KR102283644B1 - Zeolite based bimetallic catalyst for ozone-catalytic oxidation of volatile organic compounds and oxidation method of volatile organic compounds using the same - Google Patents

Zeolite based bimetallic catalyst for ozone-catalytic oxidation of volatile organic compounds and oxidation method of volatile organic compounds using the same Download PDF

Info

Publication number
KR102283644B1
KR102283644B1 KR1020200082154A KR20200082154A KR102283644B1 KR 102283644 B1 KR102283644 B1 KR 102283644B1 KR 1020200082154 A KR1020200082154 A KR 1020200082154A KR 20200082154 A KR20200082154 A KR 20200082154A KR 102283644 B1 KR102283644 B1 KR 102283644B1
Authority
KR
South Korea
Prior art keywords
ozone
zsm
catalyst
toluene
oxidation
Prior art date
Application number
KR1020200082154A
Other languages
Korean (ko)
Inventor
박영권
김지희
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority to KR1020200082154A priority Critical patent/KR102283644B1/en
Application granted granted Critical
Publication of KR102283644B1 publication Critical patent/KR102283644B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • B01D53/8675Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/106Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons

Abstract

The present invention relates to a zeolite-based bimetal catalyst for ozone-catalytic oxidation of volatile organic compounds (VOCs) and a method for oxidizing VOCs using the same. Specifically, the present invention relates to a novel catalyst which develops an optimal bimetal catalyst for ozone-catalytic oxidation of VOCs, and supports the same on zeolite, and a method for removing VOCs through oxidation by using the same.

Description

VOCs의 오존촉매산화를 위한 제올라이트 기반의 바이메탈 촉매 및 이를 이용한 휘발성유기화합물의 산화방법{Zeolite based bimetallic catalyst for ozone-catalytic oxidation of volatile organic compounds and oxidation method of volatile organic compounds using the same}Zeolite based bimetallic catalyst for ozone-catalytic oxidation of volatile organic compounds and oxidation method of volatile organic compounds using the same

본원발명은 VOCs의 오존촉매산화를 위한 제올라이트 기반의 바이메탈 촉매 및 이를 이용환 VOCs의 산화방법에 관한 것이다. 구체적으로 VOCs의 오존촉매산화를 위한 최적의 바이메탈 촉매를 개발하고, 이를 제올라이트에 담지한 신규 촉매 및 이를 이용한 VOCs의 산화를 통한 제거방법에 관한 것이다.The present invention relates to a zeolite-based bimetal catalyst for ozone-catalyzed oxidation of VOCs and a method for oxidizing VOCs using the same. Specifically, it relates to a novel catalyst supporting the development of an optimal bimetallic catalyst for ozone-catalyzed oxidation of VOCs on zeolite, and a method for removing VOCs through oxidation using the same.

휘발성유기화합물(Volatile Organic Compounds, 이하 'VOCs')은 높은 증기압으로 인해 상압 및 상온에서 쉽게 휘발된다. VOCs는 광화학 산화물의 전구체로 작용하여 오존을 증가시키며 광화학 스모그를 발생시킨다. VOCs는 또한 오존층을 파괴하는데도 일조하여 지구온난화에도 직접 관여하는 물질이다(비특허문헌 1 참조).Volatile Organic Compounds (hereinafter 'VOCs') volatilize easily at normal pressure and room temperature due to high vapor pressure. VOCs act as precursors of photochemical oxides, increasing ozone and generating photochemical smog. VOCs also contribute to the destruction of the ozone layer and are substances directly involved in global warming (refer to Non-Patent Document 1).

VOCs의 특정 성분들은 자극적이고 불쾌한 냄새를 유발한다. 눈, 코 및 목을 포함한 피부를 자극하며, 두통을 유발하고, 알레르기 반응, 심지어 암을 발생시키는 물질로서 인체에 직접적, 간접적 영향을 미친다(비특허문헌 2 참조).Certain components of VOCs cause irritating and unpleasant odors. As a substance that irritates the skin including the eyes, nose and throat, induces a headache, causes an allergic reaction, and even cancer, it has a direct or indirect effect on the human body (see Non-Patent Document 2).

VOCs는 인쇄시설, 도장시설, 석유정제 및 석유화학제조시설에서 대규모로 발생하며, 그 외에도 자동차, 주유소, 세탁소, 출판시설 등 산업 전반 영역에서 배출된다(비특허문헌 3 참조). 인쇄시설은 다른 시설과는 달리 주거지역 또는 상업지역 내에 위치하는 경우가 많은바, VOCs에 대한 피해를 줄이기 위해서는 VOCs 대기 중으로 배출하는 원천 배출 영역에서 처리해야 할 필요가 있다. VOCs are generated on a large scale in printing facilities, painting facilities, petroleum refining and petrochemical manufacturing facilities, and in addition, they are emitted from industries such as automobiles, gas stations, laundries, and publishing facilities (see Non-Patent Document 3). Unlike other facilities, printing facilities are often located in residential or commercial areas. In order to reduce the damage to VOCs, it is necessary to treat them in the area where the VOCs are emitted into the atmosphere.

VOCs의 처리 기술에는 직접연소(비특허문헌 4 참조), 흡착법(비특허문헌 5 참조), 플라즈마-촉매법(비특허문헌 6 참조), 촉매산화법(비특허문헌 7 참조), 오존촉매산화법(비특허문헌 8 참조), 생물분해법(비특허문헌 9 참조), 광촉매산화법(비특허문헌 10 참조) 등 다양한 기술들이 있다. 이 중 오존촉매산화는 오존과 촉매를 이용하여 VOCs를 CO2와 H2O로 전환하는 기술로 저온에서 VOCs를 산화 가능한 기술로 최근에 각광받고 있다(비특허문헌 11 참조). 오존촉매산화는 촉매 산화보다 완전 산화에 필요한 온도가 2배 정도 낮은 것으로 알려져 있다(비특허문헌 12 참조). 또한 오존촉매산화에 이용되는 오존은 강력한 산화제이며, 촉매에 의해 오존이 분해되어 활성 산소종을 형성하여 VOCs 산화에 효율적이다(비특허문헌 13 참조).VOCs treatment techniques include direct combustion (see Non-Patent Document 4), an adsorption method (see Non-Patent Document 5), a plasma-catalyzed method (see Non-Patent Document 6), a catalytic oxidation method (see Non-Patent Document 7), and an ozone-catalyzed oxidation method (see Non-Patent Document 7). There are various techniques such as non-patent document 8), biodegradation (refer to non-patent document 9), and photocatalytic oxidation (refer to non-patent document 10). Among them, ozone-catalyzed oxidation is a technology that converts VOCs into CO 2 and H 2 O using ozone and a catalyst, and has recently been spotlighted as a technology capable of oxidizing VOCs at low temperatures (see Non-Patent Document 11). It is known that ozone-catalyzed oxidation requires about twice the temperature required for complete oxidation than catalytic oxidation (refer to Non-Patent Document 12). In addition, ozone used for ozone-catalyzed oxidation is a strong oxidizing agent, and ozone is decomposed by a catalyst to form active oxygen species, which is effective in oxidizing VOCs (see Non-Patent Document 13).

다만, 오존촉매산화에서는 적절한 촉매를 선정하여 적용하는 것이 중요하다. 오존촉매산화에 영향을 미치는 요인으로는 촉매 지지체와, 담지 된 활성 금속의 분산 등이 중요하다. 촉매 지지체로는 표면적이 큰 γ-Al2O3(비특허문헌 14 참조), 제올라이트(비특허문헌 15 참조) 및 활성탄(비특허문헌 16 참조)이 주로 사용된다. 활성 금속으로는 귀금속류와 전이금속류가 주로 사용된다. Pt, Pd, Ag의 귀금속류와 Co, Mn, Fe, Cu의 전이금속류가 오존촉매반응에 효율적이라는 연구가 보고되었다(비특허문헌 17, 18 참조). 특히 전이금속 중에서 Mn은 오존촉매산화에서 효율이 좋은 촉매 중 하나이다. Mn은 오존을 분해를 분해하는 능력이 좋아, 활성 산소종을 형성하여 저온에서도 VOCs를 산화하는데 기여한다고 보고되었다(비특허문헌 19 참조) formaldehyde, benzene, toluene, cyclohexane 등의 VOCs를 제거하기 위해 오존촉매산화 방법을 이용한 많은 연구들이 진행되고 있다(비특허문헌 20 내지 23 참조).However, in ozone-catalyzed oxidation, it is important to select and apply an appropriate catalyst. As factors affecting ozone-catalyzed oxidation, the catalyst support and dispersion of the supported active metal are important. As the catalyst support, γ-Al 2 O 3 having a large surface area (see Non-Patent Document 14), zeolite (see Non-Patent Document 15) and activated carbon (see Non-Patent Document 16) are mainly used. Precious metals and transition metals are mainly used as active metals. It has been reported that noble metals such as Pt, Pd, and Ag and transition metals of Co, Mn, Fe, and Cu are effective in ozone catalysis (see Non-Patent Documents 17 and 18). In particular, among transition metals, Mn is one of the most efficient catalysts in ozone-catalyzed oxidation. It has been reported that Mn has a good ability to decompose ozone and contributes to oxidation of VOCs even at low temperatures by forming reactive oxygen species (see Non-Patent Document 19). Ozone to remove VOCs such as formaldehyde, benzene, toluene, and cyclohexane Many studies using a catalytic oxidation method are in progress (refer to Non-Patent Documents 20 to 23).

상온에서 오존촉매산화 반응은 중간체(formic acid, carboxylates 등)의 형성으로 인해 촉매의 비활성화가 빠르게 진행되고, 불완전 산화물이 그대로 배출되는 문제점이 있다(비특허문헌 24 참조). 또한 non-toxic product(CO, CO2)의 선택성이 낮다는 문제점도 있다(비특허문헌 25 참조). 이러한 문제를 해결하기 위하여 적절한 지지체와 활성금속을 선정하여 효율적인 촉매를 개발하는 것이 중요하다.The ozone-catalyzed oxidation reaction at room temperature has a problem in that catalyst deactivation proceeds rapidly due to the formation of intermediates (formic acid, carboxylates, etc.), and incomplete oxides are discharged as they are (see Non-Patent Document 24). In addition, there is also a problem that the selectivity of non-toxic products (CO, CO 2 ) is low (see Non-Patent Document 25). In order to solve this problem, it is important to develop an efficient catalyst by selecting an appropriate support and active metal.

지지체로서의 제올라이트는 VOCs의 흡착력이 좋고, 오존과 상호작용하여 VOCs을 산화하여 제거할 수 있다고 보고되었다(비특허문헌 26 참조). 오존촉매산화 반응에 Ag/ZSM-5, Mn/13x를 이용하여 톨루엔을 산화하는 연구가 진행되었으며 톨루엔 산화에 효과가 있다고 보고되었다(비특허문헌 27, 28 참조). 또한 지지체 뿐 아니라 활성 금속의 종류 또한 오존촉매산화에 있어 중요한 인자이다. 귀금속 촉매 및 전이금속을 함께 담지한 촉매를 이용한 방법이 주목받고 있으며. 바이메탈 촉매는 VOCs를 제거하는 활성에 시너지 효과가 있다고 보고되었다(비특허문헌 29 참조). 비특허문헌 30에서는 Mn-Ce/r-Al2O3의 촉매를 이용하여 저온에서 벤젠 산화반응을 진행하였고, 비특허문헌 31에서는 Cu-Mn/MCM-41 촉매를 이용하여 톨루엔 산화반응을 평가하였다(비특허문헌 30, 31 참조). 또한 상온 반응으로는 Ag-Mn/ZSM-5 촉매를 이용하여 벤젠을 산화하는데 효과가 있다고 보고하였다(비특허문헌 27 참조). It has been reported that zeolite as a support has good adsorption capacity for VOCs, and can oxidize and remove VOCs by interacting with ozone (see Non-Patent Document 26). Studies on the oxidation of toluene using Ag/ZSM-5 and Mn/13x in ozone-catalyzed oxidation have been conducted and reported to be effective in toluene oxidation (refer to Non-Patent Documents 27 and 28). In addition, the type of active metal as well as the support is an important factor in ozone-catalyzed oxidation. A method using a catalyst supporting both a noble metal catalyst and a transition metal is attracting attention. It has been reported that the bimetal catalyst has a synergistic effect on the activity of removing VOCs (see Non-Patent Document 29). In Non-Patent Document 30, the benzene oxidation reaction was carried out at a low temperature using a catalyst of Mn-Ce/r-Al 2 O 3 , and in Non-Patent Document 31, the toluene oxidation reaction was evaluated using a Cu-Mn/MCM-41 catalyst. (see Non-Patent Documents 30 and 31). In addition, it has been reported that the reaction at room temperature is effective in oxidizing benzene using an Ag-Mn/ZSM-5 catalyst (see Non-Patent Document 27).

