JP2013158714A - Electrically heated catalyst device - Google Patents

Electrically heated catalyst device Download PDF

Info

Publication number
JP2013158714A
JP2013158714A JP2012022880A JP2012022880A JP2013158714A JP 2013158714 A JP2013158714 A JP 2013158714A JP 2012022880 A JP2012022880 A JP 2012022880A JP 2012022880 A JP2012022880 A JP 2012022880A JP 2013158714 A JP2013158714 A JP 2013158714A
Authority
JP
Japan
Prior art keywords
honeycomb body
electrodes
pair
catalyst device
electrically heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012022880A
Other languages
Japanese (ja)
Inventor
Tomoo Kawase
友生 川瀬
Mikio Ishihara
幹男 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012022880A priority Critical patent/JP2013158714A/en
Priority to US13/539,800 priority patent/US20130199165A1/en
Publication of JP2013158714A publication Critical patent/JP2013158714A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrically heated catalyst device allowing reduction of a mounting space.SOLUTION: An electrically heated catalyst device 1 includes: a honeycomb body 2 having a cell formation part 21 and a cylindrical sheath part 22 covering the periphery thereof; a pair of electrodes 31, 32 oppositely disposed in the radial direction on the peripheral face 221 of the sheath part 22; and a pair of electrode terminals 310, 320 respectively projecting from these electrodes (31, 32) outward in the radial direction of the honeycomb body 2. When assuming an optional reference line 19 which is parallel to the axial direction and is present on the sheath part 22, side end border lines 315, 325 in the electrodes 31, 32 are inclined with a prescribed inclination to the reference line 19 in the full length. The pair of electrode terminals 310, 320 is formed at a prescribed interval in the axial direction, and an angle made by the pair of electrode terminals 310, 320 when observing the electrically heated catalyst device 1 from one end face 28, 29 in the axial direction is less than 180°.

Description

本発明は、自動車等の排ガスを浄化するための電気加熱式触媒装置(EHC)に関する。   The present invention relates to an electrically heated catalyst device (EHC) for purifying exhaust gas from automobiles and the like.

自動車等の車両の排気管内には、排ガスを浄化するための触媒装置が設けられる。この触媒装置としては、例えばPt、Pd、Rh等の触媒が担持されたハニカム体等が用いられる。
ところで、触媒の活性化には、例えば400℃程度の加熱が必要になる。そのため、ハニカム体等の表面に一対の電極を形成し、その一対の電極間に通電を行ってハニカム体等を加熱する電気加熱式触媒装置(EHC)が開発されている。
A catalyst device for purifying exhaust gas is provided in an exhaust pipe of a vehicle such as an automobile. As this catalyst device, for example, a honeycomb body on which a catalyst such as Pt, Pd, or Rh is supported is used.
By the way, for activation of the catalyst, for example, heating at about 400 ° C. is required. Therefore, an electrically heated catalyst device (EHC) has been developed in which a pair of electrodes is formed on the surface of a honeycomb body or the like, and the honeycomb body or the like is heated by energizing the pair of electrodes.

電気加熱式触媒装置は、例えば、セル形成部と該セル形成部の周囲を覆う円筒形状の外皮部と有するハニカム体と、該ハニカム体の上記外皮部の外周面において径方向に対向配置された一対の電極と、該一対の電極からそれぞれ上記ハニカム体の径方向の外方に突出する一対の電極端子とから構成される。かかる構成の電気加熱式触媒装置は、車両の例えば床下の排ガス管にケースに収容した状態で配置される。そして、電気加熱式触媒装置においては、外部に設けられた電源から電極端子を介して一対の電極に通電し、ハニカム体が加熱される。   The electrically heated catalyst device is, for example, a honeycomb body having a cell forming portion and a cylindrical outer skin portion that covers the periphery of the cell forming portion, and an outer circumferential surface of the outer skin portion of the honeycomb body, which is disposed to face each other in the radial direction. A pair of electrodes and a pair of electrode terminals respectively protruding from the pair of electrodes outward in the radial direction of the honeycomb body. The electric heating type catalyst device having such a configuration is arranged in a state of being accommodated in a case, for example, in an exhaust gas pipe under a floor of a vehicle. And in an electrically heated catalyst apparatus, it supplies with electricity to a pair of electrode via the electrode terminal from the power supply provided outside, and a honeycomb body is heated.

ハニカム体の外皮に設けられる一対の電極は、互いに対向するように設けられており、各電極に形成される一対の電極端子も互いに180°の角度で対向するように設けられていた。電極端子は、ハニカム体の径方向の外方に突出するように設けられるため、電気加熱式触媒装置は、電極端子を含めると径方向の寸法が大きくなってしまう。そのため、例えば車両の床下という限られた狭いスペースに収容するには、径方向の寸法をより小さくすることが望まれていた。   The pair of electrodes provided on the outer skin of the honeycomb body are provided so as to face each other, and the pair of electrode terminals formed on each electrode are also provided so as to face each other at an angle of 180 °. Since the electrode terminal is provided so as to protrude outward in the radial direction of the honeycomb body, the electric heating catalyst device includes a large dimension in the radial direction when the electrode terminal is included. Therefore, for example, in order to accommodate in the limited narrow space under the floor of a vehicle, it has been desired to make the radial dimension smaller.

また、ハニカム体の径方向の外方に突出する一対の電極端子の少なくとも一方を車体の下方(地面側)に向けて例えば車両の床下に配置すると、凝集水や浸水により電極端子に水が付着しやすくなる。その結果、電極端子と電気加熱式触媒装置を収容するケースとの間で短絡が発生してしまうおそれがある。したがって、一対の端子を水平方向(地面と平行な方向)に配置して電気加熱式触媒装置を排ガス管内に設置させる必要があるが、この場合においては、水平方向の搭載スペースが大きくなってしまうという問題があった。   Further, when at least one of the pair of electrode terminals protruding outward in the radial direction of the honeycomb body is disposed below the vehicle body (on the ground side), for example, under the floor of the vehicle, water adheres to the electrode terminals due to condensed water or water immersion. It becomes easy to do. As a result, a short circuit may occur between the electrode terminal and the case containing the electrically heated catalyst device. Therefore, it is necessary to arrange the pair of terminals in the horizontal direction (direction parallel to the ground) and install the electrically heated catalyst device in the exhaust gas pipe. In this case, however, the horizontal mounting space becomes large. There was a problem.

例えば、特許文献1には、電気加熱式触媒装置等に適用できる電極構造に関する技術が提案されている。かかる技術においては、電極本体(電極端子)とリード線とを所定の角度で配置させ、全体を折れ曲がった形状にした電極構造が提案されている。このような電極構造にすることにより、省スペース化を図ることが可能になる。   For example, Patent Document 1 proposes a technique related to an electrode structure that can be applied to an electrically heated catalyst device or the like. In this technique, an electrode structure is proposed in which an electrode body (electrode terminal) and a lead wire are arranged at a predetermined angle, and the whole is bent. By using such an electrode structure, it is possible to save space.

特開平9−82457号公報JP-A-9-82457

しかしながら、上述の折れ曲がった電極構造においては、電極本体とハニカム体の表面に設けられた電極とを金属製の連結部材で電気的に接続する必要がある。そのため、高温に曝される電気加熱式触媒装置においては、金属製の連結部材の耐熱性が問題となり、電気的導通を維持することが困難になる。よって、連結部材を用いる上述の電極構造を電気加熱式触媒装置に採用することは現実的には困難であった。したがって、搭載スペースを小さくできる実現性の高い電気加熱式触媒装置の開発が求められていた。   However, in the above-described bent electrode structure, it is necessary to electrically connect the electrode body and the electrode provided on the surface of the honeycomb body with a metal connecting member. Therefore, in the electrically heated catalyst device exposed to high temperature, the heat resistance of the metallic connecting member becomes a problem, and it is difficult to maintain electrical conduction. Therefore, it is practically difficult to employ the above-described electrode structure using a connecting member for an electrically heated catalyst device. Accordingly, there has been a demand for the development of a highly feasible electric heating catalyst device that can reduce the mounting space.

本発明は、かかる問題点に鑑みてなされたもので、搭載スペ-スを小さくすることができる電気加熱式触媒装置を提供しようとするものである。   The present invention has been made in view of such a problem, and an object of the present invention is to provide an electrically heated catalyst device capable of reducing the mounting space.

本発明の一態様は、セル形成部と該セル形成部の周囲を覆う円筒形状の外皮部と有するハニカム体と、該ハニカム体の上記外皮部の外周面において径方向に対向配置された一対の電極と、該一対の電極からそれぞれ上記ハニカム体の径方向の外方に突出する一対の電極端子とを備えた電気加熱式触媒装置であって、
上記ハニカム体の軸方向に平行で上記外皮部上にある任意の基準線を想定すると、上記電極における上記ハニカム体の軸方向に伸びる側端輪郭線は、その全長が上記基準線に対して所定の傾きで傾斜しており、
上記ハニカム体の周方向における一対の上記電極間の間隔は一定であり、
上記一対の電極端子は、上記ハニカム体の軸方向に所定の間隔を開けて、それぞれ上記一対の電極における上記ハニカム体の周方向の中央に形成されており、上記電気加熱式触媒装置を上記ハニカム体の軸方向の一方の端面から観察したときにおける上記一対の電極端子がなす角度は180°未満であることを特徴とする電気加熱式触媒装置にある(請求項1)。
One aspect of the present invention is a honeycomb body having a cell forming portion and a cylindrical outer skin portion that surrounds the cell forming portion, and a pair of radially disposed opposing outer peripheral surfaces of the outer skin portion of the honeycomb body. An electrically heated catalyst device comprising an electrode and a pair of electrode terminals projecting outward in the radial direction of the honeycomb body from the pair of electrodes,
Assuming an arbitrary reference line that is parallel to the axial direction of the honeycomb body and is on the outer skin part, a side end contour line extending in the axial direction of the honeycomb body in the electrode has a total length that is predetermined with respect to the reference line. Is inclined at
The distance between the pair of electrodes in the circumferential direction of the honeycomb body is constant,
The pair of electrode terminals are formed at the center in the circumferential direction of the honeycomb body of the pair of electrodes at a predetermined interval in the axial direction of the honeycomb body, and the electric heating catalyst device is connected to the honeycomb body. An angle formed by the pair of electrode terminals when observed from one end face in the axial direction of the body is less than 180 ° (claim 1).

上記電気加熱式触媒装置においては、上述のごとく、上記一対の電極端子が互いに180°未満の角度で形成されている。そのため、上記電気加熱式触媒装置におけるハニカム体の径方向の寸法を小さくすることができる。それ故、例えば車両の床下等の排ガス管内に上記電気加熱式触媒装置を配置する際に、その搭載スペースを小さくすることができる。また、上記電気加熱式触媒装置は、排ガス管に設置するときに、上記一対の電極端子をいずれも水平方向よりも上方に向けて設置することが可能になる。そのため、凝集水や浸水による短絡の問題をより確実に回避することが可能になる。   In the electric heating catalyst device, as described above, the pair of electrode terminals are formed at an angle of less than 180 °. Therefore, the radial dimension of the honeycomb body in the electric heating type catalyst device can be reduced. Therefore, for example, when the electric heating catalyst device is disposed in an exhaust gas pipe such as under the floor of a vehicle, the mounting space can be reduced. Moreover, when the said electrically heated catalyst apparatus is installed in an exhaust gas pipe, it becomes possible to install both said pair of electrode terminals toward the upper direction rather than a horizontal direction. Therefore, it is possible to more reliably avoid the problem of short circuit due to the condensed water or water immersion.

上記電気加熱式触媒装置において、上記ハニカム体の周方向における一対の上記電極間の間隔は一定であり、上記電極における上記ハニカム体の軸方向に伸びる側端輪郭線は、その全長が上記基準線に対して所定の傾きで傾斜している。そのため、上述のごとく、上記一対の電極端子を上記一対の電極における上記ハニカム体の周方向の中央にそれぞれ形成すると共に、ハニカム体の軸方向に所定の間隔を開けてそれぞれ配置すると、上述のごとく、一対の電極端子のなす角度を180°未満にすることが可能になる。   In the electrically heated catalyst device, a distance between the pair of electrodes in the circumferential direction of the honeycomb body is constant, and a side edge contour line extending in the axial direction of the honeycomb body in the electrode has a total length of the reference line. With a predetermined inclination. Therefore, as described above, when the pair of electrode terminals are respectively formed in the center of the pair of electrodes in the circumferential direction of the honeycomb body and arranged at a predetermined interval in the axial direction of the honeycomb body, as described above. The angle formed by the pair of electrode terminals can be made less than 180 °.

また、上記電気加熱式触媒装置において、上記ハニカム体は、セル形成部を円筒形状の外皮部で覆うようにして構成されており、軸方向に直交する断面が円形状である。したがって、ハニカム体の外皮部の外周面に沿って設けられた一対の電極は、該一対の電極の対向方向における電極間の距離が場所によって異なる。具体的には、各電極の周方向の中央部から外側へ行くほど電極間の距離が短くなる。そのため、各電極の周方向の中央部から外側へ行くほど電極間に電流が流れ易い構成となっている。したがって、一対の電極間においては、上記ハニカム体の略軸方向に伸びる上記電極の側端輪郭線間の間隔が短くなり、側端輪郭線に電力が集中し易くなる。   In the electric heating catalyst device, the honeycomb body is configured so as to cover the cell forming portion with a cylindrical outer skin portion, and has a circular cross section perpendicular to the axial direction. Therefore, in the pair of electrodes provided along the outer peripheral surface of the outer skin portion of the honeycomb body, the distance between the electrodes in the facing direction of the pair of electrodes varies depending on the location. Specifically, the distance between the electrodes decreases as the distance from the circumferential center of each electrode increases. For this reason, the current flows more easily between the electrodes as it goes outward from the center in the circumferential direction of each electrode. Therefore, between the pair of electrodes, the interval between the side end contour lines of the electrodes extending in the substantially axial direction of the honeycomb body is shortened, and electric power is easily concentrated on the side end contour lines.

上記電気加熱式触媒装置においては、上記基準線を想定すると、上記電極における上記ハニカム体の略軸方向に伸びる側端輪郭線は、その全長が上記基準線に対して平行ではなく、該基準線と交差する方向に配されている。即ち、上記側端輪郭線を上記ハニカム体の軸方向に並行しないように形成してある。
そのため、たとえ上記側端輪郭線に電力が集中しても上記側端輪郭線は上記ハニカム体の軸方向に並行しないため、熱応力が上記ハニカム体の特定の軸方向に沿って集中することを防止することができる。即ち、熱応力を複数のセルにわたって分散させ、緩和することができる。それ故、ハニカム体の破損を防止することができる。
In the electric heating catalyst device, assuming the reference line, the side edge contour line extending in the substantially axial direction of the honeycomb body in the electrode is not parallel to the reference line in its entire length, and the reference line It is arranged in the direction that intersects. That is, the side end contour line is formed so as not to be parallel to the axial direction of the honeycomb body.
Therefore, even if electric power is concentrated on the side end contour line, the side end contour line is not parallel to the axial direction of the honeycomb body, so that thermal stress is concentrated along a specific axial direction of the honeycomb body. Can be prevented. That is, thermal stress can be dispersed and relaxed across a plurality of cells. Therefore, breakage of the honeycomb body can be prevented.

