JP2005305245A - Method for treating smelly exhaust gas and apparatus for deodorizing exhaust gas - Google Patents

Method for treating smelly exhaust gas and apparatus for deodorizing exhaust gas Download PDF

Info

Publication number
JP2005305245A
JP2005305245A JP2004123131A JP2004123131A JP2005305245A JP 2005305245 A JP2005305245 A JP 2005305245A JP 2004123131 A JP2004123131 A JP 2004123131A JP 2004123131 A JP2004123131 A JP 2004123131A JP 2005305245 A JP2005305245 A JP 2005305245A
Authority
JP
Japan
Prior art keywords
exhaust gas
component
catalyst
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004123131A
Other languages
Japanese (ja)
Inventor
Kenichi Kiyono
健一 清野
Shinji Komada
信二 駒田
Haruo Hiura
はるを 樋浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Engineering Corp
Original Assignee
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Engineering Corp filed Critical Mitsubishi Chemical Engineering Corp
Priority to JP2004123131A priority Critical patent/JP2005305245A/en
Publication of JP2005305245A publication Critical patent/JP2005305245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating smelly exhaust gas, by which volatile organic compounds in low-temperature exhaust gas of ≤300°C, particularly ethyl acetate, 2-butanone and 2-propanol contained in the exhaust gas from a printing factory in large quantities, can be removed by using an inexpensive catalyst at a low running cost. <P>SOLUTION: The smelly exhaust gas is treated at 180-300°C by using the molded catalyst obtained by depositing an oxide (component A) of at least one element selected from the group consisting of Cr, Fe, V, W, Mn, Mo and Ce and Pt and/or Pd (component B) on a titanium oxide carrier. It is preferable that component A is V<SB>2</SB>O<SB>5</SB>, component B is Pd, the amount of V<SB>2</SB>O<SB>5</SB>to be deposited is 0.1-20 wt.% of the total amount of the titanium oxide carrier and component A, the amount of Pd to be deposited is 0.001-20 wt.% of the total amount of all the catalyst components and an oxide of Ni and/or Co (component C) are furthermore deposited on the titanium oxide carrier by 0.01-10 wt.% of the total amount of all the catalyst components. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有臭排ガスの処理方法および排ガス脱臭装置に関する。   The present invention relates to a method for treating odorous exhaust gas and an exhaust gas deodorization apparatus.

揮発性有機化合物(Volatile Organic Compounds)は、それ自身の発ガン性や有毒性、悪臭などによる生活環境の悪化、あるいは、光化学オキシダントの発生の原因となるため、この様な揮発性有機化合物を含有する排ガスに対しては、これらの揮発性有機化合物を除くための各種の除去方法が採用されている。中でも、触媒を使用する接触酸化分解法は、有害な揮発性有機化合物を、比較的低温で酸化分解し、無害な炭酸ガスに変換して無害化および無臭化するため、サーマルNOxの生成がなく、装置もコンパクトにすることが出来るので広く採用されている。   Volatile organic compounds contain such volatile organic compounds because they cause deterioration of living environment due to their own carcinogenicity, toxicity, odor, etc., or generation of photochemical oxidants. Various types of removal methods for removing these volatile organic compounds are employed for the exhaust gas. In particular, the catalytic oxidative decomposition method using a catalyst eliminates the generation of thermal NOx because harmful volatile organic compounds are oxidatively decomposed at a relatively low temperature and converted into harmless carbon dioxide gas to make them harmless and non-brominated. Since the device can be made compact, it is widely adopted.

特開平8−332384号公報JP-A-8-332384 「ケミカルエンジニアリング」(1975年5月号、第35〜41頁)“Chemical Engineering” (May 1975, pages 35-41)

従来、揮発性有機化合物の接触酸化分解触媒としては、アルミナ等の担体に活性成分として白金などの貴金属を担持させた触媒が使用されている。ところが、斯かる活性成分は、高価であると共に、300℃前後の反応温度で使用することから、排ガス温度が300℃よりも低い場合には排ガス及び/又は触媒の温度を上げる必要がある。   Conventionally, as a catalytic oxidative decomposition catalyst for volatile organic compounds, a catalyst in which a noble metal such as platinum is supported as an active component on a support such as alumina has been used. However, such an active ingredient is expensive and is used at a reaction temperature of about 300 ° C. Therefore, when the exhaust gas temperature is lower than 300 ° C., it is necessary to raise the temperature of the exhaust gas and / or the catalyst.

しかしながら、上記の様に、固定費およびランニングコストが高い方法は、特に小型装置からの排ガス処理においてはコスト面で大きな負担となる。そのため、印刷工場や塗装工場における様な小型の有臭排ガス発生小型設備に対しては、揮発性有機化合物除去設備の導入が必ずしも容易ではないのが現状である。   However, as described above, a method having a high fixed cost and a high running cost is a heavy burden in terms of cost, particularly in exhaust gas treatment from a small apparatus. For this reason, it is not always easy to introduce a volatile organic compound removing facility for a small odorous exhaust gas generating small facility such as in a printing factory or painting factory.

本発明は、上記実情に鑑みなされたものであり、その目的は、安価な触媒を使用し、300℃以下の低温排ガス中の揮発性有機化合物、特に、印刷工場の排ガスに多量に含有される酢酸エチル、2−ブタノン、2−プロパノールを安価なランニングコストで除去し得る方法および装置を提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is to use an inexpensive catalyst and to be contained in a large amount in a volatile organic compound in a low-temperature exhaust gas at 300 ° C. or lower, particularly in an exhaust gas from a printing factory. It is an object of the present invention to provide a method and apparatus capable of removing ethyl acetate, 2-butanone and 2-propanol at a low running cost.