다만 VOCs의 종류에 따라서 촉매의 활성이 각각 다르고 지지체의 종류에 따라서 VOCs의 산화능력에 차이가 있다. 이들에 대한 효과는 예측이 불가능한바, 목표로 하는 VOCs에 적합한 촉매의 개선이 계속 진행될 필요가 있고, 향후 이들을 조합한 촉매의 개발을 위해서 특성이 우수한 개별 촉매의 개발이 시급하다. 바이메탈을 이용하여 VOCs를 제거하는 연구가 많이 진행되었지만 특히 상온에서 바이메탈 촉매 이용한 toluene 오존촉매산화의 연구는 아직 미미한 수준이다.However, depending on the type of VOCs, the catalyst activity is different, and the oxidation capacity of the VOCs is different depending on the type of support. Since their effects are unpredictable, it is necessary to continue to improve catalysts suitable for target VOCs, and it is urgent to develop individual catalysts with excellent properties for the development of catalysts combining them in the future. Although many studies have been conducted to remove VOCs using bimetal, in particular, studies on toluene ozone-catalyzed oxidation using a bimetal catalyst at room temperature are still insignificant.

T. Dutta, K.H. Kim, M. Uchimiya,. P. Kumar, S. Das, S. S.D. Bhattacharya, J. Szulejko, "The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space", Environmental Research, 151, (2016), 304-312 J.B. Coates, R. Chakaborty, J.G. Lack, S.M. O'Connor, K.A. Cole, K.S. Bender, L.A. Achenbach, "Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas", Nature, 411, (2001), 1039-1043 Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, D. Tang, "Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ.", 42, (2008), 6247-6260 V.S. Katari,W.M. Vatavuk, A.H. Wehe, "Incineration techniques for control of volatile organic compound emissions Part I. fundamentals and process design considerations.", JAPCA, 37, (1987), 91-99 X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, "Adsorption of VOCs onto engineered carbon materials: A review.", J. Hazard. Mater. 338, (2017), 102-123 K.L. Pan, D.L. Chen, G.T. Pan, S. Chong, M.B. Chang, "Removal of phenol from gas stream via combined plasma catalysis", J. Ind. Eng. Chem., 52, (2017), 108-120 Z. Zhang, Z. Jiang, W. Shangguan, "Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review.", Catal. Today, 264, (2016), 270-278 C.W. Kwong, C.Y.H. Chao, K.S. Hui, M.P. Wan, "Catalytic ozonation of toluene using zeolite and MCM-41 materials", Environ. Sci. Technol., 42, (2008), 8504-8509 B. Guieysse, C. Hort, V. Platel, R. Munoz, M. Ondarts, S. Revah, "Biological treatment of indoor air for VOC removal: Potential and challenges.", Biotechnol. Adv., 26, (2008), 398-410. H.A. Rangkooy, M.N. Pour, B.F. Dehaghi, "Efficiency evaluation of the photocatalytic degradation of zinc oxide nanoparticles immobilized on modified zeolites in the removal of styrene vapor from air", Korean J. Chem. Eng., 34, (2017), 3142-314 L.F. Liotaa, H. Wu, G. Pantaleo, A.M. Venezia, "Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: A review", Catalysis Science and Technology, 3, 2013, 3085-3102 H. Einaga, Y. Teraoka, A. Ogata, J. "Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite", Catal., 305, (2013), 227-237 H.S. Liang, H.C. Wang, M.B. Chang, "Low-Temperature Catalytic Oxidation of Monochlorobenzene by Ozone over Silica-Supported Manganese Oxide", Ind. Eng. Chem. Res., 50, (2011), 13322-13329 E. Rezaei, J. Soltan, N. Chen, J. Lin, "Effect of noble metals on activity of MnOx/γ-alumina catalyst in catalytic ozonation of toluene", Chem. Eng. J., 214, (2013), 219-228 M. Sugasawa, A. Ogata, "Effect of different combination of metal and zeolite on ozone-assisted catalysis for toluene removal", Ozone: Sci. Eng., 33, (2011), 158-163 B. Zhang, P. Zhang, R. Shi, H. Whan, "Catalytic decomposition of low-level ozone by Au/AC prepared by a sol immobilization method", Chinese Journal of Catalysis, 3, (2009), 235-241 H.H Kim, M. Sugasawa, H. Hirata, Y. Teramoto, K. Kosuge, N, Negishi, A. Ogata, "Ozone-Assisted Catalysis of Toluene with Layered ZSM-5 and Ag/ZSM-5 Zeolites", Plasma Chemistry and Plasma Processing, 33, (2013), 1083-1098 S.C. Kim, "The catalytic oxidation of aromatic hydrocarbons over supported metal oxide", Journal of Hazardous Materials, 91, (2002), 285-299 B. Dhandapani, S.T. Oyama, "Gas phase ozone decomposition catalystsApplied", Catalysis B, 11, (1997), 129-166 B. Zhu, X. Li, P. Sun, J Liu, X. Ma, X.Y. Zhu, A.M. Zhu, "A novel process of ozone catalytic oxidation for low concentration formaldehyde removal", Chinese Journal of Catalysis, 38, (2017), 1759-1769 H. Einaga, S. Futamura, "Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides", Journal of Catalysis, 227, (2004), 304-312 E. Rezaei, J. Soltan, "Low temperature oxidation of toluene by ozone over MnOx/γ-alumina and MnOx/MCM-41 catalysts", Chemical Engineering Journal, 198-199, (2012), 482-490 H. Einaga, S. Futamura, "Oxidation behavior of cyclohexane on alumina-supported manganese oxides with ozone", Applied Catalysis B, 60 , (2005), 49-55 H. Huang, X. Ye, W. Huang, J. Chen, Y. Xu, M. Wu, Q. Shao, Z. Peng, G. Ou, J. Shi, X. Feng, Q. Feng, H. Huang, P. Hu, D.Y.C. Leung, "Ozone-catalytic oxidation of gaseous benzene over MnO2/ZSM-5 at ambient temperature: catalytic deactivation and its suppression", Chem. Eng. J., 264, (2015), 24-31 H.W Ryu, M.Y. Song, J,S Park, J.M. Kim, S-C. Jung, J. Song, B.J. Kim, Y-K. Park, " Removal of toluene using ozone at room temperature over mesoporous Mn/Al2O3 catalysts", Environmetal Reserch, 172, (2019), 649-657 E.V. Starokon, M.V. Parfenov, L.V. Pirutko, I.E. Soshnikov, G.I. Panov, "Epoxidation of ethylene by anion radicals of a-oxygen on the surface of FeZSM-5 zeolite", J. Catal. 309, (2014), 453-459 J. Li, H. Na, X. Zeng, T. Zhu, Z. Liu, "In situ DRIFTS investigation for the oxidation of toluene by ozone over Mn/HZSM-5, Ag/HZSM-5 and Mn-Ag/HZSM-5 catalysts", Appl Surf Sci, 311, (2014), 690-696 T. Gopi, G. Swetha, S.C. Shekar, R. Krishna, C. Ramakrishna, B. Saini, "Ozone catalytic oxidation of toluene over 13X zeolite supported metal oxides and the effect of moisture on the catalytic process", Arab. J. Chem. ,(2016), Inpress K. Persson, A. Ersson, K. Jansson, N. Iverlund, S. Jaras, "Influence of co-metals on bimetallic palladium catalysts for methane combustion", J Catal, 231(1), (2005), 139-150 H.J. Kim, S.W. Choi, H.I. Inyang, "Catalytic oxidation of toluene in contaminant emission control systems using Mn-Ce/γ-Al2O3", Environmental Technology, 29, (2008), 559-569 W.B. Li, M. Zhuang T. C. Xiao, M. L. H. Green, "MCM-41 Supported Cu-Mn Catalysts for Catalytic Oxidation of Toluene at Low Temperatures", J. Phys. Chem. B, 110, (2016), 21568-21571 T. Dutta, K.H. Kim, M. Uchimiya,. P. Kumar, S. Das, S. S.D. Bhattacharya, J. Szulejko, “The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space”, Environmental Research, 151, (2016), 304-312 J.B. Coates, R. Chakaborty, J. G. Lack, S. M. O'Connor, K.A. Cole, K.S. Bender, L.A. Achenbach, "Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas", Nature, 411, (2001), 1039-1043 Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng , D. Tang, "Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ.", 42, (2008), 6247-6260 VS Katari, W. M. Vatavuk, A. H. Wehe, “Incineration techniques for control of volatile organic compound emissions Part I. fundamentals and process design considerations.”, JAPCA, 37, (1987), 91-99 X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, "Adsorption of VOCs onto engineered carbon materials: A review.", J. Hazard. Mater. 338, (2017), 102-123 K.L. Pan, D. L. Chen, G. T. Pan, S. Chong, M.B. Chang, "Removal of phenol from gas stream via combined plasma catalysis", J. Ind. Eng. Chem., 52, (2017), 108-120 Z. Zhang, Z. Jiang, W. Shangguan, "Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review.", Catal . Today, 264, (2016), 270-278 C.W. Kwong, C.Y.H. Chao, K.S. Hui, M.P. Wan, "Catalytic ozonation of toluene using zeolite and MCM-41 materials", Environ. Sci. Technol., 42, (2008), 8504-8509 B. Guieysse, C. Hort, V. Platel, R. Munoz, M. Ondarts, S. Revah, "Biological treatment of indoor air for VOC removal: Potential and challenges. ", Biotechnol. Adv., 26, (2008), 398-410. H.A. Rangkooy, M.N. Pour, B.F. Dehaghi, "Efficiency evaluation of the photocatalytic degradation of zinc oxide nanoparticles immobilized on modified zeolites in the removal of styrene vapor from air", Korean J. Chem. Eng., 34, (2017), 3142-314 L.F. Liotaa, H. Wu, G. Pantaleo, A. M. Venezia, “Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: A review”, Catalysis Science and Technology, 3, 2013, 3085-3102 H. Einaga, Y. Teraoka, A. Ogata, J. “Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite”, Catal., 305, (2013), 227-237 HS Liang, H. C. Wang, M.B. Chang, "Low-Temperature Catalytic Oxidation of Monochlorobenzene by Ozone over Silica-Supported Manganese Oxide", Ind. Eng. Chem. Res., 50, (2011), 13322-13329 E. Rezaei, J. Soltan, N. Chen, J. Lin, “Effect of noble metals on activity of MnOx/γ-alumina catalyst in catalytic ozonation of toluene”, Chem . Eng. J., 214, (2013), 219-228 M. Sugasawa, A. Ogata, “Effect of different combination of metal and zeolite on ozone-assisted catalysis for toluene removal”, Ozone: Sci. Eng., 33, (2011), 158-163 B. Zhang, P. Zhang, R. Shi, H. Whan, "Catalytic decomposition of low-level ozone by Au/AC prepared by a sol immobilization method", Chinese Journal of Catalysis, 3, (2009), 235-241 HH Kim, M. Sugasawa, H. Hirata, Y. Teramoto, K. Kosuge, N, Negishi, A. Ogata, “Ozone-Assisted Catalysis of Toluene with Layered ZSM- 5 and Ag/ZSM-5 Zeolites", Plasma Chemistry and Plasma Processing, 33, (2013), 1083-1098 SC Kim, "The catalytic oxidation of aromatic hydrocarbons over supported metal oxide", Journal of Hazardous Materials, 91, (2002), 285-299 B. Dhandapani, S.T. Oyama, “Gas phase ozone decomposition catalysts Applied”, Catalysis B, 11, (1997), 129-166 B. Zhu, X. Li, P. Sun, J Liu, X. Ma, X. Y. Zhu, A. M. Zhu, “A novel process of ozone catalytic oxidation for low concentration formaldehyde removal”, Chinese Journal of Catalysis, 38, (2017), 1759-1769 H. Einaga, S. Futamura, “Catalytic oxidation of benzene with ozone over alumina-supported” manganese oxides", Journal of Catalysis, 227, (2004), 304-312 E. Rezaei, J. Soltan, "Low temperature oxidation of toluene by ozone over MnOx/γ-alumina and MnOx/MCM-41 catalysts", Chemical Engineering Journal, 198-199, (2012), 482-490 H. Einaga, S. Futamura, "Oxidation behavior of cyclohexane on alumina-supported manganese oxides with ozone", Applied Catalysis B, 60 , (2005), 49-55 H Huang, X. Ye, W. Huang, J. Chen, Y. Xu, M. Wu, Q. Shao, Z. Peng, G. Ou, J. Shi, X. Feng, Q. Feng, H. Huang , P. Hu, DYC Leung, "Ozone-catalytic oxidation of gaseous benzene over MnO2/ZSM-5 at ambient temperature: catalytic deactivation and its suppression", Chem. Eng. J., 264, (2015), 24-31 H.W. Ryu, M.Y. Song, J.S Park, J.M. Kim, S-C. Jung, J. Song, B.J. Kim, Y-K. Park, "Removal of toluene using ozone at room temperature over mesoporous Mn/Al2O3 catalysts", Environmetal Research, 172, (2019), 649-657 E.V. Starokon, M.V. Parfenov, L.V. Pirutko, I.E. Soshnikov, G.I. Panov, "Epoxidation of ethylene by anion radicals of a-oxygen on the surface of FeZSM-5 zeolite", J. Catal. 309, (2014), 453-459 J. Li, H. Na, X. Zeng, T. Zhu, Z. Liu, “In situ DRIFTS investigation for the oxidation of toluene by ozone over Mn/HZSM-5, Ag/ HZSM-5 and Mn-Ag/HZSM-5 catalysts", Appl Surf Sci, 311, (2014), 690-696 T. Gopi, G. Swetha, SC Shekar, R. Krishna, C. Ramakrishna, B. Saini, "Ozone catalytic oxidation of toluene over 13X zeolite supported metal oxides and the effect of moisture on the catalytic process", Arab. J. Chem. , (2016), Inpress K. Persson, A. Ersson, K. Jansson, N. Iverlund, S. Jaras, “Influence of co-metals on bimetallic palladium catalysts for methane combustion”, J Catal, 231(1), ( 2005), 139-150 HJ Kim, S. W. Choi, H.I. Inyang, “Catalytic oxidation of toluene in contaminant emission control systems using Mn-Ce/γ-Al2O3”, Environmental Technology, 29, (2008), 559-569 W.B. Li, M. Zhuang T. C. Xiao, M. L. H. Green, "MCM-41 Supported Cu-Mn Catalysts for Catalytic Oxidation of Toluene at Low Temperatures", J. Phys. Chem. B, 110, (2016), 21568-21571