また、上記一対の電極端子は、それぞれ上記一対の電極における上記ハニカム体の周方向の中央に形成されている。そのため、上記電極端子間に電圧を印加すると、偏りなく均一に上記ハニカム体を加熱させることができる。
また、上記電気加熱式触媒装置においては、上記ハニカム体の周方向における一対の上記電極間の間隔が一定である。即ち、上記側端輪郭線同士の周方向に沿った間隔が一定であり、一対の上記電極は、上記ハニカム体の上記外周面の周方向に偏り無く、対向して配置されている。そのため、上記電気加熱式触媒装置において、一対の上記電極に挟まれる領域が大きくなる。それ故、上記電極に通電することにより、上記ハニカム体を均一に加熱させることが可能になる。また、一対の電極における上記側端輪郭線同士の間隔を等しくすることができる。そのため、一方の側端輪郭線同士の距離が他方に比べて短くなることがなく、上記電極間に通電したときに一方の側端輪郭線間に電力が集中し、熱応力によりハニカム体が破損してしまうことを防止することができる。
Further, the pair of electrode terminals are respectively formed at the center in the circumferential direction of the honeycomb body in the pair of electrodes. Therefore, when a voltage is applied between the electrode terminals, the honeycomb body can be heated uniformly without unevenness.
In the electric heating catalyst device, the distance between the pair of electrodes in the circumferential direction of the honeycomb body is constant. That is, the distance along the circumferential direction between the side edge contour lines is constant, and the pair of electrodes are arranged to face each other without being biased in the circumferential direction of the outer peripheral surface of the honeycomb body. Therefore, in the electric heating catalyst device, a region sandwiched between the pair of electrodes is increased. Therefore, the honeycomb body can be uniformly heated by energizing the electrodes. Moreover, the space | interval of the said side edge outline in a pair of electrodes can be made equal. Therefore, the distance between the one side end contour lines is not shortened compared to the other, and power is concentrated between the one side end contour lines when the electrodes are energized, and the honeycomb body is damaged due to thermal stress. Can be prevented.

実施例1における、電気加熱式触媒装置の全体構造を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 実施例1における、電気加熱式触媒装置を軸方向の一方の端面から観察した様子を示す説明図。Explanatory drawing which shows a mode that the electrically heated catalyst apparatus in Example 1 was observed from the one end surface of the axial direction. 実施例1における、電気加熱式触媒装置を軸方向の他方の端面から観察した様子を示す説明図。Explanatory drawing which shows a mode that the electrically heated catalyst apparatus in Example 1 was observed from the other end surface of the axial direction. 実施例1における、電気加熱式触媒装置の外形の展開図を示す説明図。Explanatory drawing which shows the expanded view of the external shape of the electrically heated catalyst apparatus in Example 1. FIG. 実施例1における、電気加熱式触媒装置をケース内に収容した状態の断面構造を示す説明図。Explanatory drawing which shows the cross-section of the state which accommodated the electrically heated catalyst apparatus in Example 1 in the case. 実施例1における、車両の搭載スペースに搭載した電気加熱式触媒装置を軸方向の一方の端面から観察した様子を示す説明図。を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows a mode that the electrically heated catalyst apparatus mounted in the mounting space of a vehicle in Example 1 was observed from one end surface of the axial direction. FIG. 実施例2における、電気加熱式触媒装置を軸方向の一方の端面から観察した様子を示す説明図。Explanatory drawing which shows a mode that the electrically heated catalyst apparatus in Example 2 was observed from one end surface of the axial direction. 実施例2における、電気加熱式触媒装置を軸方向の他方の端面から観察した様子を示す説明図。Explanatory drawing which shows a mode that the electrically heated catalyst apparatus in Example 2 was observed from the other end surface of the axial direction. 実施例2における、電気加熱式触媒装置の外形の展開図を示す説明図。Explanatory drawing which shows the expanded view of the external shape of the electrically heated catalyst apparatus in Example 2. FIG. 実施例3における、絶縁層を電極と同じ厚みで形成した電気加熱式触媒装置を軸方向の一方の端面から観察した様子を示す説明図。Explanatory drawing which shows a mode that the electrically heated catalyst apparatus which formed the insulating layer in Example 3 in the same thickness as an electrode was observed from one end surface of an axial direction. 実施例3における、絶縁層を電極と同じ厚みで形成した電気加熱式触媒装置を軸方向の他方の端面から観察した様子を示す説明図。Explanatory drawing which shows a mode that the electrically heated catalyst apparatus which formed the insulating layer with the same thickness as an electrode in Example 3 was observed from the other end surface of the axial direction. 実施例3における、絶縁層を電極と同じ厚みで形成した電気加熱式触媒装置をケース内に収容した状態の断面構造を示す説明図。Explanatory drawing which shows the cross-section in the state which accommodated in the case the electrically heated catalyst apparatus which formed the insulating layer in Example 3 in the same thickness as an electrode. 実施例3における、外皮部及び電極を完全に覆うように絶縁層を形成した電気加熱式触媒装置を軸方向の一方の端面から観察した様子を示す説明図。Explanatory drawing which shows a mode that the electrically heated catalyst apparatus which formed the insulating layer so that an outer skin part and an electrode might be covered completely in Example 3 was observed from one end surface of the axial direction. 実施例3における、両端に段差を形成した電極に対して絶縁層を形成した電気加熱式触媒装置を軸方向の一方の端面から観察した様子を示す説明図。Explanatory drawing which shows a mode that the electrically heated catalyst apparatus which formed the insulating layer with respect to the electrode which formed the level | step difference in both ends in Example 3 was observed from the one end surface of the axial direction. 実施例3における、両端にテーパ部を形成した電極に対して絶縁層を形成した電気加熱式触媒装置を軸方向の一方の端面から観察した様子を示す説明図。In Example 3, it is explanatory drawing which shows a mode that the electric heating type catalyst apparatus which formed the insulating layer with respect to the electrode which formed the taper part in both ends was observed from the one end surface of the axial direction. 比較例1における、電気加熱式触媒装の全体構造を示す説明図。Explanatory drawing which shows the whole structure of the electrically heated catalyst mounting in the comparative example 1. 比較例1における、電極端子を鉛直方向に向けて配置した電気加熱式触媒装置を軸方向の一方の端面から観察した様子を示す説明図。Explanatory drawing which shows a mode that the electric heating type catalyst apparatus which has arrange | positioned the electrode terminal in the perpendicular direction in the comparative example 1 was observed from the one end surface of the axial direction. 比較例1における、電極端子を水平方向に向けて配置した電気加熱式触媒装置を軸方向の一方の端面から観察した様子を示す説明図。Explanatory drawing which shows a mode that the electric heating type catalyst apparatus which has arrange | positioned the electrode terminal in the horizontal direction in the comparative example 1 was observed from one end surface of the axial direction.

次に、上記電気加熱式触媒装置の好ましい実施形態について説明する。
上記電気加熱式触媒装置は、セル形成部と該セル形成部の周囲を覆う円筒形状の外皮部と有するハニカム体と、該ハニカム体の上記外皮部の外周面において径方向に対向配置された一対の電極と、該一対の電極からそれぞれ上記ハニカム体の径方向の外方に突出する一対の電極端子とを備える。
上記ハニカム体の上記セル形成部は、例えば、格子状に配された多孔質の隔壁と、該隔壁に囲まれて軸方向に伸びる複数のセルとにより構成することができる。
Next, a preferred embodiment of the electric heating catalyst device will be described.
The electric heating catalyst device includes a honeycomb body having a cell forming portion and a cylindrical outer skin portion that covers the periphery of the cell forming portion, and a pair of radially disposed opposing outer peripheral surfaces of the outer skin portion of the honeycomb body. And a pair of electrode terminals projecting outward from each of the pair of electrodes in the radial direction of the honeycomb body.
The cell forming portion of the honeycomb body can be constituted by, for example, porous partition walls arranged in a lattice shape and a plurality of cells extending in the axial direction surrounded by the partition walls.

上記ハニカム体は、SiCを主成分とする多孔質セラミックスからなることが好ましい(請求項7)。
この場合には、上記ハニカム体に導電性を与えることが容易になると共に、表面積を大きくすることができる。
The honeycomb body is preferably made of porous ceramics mainly composed of SiC.
In this case, it becomes easy to impart conductivity to the honeycomb body, and the surface area can be increased.

上記ハニカム体の導電性は、例えば材料の組成によって調整することができる。具体的には、上記ハニカム体の材料としてSiCを用いた場合には、そのSiCに不純物としてのN、B、Al等を固溶させ、その不純物量を制御することによって電気抵抗率を調整して導電性を制御することができる。また、上記ハニカム体の材料としてSi−SiCを用いた場合には、SiCに金属シリコン(Si)を含浸させ、そのSi量を調整することによって導電性を制御することができる。
また、上記ハニカム体の上記セル形成部の隔壁等には、排ガス浄化性能を示す触媒を担持させることができる。該触媒としては、Pt、Pd、Rh等からなる三元触媒等を用いることができる。
The conductivity of the honeycomb body can be adjusted by, for example, the composition of the material. Specifically, when SiC is used as the material of the honeycomb body, N, B, Al, etc. as impurities are dissolved in the SiC, and the electric resistivity is adjusted by controlling the amount of impurities. Thus, the conductivity can be controlled. When Si—SiC is used as the material of the honeycomb body, conductivity can be controlled by impregnating SiC with metal silicon (Si) and adjusting the amount of Si.
Further, a catalyst exhibiting exhaust gas purification performance can be supported on the partition walls of the cell forming portion of the honeycomb body. As the catalyst, a three-way catalyst composed of Pt, Pd, Rh or the like can be used.

次に、上記電気加熱式触媒装置において、上記ハニカム体の周方向における一対の上記電極間の間隔は一定である。また、上記ハニカム体の軸方向に平行で上記外皮部上にある任意の基準線を想定すると、上記電極における上記ハニカム体の略軸方向に伸びる側端輪郭線は、上記基準線に対して平行ではなく、上記側端輪郭線は上記基準線に対して所定の傾きで傾斜している。
上記側端輪郭線が上記基準線に平行な場合には、上記一対の電極における上記ハニカム体の周方向の中央に上記一対の電極端子を形成すると、一対の電極端子は互いに水平に形成される。したがって、上記電気加熱式触媒装置の径方向の寸法が大きくなり、排ガス管内への搭載スペースが増大してしまう。
また、上記側端輪郭線が上記基準線に平行な場合には、上記電極の上記側端輪郭線が上記ハニカム体のセルの軸方向と平行になる。そのため、一対の上記電極間に通電し、上記側端輪郭線に電力が集中した際に、熱応力が上記ハニカム体の特定の軸方向に沿って集中してしまう。その結果、上記電気加熱式触媒装置の軸方向に伸びる特定のセルに熱応力が集中し、ハニカム体が破損してしまうおそれがある。
Next, in the electrically heated catalyst device, the distance between the pair of electrodes in the circumferential direction of the honeycomb body is constant. Further, assuming an arbitrary reference line that is parallel to the axial direction of the honeycomb body and is on the outer skin portion, a side end outline extending in the substantially axial direction of the honeycomb body in the electrode is parallel to the reference line. Instead, the side edge contour line is inclined with a predetermined inclination with respect to the reference line.
When the side edge contour line is parallel to the reference line, the pair of electrode terminals are formed horizontally when the pair of electrode terminals are formed in the center of the pair of electrodes in the circumferential direction of the honeycomb body. . Therefore, the dimension in the radial direction of the electric heating type catalyst device is increased, and the mounting space in the exhaust gas pipe is increased.
Further, when the side end contour line is parallel to the reference line, the side end contour line of the electrode is parallel to the axial direction of the cells of the honeycomb body. Therefore, when a current is applied between the pair of electrodes and power is concentrated on the side end contour line, thermal stress is concentrated along a specific axial direction of the honeycomb body. As a result, thermal stress concentrates on specific cells extending in the axial direction of the electrically heated catalyst device, and the honeycomb body may be damaged.

また、上記電気加熱式触媒装置においては、上記ハニカム体の周方向における一対の上記電極間の間隔が一定である。
上記周方向における一対の上記電極間の間隔が一定でなく、一方の電極が周方向に他方の電極に偏って形成されている場合には、上記電極間に通電したときに、間隔の小さい側の電極の上記側端輪郭線間の距離が小さくなり、該側端輪郭線に電力が集中してしまう。その結果、熱応力が集中し、ハニカム体が破損してしまうおそれがある。また、上記周方向における一対の上記電極間の間隔が一定でない場合には、一対の電極に通電した際に、間隔が小さい側において上記ハニカム体の周方向に電流が流れ易くなるおそれがある。その結果、この場合には、通電しても上記ハニカム体の内部を十分に発熱させることができなくなるおそれがある。
In the electric heating catalyst device, the distance between the pair of electrodes in the circumferential direction of the honeycomb body is constant.
When the interval between the pair of electrodes in the circumferential direction is not constant and one electrode is formed to be biased toward the other electrode in the circumferential direction, the side with the smaller interval when energized between the electrodes The distance between the side end contours of the electrode becomes small, and power is concentrated on the side end contour. As a result, thermal stress is concentrated and the honeycomb body may be damaged. In addition, when the distance between the pair of electrodes in the circumferential direction is not constant, there is a possibility that current flows easily in the circumferential direction of the honeycomb body on the side where the distance is small when the pair of electrodes is energized. As a result, in this case, there is a possibility that the inside of the honeycomb body cannot be sufficiently heated even when energized.

次に、上記ハニカム体の上記外周面における一対の上記電極間の上記軸方向における間隔は、上記ハニカム体の上記外周面における一対の上記電極間の上記周方向における間隔よりも大きいことが好ましい(請求項6)。
上記外周面において、上記軸方向における上記電極間の間隔が上記周方向における間隔よりも小さい場合には、一対の電極間に通電を行った際に、上記外皮部の上記外周面において上記軸方向に電流が流れ易くなるおそれがある。その結果、通電を行っても上記ハニカム体の内部を十分に加熱させることが困難になるおそれがある。
Next, an interval in the axial direction between the pair of electrodes on the outer peripheral surface of the honeycomb body is preferably larger than an interval in the circumferential direction between the pair of electrodes on the outer peripheral surface of the honeycomb body ( Claim 6).
In the outer peripheral surface, when the distance between the electrodes in the axial direction is smaller than the distance in the circumferential direction, when the current is applied between a pair of electrodes, the axial direction is applied to the outer peripheral surface of the outer skin portion. There is a risk that current will flow easily. As a result, even if energization is performed, it may be difficult to sufficiently heat the inside of the honeycomb body.