本発明者らは、上記の課題を解決するために種々検討を重ねた結果、次の様な知見を得た。すなわち、バナジウムやチタンの酸化物を主成分とする触媒は、250℃以下でも、酢酸エチル、2−ブタノン、2プロパノールに対し高い分解率を示すが、同時に多量の一酸化炭素(CO)を生成する。ところが、斯かる触媒にPt及び/又はPdを担持させるならば、上記の高い分解性能を維持したままCOの生成が抑制される。また、高価なPt及び/又はPdの一部をNi及び/又はCoに置換しても同程度以上のCO生成抑制効果が発現される。   As a result of various studies to solve the above problems, the present inventors have obtained the following knowledge. That is, a catalyst mainly composed of oxides of vanadium and titanium shows a high decomposition rate with respect to ethyl acetate, 2-butanone and 2propanol even at 250 ° C. or lower, but at the same time generates a large amount of carbon monoxide (CO). To do. However, if Pt and / or Pd is supported on such a catalyst, the production of CO is suppressed while maintaining the above high decomposition performance. Further, even if a part of expensive Pt and / or Pd is replaced with Ni and / or Co, the same or higher CO production suppressing effect is exhibited.

本発明は、上記の知見に基づき完成されたものであり、その第1の要旨は、酸化チタン担体に、Cr、Fe、V、W、Mn、Mo、Ceから成る群から選ばれた少なくとも一種の元素の酸化物(成分A)とPt及び/又はPd(成分B)とを担持して成る成形触媒を使用し、180〜300℃の温度で有臭排ガスを処理することを特徴とする有臭排ガスの処理方法に存する。   The present invention has been completed based on the above findings, and the first gist thereof is that the titanium oxide support is at least one selected from the group consisting of Cr, Fe, V, W, Mn, Mo, and Ce. Odorous exhaust gas is treated at a temperature of 180 to 300 ° C. using a molded catalyst comprising an oxide of the element (component A) and Pt and / or Pd (component B). It exists in the processing method of odor exhaust gas.

そして、本発明の第2の要旨は、有臭排ガス発生設備と排ガスブロワーとの間または有臭排ガス発生設備用排ガスブロワーの後段に設けられ且つ内部に触媒が充填されて成る反応器と、当該触媒の温度を検出するための温度検出手段と、当該温度検出手段により検出された温度に基づいて触媒の温度を180℃〜300℃に維持するための温度調節手段とを包含する排ガス脱臭装置であって、上記の触媒として、酸化チタン担体に、Cr、Fe、V、W、Mn、Mo、Ceから成る群から選ばれた少なくとも一種の元素の酸化物(成分A)とPt及び/又はPd(成分B)とを担持して成る成形触媒を使用して成ることを特徴とする排ガス脱臭装置に存する。   And the second gist of the present invention is a reactor provided between the odorous exhaust gas generation facility and the exhaust gas blower or at the rear stage of the exhaust gas blower for the odorous exhaust gas generation facility and filled with a catalyst, An exhaust gas deodorization apparatus including temperature detection means for detecting the temperature of the catalyst and temperature adjustment means for maintaining the temperature of the catalyst at 180 ° C. to 300 ° C. based on the temperature detected by the temperature detection means. As the above catalyst, a titanium oxide support, an oxide (component A) of at least one element selected from the group consisting of Cr, Fe, V, W, Mn, Mo, Ce and Pt and / or Pd The present invention resides in an exhaust gas deodorizing apparatus characterized in that it uses a molded catalyst carrying (Component B).

本発明によれば、300℃以下の低温でも、COの生成を抑制しつつ、2−プロパノール、2−ブタノン、酢酸エチル等の揮発性有機化合物を分解除去することが出来る。   According to the present invention, volatile organic compounds such as 2-propanol, 2-butanone, and ethyl acetate can be decomposed and removed while suppressing the production of CO even at a low temperature of 300 ° C. or lower.

先ず、本発明に係る有臭排ガスの処理方法について説明する。本発明では揮発性有機化合物の酸化分解触媒として酸化チタン担体に所定の活性成分を担持して成る触媒を使用する。   First, a method for treating odorous exhaust gas according to the present invention will be described. In the present invention, a catalyst in which a predetermined active component is supported on a titanium oxide carrier is used as an oxidative decomposition catalyst for volatile organic compounds.

酸化チタン担体にはWやSiの酸化物が含有されていてもよい。斯かる酸化チタン担体の具体例としては、TiO、TiO−WO、TiO−SiO、TiO−SiO−WO等が挙げられる。特に、Wは、高価なため、チタン酸化物に対して20重量%以下にすることが経済的に好ましい。 The titanium oxide carrier may contain an oxide of W or Si. Specific examples of such a titanium oxide support include TiO 2 , TiO 2 —WO 3 , TiO 2 —SiO 2 , TiO 2 —SiO 2 —WO 3 and the like. In particular, since W is expensive, it is economically preferable to make it 20% by weight or less based on titanium oxide.

上記の酸化チタン担体には、Cr、Fe、V、W、Mn、Mo、Ceから成る群から選ばれた少なくとも一種の元素の酸化物(成分A)とPt及び/又はPd(成分B)とを担持させる。成分Aとしてはバナジウムの酸化物が好適であり、成分BとしてはPdが好適である。また、上記の酸化チタン担体には、更にNi及び/又はCoの酸化物(成分C)を担持させることが出来る。   The titanium oxide carrier includes an oxide (component A) of at least one element selected from the group consisting of Cr, Fe, V, W, Mn, Mo, and Ce and Pt and / or Pd (component B). Is supported. The component A is preferably an oxide of vanadium, and the component B is preferably Pd. Further, the titanium oxide carrier can further carry an oxide of Ni and / or Co (component C).