본원발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 상온에서도 VOCs을 제거할 수 있는 바이메탈 촉매 선정하고자 한다. 특히 높은 톨루엔 제거율 및 카본 선택성(carbon selectivity)을 얻기 위한 바이메탈 촉매 및 이에 적합한 제올라이트 지지체와의 조합을 개발하는 것을 목적으로 한다.In order to solve the above problems, the present invention intends to select a bimetal catalyst capable of removing VOCs even at room temperature. In particular, an object of the present invention is to develop a combination of a bimetallic catalyst and a suitable zeolite support for obtaining a high toluene removal rate and carbon selectivity.

본원발명은 상기와 같은 문제점을 해결하기 위하여, 바이메탈 촉매의 물리 및 화학적 특성을 확인하여 촉매를 선정하였다. 또한 높은 톨루엔 제거율 및 carbon selectivity를 얻기 위하여 여러 종류의 제올라이트를 이용한 톨루엔 오존촉매산화 반응을 수행하여 적합한 지지체와의 조합을 개발하였다.In the present invention, in order to solve the above problems, the catalyst was selected by checking the physical and chemical properties of the bimetal catalyst. In addition, in order to obtain high toluene removal rate and carbon selectivity, toluene ozone catalytic oxidation reaction using various types of zeolites was performed to develop a combination with a suitable support.

본원발명은 휘발성유기화합물의 상온 오존촉매산화를 위한 M1-M2 바이메탈 촉매를 제공한다. 여기서 M1은 Ru, Fe, Cu, Ag를 포함하는 그룹에서 선택된 하나이며, M2는 Mn이다.The present invention provides an M1-M2 bimetal catalyst for room temperature ozone-catalyzed oxidation of volatile organic compounds. Here, M1 is one selected from the group consisting of Ru, Fe, Cu, and Ag, and M2 is Mn.

상기 M1-M2 바이메탈 촉매는 제올라이트에 담지된 것이며, 상기 제올라이트는 ZSM-5(SiO2/Al2O3)(23), ZSM-5(SiO2/Al2O3)(80), ZSM-5(SiO2/Al2O3)(280), Y(SiO2/Al2O3)(5.1), Y(SiO2/Al2O3)(80)을 포함하는 그룹에서 선택된 하나 이상이다.The M1-M2 bimetal catalyst is supported on zeolite, and the zeolite is ZSM-5 (SiO 2 /Al 2 O 3 ) (23), ZSM-5 (SiO 2 /Al 2 O 3 ) (80), ZSM- 5(SiO 2 /Al 2 O 3 ) (280), Y(SiO 2 /Al 2 O 3 ) (5.1), Y(SiO 2 /Al 2 O 3 ) (80) is at least one selected from the group consisting of .

상기 M1-M2 바이메탈 촉매의 바람직한 예는 Ru-Mn이고, 상기 제올라이트의 바람직한 예는 ZSM-5(SiO2/Al2O3)(80)이다.A preferred example of the M1-M2 bimetallic catalyst is Ru-Mn, and a preferred example of the zeolite is ZSM-5 (SiO 2 /Al 2 O 3 ) (80).

상기 휘발성유기화합물은 트리메틸벤젠, 노네인, 메틸에틸케톤, 이소프로필알콜, 포름알데히드, 벤젠, 톨루엔, 시클로헥산을 포함하는 그룹에서 선택되는 하나 이상이며, 구체적으로 상기 휘발성유기화합물은 톨루엔이다.The volatile organic compound is at least one selected from the group consisting of trimethylbenzene, nonane, methyl ethyl ketone, isopropyl alcohol, formaldehyde, benzene, toluene, and cyclohexane. Specifically, the volatile organic compound is toluene.

본원발명은 상기 바이메탈 촉매를 사용하여 휘발성유기화합물을 상온에서 오존촉매산화하는 방법을 제공한다. 이때 오존은 별도로 공급될 수 있으며, 상기 상온은 섭씨 10도 내지 섭씨 35도이다.The present invention provides a method for ozone-catalyzed oxidation of volatile organic compounds at room temperature using the bimetal catalyst. At this time, ozone may be separately supplied, and the room temperature is 10 degrees Celsius to 35 degrees Celsius.

본원발명은 또한 상기 바이메탈 촉매를 사용하여 휘발성유기화합물을 상온에서 오존촉매산화하는 장치를 제공하며, 이때 오존을 별도로 공급하는 라인이 부가될 수 있다.The present invention also provides an apparatus for ozone-catalyzed oxidation of volatile organic compounds at room temperature using the bimetal catalyst, wherein a line for separately supplying ozone may be added.

본원발명은 또한 상기 과제해결 수단을 중복, 조합하여 제공할 수 있다.The present invention can also provide the above problem solving means by overlapping or combining.

본원발명은 상기와 같은 문제점을 해결하기 위하여, 바이메탈 촉매의 물리 및 화학적 특성을 확인하여 촉매를 선정하였다. 또한 높은 톨루엔 제거율 및 carbon selectivity를 얻기 위하여 여러 종류의 제올라이트를 이용한 톨루엔 오존촉매산화 반응을 수행하여 적합한 지지체와의 조합을 개발하였다.In the present invention, in order to solve the above problems, the catalyst was selected by checking the physical and chemical properties of the bimetal catalyst. In addition, in order to obtain high toluene removal rate and carbon selectivity, toluene ozone catalytic oxidation reaction using various types of zeolites was performed to develop a combination with a suitable support.

본원발명에서는 상온에서도 VOCs을 제거할 수 있는 바이메탈을 선정하기 위하여, 물리적 특성 및 화학적 특성들을 통하여 바이메탈 촉매를 연구하였다. 우선 최적의 바이메탈을 선정하기 위하여 ZSM-5(SiO2/Al2O3 =280)에 금속을 담지하여 연구를 진행하였다. 단일금속 촉매인 Mn/ZSM-5와 바이메탈 촉매인 Ru-Mn/ZSM-5, Fe-Mn/ZSM-5, Cu-Mn/ZSM-5, Ag-Mn/ZSM-5를 비교하였다. 촉매 중에서 Ru-Mn/ZSM-5(280)가 가장 환원능력이 높았으며, Mn3+/(Mn3++Mn4+) 및 Ovacancy/Olattice의 molar ratio 결과를 통하여 상온에서 톨루엔을 산화 및 오존을 분해함에 있어 다른 촉매들에 비하여 높은 활성을 나타내므로 최적의 바이메탈로 선정하였다.In the present invention, in order to select a bimetal capable of removing VOCs even at room temperature, a bimetal catalyst was studied through physical and chemical properties. First, in order to select an optimal bimetal, a study was conducted by supporting the metal on ZSM-5 (SiO 2 /Al 2 O 3 =280). The single metal catalyst Mn/ZSM-5 and the bimetal catalyst Ru-Mn/ZSM-5, Fe-Mn/ZSM-5, Cu-Mn/ZSM-5, and Ag-Mn/ZSM-5 were compared. Among the catalysts, Ru-Mn/ZSM-5(280) had the highest reducing ability , and through the molar ratio of Mn 3+ /(Mn 3+ +Mn 4+ ) and Ovacancy/Olattice, it oxidized and ozone toluene at room temperature. Since it exhibits higher activity than other catalysts in decomposing the metal, it was selected as the optimal bimetal.

톨루엔 오존촉매산화 반응에 적절한 제올라이트 지지체를 선정하기 위하여, 선정된 바이메탈을 Si/Al이 비율이 다른 제올라이트에 담지하였다. Ru-Mn/ZSM-5(SiO2/Al2O3=23, 80, 280)와 Ru-Mn/Y(SiO2/Al2O3=5.1, 80)을 비교하였다. 촉매의 비표면적과 기공부피가 클수록 톨루엔을 산화하는데 효율이 높았으며 Si/Al의 비율이 80인 제올라이트 촉매가 가장 효율이 높았다. 장기테스트를 진행한 경우, Ru-Mn/ZSM-5 (SiO2/Al2O3=80)은 420분 반응 후 톨루엔 제거율은 41%, 오존 제거율은 43%로 가장 높았으며, Carbon balance(45%)와 CO2 selectivity(34%)로 가장 높았다. 하지만 중간 부산물의 생성이 발생되고 발생된 중간 부산물이 촉매 표면에 침적되어 촉매의 비활성화를 야기하였다. 그로 인해 낮은 톨루엔 제거효율과 낮은 Carbon balance 및 CO2 selectivity를 가진다.In order to select a zeolite support suitable for the toluene ozone catalytic oxidation reaction, the selected bimetal was supported on a zeolite having a different Si/Al ratio. Ru-Mn/ZSM-5 (SiO 2 /Al 2 O 3 =23, 80, 280) and Ru-Mn/Y (SiO2/Al2O3 =5.1, 80) were compared. The greater the specific surface area and pore volume of the catalyst, the higher the efficiency in oxidizing toluene, and the zeolite catalyst with a Si/Al ratio of 80 had the highest efficiency. In the case of long-term test, Ru-Mn/ZSM-5 (SiO 2 /Al 2 O 3 =80) showed the highest toluene removal rate of 41% and ozone removal rate of 43% after 420 minutes of reaction, and the carbon balance (45 %) and CO 2 selectivity (34%). However, the generation of intermediate by-products occurred and the generated intermediate by-products were deposited on the catalyst surface, causing deactivation of the catalyst. As a result, it has low toluene removal efficiency and low carbon balance and CO 2 selectivity.