また、上記ハニカム体の上記径方向における一対の上記電極間の最短距離は、上記ハニカム体の上記外周面における一対の上記電極間の最短距離よりも小さくすることができる。
この場合には、上記電気加熱式触媒装置の一対の電極間に通電を行ったときに、上記外皮部の外周面において電流が流れることを防止することができる。なお、上記ハニカム体の上記径方向における一対の上記電極間の最短距離は、一対の上記電極間において周方向に近接する上記側端輪郭線同士の上記径方向における距離となる。
In addition, the shortest distance between the pair of electrodes in the radial direction of the honeycomb body can be smaller than the shortest distance between the pair of electrodes on the outer peripheral surface of the honeycomb body.
In this case, it is possible to prevent a current from flowing on the outer peripheral surface of the outer skin portion when energization is performed between the pair of electrodes of the electric heating catalyst device. The shortest distance between the pair of electrodes in the radial direction of the honeycomb body is the distance in the radial direction between the side edge contour lines that are close to each other in the circumferential direction between the pair of electrodes.

上記外周面における一対の上記電極間の上記軸方向における間隔、上記外周面における一対の上記電極間の上記周方向における間隔、上記ハニカム体の径方向における一対の上記電極間の最短距離、及び上記ハニカム体の上記外周面における一対の上記電極間の最短距離は、例えば上記電極の上記周方向の幅、上記電極の上記軸方向の長さ、上記ハニカム体の径、上記ハニカム体の軸方向の長さ、上記側端輪郭線の傾き等を調整することにより制御することができる。   The distance in the axial direction between the pair of electrodes on the outer peripheral surface, the distance in the circumferential direction between the pair of electrodes on the outer peripheral surface, the shortest distance between the pair of electrodes in the radial direction of the honeycomb body, and the The shortest distance between the pair of electrodes on the outer peripheral surface of the honeycomb body is, for example, the circumferential width of the electrode, the axial length of the electrode, the diameter of the honeycomb body, and the axial direction of the honeycomb body. It can be controlled by adjusting the length, the inclination of the side edge contour line, and the like.

また、上記側端輪郭線は、上記基準線に対して45°以下で傾斜していることが好ましい(請求項4)。
この場合には、上記ハニカム体の上記外周面における一対の電極間の距離を大きくすることができる。そのため、一対の電極間に通電を行ったときに、上記外周面において電流が流れてしまうことを防止することができる。そのため、通電により上記ハニカム体の内部を十分に発熱させることができる。
Moreover, it is preferable that the said side edge outline is inclined at 45 degrees or less with respect to the said reference line (Claim 4).
In this case, the distance between the pair of electrodes on the outer peripheral surface of the honeycomb body can be increased. Therefore, it is possible to prevent a current from flowing on the outer peripheral surface when energization is performed between the pair of electrodes. Therefore, the inside of the honeycomb body can be sufficiently heated by energization.

また、上記電気加熱式触媒装置において、上記側端輪郭線は、その全長が上記基準線に対して所定の傾きで傾斜しており、一対の上記電極間において上記側端輪郭線は略平行に形成される。
また、一対の上記電極は、それぞれ上記外皮部の上記外周面に略螺旋状に配することができる。ここでいう螺旋状は、各電極が螺旋状に上記外周面を一周していない場合を含み、例えば半周や2/3周等のように一周未満の場合を含む。
Further, in the electric heating catalyst device, the side end contour line is inclined at a predetermined inclination with respect to the reference line, and the side end contour line is substantially parallel between the pair of electrodes. It is formed.
Moreover, a pair of said electrode can each be distribute | arranged substantially helically on the said outer peripheral surface of the said outer skin part. As used herein, the term “spiral” includes a case where each electrode does not spirally travel around the outer peripheral surface, and includes a case where the number of rounds is less than one round, for example, half or 2/3.

また、上記電極は、全長にわたって上記ハニカム体の上記周方向に均一の幅で形成されていることが好ましい。この場合には、上記電極の形成が容易になると共に、一対の上記電極を対向して配置することにより、上記ハニカム体の周方向における一対の上記電極間の間隔を容易に一定にすることができる。   Moreover, it is preferable that the said electrode is formed with the uniform width | variety in the said circumferential direction of the said honeycomb body over the full length. In this case, the electrodes can be easily formed, and the pair of the electrodes are arranged to face each other, whereby the distance between the pair of the electrodes in the circumferential direction of the honeycomb body can be easily made constant. it can.

上記側端輪郭線と上記基準線とのなす鋭角の角度をθとし、上記電極の上記周方向における幅をDとし、上記側端輪郭線の長さをEとし、上記ハニカム体の上記周方向における外周の長さをRとすると、D+E×sinθ≧R/2という関係を満足することが好ましい(請求項5)。
この場合には、例えば三元触媒等の触媒を担持させた上記ハニカム体において一対の上記電極に通電したときに、上記ハニカム体を排ガスが通過する際の排ガス流線上である上記セル形成部の軸方向のいずれかの位置で、通電発熱により触媒が活性化する部位を短時間で構成することが可能となり、排ガスの浄化性能を向上させることができる。
D+E×sinθ<R/2の場合には、一対の上記電極に通電して上記ハニカム体を加熱させたときに、該ハニカム体の上記セル形成部の軸方向のいずれかの位置で通電発熱による触媒活性ができない部位が生じてしまい、排ガスが不活性な触媒部分を通過してしまうおそれがある。
The acute angle formed by the side edge contour line and the reference line is θ, the width in the circumferential direction of the electrode is D, the length of the side edge contour line is E, and the circumferential direction of the honeycomb body It is preferable that the relationship of D + E × sin θ ≧ R / 2 is satisfied, where R is the length of the outer periphery at (Claim 5).
In this case, for example, when the pair of the electrodes is energized in the honeycomb body supporting a catalyst such as a three-way catalyst, the cell forming portion on the exhaust gas stream line when the exhaust gas passes through the honeycomb body. At any position in the axial direction, a portion where the catalyst is activated by energization heat generation can be configured in a short time, and the exhaust gas purification performance can be improved.
In the case of D + E × sin θ <R / 2, when the honeycomb body is heated by energizing a pair of the electrodes, it is caused by energization heat generation at any position in the axial direction of the cell forming portion of the honeycomb body. There is a possibility that a portion where the catalytic activity cannot be generated occurs, and the exhaust gas may pass through the inactive catalyst portion.

また、上記電極を構成する材料としては、例えば、SiC、SiCにSi(金属シリコン)を含浸させたSi−SiC等の導電性セラミックス、Cr、Fe、Ni、Mo、Mn、Si、Ti、Nb、Al又はこれらの合金等の金属を用いることができる。好ましくは導電性セラミックスがよい。
また、導電性セラミックスとしては、上述のSi−SiCの他に、Si、Cr、Fe、Ni、及びAl等から選ばれる1種以上の金属をSiCに含浸させてなる導電性セラミックスを用いることができる。
Moreover, as a material which comprises the said electrode, conductive ceramics, such as Si-SiC which impregnated Si (metallic silicon) to SiC and SiC, Cr, Fe, Ni, Mo, Mn, Si, Ti, Nb, for example A metal such as Al or an alloy thereof can be used. A conductive ceramic is preferable.
Further, as the conductive ceramic, in addition to the above-described Si—SiC, it is possible to use a conductive ceramic obtained by impregnating SiC with one or more metals selected from Si, Cr, Fe, Ni, Al, and the like. it can.

上記ハニカム体の上記外周面への上記電極の形成にあたっては、例えば該電極の原料となる電極材を焼成した後に接着剤で貼り付ける方法、あるいはペースト状の電極材をハニカム体の外周面に塗布し焼成する方法などを採用することができる。これらの方法を併用することもできる。   In forming the electrode on the outer peripheral surface of the honeycomb body, for example, a method of baking an electrode material as a raw material of the electrode and then sticking it with an adhesive, or applying a paste-like electrode material to the outer peripheral surface of the honeycomb body A method of firing and firing can be employed. These methods can be used in combination.

上述の電極材を焼成した後にハニカム体に貼り付ける方法は、後述の実施例において説明する。
また、上述のペースト状の電極材を塗布し焼成する方法においては、具体的には、まず、Si、Cr、Fe、Ni、及びAl等から選ばれる1種以上の金属とSiCとを含有する電極原料に、バインダ、界面活性材、造孔材、及び水などを加え、混合、混練してペースト状の電極材を作製する。次いで、例えば所望の厚みを有するゴム板を電極の形状にくり抜き、このゴム板を上記ハニカム体の外皮部の外周面に配置し、ゴム板のくり抜き部分にペースト状の電極材を充填する。そして、電極材の厚みを一定にするために、くり抜き部分をスキージでさらい余剰な電極材を除く。次に、くり抜き部分に形成した電極材をハニカム体の外周面に残した状態でハニカム体の外周面からゴム板を取り除いた後、一定温度で焼成する。これにより、上記ハニカム体の外皮部の外周面に一対の電極を設けることができる。
A method of attaching the above electrode material to the honeycomb body after firing will be described in the examples described later.
In the method of applying and baking the paste-like electrode material, specifically, first, at least one metal selected from Si, Cr, Fe, Ni, Al, and the like and SiC are contained. A binder, a surfactant, a pore former, water and the like are added to the electrode raw material, and mixed and kneaded to produce a paste-like electrode material. Next, for example, a rubber plate having a desired thickness is cut out in the shape of an electrode, this rubber plate is disposed on the outer peripheral surface of the outer skin portion of the honeycomb body, and the cut-out portion of the rubber plate is filled with a paste-like electrode material. Then, in order to make the thickness of the electrode material constant, the cut-out portion is removed with a squeegee to remove excess electrode material. Next, the rubber plate is removed from the outer peripheral surface of the honeycomb body in a state where the electrode material formed in the hollowed portion is left on the outer peripheral surface of the honeycomb body, and then fired at a constant temperature. Thereby, a pair of electrodes can be provided on the outer peripheral surface of the outer skin portion of the honeycomb body.

また、上記ハニカム体の上記外皮部における少なくとも上記電極が形成されていない部分には、上記外皮部を被覆する電気絶縁材料からなる絶縁層が形成されていることが好ましい(請求項2)。
この場合には、上記電気加熱式触媒装置において、上記ハニカム体の周方向における絶縁性を高めることができる。
In addition, it is preferable that an insulating layer made of an electrically insulating material covering the outer skin portion is formed at least on a portion of the outer skin portion of the honeycomb body where the electrode is not formed.
In this case, in the electric heating catalyst device, the insulation in the circumferential direction of the honeycomb body can be enhanced.

また、上記絶縁層は、上記ハニカム体の上記外皮部に形成された上記電極と同じ厚みで形成することができる。この場合には、上記ハニカム体の外周面と電極との段差をなくすことができる。そのため、上記電気加熱式触媒装置をケースに収容し、上記電気加熱式触媒装置の外周面とケースとの間に弾性を有する保持マットを配置して用いるときに、該保持マットによって上記電気加熱式触媒装置の外周面に加えられる面圧を均一にすることができる。それ故、保持マットによる応力低減効果を向上させることができる。   The insulating layer can be formed with the same thickness as the electrode formed on the outer skin portion of the honeycomb body. In this case, the step between the outer peripheral surface of the honeycomb body and the electrode can be eliminated. Therefore, when the electric heating catalyst device is accommodated in a case and an elastic holding mat is used between the outer peripheral surface of the electric heating catalyst device and the case, the electric heating type catalyst device is used by the holding mat. The surface pressure applied to the outer peripheral surface of the catalyst device can be made uniform. Therefore, the stress reduction effect by the holding mat can be improved.

上記絶縁層は、上記ハニカム体の上記外皮部における少なくとも上記電極が形成されていない部分だけでなく、上記電極上に形成することもできる。この場合にも、上記ハニカム体の外周面の段差をなくすことができる。また、上記絶縁層は、電気絶縁材料により一層で形成することもできるが、2層以上の積層体で形成することもできる。2層以上で形成する場合には、同じ電気絶縁材料を用いることもできるが、異なる電気絶縁材料で各層を形成することもできる。   The insulating layer can be formed not only on at least a portion of the outer skin portion of the honeycomb body where the electrode is not formed, but also on the electrode. Also in this case, the step on the outer peripheral surface of the honeycomb body can be eliminated. The insulating layer can be formed of a single layer of an electrically insulating material, but can also be formed of a laminate of two or more layers. In the case of forming with two or more layers, the same electrical insulating material can be used, but each layer can also be formed with different electrical insulating materials.

上記絶縁層は、電気絶縁性を有し、上記電極と機械低物性が近い材料により形成することが好ましい。
この場合には、電極やハニカム体にかかる熱応力を小さくすることができる。
上記絶縁層は、例えば、アルミナ、酸化珪素等の絶縁材料により形成することができる。
The insulating layer is preferably formed of a material having electrical insulating properties and mechanical low physical properties similar to those of the electrode.
In this case, the thermal stress applied to the electrode and the honeycomb body can be reduced.
The insulating layer can be formed of an insulating material such as alumina or silicon oxide, for example.

また、上記電気加熱式触媒装置は、一対の電極からそれぞれ上記ハニカム体の径方向の外方に突出する一対の電極端子を備える。該電極端子は、円柱形状のハニカム体の外周円の接線に対して垂直に伸びるように形成することができる。電極端子は、導電性セラミックス又は導電性金属からなる柱状の部材で形成することができる。好ましくは導電性セラミックスがよい。   The electrically heated catalyst device includes a pair of electrode terminals that protrude from the pair of electrodes outward in the radial direction of the honeycomb body. The electrode terminal can be formed so as to extend perpendicular to the tangent to the outer circumference of the cylindrical honeycomb body. The electrode terminal can be formed of a columnar member made of conductive ceramics or conductive metal. A conductive ceramic is preferable.

上記電極端子は、上記電極の上記ハニカム体の周方向における中央に形成される。該中央からずらして上記電極端子を形成すると、通電時に、偏りなく均一に上記ハニカム体を加熱させることができなくなるおそれがある。
また、上記電気加熱式触媒装置を上記ハニカム体の軸方向の一方の端面から観察したときにおける上記一対の電極端子がなす角度が180°未満となるように、一対の電極端子は形成されている。一対の電極端子のなす角度が180°の場合、即ち、一対の電極端子が互いに水平に形成されている場合には、上記電気加熱式触媒装置の径方向の寸法が大きくなる。そのため、車両への搭載スペースが大きくなる。
The electrode terminal is formed at the center of the electrode in the circumferential direction of the honeycomb body. If the electrode terminals are formed so as to be shifted from the center, the honeycomb body may not be heated evenly and uniformly when energized.
Further, the pair of electrode terminals is formed such that an angle formed by the pair of electrode terminals when the electric heating catalyst device is observed from one end face in the axial direction of the honeycomb body is less than 180 °. . When the angle formed by the pair of electrode terminals is 180 °, that is, when the pair of electrode terminals are formed horizontally, the dimension of the electric heating catalyst device in the radial direction becomes large. This increases the space for mounting on the vehicle.

また、一対の電極端子は、それぞれハニカム体の軸方向に間隔を開けて一対の電極上に形成されている。一対の電極は、上記のように、軸方向に対して所定の傾きで形成されているため、一対の電極の軸方向の間隔を調整することにより、上記ハニカム体の軸方向の一方の端面から観察したときにおける上記一対の電極端子がなす角度を調整することが可能になる。   In addition, the pair of electrode terminals are formed on the pair of electrodes at intervals in the axial direction of the honeycomb body. Since the pair of electrodes is formed with a predetermined inclination with respect to the axial direction as described above, the axial distance between the pair of electrodes can be adjusted to adjust the distance from one end surface of the honeycomb body in the axial direction. The angle formed by the pair of electrode terminals when observed can be adjusted.