成分Aの担持量は、酸化チタン担体と成分Aとの合計量に対し、通常0.1〜20重量%、好ましくは0.1〜10重量%である。成分Aの担持量が少な過ぎる場合は、揮発性有機化合物の分解性能が低下し、多過ぎる場合はコスト的に不利である。成分Bの担持量は、全触媒成分の合計量に対し、通常0.001〜20重量%、好ましくは0.001〜5重量%である。成分Bの担持量が少な過ぎる場合は、CO生成の抑制効果が低下し、多過ぎる場合はコスト的に不利である。成分Cの担持量は、全触媒成分の合計量に対し、通常0.01〜10重量%である。すなわち、成分Bが必要量存在すれば、その一部を上記の範囲で成分Cに置き換えることが出来る。例えば、Pd:0.1重量%の触媒(I)とPd:0.02重量%+Ni:0.1重量%(又はCo:0.1重量%)の触媒(II)のCO抑制効果は略同等である。なお、成分Cの担持量が上記の範囲未満の場合は添加による効果が十分得られず、一方、上記の範囲を超える場合は添加量の増加に見合う効果が得られないため効率的でない。   The amount of component A supported is usually 0.1 to 20% by weight, preferably 0.1 to 10% by weight, based on the total amount of the titanium oxide support and component A. When the amount of the component A supported is too small, the decomposition performance of the volatile organic compound is deteriorated, and when too large, the cost is disadvantageous. The amount of component B supported is usually 0.001 to 20% by weight, preferably 0.001 to 5% by weight, based on the total amount of all catalyst components. When the loading amount of component B is too small, the effect of suppressing CO production is reduced, and when too much, the cost is disadvantageous. The amount of component C supported is usually 0.01 to 10% by weight based on the total amount of all catalyst components. That is, if a necessary amount of component B is present, a part of it can be replaced with component C within the above range. For example, the CO suppression effect of the catalyst (I) of Pd: 0.1% by weight and the catalyst (II) of Pd: 0.02% by weight + Ni: 0.1% by weight (or Co: 0.1% by weight) is approximately It is equivalent. In addition, when the loading amount of component C is less than the above range, the effect due to the addition cannot be sufficiently obtained. On the other hand, when it exceeds the above range, an effect commensurate with the increase in the addition amount cannot be obtained, which is not efficient.

バナジウム酸化物の原料は、特に制限されないが、五酸化バナジウム又はメタバナジン酸アンモニウム(NHVO)が好適である。これらの原料は、通常、シュウ酸水溶液またはモノメタノールアミン水溶液に溶解して使用する。また、Pt、Pd、Ni、Co等の各酸化物の原料は、特に制限されないが、担体に対する含浸操作、担体の幾何学表面上へのコーティング操作の観点から、水に溶解する原料、例えば、硝酸塩や塩化物が好適である。例えば、Pdの場合は、10%硝酸水溶液に硝酸パラジウムを溶解した水溶液が好適である。 The raw material of the vanadium oxide is not particularly limited, but vanadium pentoxide or ammonium metavanadate (NH 4 VO 3 ) is preferable. These raw materials are usually used after being dissolved in an oxalic acid aqueous solution or a monomethanolamine aqueous solution. The raw materials for each oxide such as Pt, Pd, Ni, and Co are not particularly limited. From the viewpoint of impregnation operation on the support and coating operation on the geometric surface of the support, for example, a raw material that dissolves in water, for example, Nitrate and chloride are preferred. For example, in the case of Pd, an aqueous solution in which palladium nitrate is dissolved in a 10% nitric acid aqueous solution is suitable.

成形触媒の製造方法は、特に制限されず、例えば、担体成分と活性成分原料を成形助材と共に混練した後に押出成形する方法を採用することも出来るが、活性成分の利用率を高める観点から含浸法が好ましい。   The method for producing the molding catalyst is not particularly limited, and for example, a method of extrusion molding after kneading the carrier component and the active ingredient raw material together with the molding aid can be adopted, but impregnation from the viewpoint of increasing the utilization rate of the active ingredient The method is preferred.