도 1은 본원발명의 일 실시예에 따른 시료 준비 및 촉매 담지 과정의 개략도이다.
도 2는 본원발명의 일 실시예에 따른 오존촉매산화 반응 장치의 모식도이다.
도 3은 본원발명에 따른 ZSM-5와 단일 금속 촉매인 Mn/ZSM-5과 바이메탈 촉매인 M(M = Fe, Cu, Ru, Ag)-Mn/ZSM-5의 XRD 패턴이다.
도 4는 본원발명에 따른 단일금속 촉매와 바이메탈 촉매의 Mn 2p의 spectra이다.
도 5는 본원발명에 따른 단일금속 촉매와 바이메탈 촉매의 O 1s의 spectra이다.
도 6은 본원발명에 따른 단일 금속 촉매와 바이메탈의 H2-TPR결과를 나타낸다.
도 7과 도8은 각각 본원발명에 따른 오존의 농도에 따른 톨루엔 제거율 및 오존 제거율과 COx의 생성량을 나타낸다.
도 9는 본원발명에 따른 상온 반응 2시간 후의 톨루엔 제거율과 오존 제거율을 나타내었다.
도 10은 본원발명에 따른 상온 반응 2시간 후의 COx 생성량을 나타내었다.
도 11은 본원발명에 따른 GC/MS 크로마토그램을 나타낸다.
도 12는 본원발명에 따른 각 촉매의 2시간 상온 반응 후의 톨루엔 제거율 및 오존 제거율을 나타내었다.
도 13은 본원발명에 따른 상온 반응 2시간 후의 COx 생성량을 나타내었다.
도 14는 본원발명에 따른 Ru-Mn/ZSM-5(SiO2/Al2O3 =80)를 이용한 상온 오존촉매산화반응의 시간에 따른 톨루엔 및 오존 제거율과 CO, CO2의 생성량을 나타낸다.
도 15는 본원발명에 따른 Ru-Mn/Y(SiO2/Al2O3 =80)를 이용한 상온 오존촉매산화반응의 시간에 따른 톨루엔 및 오존 제거율과 CO, CO2의 생성량을 나타낸다.
도 16은 Ru-Mn/Y(80)와 Ru-Mn/ZSM-5(80)를 이용한 상온 오존촉매산화반응의 시간에 따른 Carbon balance(%)와 CO2 selectivity (%)를 나타내었다.
1 is a schematic diagram of a sample preparation and catalyst loading process according to an embodiment of the present invention.
2 is a schematic diagram of an ozone-catalyzed oxidation reaction apparatus according to an embodiment of the present invention.
3 is an XRD pattern of ZSM-5, a single metal catalyst, Mn/ZSM-5, and a bimetal catalyst, M(M = Fe, Cu, Ru, Ag)-Mn/ZSM-5 according to the present invention.
4 is a spectra of Mn 2p of a single metal catalyst and a bimetal catalyst according to the present invention.
5 is a spectra of O 1s of a single metal catalyst and a bimetal catalyst according to the present invention.
6 shows H 2 -TPR results of a single metal catalyst and a bimetal according to the present invention.
7 and 8 respectively show the toluene removal rate and ozone removal rate and the amount of CO x generated according to the concentration of ozone according to the present invention.
9 shows the toluene removal rate and ozone removal rate after 2 hours of room temperature reaction according to the present invention.
Figure 10 shows the amount of CO x production after 2 hours of room temperature reaction according to the present invention.
11 shows a GC/MS chromatogram according to the present invention.
12 shows the toluene removal rate and ozone removal rate after 2 hours of room temperature reaction of each catalyst according to the present invention.
13 shows the amount of CO x production after 2 hours of room temperature reaction according to the present invention.
FIG. 14 shows toluene and ozone removal rates and CO and CO 2 production amounts according to time of the room temperature ozone-catalyzed oxidation reaction using Ru-Mn/ZSM-5 (SiO 2 /Al 2 O 3 =80) according to the present invention.
15 shows the toluene and ozone removal rates and the amount of CO and CO 2 production according to time of the room temperature ozone-catalyzed oxidation reaction using Ru-Mn/Y (SiO 2 /Al 2 O 3 =80) according to the present invention.
16 shows the carbon balance (%) and CO 2 selectivity (%) according to time of the room temperature ozone-catalyzed oxidation reaction using Ru-Mn/Y (80) and Ru-Mn/ZSM-5 (80).

이하 첨부된 도면을 참조하여 본원 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본원 발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본원 발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본원 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, embodiments in which those of ordinary skill in the art to which the present invention pertains can easily practice the present invention will be described in detail with reference to the accompanying drawings. However, in the detailed description of the principle of operation of the preferred embodiment of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.

또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우 뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, the same reference numerals are used throughout the drawings for parts having similar functions and functions. Throughout the specification, when it is said that a part is connected to another part, it includes not only a case in which it is directly connected, but also a case in which it is indirectly connected with another element interposed therebetween. In addition, the inclusion of a certain component does not exclude other components unless otherwise stated, but means that other components may be further included.

이하 본원발명을 보다 자세히 설명한다.Hereinafter, the present invention will be described in more detail.

<시료 준비 및 촉매 담지><Sample preparation and catalyst loading>

지지체로 제올라이트 촉매인 ZSM-5(SiO2/Al2O3= 23, 80, 280, Zeolyst, USA)과 Y(SiO2/Al2O3 = 5.1, 80, Zeolyst, USA)을 사용하였다. 지지체에 Incipient wetness impregnation 방법을 사용하여 금속을 담지하여, 단일 금속 촉매인 Mn/Zeolite와 바이메탈 촉매인 M(M= Cu, Fe, Ag, Ru)-Mn/Zeolite 촉매를 준비하였다. 준비된 과정은 도 1에 나타내었다. Manganese acetate tetrahydrate ((CH3COO)2Mn·4H20, Sigma-Aldrich, USA)를 전구체로 사용하여 Mn을 담지 하였으며 담지량은 5wt%로 고정하였다. 망간을 담지 한 후 Silver acetate (CH3COOAg, Sigma-Aldrich, USA), Copper(Ⅱ) nitrate trihydrate(CuN2O6·3H2O, Sigma-Aldrich, USA), Ruthenium(Ⅲ) chloride hydrate(Cl3Ru·xH2O), Sigma-Aldrich,USA), Iron(Ⅱ) nitrate nonhydrate(FeN2O9·9H2O, Sigma-Aldrich, USA)를 각각 금속의 전구체로 사용하였고, 바이메탈의 담지량은 1wt%로 고정하였다. 각각 전구체들은 증류수에 용해시킨 후 지지체에 함침시켰다. 함침된 촉매를 12시간 건조시킨 후, 350℃에서 2시간 소성하였다. 소성 후 촉매는 1.0 내지 1.7mm의 크기의 펠렛으로 성형한 후 사용하였다.As supports, zeolite catalysts ZSM-5 (SiO 2 /Al 2 O 3 = 23, 80, 280, Zeolyst, USA) and Y (SiO 2 /Al 2 O 3 =5.1, 80, Zeolyst, USA) were used. A single metal catalyst Mn/Zeolite and a bimetal catalyst M(M=Cu, Fe, Ag, Ru)-Mn/Zeolite catalyst were prepared by supporting a metal on a support using the incipient wetness impregnation method. The prepared process is shown in FIG. 1 . Manganese acetate tetrahydrate ((CH 3 COO) 2 Mn·4H 2 0, Sigma-Aldrich, USA) was used as a precursor to support Mn, and the loading amount was fixed at 5 wt%. After supporting manganese, Silver acetate (CH 3 COOAg, Sigma-Aldrich, USA), Copper(II) nitrate trihydrate (CuN 2 O 6 3H 2 O, Sigma-Aldrich, USA), Ruthenium(III) chloride hydrate (Cl 3 Ru·xH 2 O), Sigma-Aldrich, USA), and Iron(II) nitrate nonhydrate (FeN 2 O 9 9H 2 O, Sigma-Aldrich, USA) were each used as metal precursors, and the amount of bimetal supported was It was fixed at 1 wt%. Each of the precursors was dissolved in distilled water and then impregnated into the support. After drying the impregnated catalyst for 12 hours, it was calcined at 350° C. for 2 hours. After calcination, the catalyst was used after being molded into pellets having a size of 1.0 to 1.7 mm.

<특성 분석 방법><Characteristic analysis method>

BET (Brunaure-Emmett-Teller)BET (Brunaure-Emmett-Teller)

촉매의 비표면적과 기공부피의 특성을 확인하기 위하여 300℃에서 12시간 전 처리한 다음 분석기기인 Belsrop mini II(BEL JAPAN, INC., Japan)을 이용하여 측정하였다. 분말 표면에 N2를 흡착시켜 흡착된 질소가스의 양을 측정한 뒤 BET식으로 계산하여 비표면적을 구하였다. 계산식은 아래에 나타내었다. In order to confirm the characteristics of the specific surface area and pore volume of the catalyst, it was pre-treated at 300°C for 12 hours and then measured using an analysis device, Belsrop mini II (BEL JAPAN, INC., Japan). After measuring the amount of adsorbed nitrogen gas by adsorbing N 2 on the surface of the powder, the specific surface area was calculated by the BET equation. The calculation formula is shown below.

Figure 112020069378021-pat00001
Figure 112020069378021-pat00001

여기서 각각의 변수는 아래와 같다.Here, each variable is as follows.

P/P0 : Relative PressureP/P 0 : Relative Pressure

V : Weight of gas adsorbed at a P/P0 V : Weight of gas adsorbed at a P/P 0

Vm: Weight of adsorbate constituting a monolayer of θV m : Weight of adsorbate constituting a monolayer of θ

C : BET C constant, related with h eat of adsorptionC : BET C constant, related with h eat of adsorption

(50-250 on most of solid surfaces) (50-250 on most of solid surfaces)

XRD (X-ray diffraction)XRD (X-ray diffraction)

촉매의 구조적 특성을 확인하기 위하여 분석기기인 Ultima III (Rigaku, JAPAN)을 이용하여 측정하였다. Cu Kα X-선을 사용하여 측정하였으며, Scan 범위는 0 내지 80°이며, step size는 0.02°이 측정 조건이었다.In order to confirm the structural characteristics of the catalyst, it was measured using an analysis device, Ultima III (Rigaku, JAPAN). It was measured using Cu Kα X-ray, and the scan range was 0 to 80°, and the step size was 0.02°.

XPS (X-ray photoelectron spectra)XPS (X-ray photoelectron spectra)

촉매 표면의 화학적 결합상태, 표면에 존재하는 원소의 종류 및 화학적 상태를 측정하기 위하여 측정기기인 MultiLab2000 (VG, UK)을 이용하여 측정하였다. 단 파장인 Al Kα X-선(1486.6eV)과 40eV는 진공상태(5.2×10-9Torr) 사용하여 특성분석을 진행하였다. C1s 피크를 285eV로 보정한 뒤 결합에너지(Binding energy) 값을 얻었다.In order to measure the chemical bonding state of the catalyst surface, the type of element present on the surface, and the chemical state, it was measured using a measuring instrument, MultiLab2000 (VG, UK). The short wavelength Al Kα X-rays (1486.6 eV) and 40 eV were characterized by using vacuum (5.2 × 10 -9 Torr). After the C1s peak was corrected to 285 eV, a binding energy value was obtained.