上記一対の電極端子のなす角度をより小さくすると、車両への搭載スペースをより小さくすることが可能になる。上記一対の電極端子のなす角度は、150°以下であることが好ましく(請求項3)、120°以下がより好ましく、90°以下がさらに好ましい。   If the angle formed by the pair of electrode terminals is made smaller, the mounting space on the vehicle can be made smaller. The angle formed by the pair of electrode terminals is preferably 150 ° or less (Claim 3), more preferably 120 ° or less, and still more preferably 90 ° or less.

(実施例1)
次に、電気加熱式触媒装置(EHC)の実施例について、図面を用いて説明する。
図1〜図4に示すごとく、本例の電気加熱式触媒装置1は、セル形成部21とその周囲を覆う円筒形状の外皮部22と有するハニカム体2と、ハニカム体2の外皮部22の外周面221において径方向に対向配置された一対の電極31、32と、これらの電極31、32からそれぞれハニカム体2の径方向の外方に突出する一対の電極端子310、320とを備える。
Example 1
Next, an example of an electrically heated catalyst device (EHC) will be described with reference to the drawings.
As shown in FIGS. 1 to 4, the electrically heated catalyst device 1 of this example includes a honeycomb body 2 having a cell forming portion 21 and a cylindrical outer skin portion 22 covering the periphery thereof, and an outer skin portion 22 of the honeycomb body 2. A pair of electrodes 31, 32 that are opposed to each other in the radial direction on the outer peripheral surface 221, and a pair of electrode terminals 310, 320 that protrude from the electrodes 31, 32 outward in the radial direction of the honeycomb body 2, respectively.

図1及び図4に示すごとく、電気加熱式触媒装置1において、ハニカム体2の軸方向Xに平行で外皮部22上にある任意の基準線19を想定すると、電極31、32におけるハニカム体2の略軸方向Xに伸びる側端輪郭線315、325は、基準線19に対して平行ではなく、その全長が基準線19に対して所定の傾きθ1で傾斜している。
また、図4に示すごとく、電気加熱式触媒装置1において、ハニカム体2の周方向における一対の電極31、32間の間隔A1、B1は、一定である。なお、図4においては、間隔B1aと間隔B1bの和が間隔B1となる。
As shown in FIGS. 1 and 4, in the electrically heated catalyst device 1, assuming an arbitrary reference line 19 parallel to the axial direction X of the honeycomb body 2 and on the outer skin portion 22, the honeycomb body 2 in the electrodes 31 and 32. The side edge contour lines 315 and 325 extending substantially in the axial direction X are not parallel to the reference line 19 and the entire length thereof is inclined with respect to the reference line 19 at a predetermined inclination θ1.
Moreover, as shown in FIG. 4, in the electrically heated catalyst device 1, the distances A1 and B1 between the pair of electrodes 31 and 32 in the circumferential direction of the honeycomb body 2 are constant. In FIG. 4, the sum of the interval B1a and the interval B1b is the interval B1.

一対の電極端子310、320は、ハニカム体2の軸方向Xに所定の間隔を開けて、それぞれ一対の電極31、32のハニカム体2の周方向における中央に形成されている。
電気加熱式触媒装置1をハニカム体2の軸方向の一方の端面28、29から観察したときにおいては、図2及び図3に示すごとく、一対の電極端子310、320がなす角度α1は180°未満である。なお、図2は、電気加熱式触媒装置1を、ハニカム体2の軸方向の一方の端面28から観察した図であり、一対の電極端子310、320のうち一方の電極端子310は紙面の手前側に位置し、他方の電極端子320は紙面の奥側に位置する。一方、図3は、電気加熱式触媒装置1を、ハニカム体2の軸方向の他方の端面29から観察した図であり、一対の電極端子310、320のうち一方の電極端子310は紙面の奥側に位置し、他方の電極端子320は紙面の手前側に位置する。
なお、図2〜図4において、ハニカム体2の外周面221に形成された一対の電極31、32は、その断面を示すものではないが、電極31、32の位置関係をわかりやすくするために電極31、32にハッチングを付けて示してある。後述の図7〜図11、図13〜図15、図17、及び図18においても同様である。
以下、本例の電気加熱式触媒装置をさらに詳細に説明する。
The pair of electrode terminals 310 and 320 are formed at the center of the pair of electrodes 31 and 32 in the circumferential direction of the honeycomb body 2 at a predetermined interval in the axial direction X of the honeycomb body 2.
When the electrically heated catalyst device 1 is observed from one end face 28, 29 in the axial direction of the honeycomb body 2, as shown in FIGS. 2 and 3, the angle α1 formed by the pair of electrode terminals 310, 320 is 180 °. Is less than. FIG. 2 is a view of the electrically heated catalyst device 1 observed from one end face 28 in the axial direction of the honeycomb body 2, and one electrode terminal 310 of the pair of electrode terminals 310 and 320 is in front of the paper surface. The other electrode terminal 320 is located on the back side of the drawing. On the other hand, FIG. 3 is a diagram in which the electrically heated catalyst device 1 is observed from the other end face 29 in the axial direction of the honeycomb body 2, and one electrode terminal 310 of the pair of electrode terminals 310 and 320 is deep in the drawing. The other electrode terminal 320 is located on the front side of the drawing.
2 to 4, the pair of electrodes 31 and 32 formed on the outer peripheral surface 221 of the honeycomb body 2 do not show the cross section, but in order to make the positional relationship between the electrodes 31 and 32 easy to understand. The electrodes 31 and 32 are shown hatched. The same applies to FIGS. 7 to 11, 13 to 15, 17, and 18 described later.
Hereinafter, the electrically heated catalyst device of this example will be described in more detail.

図1〜図3に示すごとく、電気加熱式触媒装置1において、ハニカム体2は、セル形成部21と、セル形成部21の周囲を覆う円筒形状の外皮部22と有し、全体として直径93mm、軸方向の長さ100mmの円柱形状を呈している。また、ハニカム体2は、SiCを主成分とする多孔質セラミックスからなる。
セル形成部21は、四角形格子状に配された多孔質の隔壁211と、その隔壁211に囲まれて軸方向に伸びる多数のセル212とから構成されている。
As shown in FIGS. 1 to 3, in the electrically heated catalyst device 1, the honeycomb body 2 includes a cell forming portion 21 and a cylindrical outer skin portion 22 that covers the periphery of the cell forming portion 21, and has a diameter of 93 mm as a whole. The cylindrical shape is 100 mm in length in the axial direction. The honeycomb body 2 is made of porous ceramics mainly composed of SiC.
The cell forming part 21 is composed of porous partition walls 211 arranged in a quadrangular lattice shape and a large number of cells 212 surrounded by the partition walls 211 and extending in the axial direction.

図1〜図3に示すごとく、ハニカム体2の外皮部22の外周面221には、Si−SiCの複合材を主成分とする導電性セラミックスからなる一対の電極31、32が形成されている。電極31、32は、ハニカム体2の径方向Yに対向配置されている。また、電極31、32は、外周面221上において、一定の幅D1(ハニカム体2の周方向における幅D1)で、ハニカム体2の軸方向Xにおける一方の端部28から他方の端部29まで形成されている(図4参照)。   As shown in FIGS. 1 to 3, a pair of electrodes 31 and 32 made of conductive ceramics mainly composed of a Si—SiC composite material are formed on the outer peripheral surface 221 of the outer skin portion 22 of the honeycomb body 2. . The electrodes 31 and 32 are disposed to face each other in the radial direction Y of the honeycomb body 2. The electrodes 31 and 32 have a constant width D1 (width D1 in the circumferential direction of the honeycomb body 2) on the outer peripheral surface 221, and from one end portion 28 to the other end portion 29 in the axial direction X of the honeycomb body 2. (See FIG. 4).

図1及び図4に示すごとく、ハニカム体2の軸方向に平行で外皮部22上にある任意の基準線19を想定すると、電極31、32においてハニカム体2の略軸方向Xに伸びる側端輪郭線315、325は、その全長が基準線19に対して平行ではなく、基準線19と交差する方向に配されている。本例においては、上記のごとく、電極31、32は、ハニカム体2の軸方向Xにおける一方の端部28(29)から他方の端部29(28)まで形成されているため、ハニカム体2の軸方向の長さをC1とし、側端輪郭線315、325の長さをE1とすると、E1>C1となる。なお、本例においては、E1=138mm、C1=100mmである。側端輪郭線315、325は、その全長が基準線19に対して所定の傾きθ1(θ1=42°)で傾斜しており、一対の電極31、32は、ハニカム体2の外皮部22の外周面221に略螺旋状に配されている。   As shown in FIGS. 1 and 4, assuming an arbitrary reference line 19 that is parallel to the axial direction of the honeycomb body 2 and is on the outer skin portion 22, the side ends of the electrodes 31 and 32 that extend in the substantially axial direction X of the honeycomb body 2. The contour lines 315 and 325 are not parallel to the reference line 19 in their entire length, but are arranged in a direction intersecting the reference line 19. In this example, since the electrodes 31 and 32 are formed from one end portion 28 (29) to the other end portion 29 (28) in the axial direction X of the honeycomb body 2 as described above, the honeycomb body 2 If the length in the axial direction is C1, and the lengths of the side edge contour lines 315 and 325 are E1, E1> C1. In this example, E1 = 138 mm and C1 = 100 mm. The side end outlines 315 and 325 are inclined at a predetermined inclination θ1 (θ1 = 42 °) with respect to the reference line 19, and the pair of electrodes 31 and 32 are formed on the outer skin portion 22 of the honeycomb body 2. The outer peripheral surface 221 is arranged in a substantially spiral shape.

図4に示すごとく、本例の電気加熱式触媒装置1は、側端輪郭線315、325と基準線19とのなす角度(鋭角)をθ1とし、電極31、32の周方向における幅をD1とし、側端輪郭線315、325の長さをE1とし、ハニカム体2の周方向における外周の長さをR1とすると、D1+E1×sinθ1≧R1/2という関係を満足する。なお、本例においては、D1=60mm、E1=138mm、θ1=42°、R1=292mmである。   As shown in FIG. 4, in the electrically heated catalyst device 1 of this example, the angle (acute angle) formed between the side edge contour lines 315 and 325 and the reference line 19 is θ1, and the width in the circumferential direction of the electrodes 31 and 32 is D1. Assuming that the length of the side edge contour lines 315 and 325 is E1, and the length of the outer periphery in the circumferential direction of the honeycomb body 2 is R1, the relationship of D1 + E1 × sin θ1 ≧ R1 / 2 is satisfied. In this example, D1 = 60 mm, E1 = 138 mm, θ1 = 42 °, and R1 = 292 mm.

また、図4に示すごとく、本例の電気加熱式触媒装置1においては、外皮部22の外周面221において一対の電極31、32がそれぞれ同一の基準線19と交わる部位を有している。より具体的には、本例の電気加熱式触媒装置1においては、一対の電極31、32がそれぞれハニカム体2の軸方向Xの両端において同一の基準線19と交わる。そして、ハニカム体2の外周面221における一対の電極31、32間の軸方向Xにおける間隔F1は、外周面221における一対の電極31、32間の周方向における間隔A1、B1よりも大きくなるように構成されている。なお、本例においては、F1=100mm、A1=88mm、B1a=62mm、B1b=26mm、B1=B1a+B1b=88mmである。   As shown in FIG. 4, in the electrically heated catalyst device 1 of the present example, the pair of electrodes 31 and 32 have portions where the same reference line 19 intersects on the outer peripheral surface 221 of the outer skin portion 22. More specifically, in the electrically heated catalyst device 1 of the present example, the pair of electrodes 31 and 32 intersect with the same reference line 19 at both ends in the axial direction X of the honeycomb body 2. The distance F1 in the axial direction X between the pair of electrodes 31 and 32 on the outer peripheral surface 221 of the honeycomb body 2 is larger than the distance A1 and B1 in the circumferential direction between the pair of electrodes 31 and 32 on the outer peripheral surface 221. It is configured. In this example, F1 = 100 mm, A1 = 88 mm, B1a = 62 mm, B1b = 26 mm, and B1 = B1a + B1b = 88 mm.

また、図1〜図3に示すごとく、一対の電極31、32には、通電のための電極端子310、320が設けられている。電極端子310、320は、Si−SiCの複合材を主成分とする導電性セラミックスからなり、その形状は円柱状である。電極端子310、320は、それぞれ電極31、32からハニカム体2の径方向の外方に突出するように形成されている。
図4に示すごとく、電極端子310、320は、それぞれ電極31、32のハニカム体2の周方向における中央に形成される。即ち、電極31、32の周方向における幅をD1すると、電極端子310、320は、電極31、32の側端輪郭線315、325から周方向にD1/2の位置に形成されている。
As shown in FIGS. 1 to 3, the pair of electrodes 31 and 32 are provided with electrode terminals 310 and 320 for energization. The electrode terminals 310 and 320 are made of conductive ceramics whose main component is a Si—SiC composite material, and the shape thereof is cylindrical. The electrode terminals 310 and 320 are formed so as to protrude outward in the radial direction of the honeycomb body 2 from the electrodes 31 and 32, respectively.
As shown in FIG. 4, the electrode terminals 310 and 320 are formed at the centers of the electrodes 31 and 32 in the circumferential direction of the honeycomb body 2, respectively. That is, when the width in the circumferential direction of the electrodes 31 and 32 is D1, the electrode terminals 310 and 320 are formed at positions D1 / 2 in the circumferential direction from the side edge contour lines 315 and 325 of the electrodes 31 and 32.

また、図1及び図4に示すごとく、一対の電極端子310、320は、ハニカム体2の軸方向Xに所定の間隔を開けてそれぞれ電極31、32上に形成されている。本例においては、電極端子310は、ハニカム体2の軸方向Xにおいて、一方の端面28の近傍に形成されており、電極端子320は、他方の端面29の近傍に形成されている。
本例においては、図2及び図3に示すごとく、電気加熱式触媒装置1をハニカム体2の軸方向(図2及び図3における紙面と垂直な方向)の一方の端面28、29から観察したときにおける一対の電極端子310、320がなす角度α1が80°となるように、一対の電極端子310、320が上述のように軸方向Xに間隔を開けて形成されている。
As shown in FIGS. 1 and 4, the pair of electrode terminals 310 and 320 are formed on the electrodes 31 and 32, respectively, with a predetermined interval in the axial direction X of the honeycomb body 2. In this example, the electrode terminal 310 is formed in the vicinity of one end face 28 in the axial direction X of the honeycomb body 2, and the electrode terminal 320 is formed in the vicinity of the other end face 29.
In this example, as shown in FIGS. 2 and 3, the electrically heated catalyst device 1 was observed from one end face 28, 29 in the axial direction of the honeycomb body 2 (direction perpendicular to the paper surface in FIGS. 2 and 3). As described above, the pair of electrode terminals 310 and 320 are formed at intervals in the axial direction X so that the angle α1 formed by the pair of electrode terminals 310 and 320 is 80 °.