上記の含浸法としては、酸化チタン担体に全ての活性成分を含浸させる方法でもよいが、特に成分Aがバナジウムの場合は、担体とバナジウム原料液とを良く混合して成形した後、焼成し、その成形体に活性成分の成分Bや成分Cの原料水溶液を含浸させた後に焼成する方法が好ましい。この場合、浸漬時間は、余りに短いと所定量の含浸が出来ず、余りに長すぎると活性成分であるバナジウム酸化物が溶出するため、通常10〜60分、好ましくは15〜40分である。斯かる方法で得られた成形触媒は、酸化チタン担体の表面にVの担持層が形成され、Vの担持層に成分Bや成分C(Pt、Pd、Ni、Co)が担持された構造を有する。なお、上記の含浸法においては、予め原料液濃度と含浸量の検量線を作成しておき、所定量になる様に原料液濃度を決定する方法が好ましい。活性成分が2種類以上の混合溶液を使用する場合も同様な方法を採用することが出来る。触媒の形状および大きさは、処理ガス量や反応器の形状、大きさ等により適宜選択する。触媒の形状としては、ハニカム状、円柱状、球状、板状などが挙げられる。上記の含浸法の1例として以下の方法が挙げられる。 The impregnation method may be a method of impregnating the titanium oxide carrier with all active ingredients, but particularly when the component A is vanadium, the carrier and the vanadium raw material liquid are well mixed and molded, and then fired. A method of firing after impregnating the raw material aqueous solution of the active ingredient component B or component C into the molded body is preferable. In this case, if the immersion time is too short, a predetermined amount of impregnation cannot be achieved, and if it is too long, the vanadium oxide as an active ingredient is eluted, and thus it is usually 10 to 60 minutes, preferably 15 to 40 minutes. In the shaped catalyst obtained by such a method, a support layer of V 2 O 5 is formed on the surface of the titanium oxide support, and component B and component C (Pt, Pd, Ni, Co) are formed on the support layer of V 2 O 5. Has a supported structure. In the above impregnation method, it is preferable to prepare a calibration curve of the raw material liquid concentration and the impregnation amount in advance and determine the raw material liquid concentration so that it becomes a predetermined amount. A similar method can be adopted when using a mixed solution of two or more active ingredients. The shape and size of the catalyst are appropriately selected depending on the amount of processing gas, the shape and size of the reactor, and the like. Examples of the shape of the catalyst include a honeycomb shape, a columnar shape, a spherical shape, and a plate shape. The following method is mentioned as an example of said impregnation method.

(1)メタバナジン酸アンモニウムを約10重量%モノエタノールアミン水溶液に溶解する。
(2)硫酸チタン溶液を加熱溶解してメタチタン酸スラリーを得る。
(3)メタチタン酸スラリーに15重量%アンモニア水を加えてpH調節した後、リフラックス処理を1時間以上行う。
(4)パラタングステン酸アンモニウムを加え、更に、リフラックス処理を1時間以上行う。
(5)得られたスラリーを濾過し、得られたケーキを50〜150℃の温度で3〜50時間乾燥した後、400〜650℃の温度で焼成し、冷却後に粉砕する。
(6)得られた粉末状のWO−TiO2元系複合酸化物担体と上記の(1)で調製した水溶液とをニーダーで混練する。
(7)(i)更に成形助材を加えて混練した混練物を押出成形し、50〜150℃の温度で3〜50時間乾燥した後、SV100〜2000Hr−1の空気気流中、400〜650℃の温度で焼成する、または、(i i)混練物を50〜150℃の温度で3〜50時間乾燥し、400〜650℃の温度で焼成した後、成形助材を加えて成形する。
(8)所定の濃度に調節した硝酸パラジウム水溶液中に成型品を常温で20分間浸漬する。
(9)エアーブローで余分な液を除去し、50〜150℃の温度で3〜50時間乾燥した後、SV100〜2000Hr−1の空気気流中、400〜650℃の温度で焼成する。
(1) Dissolve ammonium metavanadate in an aqueous solution of about 10% by weight monoethanolamine.
(2) A titanium sulfate solution is dissolved by heating to obtain a metatitanic acid slurry.
(3) After adjusting the pH by adding 15 wt% ammonia water to the metatitanic acid slurry, reflux treatment is performed for 1 hour or more.
(4) Ammonium paratungstate is added, and the reflux treatment is further performed for 1 hour or more.
(5) The obtained slurry is filtered, and the obtained cake is dried at a temperature of 50 to 150 ° C. for 3 to 50 hours, then baked at a temperature of 400 to 650 ° C., and pulverized after cooling.
(6) The obtained powdery WO 3 —TiO 2 binary composite oxide support and the aqueous solution prepared in the above (1) are kneaded with a kneader.
(7) (i) A kneaded product further kneaded with a molding aid is extruded, dried at a temperature of 50 to 150 ° C. for 3 to 50 hours, and then in an air stream of SV100 to 2000 Hr −1 , 400 to 650. Firing at a temperature of ° C., or (ii) drying the kneaded material at a temperature of 50 to 150 ° C. for 3 to 50 hours, firing at a temperature of 400 to 650 ° C., and then molding by adding a molding aid.
(8) The molded product is immersed in an aqueous palladium nitrate solution adjusted to a predetermined concentration at room temperature for 20 minutes.
(9) Excess liquid is removed by air blow, dried at a temperature of 50 to 150 ° C. for 3 to 50 hours, and then fired at a temperature of 400 to 650 ° C. in an air stream of SV100 to 2000 Hr −1 .

また、本発明においては、成形触媒を製造する他の方法として、基材上に担体成分および活性成分を含浸・担持する方法を採用することも出来る。   In the present invention, as another method for producing a molded catalyst, a method of impregnating / supporting a carrier component and an active component on a substrate can be employed.

具体的には、円柱状、球状、ハニカム状、板状など所望の形状の基材上に上記の(2)〜(5)で調製した担体成分をコーティングし、上記の(1)で調製した水溶液を使用して活性成分を含浸させ、50〜150℃で3〜50時間乾燥した後、400〜650℃の温度で焼成する。   Specifically, the carrier component prepared in the above (2) to (5) is coated on a base material having a desired shape such as a columnar shape, a spherical shape, a honeycomb shape, or a plate shape, and prepared in the above (1). The active ingredient is impregnated using an aqueous solution, dried at 50 to 150 ° C. for 3 to 50 hours, and then fired at a temperature of 400 to 650 ° C.

更に、所定の濃度にした硝酸パラジウム水溶液中に成型品を常温で20分間浸漬し、50〜150℃の温度で3〜50時間乾燥した後、SV100〜2000Hr−1の空気気流中、400〜650℃の温度で焼成する。 Further, the molded product is immersed in an aqueous palladium nitrate solution having a predetermined concentration at room temperature for 20 minutes and dried at a temperature of 50 to 150 ° C. for 3 to 50 hours, and then in an air stream of SV100 to 2000 Hr −1 , 400 to 650. Bake at a temperature of ° C.