H2-TPR (Temperature-Programmed Reduction)H 2 -TPR (Temperature-Programmed Reduction)

촉매의 환원 온도를 확인하기 위하여 분석기기인 BEL-CAT (BEL JAPAN, INC., Japan)을 이용하여 측정하였다. N2로 300℃에서 1시간 동안 전 처리한 후, He/H2 혼합가스(30ml/min)를 이용하여 10℃/min으로 가열하며 H2의 소모량을 측정하여 환원 온도를 확인하였다.In order to confirm the reduction temperature of the catalyst, it was measured using an analysis device, BEL-CAT (BEL JAPAN, INC., Japan). After pre-treatment with N 2 at 300° C. for 1 hour , heating at 10° C./min using a He/H 2 mixed gas (30 ml/min), the reduction temperature was confirmed by measuring the consumption of H 2 .

<오존촉매산화 실험 방법 및 장치><Ozone Catalytic Oxidation Experiment Method and Apparatus>

200ppm의 질소 밸런스의 톨루엔 실린더를 사용하였으며, 유입 유량은 Mass Flow Controller(K.M.B. Tech Co., South Korea)을 통하여 톨루엔의 농도를 조절하였다. 오존발생기 (Ozonetech, South Korea)에 산소를 공급하여 오존을 발생시킨 후, 유입 유량은 Mass Flow Controller(K.M.B. Tech Co., South Korea)를 통하여 오존의 농도를 조절하였다. 초기 톨루엔의 농도는 100ppm이며, 톨루엔의 유량은 1L/min으로 유지하였다. 오존의 농도는 1000ppm이며, 오존의 유량 1L/min으로 유지하였다. 총 유량을 2L/min으로 유지하며 mixing chamber에서 혼합한 다음 촉매 반응실험을 진행하였다. 촉매 층은 1/2inch의 SUS 재질을 사용하였다. 펠렛의 형태의 촉매(1.0 내지 1.7mm) 1.5g을 촉매층에 충전했다. 모든 오존 촉매 반응 실험은 상온에서 진행되었다. 반응 장치 모식도는 도 2에 나타내었다.A toluene cylinder with a nitrogen balance of 200 ppm was used, and the inflow flow rate was adjusted to the concentration of toluene through a Mass Flow Controller (K.M.B. Tech Co., South Korea). After oxygen was generated by supplying oxygen to an ozone generator (Ozonetech, South Korea), the inflow flow rate was adjusted to the ozone concentration through a Mass Flow Controller (K.M.B. Tech Co., South Korea). The initial concentration of toluene was 100 ppm, and the flow rate of toluene was maintained at 1 L/min. The ozone concentration was 1000 ppm, and the ozone flow rate was maintained at 1 L/min. The total flow rate was maintained at 2L/min, and the mixture was mixed in a mixing chamber, and then a catalytic reaction experiment was performed. The catalyst layer was made of 1/2 inch SUS material. 1.5 g of catalyst (1.0 to 1.7 mm) in the form of pellets was charged to the catalyst bed. All ozone-catalyzed reaction experiments were conducted at room temperature. A schematic diagram of the reaction apparatus is shown in FIG. 2 .

혼합된 가스를 촉매층에 통과시킨 후의 가스 생성물 및 톨루엔, CO, CO2의 농도는 가스 셀(Nicolet 10M Gas cell, Thermo Fisher Scientific.과 결합된 푸리에 변환 적외분광법 (Fourier transform infrared spectroscopy, FT-IR)으로 분석하였다. 오존 농도는 UV 흡수로 작동되는 오존분석기(Ozonetech, South Korea)로 확인하였다.After passing the mixed gas through the catalyst layer, the concentrations of gas products and toluene, CO, and CO 2 were measured by Fourier transform infrared spectroscopy (FT-IR) combined with a gas cell (Nicolet 10M Gas cell, Thermo Fisher Scientific.) The ozone concentration was checked with an ozone analyzer (Ozonetech, South Korea) operated by UV absorption.

반응 실험 후 촉매의 흡착되어 있는 부산물의 종류를 확인하기 위하여 tandem μ-reactor (PY-2020iD, Prontier Laboratories, Japan)가 부착된 GC(7280A, Agilent, USA)/MS (5977E, Agilent, USA)를 이용하여 확인하였다. 촉매를 10mg 샘플 컵에 담은 뒤, 온도가 300℃인 tandem μ-reactor에 샘플 컵을 떨어트려 2분 동안 반응하였다. 반응 후 기화된 생성물은 GC 주입구를 통하여 컬럼(Ultra Alloy-5, Frontier Laboratories, Japan)으로 이동하였으며, spilt ratio는 20:1 이었다. 오븐 프로그램은 50℃에서 2분 유지한 후 30℃/min의 승온 속도로 200℃까지 가열 한 후 5분동안 유지하였다. MS 피크 물질들은 NIST 05 Library (National Institute of Standards and Technology, USA)로 확인하였다.GC (7280A, Agilent, USA)/MS (5977E, Agilent, USA) attached with a tandem μ-reactor (PY-2020iD, Prontier Laboratories, Japan) was used to check the type of by-product adsorbed by the catalyst after the reaction experiment. was used to confirm. After the catalyst was placed in a 10 mg sample cup, the sample cup was dropped into a tandem μ-reactor with a temperature of 300° C. and reacted for 2 minutes. After the reaction, the vaporized product was moved to a column (Ultra Alloy-5, Frontier Laboratories, Japan) through the GC inlet, and the spilt ratio was 20:1. The oven program was maintained at 50° C. for 2 minutes, then heated to 200° C. at a temperature increase rate of 30° C./min, and then maintained for 5 minutes. MS peak materials were identified with the NIST 05 Library (National Institute of Standards and Technology, USA).

<특성분석><Characteristics analysis>

BET (Brunaure-Emmett-Teller)BET (Brunaure-Emmett-Teller)

표 1은 Mn/ZSM-5 (SiO2/Al2O3=280)과 M(M= Fe, Cu, Ru, Ag)/ZSM-5 (SiO2/Al2O3=280)의 비표면적 및 기공부피를 나타낸 것이다. Mn/ZSM-5의 비표면적은 365m3/g으로 가장 넓은 비표면적을 가지며, 기공 부피 또한 가장 큰 값을 가진다. Mn/ZSM-5에 금속 (Fe, Cu, Ru, Ag)을 추가한 바이메탈 촉매의 경우 각각 364. 359, 358, 357m3/g 비표면적을 나타낸다. 바이메탈 촉매의 경우 단일 금속 촉매의 비표면적을 비교하면 바이메탈 촉매의 비표면적이 감소했음을 알 수 있다. 바이메탈의 촉매의 기공 부피는 0.21-0.22cm3/g의 범위의 값을 가지며, 단일 금속 촉매(0.23cm3/g)보다 감소된 기공부피 값을 가지는 것을 알 수 있다. 이는 단일 금속 촉매에 추가적인 금속 담지에 의해 감소되었음을 알 수 있다. 비표면적과 기공부피는 VOCs의 흡착에 영향에 미치는 인자이다. 바이메탈의 비표면적과 기공부피의 값의 차이가 미미한 것을 확인할 수 있다. 본 실험에서는 바이메탈의 비표면적과 기공부피가 톨루엔 산화에는 영향을 미치지 않을 것이라고 예상할 수 있다. Table 1 shows the specific surface area of Mn/ZSM-5 (SiO 2 /Al 2 O 3 =280) and M(M= Fe, Cu, Ru, Ag)/ZSM-5 (SiO 2 /Al 2 O 3 =280) and pore volume. The specific surface area of Mn/ZSM-5 is 365 m 3 /g, which has the largest specific surface area, and the pore volume also has the largest value. In the case of a bimetal catalyst in which metals (Fe, Cu, Ru, Ag) are added to Mn/ZSM-5, 364. 359, 358, and 357 m 3 /g specific surface areas are respectively shown. In the case of the bimetallic catalyst, it can be seen that the specific surface area of the bimetallic catalyst is decreased when the specific surface area of the single metal catalyst is compared. The pore volume of the bimetallic catalyst has a value in the range of 0.21-0.22cm 3 / g, it can be seen that having a pore volume the value lower than a single metal catalyst (0.23cm 3 / g). It can be seen that this was reduced by additional metal loading on the single metal catalyst. Specific surface area and pore volume are factors affecting the adsorption of VOCs. It can be seen that the difference between the specific surface area of the bimetal and the value of the pore volume is insignificant. In this experiment, it can be expected that the specific surface area and pore volume of the bimetal will not affect toluene oxidation.

Figure 112020069378021-pat00002
Figure 112020069378021-pat00002

XRD (X-ray diffraction)XRD (X-ray diffraction)

ZSM-5와 단일 금속 촉매인 Mn/ZSM-5과 바이메탈 촉매인 M(M = Fe, Cu, Ru, Ag)-Mn/ZSM-5의 XRD 패턴을 도 3에 나타내었다. 모든 촉매들은 ZSM-5의 구조적 특성을 나타내는 피크(2θ = 22-25°, 44-46°)를 가지는 것을 확인할 수 있다. 이를 통하여 단일 금속 촉매와 바이메탈 촉매의 구조가 유지되는 것을 알 수 있다. 또한 XRD 피크상에서 ZSM-5의 구조를 나타내는 피크 이외에는 담지 된 금속의 피크는 나타나지 않음을 알 수 있다. 이는 지지체에 담지 된 금속의 양과 관련이 있다. 보통 100㎡/g의 표면적에 5wt%의 이상의 금속물질을 담지하는 경우에 결정이 형성되며, 담지량이 증가할수록 peak intensity도 증가한다. Mn은 5wt% 담지되었으며, 바이메탈 금속(Fe, Cu, Ru, Pd, Ag, Pt)은 1wt% 담지되었으며, 낮은 담지량으로 인해 해당 금속의 피크는 나타나지 않았다. 또한 XRD 피크를 통하여 담지 된 금속 물질은 높은 분산도를 가지며 상 변이 및 결정성에 영향을 미치지 않는 것을 알 수 있다.The XRD patterns of ZSM-5, single metal catalyst Mn/ZSM-5, and bimetal catalyst M(M = Fe, Cu, Ru, Ag)-Mn/ZSM-5 are shown in FIG. 3 . It can be seen that all catalysts have peaks (2θ = 22-25°, 44-46°) indicating the structural characteristics of ZSM-5. Through this, it can be seen that the structures of the single metal catalyst and the bimetal catalyst are maintained. In addition, it can be seen that, on the XRD peak, no peak of the supported metal appears except for the peak indicating the structure of ZSM-5. This is related to the amount of metal supported on the support. Usually, crystals are formed when more than 5 wt% of a metal material is supported on a surface area of 100 m 2 /g, and the peak intensity increases as the amount of loading increases. Mn was supported in 5 wt%, and bimetallic metals (Fe, Cu, Ru, Pd, Ag, Pt) were supported in 1 wt%, and no peak of the corresponding metal was observed due to the low loading amount. In addition, it can be seen through the XRD peak that the supported metal material has a high degree of dispersion and does not affect the phase change and crystallinity.

XPS (X-ray photoelectron spectra)XPS (X-ray photoelectron spectra)

도 4는 단일금속 촉매와 바이메탈 촉매의 Mn 2p의 spectra를 나타내었다. 641.76-642.80eV와 653.19-653.97eV의 범위는 Mn+3을 나타내며, 644.42-646.39eV와 655.88-657.2eV는 Mn+4를 나타낸다.4 shows the spectra of Mn 2p of a single metal catalyst and a bimetal catalyst. The ranges of 641.76-642.80 eV and 653.19-653.97 eV indicate Mn +3 , and 644.42-646.39 eV and 655.88-657.2 eV indicate Mn +4 .

