyst for decomposing organic chlorine compound and method for removing organic chlorine compound using the same
JP5604197B2 (en) 2010-07-07 2014-10-08 株式会社Nbcメッシュテック Cerium oxide catalyst support for VOC decomposition
JP2013158714A (en) 2012-02-06 2013-08-19 Denso Corp Electrically heated catalyst device
WO2014157721A1 (en) 2013-03-29 2014-10-02 地方独立行政法人東京都立産業技術研究センター Loaded catalyst for bad odor treatment
JP6140326B1 (en) 2016-03-08 2017-05-31 株式会社流機エンジニアリング Method for regenerating adsorbent of volatile organic compound
CN107570163B (en) * 2017-10-17 2019-11-22 清华大学 A kind of support type VOCs catalyst for catalytic combustion and preparation method thereof
CN109731468B (en) * 2019-03-05 2024-04-05 广东环境保护工程职业学院 Waste gas purifying mechanism and waste gas treatment device
CN110186063B (en) * 2019-04-16 2020-12-15 南京工业大学 Purification treatment method and system for chlorine-containing volatile organic compound waste gas

Also Published As

Publication number Publication date
CN114728274A (en) 2022-07-08
WO2021085536A1 (en) 2021-05-06
JP7427187B2 (en) 2024-02-05

Similar Documents

Publication Publication Date Title
JP6486360B2 (en) Carbon monoxide and / or oxidation catalyst for volatile organic compounds
KR102283644B1 (en) Zeolite based bimetallic catalyst for ozone-catalytic oxidation of volatile organic compounds and oxidation method of volatile organic compounds using the same
KR101910569B1 (en) A Photocatalytic Filter for Efficient Removal of Mixed Gas and Manufacturing Method thereof
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
JP6483884B2 (en) Method for producing supported catalyst for malodor treatment
WO2021085536A1 (en) Catalyst for voc treatment, voc treatment apparatus and voc treatment method
JP6837828B2 (en) Low temperature oxidation catalyst
KR101548599B1 (en) Room temperature adsorption decomposer and method of manufacture for sewer odor remove
JP6886290B2 (en) Method for manufacturing low temperature oxidation catalyst
JP2012200628A (en) Carrier catalyst for volatile organic compound and method for producing the catalyst
JP6144311B2 (en) Photocatalytic filter excellent in removal performance for mixed gas and method for producing the same
KR101398042B1 (en) Catalyst for treating an exhaust gas containing organic acid, and method for treating an exhaust gas containing organic acid
JP2005313161A (en) Method for manufacturing denitration catalyst
JPH09155364A (en) Treatment of waste water
KR101400608B1 (en) Catalyst for selective oxidation of ammonia, manufacturing method same and process for selective oxidation of ammonia using same
KR101452152B1 (en) Preparing method of thin-film type platinum/titania-based photocatalyst for removing ammonia
JP2003071286A (en) Catalyst for cleaning harmful gas at low temperature
TWI433721B (en) Preparation and pretreatment of cerium oxide supported nano-palladium catalysts and its application in destruction of volatile organic compounds in air
JP2010075806A (en) High-durability substrate for depositing catalyst and exhaust gas cleaning catalyst thereof
JP3509286B2 (en) Decomposition method of chlorinated organic compounds
US20070110654A1 (en) Gaseous organic compound disposal system and method
JP2017094309A (en) Aldehyde removal catalyst, method for producing the same, and aldehyde gas removal method
CN112642429A (en) Impregnation liquid and preparation method thereof, catalyst and preparation method and application thereof, and waste gas treatment method
JP3762121B2 (en) Exhaust gas treatment method
JP2005305245A (en) Method for treating smelly exhaust gas and apparatus for deodorizing exhaust gas

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240116

R150 Certificate of patent or registration of utility model

Ref document number: 7427187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150