電気加熱式触媒装置1において、各電極31、32の電極端子310、320には、外部電源を備えた通電手段(図示略)が接続される(図1参照)。また、ハニカム体2におけるセル形成部21の隔壁211の表面には、触媒が担持される。本例では、触媒として貴金属であるPt、Pd、Rh等の三元触媒を用いた。
そして、電気加熱式触媒装置1においては、通電手段(図示略)によって一対の電極31、32間に通電を行うことにより、ハニカム体2を加熱することができる。
In the electrically heated catalyst device 1, an energization means (not shown) having an external power source is connected to the electrode terminals 310 and 320 of the electrodes 31 and 32 (see FIG. 1). Further, a catalyst is supported on the surface of the partition wall 211 of the cell forming portion 21 in the honeycomb body 2. In this example, a three-way catalyst such as Pt, Pd, and Rh, which are noble metals, was used as the catalyst.
In the electrically heated catalyst device 1, the honeycomb body 2 can be heated by energizing the pair of electrodes 31 and 32 by energizing means (not shown).

次に、本例の電気加熱式触媒装置1の製造方法について簡単に説明する(図1〜図3参照)。
まず、SiCを主成分とする多孔質セラミックスからなるハニカム体2を製造し、ハニカム体2に三元触媒を担持した。触媒を担持したハニカム体2は、公知の製造方法により作製することができる。
次に、ハニカム体2の外皮部22の外周面221に一対の電極31、32を形成した。
具体的には、まず、各電極31、32となるシート状の電極材をそれぞれ所望の形状に成形した。次いで、成形体を焼成し、Si−SiCの複合材を主成分とする焼成体からなる電極31、32を得た。
次いで、ハニカム体2の外皮部22の外周面221に、Si−SiCの複合材、カーボン、バインダ等を含有するペースト状の接着剤を介して、電極31、32を配置した(図1参照)。そして、外皮部22の外周面221に電極31、32を配置したハニカム体2を所定の温度(約1600℃)、所定の雰囲気条件(Ar雰囲気、常圧)で加熱・焼成した。これにより、ハニカム体2の外皮部22の外周面221に一対の電極31、32を接合させた。
Next, the manufacturing method of the electrically heated catalyst device 1 of this example will be briefly described (see FIGS. 1 to 3).
First, a honeycomb body 2 made of porous ceramics mainly composed of SiC was manufactured, and a three-way catalyst was supported on the honeycomb body 2. The honeycomb body 2 carrying the catalyst can be produced by a known production method.
Next, a pair of electrodes 31 and 32 was formed on the outer peripheral surface 221 of the outer skin portion 22 of the honeycomb body 2.
Specifically, first, sheet-like electrode materials to be the electrodes 31 and 32 were each formed into a desired shape. Next, the compact was fired to obtain electrodes 31 and 32 made of a fired body mainly composed of a Si—SiC composite material.
Next, electrodes 31 and 32 were disposed on the outer peripheral surface 221 of the outer skin portion 22 of the honeycomb body 2 via a paste-like adhesive containing a Si—SiC composite material, carbon, binder, and the like (see FIG. 1). . Then, the honeycomb body 2 in which the electrodes 31 and 32 are arranged on the outer peripheral surface 221 of the outer skin portion 22 was heated and fired at a predetermined temperature (about 1600 ° C.) and a predetermined atmospheric condition (Ar atmosphere, normal pressure). As a result, the pair of electrodes 31 and 32 were joined to the outer peripheral surface 221 of the outer skin portion 22 of the honeycomb body 2.

次に、導電性セラミックスを含む電極端子材料を円柱形状に成形し、焼成することにより電極端子310、320を得た。電極端子310、320は、Si−SiCの複合材を主成分とする焼成体(導電性セラミックス)よりなる。次いで、ハニカム体2の外皮部22に形成した電極31、32に、Si−SiCの複合材、カーボン、バインダ等を含有するペースト状の接着剤を介して、電極端子310、320を接合した。
このようにして、図1に示すごとく、ハニカム体2と、その外周面221において径方向に対向配置された一対の電極31、32と、これらの電極31、32からそれぞれハニカム体2の径方向の外方に突出する一対の電極端子310、320とを備えた電気加熱式触媒装置1作製した。
Next, electrode terminal materials containing conductive ceramics were formed into a cylindrical shape and fired to obtain electrode terminals 310 and 320. The electrode terminals 310 and 320 are made of a fired body (conductive ceramic) mainly composed of a Si—SiC composite material. Next, the electrode terminals 310 and 320 were joined to the electrodes 31 and 32 formed on the outer skin portion 22 of the honeycomb body 2 through a paste-like adhesive containing a Si—SiC composite material, carbon, binder, and the like.
In this way, as shown in FIG. 1, the honeycomb body 2, the pair of electrodes 31 and 32 disposed radially opposite to each other on the outer peripheral surface 221, and the radial direction of the honeycomb body 2 from these electrodes 31 and 32, respectively. An electrically heated catalyst device 1 having a pair of electrode terminals 310 and 320 projecting outward was prepared.

図5に示すごとく、電気加熱式触媒装置1は、例えば金属製のケース10内に収容して用いられる。ケース10と電気加熱式触媒装置との間には、繊維質の保持マット12が配置される。また、電気加熱式触媒装置1の導電性セラミックスからなる電極端子310は、金属電極端子311を介してリード線312に電気的に接続される。同図には示していないが、他方の電極端子320も同様に金属電極端子を介して他方のリード線322に電気的に接続される。
電極端子310と金属電極端子311とは、互いに接合されている。接合には、例えばロウ付けなどが用いられる。また、金属電極端子311には図示していない応力緩和構造が付与されており、振動などによるケース10とハニカム体2、及びケース10と電極端子310との位置ずれを吸収することができる。また、金属電極端子311とリード線312とは、かしめなどにより連結され電気的導通を保つ構造になっている。
As shown in FIG. 5, the electrically heated catalyst device 1 is used by being housed in, for example, a metal case 10. A fibrous holding mat 12 is arranged between the case 10 and the electrically heated catalyst device. The electrode terminal 310 made of conductive ceramics of the electrically heated catalyst device 1 is electrically connected to the lead wire 312 via the metal electrode terminal 311. Although not shown in the figure, the other electrode terminal 320 is also electrically connected to the other lead wire 322 via the metal electrode terminal.
The electrode terminal 310 and the metal electrode terminal 311 are joined to each other. For joining, for example, brazing or the like is used. Further, the metal electrode terminal 311 is provided with a stress relaxation structure (not shown), and can absorb the positional deviation between the case 10 and the honeycomb body 2 and the case 10 and the electrode terminal 310 due to vibration or the like. In addition, the metal electrode terminal 311 and the lead wire 312 are connected by caulking or the like so as to maintain electrical continuity.

図6に、車両の床下のスペース内への電気加熱式触媒装置1の搭載例を示す。同図に示すごとく、車両の床下においては、フレームやボディがあるため電気加熱式触媒装置1の搭載スペースは制限されている。同図において、車両のフレームを構成する金属の隔壁である遮熱板199と電気加熱式触媒装置1との間の寸法は、M=150mm、N=115mm、β=20°である。なお、電気加熱式触媒装置1におけるハニカム体の直径は上述のごとく93mmである。   FIG. 6 shows an example of mounting the electrically heated catalyst device 1 in the space under the floor of the vehicle. As shown in the figure, the space for mounting the electrically heated catalyst device 1 is limited because of the frame and the body under the floor of the vehicle. In the figure, the dimensions between the heat shield plate 199 that is a metal partition wall constituting the vehicle frame and the electrically heated catalyst device 1 are M = 150 mm, N = 115 mm, and β = 20 °. In addition, the diameter of the honeycomb body in the electrically heated catalyst device 1 is 93 mm as described above.

次に、本例の電気加熱式触媒装置1の作用効果について説明する。
図1〜図3に示すごとく、本例の電気加熱式触媒装置1においては、上述のごとく、一対の電極端子310、320のなす角度α1が80°で形成されており、一対の電極端子310、320のなす角度が180°未満である。そのため、電気加熱式触媒装置1におけるハニカム体2の径方向Yの寸法を小さくすることができる。それ故、例えば車両の床下等の排ガス管内に電気加熱式触媒装置1を配置する際に、その搭載スペースを小さくすることができる。また、電気加熱式触媒装置1は、排ガス管に設置するときに、一対の電極端子310、320をいずれも水平方向よりも上方に向けて設置することが可能になる(図5及び図6参照)。そのため、凝集水や浸水による短絡の問題をより確実に回避することが可能になる。
Next, the effect of the electrically heated catalyst device 1 of this example will be described.
As shown in FIGS. 1 to 3, in the electrically heated catalyst device 1 of this example, as described above, the angle α <b> 1 formed by the pair of electrode terminals 310 and 320 is 80 °, and the pair of electrode terminals 310 is formed. , 320 is less than 180 °. Therefore, the dimension in the radial direction Y of the honeycomb body 2 in the electrically heated catalyst device 1 can be reduced. Therefore, for example, when the electrically heated catalyst device 1 is disposed in an exhaust gas pipe such as under the floor of a vehicle, the mounting space can be reduced. Moreover, when the electrically heated catalyst device 1 is installed in the exhaust gas pipe, it is possible to install both the pair of electrode terminals 310 and 320 upward from the horizontal direction (see FIGS. 5 and 6). ). Therefore, it is possible to more reliably avoid the problem of short circuit due to the condensed water or water immersion.

図4に示すごとく、電気加熱式触媒装置1において、ハニカム体2の周方向における一対の電極31、32間の間隔A1、B1は一定であり、電極31、32におけるハニカム体の軸方向Xに伸びる側端輪郭線315、325は、その全長が基準線19に対して所定の傾きθ1(θ1=42°)で傾斜している。そのため、本例のように、一対の電極端子310、320を一対の電極31、32におけるハニカム体2の周方向の中央にそれぞれ形成すると共に、ハニカム体2の軸方向Xに所定の間隔を開けてそれぞれ配置することにより、上述のごとく、一対の電極端子310、320のなす角度を180°未満にすることが可能になる。なお、本例においては、θ1=42°の例を示したが、θ1は、適宜変更することができる。   As shown in FIG. 4, in the electrically heated catalyst device 1, the distances A <b> 1 and B <b> 1 between the pair of electrodes 31 and 32 in the circumferential direction of the honeycomb body 2 are constant, and in the axial direction X of the honeycomb body in the electrodes 31 and 32. The extending side end contour lines 315 and 325 are inclined with respect to the reference line 19 at a predetermined inclination θ1 (θ1 = 42 °). Therefore, as in this example, a pair of electrode terminals 310 and 320 are formed at the center of the pair of electrodes 31 and 32 in the circumferential direction of the honeycomb body 2, and a predetermined interval is provided in the axial direction X of the honeycomb body 2. As described above, the angle formed by the pair of electrode terminals 310 and 320 can be made less than 180 °. In this example, the example of θ1 = 42 ° is shown, but θ1 can be changed as appropriate.

また、図2及び図3に示すごとく、電気加熱式触媒装置1において、ハニカム体2は、セル形成部21を円筒形状の外皮部22で覆うようにして構成されており、軸方向に直交する断面が円形状である。したがって、ハニカム体2の外皮部22の外周面221に沿って設けられた一対の電極31、32は、これらの電極31、32の対向方向における電極31、32間の距離が場所によって異なる。具体的には、各電極31、32の周方向の中央部から外側へ行くほど電極31、32間の距離が短くなる。そのため、各電極31、32の周方向の中央部から外側へ行くほど電極31、32間に電流が流れ易い構成となっている。したがって、一対の電極間31、32においては、ハニカム体2の略軸方向に伸びる電極31、32の側端輪郭線315、325間の間隔が短くなり、側端輪郭線315、325に電力が集中し易くなる。   As shown in FIGS. 2 and 3, in the electrically heated catalyst device 1, the honeycomb body 2 is configured to cover the cell forming portion 21 with a cylindrical outer skin portion 22, and is orthogonal to the axial direction. The cross section is circular. Therefore, the pair of electrodes 31 and 32 provided along the outer peripheral surface 221 of the outer skin portion 22 of the honeycomb body 2 has different distances between the electrodes 31 and 32 in the facing direction of the electrodes 31 and 32 depending on the location. Specifically, the distance between the electrodes 31 and 32 decreases as the distance from the circumferential center of the electrodes 31 and 32 increases. For this reason, the current is more likely to flow between the electrodes 31 and 32 as it goes outward from the center in the circumferential direction of the electrodes 31 and 32. Therefore, between the pair of electrodes 31, 32, the distance between the side end contour lines 315, 325 of the electrodes 31, 32 extending in the substantially axial direction of the honeycomb body 2 is shortened, and power is supplied to the side end contour lines 315, 325. It becomes easy to concentrate.

図1及び図4に示すごとく、本例の電気加熱式触媒装置1においては、基準線19を想定すると、電極31、32におけるハニカム体2の略軸方向Xに伸びる側端輪郭線315、325は、その全長が基準線19に対して平行ではなく、基準線19と交差する方向に配されている。即ち、側端輪郭線315、325をハニカム体2の軸方向Xに並行しないように形成してある。
そのため、たとえ側端輪郭線315、325に電力が集中しても側端輪郭線315、325はハニカム体2の軸方向Xに並行しないため、熱応力がハニカム体2の特定の軸方向Xに沿って集中することを防止することができる。即ち、熱応力が軸方向Xに伸びる一つのセル212に集中せず、熱応力を複数のセル212にわたって分散させ、緩和することができる。それ故、ハニカム体2の破損を防止することができる。
As shown in FIGS. 1 and 4, in the electrically heated catalyst device 1 of the present example, assuming the reference line 19, side end contour lines 315 and 325 extending in the substantially axial direction X of the honeycomb body 2 in the electrodes 31 and 32. Are not arranged parallel to the reference line 19 but are arranged in a direction intersecting the reference line 19. That is, the side edge contour lines 315 and 325 are formed so as not to be parallel to the axial direction X of the honeycomb body 2.
Therefore, even if electric power is concentrated on the side end contour lines 315 and 325, the side end contour lines 315 and 325 are not parallel to the axial direction X of the honeycomb body 2, so that thermal stress is generated in a specific axial direction X of the honeycomb body 2. Concentration along the line can be prevented. That is, the thermal stress is not concentrated on one cell 212 extending in the axial direction X, and the thermal stress can be dispersed and relaxed over the plurality of cells 212. Therefore, damage to the honeycomb body 2 can be prevented.