표 2에 Mn 2p에 대한 XPS의 결과를 정리하여 나타내었다. Mn3+/(Mn3++Mn4+)의 결과 값을 단일 금속촉매인 Mn/ZSM-5(0.69)보다 바이메탈 촉매의 경우 Mn3+/(Mn3++Mn4+)의 값이 전체적으로 증가함을 확인할 수 있다. Mn3+가 Mn4+보다 톨루엔 산화에서 효율이 좋다고 보고되었으며, 오존분해능 또한 Mn3+가 좋다. 바이메탈 촉매를 사용할 경우 톨루엔 산화에 단일 금속 촉매보다 성능이 좋을 것이라고 예상할 수 있다.Table 2 summarizes the XPS results for Mn 2p. Mn value of 3+ / (Mn 3+ + Mn 4+ ) when the bimetallic catalyst Mn 3+ / (Mn 3+ + Mn 4+ ) the result than the Mn / ZSM-5 (0.69) a single metal catalyst in It can be seen that there is an overall increase. It has been reported that Mn 3+ is more efficient than Mn 4+ in toluene oxidation, and Mn 3+ has good ozone decomposition ability. When a bimetal catalyst is used, it can be expected that the performance will be better than that of a single metal catalyst for toluene oxidation.

Figure 112020069378021-pat00003
Figure 112020069378021-pat00003

도 5는 단일금속 촉매와 바이메탈 촉매의 O 1s의 spectra를 나타내었다. 530.0-532.0 eV의 범위는 lattice oxygen(Olattice)을 나타내며, 532.0-533.0eV의 범위는 defective oxygen 또는 oxygen vacancy (Ovacancy)을 나타낸다[7]. 또한 표 3에 O 1s에 대한 XPS의 결과를 정리하여 나타내었다. O 1s의 Ovacancy/Olattice의 비율을 보면, 단일 금속 촉매인 Mn/ZSM-5(1.53)보다 바이메탈 촉매의 경우, Ag-Mn/ZSM-5를 제외하고는 Ovacancy/Olattice의 값이 전체적으로 증가함을 확인할 수 있다. 바이메탈 촉매가 단일 금속 촉매보다 표면의 oxygen vacancy의 형성을 향상시킴을 확인할 수 있다. oxygen vacancy를 통해서 오존이 활성 산소종(O2-,O2 2-,O-)으로 분해된다. 따라서 oxygen vacancy의 면적이 증가할수록 더 많은 오존이 활성 산소종으로 분해되어 톨루엔 산화에 영향을 미친다는 것을 확인할 수 있다.5 shows the spectra of O 1s of a single metal catalyst and a bimetal catalyst. The range of 530.0-532.0 eV indicates lattice oxygen (Olattice), and the range of 532.0-533.0 eV indicates defective oxygen or oxygen vacancy (Ovacancy) [7]. In addition, Table 3 summarizes the XPS results for O 1s. Looking at the O 1s Ovacancy/Olattice ratio, it can be seen that the overall Ovacancy/Olattice value is higher for the bimetal catalyst than for the single metal catalyst, Mn/ZSM-5 (1.53), except for Ag-Mn/ZSM-5. can be checked It can be confirmed that the bimetal catalyst improves the formation of oxygen vacancy on the surface than the single metal catalyst. Ozone is decomposed into reactive oxygen species (O 2 - , O 2 2 - , O - ) through oxygen vacancy. Therefore, it can be confirmed that as the area of oxygen vacancy increases, more ozone is decomposed into reactive oxygen species and affects toluene oxidation.

Figure 112020069378021-pat00004
Figure 112020069378021-pat00004

H2-TPR (Temperature-Programmed Reduction)H 2 -TPR (Temperature-Programmed Reduction)

도 6은 단일 금속 촉매와 바이메탈의 H2-TPR결과를 나타낸다. 도 6에서 각각의 기호는 다음과 같다. (a) Mn/ZSM-5; (b) Fe-Mn/ZSM-5; (c) Cu-Mn/ZSM-5; (d) Ru-Mn/ZSM-5; (e) Pd-Mn/ZSM-5; (f) Ag-Mn/ZSM-5; (g) Pt-Mn/ZSM-56 shows the H2-TPR results of a single metal catalyst and a bimetal. Each symbol in FIG. 6 is as follows. (a) Mn/ZSM-5; (b) Fe-Mn/ZSM-5; (c) Cu-Mn/ZSM-5; (d) Ru-Mn/ZSM-5; (e) Pd-Mn/ZSM-5; (f) Ag-Mn/ZSM-5; (g) Pt-Mn/ZSM-5

TPR은 소비된 수소의 양을 계산하여 금속의 환원 정도를 나타낸다. 단일 금속 촉매인 Mn/ZSM-5는 332℃와 448℃의 환원온도를 나타낸다. 332℃의 환원 온도는 MnO2가 Mn2O3로 환원될 때의 온도를 나타내며, 448℃는 Mn2O3가 MnO로 환원될 때의 온도를 나타낸다. Fe-Mn/ZSM-5는 406℃와 652℃의 환원 온도를 나타내며, 406℃는 Fe2O3가 Fe3O4로 환원되는 과정을 나타내며, 652℃는 Fe3O4가 Fe로 환원되는 과정을 나타낸다. Cu-Mn/ZSM-5는 346℃의 환원온도를 나타내고 Cu2O가 CuO로 환원되는 과정이의 피크를 의미한다. Ru-Mn/ZSM-5는 189℃와 338℃의 두 단계의 환원온도를 가지며, Ru4+→Ru2+→Ru0의 환원 과정을 나타내는 피크이다. Ag-Mn/ZSM-5는 270℃의 환원 온도를 가지며, Ag+→Ag0의 환원 과정을 가진다. 바이메탈 촉매의 환원 피크는 단일 금속 촉매의 환원 피크보다 낮은 온도로 이동하였음을 확인할 수 있다. 모든 촉매의 Intensity 값을 보면, Mn/ZSM-5, Fe-Mn/ZSM-5, Cu-Mn/ZSM-5, Ru-Mn/ZSM-5는 높은 intensity 값을 가지며, Pd-Mn/ZSM-5, Ag-Mn/ZSM-5는 낮은 intensity 값을 가지는 것을 확인할 수 있다. 오존촉매산화반응에서 촉매의 환원 특성이 매우 중요하다. 촉매 중 Ru-Mn/ZSM-5는 넓은 폭의 intesity가 높은 피크 및 낮은 환원 온도를 가지는 Ru-Mn/ZSM-5이 톨루엔을 산화하는데 효과적일 것이다. 이는 저온에서도 Ru-Mn/ZSM-5의 환원능력이 크다는 것을 확인할 수 있다.TPR indicates the extent of metal reduction by calculating the amount of hydrogen consumed. The single metal catalyst, Mn/ZSM-5, exhibits reduction temperatures of 332°C and 448°C. The reduction temperature of 332° C. represents the temperature when MnO2 is reduced to Mn 2 O 3 , and 448° C. represents the temperature when Mn 2 O 3 is reduced to MnO. Fe-Mn/ZSM-5 shows the reduction temperatures of 406°C and 652°C, 406°C represents the reduction of Fe 2 O 3 to Fe 3 O 4 , and 652°C represents the reduction of Fe 3 O 4 to Fe. indicates the process. Cu-Mn/ZSM-5 represents a reduction temperature of 346° C. and means the peak of the process in which Cu 2 O is reduced to CuO. Ru-Mn/ZSM-5 has two reduction temperatures of 189°C and 338°C, and is a peak representing the reduction process of Ru 4+ → Ru 2+ → Ru 0 . Ag-Mn/ZSM-5 has a reduction temperature of 270°C and a reduction process of Ag + →Ag 0 . It can be confirmed that the reduction peak of the bimetal catalyst moved to a lower temperature than the reduction peak of the single metal catalyst. Looking at the intensity values of all catalysts, Mn/ZSM-5, Fe-Mn/ZSM-5, Cu-Mn/ZSM-5, and Ru-Mn/ZSM-5 have high intensity values, and Pd-Mn/ZSM- 5, Ag-Mn/ZSM-5 can be confirmed to have a low intensity value. In ozone-catalyzed oxidation reactions, the reducing properties of catalysts are very important. Among the catalysts, Ru-Mn/ZSM-5, which has a broad intesity peak and a low reduction temperature, will be effective in oxidizing toluene. This confirms that the reducing ability of Ru-Mn/ZSM-5 is large even at low temperature.

<바이메탈 종류에 따른 오존촉매산화 실험><Ozone-catalyzed oxidation experiment according to the type of bimetal>

오존 농도에 따른 오존촉매산화Ozone-catalyzed oxidation according to ozone concentration

오존촉매산화에 필요한 최적의 오존 농도를 선정하기 위하여 오존 농도에 따른 오존촉매산화 반응을 실험하였다. 촉매는 Mn/ZSM-5 (SiO2/Al2O3=280)을 사용하였으며, 톨루엔의 농도는 100ppm으로 반응실험을 진행하였다. 도 7과 도 8은 각각 오존의 농도에 따른 톨루엔 제거율 및 오존 제거율과 COx의 생성량을 나타낸다. 톨루엔 제거율 및 오존 제거율은 아래식과 같이 계산되었다. In order to select the optimal ozone concentration required for ozone-catalyzed oxidation, ozone-catalyzed oxidation reaction according to ozone concentration was tested. As a catalyst, Mn/ZSM-5 (SiO 2 /Al 2 O 3 =280) was used, and the reaction experiment was conducted at a concentration of toluene of 100 ppm. 7 and 8 show the toluene removal rate and ozone removal rate and the amount of CO x generated according to the concentration of ozone, respectively. The toluene removal rate and ozone removal rate were calculated as follows.

Figure 112020069378021-pat00005
Figure 112020069378021-pat00005

600ppm 내지 1200ppm 범위의 오존농도를 조절하여 반응 실험을 진행하였다. 전체적으로 오존농도가 증가할수록 톨루엔의 제거율도 높아졌다. 또한 COx의 생성량도 증가함을 확인할 수 있다. 반면 오존농도가 1000ppm과 1200ppm이 주입되는 경우, 톨루엔의 제거율 및 COx의 생성량의 값에 차이가 없음을 확인할 수 있다. 이를 통하여 본 실험에서 오존촉매산화에 필요한 최적의 오존 농도를 1000 ppm으로 선정하였다. The reaction experiment was carried out by controlling the ozone concentration in the range of 600 ppm to 1200 ppm. Overall, as the ozone concentration increased, the removal rate of toluene also increased. In addition, it can be seen that the amount of CO x production is also increased. On the other hand, when ozone concentrations of 1000 ppm and 1200 ppm are injected, it can be confirmed that there is no difference in the values of the removal rate of toluene and the amount of CO x generated. Through this, the optimum ozone concentration required for ozone-catalyzed oxidation in this experiment was selected as 1000 ppm.

톨루엔의 완전 반응식 1은 아래에 나타내었으며, 반응식 1에 따르면 톨루엔 100ppm을 완전 산화하는데 오존은 1800ppm이 필요하다. 완전산화에 필요한 오존의 농도인 1800ppm보다 낮은 농도인 1000ppm으로 실험을 진행하였다. 필요한 오존 농도에 차이를 보이는 이유는 autoxidation 반응으로 설명될 수 있으며, autoxidation 반응은 반응식 4에 나타내었다. 오존의 분해로 생성된 산소종(O2)과 라디칼 중간체(R·)간의 반응을 통해 최종 생성물인 COx가 생성된다. 따라서 오존촉매산화에서는 완전 산화에 필요한 오존보다 낮은 농도로도 효율을 달성할 수 있다. Complete Reaction Scheme 1 of toluene is shown below, and according to Scheme 1, 1800 ppm of ozone is required to completely oxidize 100 ppm of toluene. The experiment was conducted at 1000 ppm, which is a lower concentration than 1800 ppm, which is the concentration of ozone required for complete oxidation. The reason for the difference in the required ozone concentration can be explained by the autoxidation reaction, and the autoxidation reaction is shown in Scheme 4. A final product, CO x , is generated through a reaction between an oxygen species (O 2 ) generated by the decomposition of ozone and a radical intermediate (R·). Therefore, in ozone-catalyzed oxidation, efficiency can be achieved even with a concentration lower than ozone required for complete oxidation.