基材上に形成された触媒の場合、基材としてはTiOにSiOやAl等を単独で又は併用して使用する。担体成分の量は、担体成分と活性成分の合計量に対し、通常70〜99.9重量%である。また、担体成分と活性成分との合計量は、基材、担体成分および活性成分の合計量に対し、通常5〜70重量%、好ましくは10〜50重量%である。 In the case of the catalyst formed on the base material, SiO 2 or Al 2 O 3 is used alone or in combination with TiO 2 as the base material. The amount of the carrier component is usually 70 to 99.9% by weight based on the total amount of the carrier component and the active component. The total amount of the carrier component and the active component is usually 5 to 70% by weight, preferably 10 to 50% by weight, based on the total amount of the base material, the carrier component and the active component.

混練・成形方法の様に添加した原料の全てが活性成分となる場合は、それぞれの金属塩などの原料成分が対応する金属酸化物に変化したものとして、触媒組成は添加量から推算することが出来る。また、含浸した成分は、触媒を硫酸で処理した後、硫酸アンモニウムで融解してプラズマ発光分析法(ICP−AES分析法)によって触媒組成を測定することが出来る。   When all of the added raw materials are active components as in the kneading / forming method, the catalyst composition can be estimated from the amount added, assuming that the raw material components such as the respective metal salts have changed to the corresponding metal oxides. I can do it. The impregnated component can be measured by a plasma emission analysis method (ICP-AES analysis method) after the catalyst is treated with sulfuric acid and then melted with ammonium sulfate.

なお、本発明で使用する担体には、公知の方法に従い、一次粒子が形成した細孔以外でより大きな径の細孔(具体的には0.05〜1.0μmの範囲にピークの頂点をもつ細孔分布)を付与してもよい。そのために使用される細孔形成剤としては、一般的に使用されている結晶性セルロース、ポリエチレングリコール、ポリビニルアルコール、ポリエチレンオキサイド、フェノール樹脂などが挙げられる。一般的には、数種類の細孔形成剤を使用するが、その使用量は成形条件と使用物質によって異なる。斯かる細孔分布の付与により、熱劣化やカーボン析出によるコーキングにより一次粒子が形成した小さな細孔径の細孔が大きく減少して比表面積が低下した場合も触媒性能を維持することが出来る。   The carrier used in the present invention has a pore having a larger diameter than the pores formed by the primary particles according to a known method (specifically, the peak apex in the range of 0.05 to 1.0 μm). Pore distribution). Examples of the pore forming agent used for this purpose include crystalline cellulose, polyethylene glycol, polyvinyl alcohol, polyethylene oxide, and phenol resin that are generally used. In general, several types of pore forming agents are used, but the amount used varies depending on molding conditions and substances used. By providing such a pore distribution, the catalyst performance can be maintained even when the pores with small pore diameters formed by primary particles due to thermal degradation or coking due to carbon precipitation are greatly reduced and the specific surface area is lowered.

本発明に係る有臭排ガスの処理方法は、前述の特定の触媒を使用し、180〜300℃の温度で有臭排ガスを処理することを特徴とする。有臭排ガスとしては、酢酸エチル、2−ブタノン、2−プロパノール等の揮発性有機化合物を含有する排ガスが代表的であり、その具体例としては、樹脂加工工場、印刷工場の排ガス等が挙げられる。そして、必要に応じ、予め高沸点溶剤の除去工程を設けてもよい。   The method for treating odorous exhaust gas according to the present invention is characterized in that the odorous exhaust gas is treated at a temperature of 180 to 300 ° C. using the above-mentioned specific catalyst. The odorous exhaust gas is typically exhaust gas containing a volatile organic compound such as ethyl acetate, 2-butanone, 2-propanol, and specific examples thereof include exhaust gas from a resin processing factory and a printing factory. . And if necessary, a high boiling point solvent removal step may be provided in advance.

有臭排ガスの処理温度(触媒との接触温度)は、好ましくは180〜200℃である。接触温度が180℃未満の場合は、運転上支障を来す結露が惹起され、また、揮発性有機化合物の酸化分解が不十分となる。接触温度が250℃を超える場合は加熱するエネルギーが多大となり、ランニングコストの面で不利になる。触媒層の圧力は、ゲージ圧として、通常−0.05〜0.9MPa、好ましくは−0.01〜0.5MPaである。また、空間速度(SV)は、通常100〜20000Hr−1、好ましくは1000〜5000Hr−1である。 The treatment temperature of the odorous exhaust gas (contact temperature with the catalyst) is preferably 180 to 200 ° C. When the contact temperature is less than 180 ° C., dew condensation causing trouble in operation is caused, and oxidative decomposition of the volatile organic compound becomes insufficient. When the contact temperature exceeds 250 ° C., the energy for heating becomes great, which is disadvantageous in terms of running cost. The pressure of the catalyst layer is usually −0.05 to 0.9 MPa, preferably −0.01 to 0.5 MPa as a gauge pressure. Also, the space velocity (SV) is usually 100~20000Hr -1, preferably 1000~5000Hr -1.