また、図1〜図4に示すごとく、一対の電極端子310、320は、それぞれ一対の電極31、32におけるハニカム体2の周方向の中央に形成されている。そのため、電極端子310、320間に電圧を印加すると、偏りなく均一にハニカム体2を加熱させることができる。
また、電気加熱式触媒装置1においては、ハニカム体2の周方向における一対の電極31、32間の間隔A1、B1が一定である。即ち、側端輪郭線315、325同士の周方向に沿った間隔A1、B1が等しく、電極31、32の伸長方向において一定であり、一方の電極31(32)がハニカム体2の外周面221の周方向において他方の電極32(31)側に偏ること無く、対向して配置されている。そのため、ハニカム体2において一対の電極31、32に挟まれる領域が大きくなり、電極31、32に通電することにより、ハニカム体2を均一に加熱させることが可能になる。また、この場合には、一対の電極31、32における側端輪郭線同士315、325の間隔A1、B1を等しくすることができる(図4において、間隔A1=間隔B1=間隔B1a+間隔B2b)。そのため、一方の側端輪郭線315、325同士の距離が他方に比べて短くなることがなく、電極31、32間に通電したときに一方の側端輪郭線315、325間に電力が集中し、熱応力によりハニカム体2が破損してしまうことを防止することができる。
Moreover, as shown in FIGS. 1-4, a pair of electrode terminal 310,320 is formed in the center of the circumferential direction of the honeycomb body 2 in a pair of electrodes 31,32, respectively. Therefore, when a voltage is applied between the electrode terminals 310 and 320, the honeycomb body 2 can be heated uniformly without deviation.
In the electrically heated catalyst device 1, the distances A1 and B1 between the pair of electrodes 31 and 32 in the circumferential direction of the honeycomb body 2 are constant. That is, the distances A1 and B1 along the circumferential direction between the side edge contour lines 315 and 325 are equal and constant in the extending direction of the electrodes 31 and 32, and one electrode 31 (32) is the outer circumferential surface 221 of the honeycomb body 2. Are arranged to face each other without being biased toward the other electrode 32 (31) side. Therefore, the region sandwiched between the pair of electrodes 31 and 32 in the honeycomb body 2 becomes large, and the honeycomb body 2 can be heated uniformly by energizing the electrodes 31 and 32. In this case, the intervals A1 and B1 between the side edge contour lines 315 and 325 of the pair of electrodes 31 and 32 can be made equal (in FIG. 4, the interval A1 = the interval B1 = the interval B1a + the interval B2b). Therefore, the distance between the one side end contour lines 315 and 325 is not shortened compared to the other, and power is concentrated between the one side end contour lines 315 and 325 when the electrodes 31 and 32 are energized. The honeycomb body 2 can be prevented from being damaged by thermal stress.

また、電気加熱式触媒装置1において、ハニカム体2は円筒形状の外皮部22を有し、全体としては略円柱形状である。
そのため、電気加熱式触媒装置1の取扱いが非常に容易になる。例えば、電気加熱式触媒装置1を車両の排気管内へ収容する作業が容易になる。また、電気加熱式触媒装置1を外周から均一な力で保持した状態で収容することができ、振動や応力等に起因する電気加熱式触媒装置1の割れ等の発生を抑制することができる。これにより、電気加熱式触媒装置1の搭載性を十分に確保することができる。
Further, in the electrically heated catalyst device 1, the honeycomb body 2 has a cylindrical outer skin portion 22 and has a substantially columnar shape as a whole.
Therefore, handling of the electrically heated catalyst device 1 becomes very easy. For example, the operation of accommodating the electrically heated catalyst device 1 in the exhaust pipe of the vehicle is facilitated. In addition, the electrically heated catalyst device 1 can be accommodated while being held from the outer periphery with a uniform force, and the occurrence of cracks or the like of the electrically heated catalyst device 1 due to vibration, stress, or the like can be suppressed. Thereby, the mountability of the electrically heated catalyst device 1 can be sufficiently secured.

また、ハニカム体2は、SiCを主成分とする多孔質セラミックスからなる。そのため、ハニカム体2に導電性を与えることが容易になると共に、表面積を大きくすることができる。   The honeycomb body 2 is made of porous ceramics mainly composed of SiC. Therefore, it becomes easy to give the honeycomb body 2 conductivity, and the surface area can be increased.

また図4に示すごとく、電気加熱式触媒装置1においては、外皮部22の外周面221において一対の電極31、32がそれぞれ同一の基準線19と交わる。そして、ハニカム体2の外周面221における一対の電極31、32間の軸方向Xにおける間隔F1は、ハニカム体2の外周面における一対の電極31、32間の周方向における間隔A1、B1よりも大きくなっている。
外周面221において、軸方向Xにおける電極31、32間の間隔F1が上記周方向における間隔A1、B1よりも小さい場合には、一対の電極31、32間に通電を行った際に、外皮部22の外周面221において軸方向Xに電流が流れ易くなるおそれがある。その結果、通電を行ってもハニカム体2の内部を十分に加熱させることが困難になるおそれがある。
As shown in FIG. 4, in the electrically heated catalyst device 1, the pair of electrodes 31 and 32 intersect with the same reference line 19 on the outer peripheral surface 221 of the outer skin portion 22. The distance F1 in the axial direction X between the pair of electrodes 31 and 32 on the outer peripheral surface 221 of the honeycomb body 2 is larger than the distance A1 and B1 in the circumferential direction between the pair of electrodes 31 and 32 on the outer peripheral surface of the honeycomb body 2. It is getting bigger.
When the gap F1 between the electrodes 31 and 32 in the axial direction X is smaller than the gaps A1 and B1 in the circumferential direction on the outer circumferential surface 221, when energization is performed between the pair of electrodes 31 and 32, the outer skin portion There is a concern that current may easily flow in the axial direction X on the outer peripheral surface 221 of 22. As a result, it may be difficult to sufficiently heat the inside of the honeycomb body 2 even when energization is performed.

また、本例の電気加熱式触媒装置1においては、図4に示すごとく、側端輪郭線315、325と基準線19とのなす角度(鋭角)をθ1とし、電極31、32の周方向における幅をD1とし、側端輪郭線315、325の長さをE1とし、ハニカム体2の周方向における外周の長さをR1とすると、D1+E1×sinθ1≧R1/2という関係を満足する。そのため、図1〜図3に示すごとく、例えば三元触媒等の触媒を担持させたハニカム体2において一対の電極31、32に通電したときに、ハニカム体2を排ガスが通過する際における排ガス流線上であるセル形成部21の軸方向のいずれかの位置で、通電発熱により触媒が活性化する部位を短時間で構成することが可能となり、排ガスの浄化性能を向上させることができる。   Further, in the electrically heated catalyst device 1 of this example, as shown in FIG. 4, the angle (acute angle) formed between the side edge contour lines 315 and 325 and the reference line 19 is θ1, and the electrodes 31 and 32 are arranged in the circumferential direction. When the width is D1, the lengths of the side edge contour lines 315 and 325 are E1, and the outer peripheral length in the circumferential direction of the honeycomb body 2 is R1, the relationship of D1 + E1 × sin θ1 ≧ R1 / 2 is satisfied. Therefore, as shown in FIGS. 1 to 3, for example, when the pair of electrodes 31 and 32 are energized in the honeycomb body 2 supporting a catalyst such as a three-way catalyst, the exhaust gas flow when the exhaust gas passes through the honeycomb body 2 A portion where the catalyst is activated by energization heat generation can be formed in a short time at any position in the axial direction of the cell forming portion 21 on the line, and the exhaust gas purification performance can be improved.

また、図1に示すごとく、本例の電気加熱式触媒装置1においては、通電手段(図示略)によって一対の電極端子310、320を介して一対の電極31、32間に通電を行うことにより、ハニカム体2を均一に昇温させることができる。これにより、ハニカム体2に担持された触媒を全体的に効率よく活性化させることができ、排ガス浄化性能を早期に発揮することができる。   Further, as shown in FIG. 1, in the electrically heated catalyst device 1 of the present example, current is supplied between a pair of electrodes 31 and 32 via a pair of electrode terminals 310 and 320 by a current supply means (not shown). The honeycomb body 2 can be heated uniformly. Thereby, the catalyst supported by the honeycomb body 2 can be activated as a whole efficiently, and the exhaust gas purification performance can be exhibited at an early stage.

(実施例2)
本例は、実施例1とは一対の電極端子のなす角度を変えた電気加熱式触媒装置の例である。
図7〜図9に示すごとく、本例の電気加熱式触媒装置4は、実施例1と同様に、セル形成部41とその周囲を覆う円筒形状の外皮部42と有するハニカム体40と、ハニカム体40の外皮部42の外周面421において径方向に対向配置された一対の電極45、46と、これらの電極45、46からそれぞれハニカム体40の径方向Yの外方に突出する一対の電極端子450、460とを備える。
(Example 2)
This example is an example of an electrically heated catalyst device in which the angle formed by a pair of electrode terminals is different from that of the first embodiment.
As shown in FIGS. 7 to 9, the electrically heated catalyst device 4 of the present example is similar to the first embodiment in that a honeycomb body 40 having a cell forming portion 41 and a cylindrical outer skin portion 42 covering the periphery thereof, and a honeycomb A pair of electrodes 45, 46 disposed radially opposite to each other on the outer peripheral surface 421 of the outer skin portion 42 of the body 40, and a pair of electrodes projecting outward from each of these electrodes 45, 46 in the radial direction Y of the honeycomb body 40 Terminals 450 and 460 are provided.

図9に示すごとく、本例においては、一対の電極端子450、460のうち一方の電極端子450は、実施例1と同様に、ハニカム体40の外周面421に形成された電極45上であって、ハニカム体40の軸方向Xの一方の端面408の近傍に形成してある。一方、他方の電極端子460は、ハニカム体40の外周面421に形成された電極46上であって、ハニカム体40の軸方向Xの中央に形成してある。その他の構成は、実施例1と同様であり、電極31、32は、その側端輪郭線455、465が全長にわたって基準線49に対して平行ではなく、基準線19に対して所定の傾きθ1(θ1=42°)で傾斜している。したがって、図7及び図8に示すごとく、本例の電気加熱式触媒装置4をハニカム体40の軸方向の一方の端面408、409から観察すると、電極端子450、460がなす角度α2は、実施例1の角度α1よりも大きくなり、α2=150°となる。   As shown in FIG. 9, in this example, one electrode terminal 450 of the pair of electrode terminals 450 and 460 is on the electrode 45 formed on the outer peripheral surface 421 of the honeycomb body 40 as in the first embodiment. Thus, the honeycomb body 40 is formed in the vicinity of one end face 408 in the axial direction X. On the other hand, the other electrode terminal 460 is formed on the electrode 46 formed on the outer peripheral surface 421 of the honeycomb body 40 and in the center in the axial direction X of the honeycomb body 40. The other configuration is the same as that of the first embodiment, and the electrodes 31 and 32 have side end contour lines 455 and 465 that are not parallel to the reference line 49 over the entire length, and have a predetermined inclination θ1 with respect to the reference line 19. It is inclined at (θ1 = 42 °). Therefore, as shown in FIG. 7 and FIG. 8, when the electrically heated catalyst device 4 of this example is observed from one end face 408, 409 in the axial direction of the honeycomb body 40, the angle α2 formed by the electrode terminals 450, 460 is It becomes larger than the angle α1 of Example 1, and α2 = 150 °.

本例のように、一対の電極端子450、460のハニカム体の軸方向における形成位置を相対的に変えることにより、一対の電極端子450、460のなす角度を所望の角度に調整することができる。また、ハニカム体の径の大きさ、軸方向の長さ、及び外周面に形成する電極の基準線に対する傾き等を変更することにより、一対の電極端子のなす角度を所望の角度に調整することもできる。
本例の電気加熱式触媒装置4は、電極端子450、460のなす角度が異なる点を除いては、実施例1と同様の構成を有し、実施例1と同様の作用効果を示すことができる。
As in this example, by relatively changing the formation position of the pair of electrode terminals 450 and 460 in the axial direction of the honeycomb body, the angle formed by the pair of electrode terminals 450 and 460 can be adjusted to a desired angle. . In addition, the angle formed by the pair of electrode terminals can be adjusted to a desired angle by changing the diameter of the honeycomb body, the length in the axial direction, and the inclination of the electrode formed on the outer peripheral surface with respect to the reference line. You can also.
The electrically heated catalyst device 4 of this example has the same configuration as that of Example 1 except that the angles formed by the electrode terminals 450 and 460 are different, and can exhibit the same effects as those of Example 1. it can.

(実施例3)
本例は、ハニカム体の外皮部における少なくとも電極が形成されていない部分に絶縁層を形成した電気加熱式触媒装置の例である。
図10及び図11に示すごとく、本例の電気加熱式触媒装置5は、実施例1と同様に、セル形成部51とその周囲を覆う円筒形状の外皮部52と有するハニカム体50と、ハニカム体50の外皮部52の外周面421において径方向に対向配置された一対の電極55、56と、これらの電極55、56からそれぞれハニカム体50の径方向Yの外方に突出する一対の電極端子550、560とを備える。そして、実施例1と同様に、電気加熱式触媒装置5をハニカム体50の軸方向(図10及び図11における紙面と垂直な方向)の一方の端面508、509から観察したときにおける一対の電極端子550、560がなす角度α1が80°となるように、一対の電極端子550、560が形成されている。
(Example 3)
This example is an example of an electrically heated catalyst device in which an insulating layer is formed on at least a portion of the outer skin portion of the honeycomb body where no electrode is formed.
As shown in FIGS. 10 and 11, the electrically heated catalyst device 5 of the present example is similar to the first embodiment, in which a honeycomb body 50 having a cell forming portion 51 and a cylindrical outer skin portion 52 covering the periphery thereof, A pair of electrodes 55, 56 disposed radially opposite to each other on the outer peripheral surface 421 of the outer skin portion 52 of the body 50, and a pair of electrodes projecting outward from each of the electrodes 55, 56 in the radial direction Y of the honeycomb body 50. Terminals 550 and 560 are provided. As in Example 1, a pair of electrodes when the electrically heated catalyst device 5 is observed from one end face 508, 509 in the axial direction of the honeycomb body 50 (direction perpendicular to the paper surface in FIGS. 10 and 11). The pair of electrode terminals 550 and 560 are formed so that an angle α1 formed by the terminals 550 and 560 is 80 °.

本例の電気加熱式触媒装置5においては、ハニカム体50の外皮部52における電極55、56が形成されていない部分に電気絶縁材料からなる絶縁層53が形成されている。絶縁層53は、電極55、56が形成されていない部分に、電極55、56と同じ厚みで形成されている。本例において、絶縁層53はSiO2からなる。SiO2の代わりにAl23等の絶縁材料を用いることもできる。絶縁層53は、絶縁材料を塗布して熱処理することにより形成することができる。化学反応により絶縁材料からなる絶縁層53を形成することもできる。
本例の電気加熱式触媒装置5は、絶縁層53を有している点を除いては、実施例1と同様の構成を備えている。
In the electrically heated catalyst device 5 of this example, an insulating layer 53 made of an electrically insulating material is formed in a portion of the outer skin portion 52 of the honeycomb body 50 where the electrodes 55 and 56 are not formed. The insulating layer 53 is formed with the same thickness as the electrodes 55 and 56 in a portion where the electrodes 55 and 56 are not formed. In this example, the insulating layer 53 is made of SiO 2 . An insulating material such as Al 2 O 3 can be used instead of SiO 2 . The insulating layer 53 can be formed by applying an insulating material and performing heat treatment. The insulating layer 53 made of an insulating material can also be formed by a chemical reaction.
The electrically heated catalyst device 5 of this example has the same configuration as that of Example 1 except that the insulating layer 53 is provided.