Figure 112020069378021-pat00006
(반응식 1)
Figure 112020069378021-pat00006
(Scheme 1)

Figure 112020069378021-pat00007
(반응식 2)
Figure 112020069378021-pat00007
(Scheme 2)

바이메탈 종류에 따른 오존촉매산화 실험 결과Ozone-catalyzed oxidation test results according to the type of bimetal

오존촉매산화에 최적의 활성금속을 선정하기 위하여 바이메탈 종류에 따른 오존촉매산화 반응을 실험하였다. 본 실험에서는 촉매층에 톨루엔을 통과시킨 후, 유입되는 톨루엔의 농도와 배출되는 톨루엔의 농도가 일치하는 파과점(break-through point)에 도달한 후에 오존을 유입하여 오존촉매산화 반응을 진행하였다. 도 9는상온 반응 2시간 후의 톨루엔 제거율과 오존 제거율을 나타내었다. 톨루엔 제거효율은 Ru-Mn/ZSM-5(36%) > Fe-Mn/ZSM-5(27.4%) > Cu-Mn/ZSM-5(27.1%) > Ag-Mn/ZSM-5(23%) > Mn/ZSM-5(14%) 순서로 점차 감소했다. 이 결과 모든 바이메탈 촉매의 톨루엔 제거 효율이 단일 금속 촉매인 Mn/ ZSM-5보다 향상됨을 확인할 수 있다. 오존 제거 효율은 Cu-Mn/ZSM-5(69.62%) > Fe-Mn/ZSM-5(65%) > Ru-Mn/ZSM-5 (57.79%) > Ag-Mn/ZSM-5(49.1%) > Mn/ZSM-5(45.1%)으로 점차 감소하였다. 오존 제거율 또한 바이메탈 촉매가 단일 금속 촉매보다 효율이 향상되었음을 확인할 수 있다. 특히 Ru-Mn/ZSM-5의 톨루엔 제거 효율은 36.87%로 톨루엔 제거 효율이 13.84%인 Mn/ZSM-5보다 약 2.6배 높다. In order to select the optimal active metal for ozone-catalyzed oxidation, ozone-catalyzed oxidation reaction according to the type of bimetal was tested. In this experiment, after toluene was passed through the catalyst layer, the ozone catalytic oxidation reaction was carried out by introducing ozone after reaching a break-through point in which the concentration of the inflow toluene and the concentration of the discharged toluene coincide. 9 shows the toluene removal rate and ozone removal rate after 2 hours of reaction at room temperature. Toluene removal efficiency is Ru-Mn/ZSM-5 (36%) > Fe-Mn/ZSM-5 (27.4%) > Cu-Mn/ZSM-5 (27.1%) > Ag-Mn/ZSM-5 (23%) ) > Mn/ZSM-5 (14%). As a result, it can be confirmed that the toluene removal efficiency of all bimetal catalysts is improved compared to Mn/ZSM-5, which is a single metal catalyst. The ozone removal efficiency is Cu-Mn/ZSM-5 (69.62%) > Fe-Mn/ZSM-5 (65%) > Ru-Mn/ZSM-5 (57.79%) > Ag-Mn/ZSM-5 (49.1%) ) > Mn/ZSM-5 (45.1%) gradually decreased. It can also be confirmed that the ozone removal rate of the bimetal catalyst is improved compared to the single metal catalyst. In particular, the toluene removal efficiency of Ru-Mn/ZSM-5 is 36.87%, which is about 2.6 times higher than that of Mn/ZSM-5, which has a toluene removal efficiency of 13.84%.

도 10은 상온 반응 2시간 후의 COx 생성량을 나타내었다. COx의 생성량은 Ru-Mn/ZSM-5 > Fe-Mn/ZSM-5 > Ru-Mn/ZSM-5 > Ag-Mn/ZSM-5 > Mn/ZSM-5으로 점차 감소하였다. 특히 Ru-Mn/ZSM-5의 COx 생성량은 94.44ppm으로 COx 생성량이 52.62ppm인 Mn/ZSM-5보다 약 1.9배 높다. 또한 COx의 생성량이 오존 제거율의 값과 비례하는 경향을 보인다. 따라서 오존의 분해율이 높을수록 COx의 생성량이 높다는 것을 확인할 수 있다.10 shows the amount of CO x production after 2 hours of room temperature reaction. The amount of CO x produced gradually decreased as Ru-Mn/ZSM-5 > Fe-Mn/ZSM-5 > Ru-Mn/ZSM-5 > Ag-Mn/ZSM-5 > Mn/ZSM-5. In particular, the CO x production amount of Ru-Mn/ZSM-5 is 94.44 ppm, which is about 1.9 times higher than the CO x production amount of 52.62 ppm Mn/ZSM-5. Also, the amount of CO x produced tends to be proportional to the value of the ozone removal rate. Therefore, it can be confirmed that the higher the ozone decomposition rate, the higher the amount of CO x produced.

전체적으로 단일 금속 촉매보다 바이메탈 촉매의 효율이 향상되는 것을 확인 할 수 있으며, 특히 Ru-Mn의 경우 상온 촉매 오존 산화 반응에서 높은 효율을 가지는 것을 확인할 수 있다. XPS 결과를 바탕으로 Mn+3/(Mn+3+Mn+4)의 비율 및 Ovacancy/Olattice의 molar ratio 결과를 통하여 오존분해능, 톨루엔 산화 및 COx 생성 결과 Ru-Mn/ZSM-5가 높은 활성을 나타냄을 알 수 있다. 또한 TPR 결과에서 확인할 수 있듯이 Ru-Mn/ZSM-5의 환원능력이 가장 높은 것으로 확인되었으며, 상온에서 톨루엔을 산화하는데 다른 촉매들에 비하여 높은 활성을 가짐을 알 수 있다. 따라서 본 연구에서는 Ru-Mn이 최적의 촉매로 선정하였다.Overall, it can be seen that the efficiency of the bimetal catalyst is improved compared to the single metal catalyst, and in particular, it can be confirmed that Ru-Mn has high efficiency in the room temperature catalytic ozone oxidation reaction. Based on the XPS results, the ozone resolution, toluene oxidation, and CO x generation results through the ratio of Mn +3 /(Mn +3 +Mn +4 ) and the molar ratio of Ovacancy/Olattice. It can be seen that indicates In addition, as can be seen from the TPR results, it was confirmed that the reducing ability of Ru-Mn/ZSM-5 was the highest, and it can be seen that it has a higher activity than other catalysts in oxidizing toluene at room temperature. Therefore, in this study, Ru-Mn was selected as the optimal catalyst.

반응 실험 후 촉매 표면 부산물 분석Analysis of catalyst surface by-products after reaction experiments

상온 오존 산화반응에서는 톨루엔 제거율 및 오존 제거율이 낮은 것을 확인할 수 있다. 이는 상온 오존 산화반응에서는 완전 산화되지 못한 중간 반응물이 촉매 표면에 침적되기 때문이다. 따라서 촉매의 비활성화에 대한 원인을 찾기 위하여 2시간 오존촉매산화 반응 후 촉매 표면에 침적된 생성물의 물질을 확인하기 위하여 GC/MS를 이용하여 분석하였다. 도 11은 GC/MS 크로마토그램을 나타내며, 표 4는 크로마토그램의 피크에 대한 물질을 나타내었다. 주로 침적되는 물질의 종류는 Acetic acid, Toluene, Benzene carboxylic acid, 2,2'-Dimethylbiphenyl등의 물질들이 검출되었다. 많은 연구자들에 의해 톨루엔이 부분 산화될 때에 산과 알데히드가 부산물로 발생한다는 연구결과가 보고되었다. 불완전 산화로 인하여 중간 산화물이 생성되며, 중간 산화물의 침적은 촉매의 비활성화를 일으키며 톨루엔 효율 감소로 이어지게 된다.In the room temperature ozone oxidation reaction, it can be seen that the toluene removal rate and the ozone removal rate are low. This is because in the room temperature ozone oxidation reaction, intermediate reactants that are not completely oxidized are deposited on the catalyst surface. Therefore, in order to find the cause of the deactivation of the catalyst, GC/MS was used to analyze the product material deposited on the catalyst surface after 2 hours of ozone-catalyzed oxidation. 11 shows the GC/MS chromatogram, and Table 4 shows the material for the peak of the chromatogram. Substances such as Acetic acid, Toluene, Benzene carboxylic acid, and 2,2'-Dimethylbiphenyl were detected as the mainly deposited substances. Research results have been reported by many researchers that acids and aldehydes are generated as by-products when toluene is partially oxidized. An intermediate oxide is generated due to incomplete oxidation, and deposition of the intermediate oxide causes catalyst deactivation and leads to a decrease in toluene efficiency.

Figure 112020069378021-pat00008
Figure 112020069378021-pat00008

<지지체 종류에 따른 오존촉매산화 실험><Ozone catalytic oxidation experiment according to the type of support>

지지체 종류에 따른 오존촉매산화 실험 결과Ozone-catalyzed oxidation test results according to the type of support

촉매 활성을 향상시킬 수 있는 적절한 골격구조의 지지체를 선정하기 위하여 선정된 바이메탈인 1wt% Ru - 5wt% Mn을 다른 SiO2/Al2O3 비율을 가지는 제올라이트 촉매인 ZSM-5와 Y에 담지하여 상온 오존촉매산화반응을 진행하였다. 표 5에는 Ru-Mn/ZSM-5(SiO2/Al2O3=23, 80, 280)와 Y(SiO2/Al2O3=5.1, 80)의 비표면적 및 기공부피를 나타내었다. Ru-Mn/Y(80) > Ru-Mn/Y(5.1) > Ru-Mn/ZSM-5(80) > Ru-Mn/ZSM-5 (280) > Ru-Mn/ZSM-5(23)의 순으로 비표면적의 크기와 공극부피가 감소한다. ZSM-5보다 Y가 비교적 큰 비표면적과 기공부피를 가졌다. 이는 Y가 ZSM-5보다 큰 세공을 가지는 메조기공 촉매이기 때문이다. 비표면적과 기공부피는 VOCs의 흡착에 영향에 미치는 인자이다. 비표면적과 기공부피가 클수록 톨루엔에 대한 흡착능이 크며, 담지 된 금속에 의하여 흡착된 톨루엔이 분해될 수 있다. 따라서 가장 큰 표면적을 가지는 Ru-Mn/Y(80)의 톨루엔 산화에 효과적일 것이라고 예상할 수 있다.In order to select a support with an appropriate skeletal structure that can improve catalytic activity, the selected bimetal 1wt% Ru - 5wt% Mn was supported on ZSM-5 and Y, which are zeolite catalysts having different SiO 2 /Al 2 O 3 ratios. A room temperature ozone-catalyzed oxidation reaction was carried out. Table 5 shows the specific surface area and pore volume of Ru-Mn/ZSM-5 (SiO 2 /Al 2 O 3 =23, 80, 280) and Y (SiO 2 /Al 2 O 3 =5.1, 80). Ru-Mn/Y (80) > Ru-Mn/Y (5.1) > Ru-Mn/ZSM-5 (80) > Ru-Mn/ZSM-5 (280) > Ru-Mn/ZSM-5 (23) In the order of , the size of the specific surface area and the pore volume decrease. Compared to ZSM-5, Y had a relatively larger specific surface area and pore volume. This is because Y is a mesoporous catalyst having larger pores than ZSM-5. Specific surface area and pore volume are factors affecting the adsorption of VOCs. The larger the specific surface area and the larger the pore volume, the greater the adsorption capacity for toluene, and the toluene adsorbed by the supported metal may be decomposed. Therefore, it can be expected that it will be effective for toluene oxidation of Ru-Mn/Y(80) having the largest surface area.