次に、本発明に係る排ガス脱臭装置について説明する。図1(a)及び(b)は本発明に係る排ガス脱臭装置の一例の概念的説明図である。本発明に係る排ガス脱臭装置は、有臭排ガス発生設備(1)と排ガスブロワー(21)との間または有臭排ガス発生設備用排ガスブロワー(22)の後段に設けられ且つ内部に触媒が充填されて成る反応器(3)と、触媒の温度を検出するための温度検出手段(4)と、温度検出手段により検出された温度に基づいて触媒の温度を180℃〜300℃に維持するための温度調節手段(5)とを包含する排ガス脱臭装置であって、上記の触媒として、酸化チタン担体に、Cr、Fe、V、W、Mn、Mo、Ceから成る群から選ばれた少なくとも一種の元素の酸化物(成分A)とPt及び/又はPd(成分B)とを担持して成る成形触媒を使用して成ることを特徴とする。斯かる排ガス脱臭装置は、上記の有臭排ガスの処理方法に従って運転される。   Next, the exhaust gas deodorizing apparatus according to the present invention will be described. 1 (a) and 1 (b) are conceptual explanatory views of an example of an exhaust gas deodorizing apparatus according to the present invention. The exhaust gas deodorization apparatus according to the present invention is provided between the odorous exhaust gas generation facility (1) and the exhaust gas blower (21) or after the exhaust gas blower (22) for the odorous exhaust gas generation facility, and is filled with a catalyst therein. And a temperature detecting means (4) for detecting the temperature of the catalyst, and for maintaining the temperature of the catalyst at 180 to 300 ° C. based on the temperature detected by the temperature detecting means. An exhaust gas deodorization apparatus including a temperature control means (5), wherein the catalyst is at least one selected from the group consisting of Cr, Fe, V, W, Mn, Mo, and Ce as a catalyst. It is characterized by using a formed catalyst comprising an elemental oxide (component A) and Pt and / or Pd (component B). Such an exhaust gas deodorizer is operated in accordance with the above-described method for treating odorous exhaust gas.

以下、本発明を実施例により詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。なお、諸例で使用した触媒(A)〜(D)は次の様に調製した。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by a following example, unless the summary is exceeded. The catalysts (A) to (D) used in the examples were prepared as follows.

(1)触媒Aの調製:
メタバナジン酸アンモニウム347gとパラタングステン酸アンモニウム943gを80℃に加温した10重量%モノエタノールアミン水溶液6000gに溶解して原料液(1)を調製した。更に、硝酸パラジウム硝酸水溶液(日本エンゲルハルト社製:Pd濃度30重量%溶液)5gを純水2995gに溶解して原料液(2)を調製した。TiO粉末(石原産業製「MC−90」)7830g、成形助材(活性白土)1000g、ポリエチレンオキサイド500g、結晶性セルロース(旭化成(株)「アビセルTG−101」)200gを双腕型ニーダーで2時間混合した後、原料液(1)を双腕型ニーダーに添加し、3時間混練した。得られた混練物を押出機より3mm直径の円柱状に成形した。得られた成型物を130℃の温度で24時間乾燥し、次いで、空気流通下、SV100Hr−1、温度450℃の条件下で3時間焼成した。その焼成品500gを原料液(2)に20分間浸漬し、エアーブローで余分な液を切った後、再び130℃の温度で24時間乾燥し、次いで、空気流通下、SV100Hr−1、温度450℃の条件下で3時間焼成し、表1に示す触媒(A)を得た。
(1) Preparation of catalyst A:
A raw material liquid (1) was prepared by dissolving 347 g of ammonium metavanadate and 943 g of ammonium paratungstate in 6000 g of a 10 wt% monoethanolamine aqueous solution heated to 80 ° C. Further, 5 g of palladium nitrate aqueous solution (manufactured by Engelhard Japan Ltd .: Pd concentration 30 wt% solution) was dissolved in 2995 g of pure water to prepare a raw material liquid (2). 7830 g of TiO 2 powder (“MC-90” manufactured by Ishihara Sangyo), 1000 g of molding aid (active clay), 500 g of polyethylene oxide, 200 g of crystalline cellulose (Asahi Kasei Co., Ltd. “Avicel TG-101”) in a double-arm kneader After mixing for 2 hours, the raw material liquid (1) was added to the double-arm kneader and kneaded for 3 hours. The obtained kneaded product was molded into a 3 mm diameter cylindrical shape from an extruder. The obtained molded product was dried at a temperature of 130 ° C. for 24 hours, and then calcined for 3 hours under conditions of SV100Hr −1 and a temperature of 450 ° C. under air flow. After immersing 500 g of the baked product in the raw material liquid (2) for 20 minutes, the excess liquid was removed by air blow, and then dried again at a temperature of 130 ° C. for 24 hours, and then SV100Hr −1 , temperature 450 under air circulation. The catalyst (A) shown in Table 1 was obtained by calcination for 3 hours under the condition of ° C.

(2)触媒Bの調製:
硝酸パラジウム硝酸水溶液2gと硝酸ニッケル6水和物14.8gを2983gの純水に溶解して原料液(2)を調製した以外は、触媒Aの調製と同様に操作し、表1に示す触媒Bを調製した。
(2) Preparation of catalyst B:
Catalysts shown in Table 1 were prepared in the same manner as in the preparation of Catalyst A, except that 2 g of palladium nitrate aqueous solution and 14.8 g of nickel nitrate hexahydrate were dissolved in 2983 g of pure water to prepare raw material liquid (2). B was prepared.

(3)触媒Cの調製:
硝酸パラジウム硝酸水溶液2gと硝酸コバルト6水和物14.8gを2983gの純水に溶解して原料液(2)を調製した以外は、触媒Aの調製と同様に操作し、表1に示す触媒Cを調製した。
(3) Preparation of catalyst C:
Catalysts shown in Table 1 were prepared in the same manner as in the preparation of Catalyst A except that 2 g of palladium nitrate aqueous solution and 14.8 g of cobalt nitrate hexahydrate were dissolved in 2983 g of pure water to prepare raw material liquid (2). C was prepared.