本例の電気加熱式触媒装置5においては、ハニカム体50の外皮部52における電極55、56が形成されていない部分に電気絶縁材料からなる絶縁層53が形成されている。そのため、ハニカム体50の周方向における絶縁性を高めることができる。また、図12に示すごとく、電気加熱式触媒装置5は、これをケース10に収容し、電気加熱式触媒装置5とケース10との間に弾性を有する保持マット12を配置して用いられる。このとき、上述のごとくハニカム体50の外皮部52に絶縁層53が形成されていれば、例えば金属製のケース10とハニカム体50、及びケース10と電極55、56の側端輪郭線部分551、561との絶縁性を高めることができる。   In the electrically heated catalyst device 5 of this example, an insulating layer 53 made of an electrically insulating material is formed in a portion of the outer skin portion 52 of the honeycomb body 50 where the electrodes 55 and 56 are not formed. Therefore, the insulation in the circumferential direction of the honeycomb body 50 can be enhanced. In addition, as shown in FIG. 12, the electrically heated catalyst device 5 is used by housing it in a case 10 and placing an elastic holding mat 12 between the electrically heated catalyst device 5 and the case 10. At this time, if the insulating layer 53 is formed on the outer skin portion 52 of the honeycomb body 50 as described above, for example, the metal case 10 and the honeycomb body 50, and the side edge contour portions 551 of the case 10 and the electrodes 55 and 56 are used. , 561 can be improved in insulation.

また、絶縁層53は、ハニカム体50の外皮部52に形成された電極55、56と同じ厚みで形成されている。そのため、ハニカム体50の外周面521と電極55、56との段差をなくすことができる。それ故、図12に示すごとく、電気加熱式触媒装置5をケース10に収容し、電気加熱式触媒装置5とケース10との間に弾性を有する保持マット12を配置して用いるときに、保持マット12によって電気加熱式触媒装置5の外周に加えられる面圧を均一にすることができる。よって、保持マット12による応力低減効果を向上させることができ、ケースへの組み付け(キャニング)時におけるハニカム体50の破損や、排ガスの衝撃によるハニカム体50や電極55、56の割れを防止することができる。   The insulating layer 53 is formed with the same thickness as the electrodes 55 and 56 formed on the outer skin portion 52 of the honeycomb body 50. Therefore, the step between the outer peripheral surface 521 of the honeycomb body 50 and the electrodes 55 and 56 can be eliminated. Therefore, as shown in FIG. 12, when the electrically heated catalyst device 5 is accommodated in the case 10 and the elastic holding mat 12 is used between the electrically heated catalyst device 5 and the case 10, it is retained. The surface pressure applied to the outer periphery of the electrically heated catalyst device 5 by the mat 12 can be made uniform. Therefore, the stress reduction effect by the holding mat 12 can be improved, and the honeycomb body 50 can be prevented from being damaged during assembling (canning) to the case, and the honeycomb body 50 and the electrodes 55 and 56 can be prevented from being cracked by the impact of exhaust gas. Can do.

また、本例において、絶縁層53は、SiO2からなり、電極55、56と機械的物性が近い材料により形成されている。そのため、熱応力を小さくすることができる。機械的物性としては、ヤング率や線膨張係数などがある。即ち、電極55、56のヤング率と絶縁層53のヤング率が同じ又は近いことが好ましい。また、ハニカム体50の線膨張係数と電極55、56の線膨張係数と絶縁層53の線膨張係数とが同じ又は近いことが望ましい。
また、本例の電気加熱式触媒装置5は、絶縁層53を有している点を除いては、実施例1と同様の構成を有し、上述の実施例1と同様の作用効果を示すことができる。
In this example, the insulating layer 53 is made of SiO 2 and is made of a material having mechanical properties close to those of the electrodes 55 and 56. Therefore, thermal stress can be reduced. Mechanical properties include Young's modulus and linear expansion coefficient. That is, the Young's modulus of the electrodes 55 and 56 and the Young's modulus of the insulating layer 53 are preferably the same or close. Moreover, it is desirable that the linear expansion coefficient of the honeycomb body 50, the linear expansion coefficient of the electrodes 55 and 56, and the linear expansion coefficient of the insulating layer 53 are the same or close.
Further, the electrically heated catalyst device 5 of this example has the same configuration as that of Example 1 except that the insulating layer 53 is provided, and exhibits the same effects as those of Example 1 described above. be able to.

また、上述の例においては、ハニカム体50の外皮部52における電極55、56が形成されていない部分に、電極55、56と同じ厚みで絶縁層53を形成した例を示したが、図13に示すごとく、外皮部52における電極55、56が形成されていない部分だけでなく、電極55、56を完全に覆うように絶縁層53を形成することもできる。その結果、絶縁層53が最外層となり、この場合にもハニカム体50の外周面521と電極55、56との段差をなくすことができる。その結果、キャニング時におけるハニカム体50や電極55、56の割れなどを防止することができ、組み付け性を確保することができる。さらに、絶縁性を向上させることができ、電極55、56の外周とケース10間のリークやショート(短絡)を十分に防止することができる。   In the above-described example, the example in which the insulating layer 53 is formed with the same thickness as the electrodes 55 and 56 in the portion of the outer skin portion 52 of the honeycomb body 50 where the electrodes 55 and 56 are not formed is shown. As shown, the insulating layer 53 can be formed so as to completely cover the electrodes 55 and 56 as well as the portion where the electrodes 55 and 56 are not formed in the outer skin portion 52. As a result, the insulating layer 53 becomes the outermost layer, and also in this case, the step between the outer peripheral surface 521 of the honeycomb body 50 and the electrodes 55 and 56 can be eliminated. As a result, cracking of the honeycomb body 50 and the electrodes 55 and 56 during canning can be prevented, and assemblability can be ensured. Furthermore, the insulation can be improved, and leakage or short circuit between the outer periphery of the electrodes 55 and 56 and the case 10 can be sufficiently prevented.

上述の例においては、一対の電極55、56のハニカム体50の周方向における側端551、561がハニカム体50の外周面521に対して垂直になるように電極55、56を形成した場合について絶縁層53を形成した例を示した(図10、図11、及び図13参照)。これに対し、電極55、56を軸方向に対して傾斜させると共に、図14に示すごとく、電極55、56の周方向の両端に、それぞれ段差553、563を形成したり、図15に示すごとく、一対の電極55、55の周方向の両端に、周方向の外側に向けて徐々に厚みが小さくなるテーパ部554、564を形成したりする場合がある。
この場合には、従来の電気加熱式触媒装置の課題の一つであった、電極の側端輪郭線に電力が集中し易くなるという問題に対してさらに有効になる。
In the above example, the electrodes 55 and 56 are formed such that the side ends 551 and 561 of the pair of electrodes 55 and 56 in the circumferential direction of the honeycomb body 50 are perpendicular to the outer peripheral surface 521 of the honeycomb body 50. An example in which the insulating layer 53 is formed is shown (see FIGS. 10, 11, and 13). On the other hand, the electrodes 55 and 56 are inclined with respect to the axial direction, and as shown in FIG. 14, steps 553 and 563 are formed at both ends in the circumferential direction of the electrodes 55 and 56, respectively, or as shown in FIG. In some cases, tapered portions 554 and 564 that gradually decrease in thickness toward the outer side in the circumferential direction are formed at both ends in the circumferential direction of the pair of electrodes 55 and 55.
In this case, it is further effective against the problem that electric power tends to concentrate on the side edge contour line of the electrode, which is one of the problems of the conventional electric heating type catalyst device.

即ち、各電極55、56間の間隔は、電極55、56の周方向の中央部から外側へ行くほど短くなる。そのため、各電極55、56の周方向の中央部から外側へ行くほど電極55、56間に電流が流れ易い構成となる。それ故、一対の電極55、56間においては、ハニカム体50の略軸方向に伸びる電極55、56の側端輪郭線間551、561同士の間隔が短くなり、側端輪郭線に電力が集中し易くなるという問題がある。これに対して、上述のごとく、電極55、56の周方向の両端に、それぞれ段差553、563を形成したり(図14参照)、テーパ部554、564を形成したり(図15参照)すると、ハニカム体50の周方向における中央部から外側へ行くほど電極55、56の厚みを薄くして電気抵抗を高くすることができる。そのため、電極55、56の側端輪郭線における電流集中を抑制することができる。その結果、電極55、56を軸方向に対して傾斜させるという上述の技術との相乗効果により、ハニカム体50にかかる応力を更に低減させることができる。電極55、56を軸方向に対して傾斜させる技術と、電極55、56の周方向の両端にそれぞれ段差553、563を形成したり、テーパ部554、564を形成したりする技術とを併用することは、強度の低いハニカム基材50を用いる際に特に有効である。   In other words, the interval between the electrodes 55 and 56 becomes shorter as the distance from the center portion in the circumferential direction of the electrodes 55 and 56 increases. For this reason, the current flows more easily between the electrodes 55 and 56 from the center in the circumferential direction of the electrodes 55 and 56 to the outside. Therefore, between the pair of electrodes 55, 56, the distance between the side end contours 551, 561 of the electrodes 55, 56 extending substantially in the axial direction of the honeycomb body 50 is shortened, and power is concentrated on the side end contours. There is a problem that it becomes easy to do. On the other hand, as described above, steps 553 and 563 are formed at both ends of the electrodes 55 and 56 in the circumferential direction (see FIG. 14), or tapered portions 554 and 564 are formed (see FIG. 15). The thickness of the electrodes 55 and 56 can be reduced and the electrical resistance can be increased from the central part in the circumferential direction of the honeycomb body 50 to the outside. Therefore, current concentration in the side edge contour lines of the electrodes 55 and 56 can be suppressed. As a result, the stress applied to the honeycomb body 50 can be further reduced by a synergistic effect with the above-described technique in which the electrodes 55 and 56 are inclined with respect to the axial direction. The technique of inclining the electrodes 55 and 56 with respect to the axial direction and the technique of forming the steps 553 and 563 or the tapered portions 554 and 564 at both ends in the circumferential direction of the electrodes 55 and 56 are used in combination. This is particularly effective when the low-strength honeycomb substrate 50 is used.

上述のように、電極55、56の周方向の両端に、それぞれ段差553、563を形成したり、テーパ部554、564を形成したりする場合においても、図14及び図15に示すごとく、絶縁層53を形成することにより、ハニカム体50の外周面521と電極55、56との段差をなくすことができる。そして、絶縁層53により、ハニカム体50の周方向における絶縁性を高め、電気加熱式触媒装置5をケース10に収容して用いる際に、金属等からなるケース10とハニカム体50との絶縁性、及びケース10と電極55、56の側端輪郭線551、561との絶縁性を高める事ができる。更にはケース10への組み付け(キャニング)時におけるハニカム体50の破損や、排ガスの衝撃によるハニカム体50や電極55、56の割れを防止することができる。
なお、電極55、56の周方向の両端に、それぞれ段差553、563を形成したり、テーパ部554、564を形成したりする場合においても(図14及び図15参照)、明確に図示はしないが、図13に示したように、外皮部52における電極55、56が形成されていない部分だけでなく、電極55、56を完全に覆うように絶縁層53を形成することができる。これにより、組み付け性を確保することができると共に、さらに絶縁性を向上させ、電極55、56の外周とケース10間のリークやショート(短絡)を十分に防止することができる。
As described above, even when the steps 553 and 563 are formed at both ends in the circumferential direction of the electrodes 55 and 56 or the tapered portions 554 and 564 are formed, respectively, as shown in FIGS. By forming the layer 53, the step between the outer peripheral surface 521 of the honeycomb body 50 and the electrodes 55 and 56 can be eliminated. The insulating layer 53 increases the insulation in the circumferential direction of the honeycomb body 50, and the insulation between the case 10 made of metal or the like and the honeycomb body 50 when the electrically heated catalyst device 5 is housed in the case 10. In addition, the insulation between the case 10 and the side edge contour lines 551 and 561 of the electrodes 55 and 56 can be enhanced. Furthermore, breakage of the honeycomb body 50 during assembly (canning) to the case 10 and cracking of the honeycomb body 50 and the electrodes 55 and 56 due to the impact of exhaust gas can be prevented.
It should be noted that the steps 553 and 563 and the tapered portions 554 and 564 are formed at both ends in the circumferential direction of the electrodes 55 and 56, respectively (see FIGS. 14 and 15), but they are not clearly illustrated. However, as shown in FIG. 13, the insulating layer 53 can be formed so as to completely cover not only the portion where the electrodes 55 and 56 are not formed in the outer skin portion 52 but also the electrodes 55 and 56. As a result, the assembling property can be ensured, the insulating property can be further improved, and the leakage and short circuit between the outer periphery of the electrodes 55 and 56 and the case 10 can be sufficiently prevented.

(比較例1)
次に、上述の実施例の電気加熱式触媒装置に対する比較例について説明する。
図16〜図18に示すごとく、本例の電気加熱式触媒装置9は、実施例1と同様に、セル形成部91とその周囲を覆う円筒形状の外皮部92と有するハニカム体90と、ハニカム体90の外皮部92の外周面921において径方向Yに対向配置された一対の電極93、94と、これらの電極93、94からそれぞれハニカム体90の径方向Yの外方に突出する一対の電極端子930、940とを備える。
(Comparative Example 1)
Next, a comparative example for the electrically heated catalyst device of the above-described embodiment will be described.
As shown in FIGS. 16 to 18, the electrically heated catalyst device 9 of the present example is similar to the first embodiment in that a honeycomb body 90 having a cell forming portion 91 and a cylindrical outer skin portion 92 covering the periphery thereof, and a honeycomb A pair of electrodes 93, 94 disposed opposite to each other in the radial direction Y on the outer peripheral surface 921 of the outer skin portion 92 of the body 90, and a pair of protrusions projecting outward from each of the electrodes 93, 94 in the radial direction Y of the honeycomb body 90. And electrode terminals 930 and 940.

本例の電気加熱式触媒装置9においては、ハニカム体90の軸方向Xに伸びる電極93、94は、ハニカム体の周方向において均一な幅で形成されていると共に、側端輪郭線935、945が軸方向Xに平行なるように形成されている。また、一対の電極端子930、940は、それぞれ一対の電極93、94のハニカム体2の周方向における中央に形成されていると共に、軸方向Xにおいても中央に形成されている。したがって、一対の電極端子930、940は、互いに水平(180°)に並ぶように配置されている。   In the electrically heated catalyst device 9 of the present example, the electrodes 93 and 94 extending in the axial direction X of the honeycomb body 90 are formed with a uniform width in the circumferential direction of the honeycomb body, and the side edge contour lines 935 and 945 are formed. Are formed to be parallel to the axial direction X. The pair of electrode terminals 930 and 940 are formed at the center in the circumferential direction of the honeycomb body 2 of the pair of electrodes 93 and 94, respectively, and are also formed at the center in the axial direction X. Therefore, the pair of electrode terminals 930 and 940 are arranged so as to be aligned horizontally (180 °).