(4)触媒Dの調製:
原料液(2)への浸漬、乾燥、焼成を行わなかった以外は、触媒Aの調製と同様に操作し、表1に示す触媒Dを調製した。
(4) Preparation of catalyst D:
A catalyst D shown in Table 1 was prepared in the same manner as in the preparation of the catalyst A, except that the immersion, drying and firing in the raw material liquid (2) were not performed.

<揮発性有機化合物分解性能評価方法>
石英ガラス製の反応管(内径30mm長さ600mm)の中央部に、評価のために試作した直径3mm、長さ5mm〜15mmの円柱状触媒をセットし、内径40mm、外径200mm、長さ450mmの管状加熱炉にセットした。
<Volatile organic compound decomposition performance evaluation method>
A columnar catalyst having a diameter of 3 mm and a length of 5 mm to 15 mm manufactured for evaluation is set in the center of a reaction tube made of quartz glass (inner diameter: 30 mm, length: 600 mm). The inner diameter is 40 mm, the outer diameter is 200 mm, and the length is 450 mm. Set in a tubular heating furnace.

ガス組成が、O:10%、HO:10%、分解対象ガス(酢酸エチル、2−ブタノン、2−プロパノールの何れか1種類):1000ppm、N:バランス量の混合ガスを60L/Hr(NTP)の流量で触媒上に導入し、120℃、140℃、160℃、180℃、200℃、220℃、240℃、260℃、280℃、300℃の各温度における分解率およびCO生成量を測定した。酢酸エチル、2−ブタノン、2−プロパノールの定量は、上記の各温度で約30分間保持し、マイクロシリンジで反応装置通過ガスをサンプリングし、ガスクロマトグラフィー法(絶対検量線法)で行った。COの定量はCO濃度測定装置(テスト−社製)を使用した。 Gas composition is O 2 : 10%, H 2 O: 10%, gas to be decomposed (any one of ethyl acetate, 2-butanone and 2-propanol): 1000 ppm, N 2 : 60 L of a mixed gas of balance amount / Hr (NTP) at a flow rate of 120 ° C., 140 ° C., 160 ° C., 180 ° C., 200 ° C., 220 ° C., 240 ° C., 260 ° C., 280 ° C., 300 ° C. The amount of CO produced was measured. Quantification of ethyl acetate, 2-butanone, and 2-propanol was performed by gas chromatography (absolute calibration curve method) by holding the reactor at each temperature for about 30 minutes, sampling the gas passing through the reactor with a microsyringe. A CO concentration measuring device (manufactured by Test Corp.) was used for the quantitative determination of CO.

実施例1〜3及び比較例1:
触媒A〜Dを使用し、2−プロパノール分解性能評価を実施した。結果を表2に示す。
Examples 1-3 and Comparative Example 1:
Using catalysts A to D, 2-propanol decomposition performance was evaluated. The results are shown in Table 2.

実施例4〜6及び比較例2:
触媒A〜Dを使用し、2−ブタノン分解性能評価を実施した。結果を表3に示す。
Examples 4-6 and Comparative Example 2:
Using catalysts A to D, 2-butanone decomposition performance was evaluated. The results are shown in Table 3.

実施例7〜9及び比較例3:
触媒A〜Dを使用し、酢酸エチル分解性能評価を実施した。結果を表4に示す。
Examples 7-9 and Comparative Example 3:
Catalysts A to D were used to evaluate the ethyl acetate decomposition performance. The results are shown in Table 4.

参考例1:
Al担体に0.2%重量Ptが担持された触媒を使用し、前記と同様の実験を実施した。結果を表5に示す。
Reference example 1:
An experiment similar to the above was performed using a catalyst in which 0.2% weight Pt was supported on an Al 2 O 3 support. The results are shown in Table 5.

(a)及び(b)は本発明に係る排ガス脱臭装置の一例の概念的説明図である。(A) And (b) is a conceptual explanatory drawing of an example of the exhaust gas deodorizing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1:有臭排ガス発生設備
21:排ガスブロワー
22:有臭排ガス発生設備用排ガスブロワー
3:反応器
4:温度検出手段
5:温度調節手段
1: Odorous exhaust gas generation equipment 21: Exhaust gas blower 22: Exhaust gas blower for odorous exhaust gas generation equipment 3: Reactor 4: Temperature detection means 5: Temperature adjustment means

Claims (7)

酸化チタン担体に、Cr、Fe、V、W、Mn、Mo、Ceから成る群から選ばれた少なくとも一種の元素の酸化物(成分A)とPt及び/又はPd(成分B)とを担持して成る成形触媒を使用し、180〜300℃の温度で有臭排ガスを処理することを特徴とする有臭排ガスの処理方法。   A titanium oxide carrier carries an oxide (component A) and Pt and / or Pd (component B) of at least one element selected from the group consisting of Cr, Fe, V, W, Mn, Mo, and Ce. A method for treating odorous exhaust gas, characterized in that the odorous exhaust gas is treated at a temperature of 180 to 300 ° C using a molded catalyst. 成分Aの担持量が酸化チタン担体と成分Aとの合計量に対して0.1〜20重量%であり、かつ、成分Bの担持量が全触媒成分の合計量に対して0.001〜20重量%である請求項1に記載の方法。   The amount of component A supported is 0.1 to 20% by weight based on the total amount of the titanium oxide support and component A, and the amount of component B supported is 0.001 to the total amount of all catalyst components. The method according to claim 1, which is 20% by weight. 成分Aがバナジウムの酸化物であり、成分BがPdである請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein component A is an oxide of vanadium and component B is Pd. バナジウムの酸化物がVである請求項3に記載の方法。 The method according to claim 3, wherein the oxide of vanadium is V 2 O 5 . 酸化チタン担体にNi及び/又はCoの酸化物(成分C)を担持して成り、その担持量が全触媒成分の合計量に対して0.01〜10重量%である請求項1〜4の何れかに記載の方法。   The titanium oxide support is formed by supporting an oxide of Ni and / or Co (component C), and the supported amount is 0.01 to 10% by weight with respect to the total amount of all catalyst components. The method in any one. 排ガス中の有臭成分が、酢酸エチル、2−ブタノン及び2−プロパノールから成る群から選ばれた少なくとも1種である請求項1〜5の何れかに記載の方法。   The method according to any one of claims 1 to 5, wherein the odorous component in the exhaust gas is at least one selected from the group consisting of ethyl acetate, 2-butanone and 2-propanol. 有臭排ガス発生設備と排ガスブロワーとの間または有臭排ガス発生設備用排ガスブロワーの後段に設けられ且つ内部に触媒が充填されて成る反応器と、当該触媒の温度を検出するための温度検出手段と、当該温度検出手段により検出された温度に基づいて触媒の温度を180℃〜300℃に維持するための温度調節手段とを包含する排ガス脱臭装置であって、上記の触媒として、酸化チタン担体に、Cr、Fe、V、W、Mn、Mo、Ceから成る群から選ばれた少なくとも一種の元素の酸化物(成分A)とPt及び/又はPd(成分B)とを担持して成る成形触媒を使用して成ることを特徴とする排ガス脱臭装置。   A reactor provided between the odorous exhaust gas generation facility and the exhaust gas blower or after the exhaust gas blower for the odorous exhaust gas generation facility and filled with a catalyst therein, and temperature detection means for detecting the temperature of the catalyst And a temperature adjusting means for maintaining the temperature of the catalyst at 180 ° C. to 300 ° C. based on the temperature detected by the temperature detecting means, wherein the catalyst is a titanium oxide carrier. And forming an oxide (component A) of at least one element selected from the group consisting of Cr, Fe, V, W, Mn, Mo and Ce and Pt and / or Pd (component B). An exhaust gas deodorizing apparatus comprising a catalyst.
JP2004123131A 2004-04-19 2004-04-19 Method for treating smelly exhaust gas and apparatus for deodorizing exhaust gas Pending JP2005305245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123131A JP2005305245A (en) 2004-04-19 2004-04-19 Method for treating smelly exhaust gas and apparatus for deodorizing exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123131A JP2005305245A (en) 2004-04-19 2004-04-19 Method for treating smelly exhaust gas and apparatus for deodorizing exhaust gas

Publications (1)

Publication Number Publication Date
JP2005305245A true JP2005305245A (en) 2005-11-04

Family

ID=35434622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123131A Pending JP2005305245A (en) 2004-04-19 2004-04-19 Method for treating smelly exhaust gas and apparatus for deodorizing exhaust gas

Country Status (1)

Country Link
JP (1) JP2005305245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889078B2 (en) 2010-03-17 2014-11-18 Samsung Electronics Co., Ltd. Porous oxide catalyst and method of preparing the porous oxide catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889078B2 (en) 2010-03-17 2014-11-18 Samsung Electronics Co., Ltd. Porous oxide catalyst and method of preparing the porous oxide catalyst

Similar Documents

Publication Publication Date Title
JP2005342711A (en) Denitration method of diesel engine exhaust gas
JP2005342710A (en) Heat-resistant denitrifying catalyst
JP2005305245A (en) Method for treating smelly exhaust gas and apparatus for deodorizing exhaust gas
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP2005313161A (en) Method for manufacturing denitration catalyst
TWI413548B (en) Catalyst for treating an exhaust gas containing organic acid, and method for treating an exhaust gas containing organic acid
JPS60212234A (en) Honeycomb shaped deodorizing catalyst
KR20120128029A (en) A tungsten/titania-based catalyst, a method of preparing the same and a method of removing ammonia by using the same
JP2001286733A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
KR20020032167A (en) Catalyst for decomposition of toxic pollutants and producing process thereof
JP2004290753A (en) Heat-resistant denitrification catalyst
JP2006272062A (en) Harmful substance-decomposition material for medical use
JP2001286729A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JPH08332384A (en) Catalyst for decomposition of exhaust gas containing noxious organic compound, and exhaust gas treatment
JP2000042409A (en) Catalyst for decomposing organochlorine compound and treatment of combustion exhaust gas
JP2007021482A (en) Ammonia decomposition catalyst and ammonia treating method
JP2006346642A (en) Catalyst for decomposing ammonia and method for treating ammonia
JP2013071071A (en) Method for treating exhaust gas
JP7427187B2 (en) VOC treatment catalyst, VOC treatment device, and VOC treatment method
KR101537995B1 (en) A catalyst with improved durability for treating hazardous gas generated in semiconductor manufacturing process
JP2002066336A (en) Organic halogen compound decomposition catalyst and its preparation process and application
CN114849728B (en) Preparation method of VOCs catalytic oxidation catalyst and catalyst obtained by preparation method
JP4283092B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
KR20170049811A (en) Selective oxidation catalyst for removal of ammonia and method of manufacturinf the same
JP2002136870A (en) Catalyst for treating exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616