そのため、本例の電気加熱式触媒装置9においては、電極端子930、940を含めると径方向Yの寸法が大きくなってしまう。そのため、搭載時のスペースが大きくなり、例えば車両の床下という限られた狭いスペースに収容するには適していない。
また、図17に示すごとく、ハニカム体90の径方向Yの外方に突出する一対の電極端子930、940のうち、少なくとも一方の電極端子940を車体の下方(地面側)に向けて例えば車両の床下等に配置すると、凝集水や浸水により電極端子940に水が付着しやすくなる。その結果、例えば電極端子940と電気加熱式触媒装置9を収容するケース(図示略)との間で短絡が発生してしまうおそれがある。また、図18に示すごとく、一対の電極端子930、940を水平方向(地面と平行な方向)に配置して電気加熱式触媒装置9を排ガス管内に設置させることもできるが、この場合においては、水平方向の搭載スペースが大きくなってしまう。
For this reason, in the electrically heated catalyst device 9 of this example, when the electrode terminals 930 and 940 are included, the dimension in the radial direction Y becomes large. Therefore, the space at the time of mounting becomes large and, for example, it is not suitable for accommodating in a limited narrow space under the floor of the vehicle.
Further, as shown in FIG. 17, for example, a vehicle in which at least one of the pair of electrode terminals 930 and 940 projecting outward in the radial direction Y of the honeycomb body 90 is directed downward (ground side) of the vehicle body. If it is arranged under the floor of the water, the water tends to adhere to the electrode terminal 940 due to the condensed water or water immersion. As a result, for example, there is a possibility that a short circuit may occur between the electrode terminal 940 and a case (not shown) that houses the electrically heated catalyst device 9. In addition, as shown in FIG. 18, the pair of electrode terminals 930 and 940 can be arranged in the horizontal direction (direction parallel to the ground) to install the electrically heated catalyst device 9 in the exhaust gas pipe. , The horizontal mounting space will increase.

1 電気加熱式触媒装置
2 ハニカム体
21 セル形成部
22 外皮部
221 外周面
31 電極
32 電極
310 電極端子
320 電極端子
DESCRIPTION OF SYMBOLS 1 Electric heating type catalyst apparatus 2 Honeycomb body 21 Cell formation part 22 Outer skin part 221 Outer peripheral surface 31 Electrode 32 Electrode 310 Electrode terminal 320 Electrode terminal

Claims (7)

セル形成部(21、41、51)と該セル形成部(21、41、51)の周囲を覆う円筒形状の外皮部(22、42、52)と有するハニカム体(2、40、50)と、該ハニカム体(2、40、50)の上記外皮部(22、42、52)の外周面(221、421、521)において径方向に対向配置された一対の電極(31、32、45、46、55、56)と、該一対の電極(31、32、45、46、55、56)からそれぞれ上記ハニカム体(2、40、50)の径方向の外方に突出する一対の電極端子(310、320、450、460、550、560)とを備えた電気加熱式触媒装置(1、4、5)であって、
上記ハニカム体(2、40、50)の軸方向に平行で上記(22、42、52)上にある任意の基準線(19、49)を想定すると、上記電極(31、32、45、46、55、56)における上記ハニカム体(2、40、50)の軸方向に伸びる側端輪郭線(315、325、455、465)は、その全長が上記基準線(19、49)に対して所定の傾きで傾斜しており、
上記ハニカム体(2、40、50)の周方向における一対の上記電極(31、32、45、46、55、56)間の間隔は一定であり、
上記一対の電極端子(310、320、450、460、550、560)は、上記ハニカム体(2、40、50)の軸方向に所定の間隔を開けて、それぞれ上記一対の電極(31、32、45、46、55,56)における上記ハニカム体(2、40、50)の周方向の中央に形成されており、上記電気加熱式触媒装置(1、4、5)を上記ハニカム体(2、40、50)の軸方向の一方の端面(28、29、408、409、508、509)から観察したときにおける上記一対の電極端子(310、320、450、460、550、560)がなす角度は180°未満であることを特徴とする電気加熱式触媒装置(1、4、5)。
A honeycomb body (2, 40, 50) having a cell forming part (21, 41, 51) and a cylindrical outer skin part (22, 42, 52) covering the periphery of the cell forming part (21, 41, 51); , A pair of electrodes (31, 32, 45,...) Disposed radially opposite to the outer peripheral surface (221, 421, 521) of the outer skin portion (22, 42, 52) of the honeycomb body (2, 40, 50). 46, 55, 56) and a pair of electrode terminals projecting outward in the radial direction of the honeycomb body (2, 40, 50) from the pair of electrodes (31, 32, 45, 46, 55, 56), respectively. (310, 320, 450, 460, 550, 560), an electrically heated catalyst device (1, 4, 5),
Assuming an arbitrary reference line (19, 49) parallel to the axial direction of the honeycomb body (2, 40, 50) and on the (22, 42, 52), the electrode (31, 32, 45, 46) , 55, 56), the side end contour lines (315, 325, 455, 465) extending in the axial direction of the honeycomb body (2, 40, 50) have an overall length with respect to the reference line (19, 49). It is inclined at a predetermined inclination,
The distance between the pair of electrodes (31, 32, 45, 46, 55, 56) in the circumferential direction of the honeycomb body (2, 40, 50) is constant,
The pair of electrode terminals (310, 320, 450, 460, 550, 560) are spaced apart from each other by a predetermined distance in the axial direction of the honeycomb body (2, 40, 50), respectively. 45, 46, 55, 56) is formed at the center in the circumferential direction of the honeycomb body (2, 40, 50), and the electrically heated catalyst device (1, 4, 5) is connected to the honeycomb body (2). , 40, 50) formed by the pair of electrode terminals (310, 320, 450, 460, 550, 560) when observed from one end face (28, 29, 408, 409, 508, 509) in the axial direction. An electrically heated catalyst device (1, 4, 5) characterized in that the angle is less than 180 °.
請求項1に記載の電気加熱式触媒装置(1、4、5)において、上記ハニカム体(2、40、50)の上記外皮部(22、42、52)における少なくとも上記電極(31、32、45、46、55、56)が形成されていない部分には、上記外皮部(22、42、52)を被覆する電気絶縁材料からなる絶縁層(53)が形成されていることを特徴とする電気加熱式触媒装置(1、4、5)。   The electrically heated catalyst device (1, 4, 5) according to claim 1, wherein at least the electrode (31, 32, 52) in the outer skin portion (22, 42, 52) of the honeycomb body (2, 40, 50). 45, 46, 55, 56) is formed with an insulating layer (53) made of an electrically insulating material covering the outer skin portion (22, 42, 52). Electrically heated catalyst device (1, 4, 5). 請求項1又は2に記載の電気加熱式触媒装置(1、4、5)において、上記一対の電極端子(310、320、450、460、550、560)のなす角度は、150°以下であることを特徴とする電気加熱式触媒装置(1、4、5)。   In the electrically heated catalyst device (1, 4, 5) according to claim 1 or 2, an angle formed by the pair of electrode terminals (310, 320, 450, 460, 550, 560) is 150 ° or less. An electrically heated catalyst device (1, 4, 5). 請求項1〜3のいずれか一項に記載の電気加熱式触媒装置(1、4、5)において、上記側端輪郭線(315、325、455、465)は、上記基準線(19、49)に対して45°以下で傾斜していることを特徴とする電気加熱式触媒装置(1、4、5)。   The electrically heated catalyst device (1, 4, 5) according to any one of claims 1 to 3, wherein the side edge contour lines (315, 325, 455, 465) are arranged on the reference line (19, 49). Electrically heated catalyst device (1, 4, 5), which is inclined at 45 ° or less with respect to the above. 請求項1〜4のいずれか一項に記載の電気加熱式触媒装置(1、4、5)において、上記側端輪郭線(315、325、455、465))と上記基準線(19、49)とのなす鋭角の角度をθとし、上記電極(31、32、45、46、55、56)の上記周方向における幅をDとし、上記側端輪郭線(315、325、455、465)の長さをEとし、上記ハニカム(2、40、50)体の上記周方向における外周の長さをRとすると、D+E×sinθ≧R/2という関係を満足することを特徴と電気加熱式触媒装置(1、4、5)。   In the electrically heated catalyst device (1, 4, 5) according to any one of claims 1 to 4, the side end contour lines (315, 325, 455, 465)) and the reference line (19, 49). ) Is θ, the width of the electrodes (31, 32, 45, 46, 55, 56) in the circumferential direction is D, and the side edge contours (315, 325, 455, 465) And the length of the outer periphery in the circumferential direction of the honeycomb (2, 40, 50) body is R, and satisfies the relationship D + E × sin θ ≧ R / 2. Catalytic device (1, 4, 5). 請求項1〜5のいずれか一項に記載の電気加熱式触媒装置(1、4、5)において、上記ハニカム体(2、40、50)の上記外周面(221、421、521)における一対の上記電極(31、32、45、46、55、56)間の上記軸方向における間隔は、上記ハニカム体(2、40、50)の上記外周面(221、421、521)における一対の上記電極(31、32、45、46、55、56)間の上記周方向における間隔よりも大きいことを特徴とする電気加熱式触媒装置(1、4、5)。   The electrically heated catalyst device (1, 4, 5) according to any one of claims 1 to 5, wherein a pair of the honeycomb bodies (2, 40, 50) on the outer peripheral surface (221, 421, 521). The distance between the electrodes (31, 32, 45, 46, 55, 56) in the axial direction is a pair of the above-described outer peripheral surfaces (221, 421, 521) of the honeycomb body (2, 40, 50). An electrically heated catalyst device (1, 4, 5) characterized by being larger than the interval in the circumferential direction between the electrodes (31, 32, 45, 46, 55, 56). 請求項1〜6のいずれか一項に記載の電気加熱式触媒装置(1、4、5)において、上記ハニカム体(2、40、50)は、SiCを主成分とする多孔質セラミックスからなることを特徴とする電気加熱式触媒装置(1、4、5)。   The electrically heated catalyst device (1, 4, 5) according to any one of claims 1 to 6, wherein the honeycomb body (2, 40, 50) is made of a porous ceramic mainly composed of SiC. An electrically heated catalyst device (1, 4, 5).
JP2012022880A 2012-02-06 2012-02-06 Electrically heated catalyst device Pending JP2013158714A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012022880A JP2013158714A (en) 2012-02-06 2012-02-06 Electrically heated catalyst device
US13/539,800 US20130199165A1 (en) 2012-02-06 2012-07-02 Electrically heated catalyst device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022880A JP2013158714A (en) 2012-02-06 2012-02-06 Electrically heated catalyst device

Publications (1)

Publication Number Publication Date
JP2013158714A true JP2013158714A (en) 2013-08-19

Family

ID=48901697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022880A Pending JP2013158714A (en) 2012-02-06 2012-02-06 Electrically heated catalyst device

Country Status (2)

Country Link
US (1) US20130199165A1 (en)
JP (1) JP2013158714A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037439A (en) * 2019-08-30 2021-03-11 日本碍子株式会社 Electric heating type carrier, exhaust gas purification device, and method for manufacturing exhaust gas purification device
JP2021069996A (en) * 2019-10-31 2021-05-06 地方独立行政法人東京都立産業技術研究センター Catalyst for voc treatment, voc treatment apparatus and voc treatment method
JP2022087696A (en) * 2020-12-01 2022-06-13 株式会社デンソー Honeycomb substrate having electrodes and manufacturing method thereof
JP2022087695A (en) * 2020-12-01 2022-06-13 株式会社デンソー Honeycomb substrate having electrodes and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761161B2 (en) * 2012-11-30 2015-08-12 トヨタ自動車株式会社 Electric heating catalyst device and method for manufacturing the same
JP7182530B2 (en) * 2019-09-24 2022-12-02 日本碍子株式会社 Electrically heated carrier and exhaust gas purification device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131840A (en) * 1994-11-16 1996-05-28 Showa Aircraft Ind Co Ltd Metal carrier for electric heating type catalyst device
WO2011052020A1 (en) * 2009-10-30 2011-05-05 トヨタ自動車株式会社 Exhaust air purification device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131840A (en) * 1994-11-16 1996-05-28 Showa Aircraft Ind Co Ltd Metal carrier for electric heating type catalyst device
WO2011052020A1 (en) * 2009-10-30 2011-05-05 トヨタ自動車株式会社 Exhaust air purification device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021037439A (en) * 2019-08-30 2021-03-11 日本碍子株式会社 Electric heating type carrier, exhaust gas purification device, and method for manufacturing exhaust gas purification device
JP7082597B2 (en) 2019-08-30 2022-06-08 日本碍子株式会社 Manufacturing method of electrically heated carrier, exhaust gas purification device and exhaust gas purification device
JP2021069996A (en) * 2019-10-31 2021-05-06 地方独立行政法人東京都立産業技術研究センター Catalyst for voc treatment, voc treatment apparatus and voc treatment method
WO2021085536A1 (en) * 2019-10-31 2021-05-06 地方独立行政法人東京都立産業技術研究センター Catalyst for voc treatment, voc treatment apparatus and voc treatment method
JP7427187B2 (en) 2019-10-31 2024-02-05 地方独立行政法人東京都立産業技術研究センター VOC treatment catalyst, VOC treatment device, and VOC treatment method
JP2022087696A (en) * 2020-12-01 2022-06-13 株式会社デンソー Honeycomb substrate having electrodes and manufacturing method thereof
JP2022087695A (en) * 2020-12-01 2022-06-13 株式会社デンソー Honeycomb substrate having electrodes and manufacturing method thereof

Also Published As

Publication number Publication date
US20130199165A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5617764B2 (en) Honeycomb structure and electrically heated catalyst device
KR102180483B1 (en) Electrically heated catalyst device
US9976466B2 (en) Honeycomb type heating device, method of using the same, and method of manufacturing the same
US9295944B2 (en) Electrically heated catalyst device and its manufacturing method
JP2013158714A (en) Electrically heated catalyst device
JP5691848B2 (en) Honeycomb structure and electrically heated catalyst device
JP5692198B2 (en) Honeycomb structure
JP6826537B2 (en) Honeycomb type heating device and how to use it
JP5783037B2 (en) Electric heating catalyst device and method for manufacturing the same
US20160271561A1 (en) Electrically heated catalyst device and its manufacturing method
JP7155054B2 (en) Electrically heated carrier and exhaust gas purification device
JP6015278B2 (en) Electric heating type catalytic converter
US9815024B2 (en) Electrically heated catalyst device and its manufacturing method
US10287942B2 (en) Honeycomb type heating device and method for using the same
US20150292386A1 (en) Electrically heated catalyst device and its manufacturing method
JP5531925B2 (en) Electric heating type catalyst
JP6703872B2 (en) Heater and honeycomb structure including the heater
JP5664517B2 (en) Electric heating type catalytic device
JP5636900B2 (en) Electric heating type catalyst
US20160032807A1 (en) Electrically heated catalyst device
WO2021181758A1 (en) Electrically heated carrier and exhaust gas purification device
JP2012172580A (en) Exhaust emission control device
JP5625764B2 (en) Honeycomb structure and electrically heated catalyst device
JP2011153536A (en) Catalytic converter device
JP7347334B2 (en) Electrically heated catalyst device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902