Figure 112020069378021-pat00009
Figure 112020069378021-pat00009

본 실험은 촉매층에 톨루엔을 통과시킨 후, 유입되는 톨루엔의 농도와 배출되는 톨루엔의 농도가 일치하는 파과점(break-through point)에 도달한 후에 오존을 유입하여 오존촉매산화 반응을 진행하였다. 도 12는 각 촉매의 2시간 상온 반응 후의 톨루엔 제거율 및 오존 제거율을 나타내었다. 톨루엔의 제거 효율은 Ru-Mn/Y(80) > Ru-Mn/Y(5.1) > Ru-Mn/ZSM-5(80) > Ru-Mn/ZSM-5 (280) > Ru-Mn/ZSM-5(23) 순서로 점차 감소하였다. 오존 제거효율은 Ru-Mn/Y(80) > Ru-Mn/ZSM-5(80) > Ru-Mn/Y(5.1) > Ru-Mn/ZSM-5 (280) > Ru-Mn/ZSM-5(23)의 순서로 점차 감소하였다. 제거 효율이 높은 순서와 비표면적과 기공부피의 큰 순서와 일치하였다. 도 13은 상온 반응 2시간 후의 COx 생성량을 나타내었다. Ru-Mn/Y(80) > Ru-Mn/ZSM-5(80) > Ru-Mn/ZSM-5(280) > Ru-Mn/ Y(5.1) > Ru-Mn/ZSM-5(23)의 순서로 점차 감소하였다. In this experiment, after passing toluene through the catalyst layer, the ozone catalytic oxidation reaction was performed by introducing ozone after reaching a break-through point in which the concentration of the inflow toluene and the concentration of the discharged toluene coincide. 12 shows the toluene removal rate and ozone removal rate after 2 hours of room temperature reaction of each catalyst. The removal efficiency of toluene is Ru-Mn/Y (80) > Ru-Mn/Y (5.1) > Ru-Mn/ZSM-5 (80) > Ru-Mn/ZSM-5 (280) > Ru-Mn/ZSM It gradually decreased in the order of -5 (23). The ozone removal efficiency is Ru-Mn/Y (80) > Ru-Mn/ZSM-5 (80) > Ru-Mn/Y (5.1) > Ru-Mn/ZSM-5 (280) > Ru-Mn/ZSM- It gradually decreased in the order of 5(23). It was consistent with the order of high removal efficiency and the order of large specific surface area and pore volume. 13 shows the amount of CO x produced after 2 hours of room temperature reaction. Ru-Mn/Y(80) > Ru-Mn/ZSM-5(80) > Ru-Mn/ZSM-5(280) > Ru-Mn/Y(5.1) > Ru-Mn/ZSM-5(23) gradually decreased in the order of

Ru-Mn/Y(80)과 Ru-Mn/ZSM-5(80)의 오존 제거율은 각각 88.92%와 86.66%로 비슷한 값을 나타낸다. 하지만 톨루엔 제거율은 Ru-Mn/Y(80)이 Ru-Mn/ZSM-5(80)보다 현저히 높은 값을 보이는 것을 확인할 수 있다. 이는 제올라이트 Y가 ZSM-5보다 비표면적이 크기 때문에, 톨루엔이 촉매에 흡착이 잘 되어 높은 성능을 보이는 것을 확인할 수 있다. COx의 생성량은 Ru-Mn/Y(80)은 135.42ppm이며 Ru-Mn/ZSM-5(80)은 125.26 ppm으로 Ru-Mn/Y(80)이 COx의 생성량이 높지만, CO2의 양은 Ru-Mn/ZSM-5(80)이 83.65ppm로 CO2의 양이 69.02ppm인 Ru-Mn/Y(80)보다 높은 것을 알 수 있다. 이 결과를 통해 오존의 분해가 많이 될수록 COx의 생성량이 증가하는 것을 확인할 수 있다. 위의 결과를 바탕으로 SiO2/Al2O3의 비율이 80인 제올라이트 촉매의 경우, 톨루엔 제거율, 오존 제거율이 높으며, 높은 COx생성량을 가지는 것을 확인할 수 있다.The ozone removal rates of Ru-Mn/Y (80) and Ru-Mn/ZSM-5 (80) were 88.92% and 86.66%, respectively, indicating similar values. However, it can be seen that the toluene removal rate of Ru-Mn/Y (80) is significantly higher than that of Ru-Mn/ZSM-5 (80). Since zeolite Y has a larger specific surface area than ZSM-5, it can be confirmed that toluene is well adsorbed to the catalyst and shows high performance. Production of CO x is a Ru-Mn / Y (80) is 135.42ppm a Ru-Mn / ZSM-5 ( 80) is high, but the Ru-Mn / Y (80) the amount of CO x to 125.26 ppm, CO 2 It can be seen that the amount of Ru-Mn/ZSM-5 (80) is 83.65 ppm, which is higher than that of Ru-Mn/Y (80), where the amount of CO 2 is 69.02 ppm. From this result, it can be seen that the more ozone decomposes, the more CO x is produced. Based on the above results, in the case of a zeolite catalyst having a SiO 2 /Al 2 O 3 ratio of 80, it can be confirmed that the toluene removal rate and ozone removal rate are high, and it has a high CO x production amount.

장시간 실험long experiment

Ru-Mn/Y(SiO2/Al2O3=80)와 Ru-Mn/ZSM-5(SiO2/Al2O3=80)을 비교하기 위하여 파과점 도달 없이 톨루엔과 오존을 촉매층에 통과시켜 420분동안 상온 반응을 진행하였다. 도 14는 Ru-Mn/ZSM-5(SiO2/Al2O3 =80)를 이용한 상온 오존촉매산화반응의 시간에 따른 톨루엔 및 오존 제거율과 CO, CO2의 생성량을 나타낸다. 전체적으로 시간이 지남에 따라 톨루엔과 오존 제거효율은 감소하였으며, CO2는 90분 이후부터 일정하게 농도를 유지하였으며, CO는 90분부터 감소하는 것을 확인할 수 있다. 420분 후의 톨루엔 제거율은 41%, 오존 제거율은 43%이였다. CO는 23ppm, CO2는 98ppm이였다.To compare Ru-Mn/Y (SiO 2 /Al 2 O 3 =80) and Ru-Mn/ZSM-5 (SiO 2 /Al 2 O 3 =80), toluene and ozone pass through the catalyst layer without reaching the breakthrough point The reaction was carried out at room temperature for 420 minutes. FIG. 14 shows the toluene and ozone removal rates and the amount of CO and CO 2 produced according to time of the room temperature ozone-catalyzed oxidation reaction using Ru-Mn/ZSM-5 (SiO 2 /Al 2 O 3 =80). Overall, the toluene and ozone removal efficiency decreased over time, and the CO 2 concentration was maintained at a constant level after 90 minutes, and it can be seen that the CO decreased from 90 minutes. The toluene removal rate after 420 minutes was 41%, and the ozone removal rate was 43%. CO was 23 ppm and CO 2 was 98 ppm.

도 15는 Ru-Mn/Y(SiO2/Al2O3 =80)를 이용한 상온 오존촉매산화반응의 시간에 따른 톨루엔 및 오존 제거율과 CO, CO2의 생성량을 나타낸다. 톨루엔과 오존 제거효율은 초반에는 일정하게 높은 효율을 유지하지만 70분 이후부터는 급격하게 효율이 감소함을 확인할 수 있다. CO와 CO2는 100분 이후부터 일정하게 농도를 유지하는 것을 확인할 수 있다. 420분 후의 톨루엔 제거율은 21%, 오존 제거율은 60%이였으며, CO는 68ppm, CO2는 79ppm이였다. 반응 시간 60분 전에는 Ru-Mn/Y(80)이 높은 톨루엔 및 오존 제거율을 보인다. 이는 Ru-Mn/Y(80)의 비표면적이 커서 Ru-Mn/ZSM-5(80)보다 많은 톨루엔을 초기에 흡착함으로 효율이 높은 것을 확인할 수 있다. 60분 이후부터는 Ru-Mn/Y(80)은 급격히 톨루엔과 오존의 제거율이 감소하는 것을 확인할 수 있다. 이는 흡착된 톨루엔 및 중간 부산물로 인한 비활성화가 빠르게 일어났기 때문이다. 두 종류의 촉매 모두 시간이 지남에 따라 성능이 저하되는 경향을 보인다. 이는 불완전 산화로 인하여 중간 산화물이 생성되고, 중간 산화물의 침적으로 인하여 촉매의 비활성화를 일으키기 때문이다. 15 shows the removal rates of toluene and ozone and the amount of CO and CO2 production according to time of the room temperature ozone-catalyzed oxidation reaction using Ru-Mn/Y (SiO2/Al2O3 = 80). Toluene and ozone removal efficiency maintains a constant high efficiency at the beginning, but it can be seen that the efficiency decreases rapidly after 70 minutes. It can be seen that CO and CO 2 maintain a constant concentration after 100 minutes. Toluene removal rate after 420 minutes was 21%, the ozone removal efficiency was 60%, CO is 68ppm, 79ppm CO 2 is yiyeotda. Before the reaction time 60 minutes, Ru-Mn/Y (80) showed high toluene and ozone removal rates. It can be confirmed that the efficiency is high by initially adsorbing more toluene than Ru-Mn/ZSM-5 (80) due to the large specific surface area of Ru-Mn/Y (80). After 60 minutes, it can be seen that the removal rate of toluene and ozone is rapidly decreased in Ru-Mn/Y (80). This is because the inactivation due to the adsorbed toluene and intermediate by-products occurred rapidly. Both types of catalysts show a tendency to degrade over time. This is because an intermediate oxide is generated due to incomplete oxidation, and the catalyst is deactivated due to deposition of the intermediate oxide.

도 16은 Ru-Mn/Y(80)와 Ru-Mn/ZSM-5(80)를 이용한 상온 오존촉매산화반응의 시간에 따른 Carbon balance(%)와 CO2 selectivity (%)를 나타내었다. Carbon balance(%)와 CO2 selectivity (%)의 계산식은 아래 식에 나타내었다. 16 shows the carbon balance (%) and CO 2 selectivity (%) according to time of the room temperature ozone-catalyzed oxidation reaction using Ru-Mn/Y (80) and Ru-Mn/ZSM-5 (80). The formula for carbon balance (%) and CO 2 selectivity (%) is shown in the following formula.

Figure 112020069378021-pat00010
Figure 112020069378021-pat00010

전체적으로 Carbon balance와 CO2 selectivity는 증가하는 경향을 보인다. Ru-Mn/ZSM-5(80) 촉매의 Carbon balance값은 46%, CO2 selectivity의 값은 35%이다. Ru-Mn/Y(80)의 Carbon balance값은 41%, CO2 selectivity의 값은 18%이다. Ru-Mn/ZSM-5(80) 촉매가 Ru-Mn/Y(80) 촉매보다 높은 Carbon balance와 CO2 selectivity을 가진다. 이를 통하여 상온에서 오존 촉매 반응을 진행할 경우에 Ru-Mn/ZSM-5(80)이 Ru-Mn/Y(80)보다 완전 산화 반응이 잘 일어남을 확인할 수 있다.Overall, carbon balance and CO 2 selectivity tend to increase. The carbon balance value of the Ru-Mn/ZSM-5(80) catalyst was 46%, and the value of the CO 2 selectivity was 35%. The carbon balance value of Ru-Mn/Y (80) was 41%, and the CO 2 selectivity value was 18%. The Ru-Mn/ZSM-5(80) catalyst has higher carbon balance and CO 2 selectivity than the Ru-Mn/Y(80) catalyst. Through this, it can be confirmed that the complete oxidation reaction of Ru-Mn/ZSM-5(80) is better than that of Ru-Mn/Y(80) when the ozone-catalyzed reaction is performed at room temperature.

Ru-Mn/ZSM-5(80)이 톨루엔 제거율 및 Carbon balance와 CO2 selectivity에서 높은 효율을 나타낸다. 따라서 상온 오존촉매산화반응에서 Ru-Mn/ZSM-5(80)이 최적의 촉매임을 알 수 있다.Ru-Mn/ZSM-5(80) shows high efficiency in toluene removal rate, carbon balance and CO 2 selectivity. Therefore, it can be seen that Ru-Mn/ZSM-5(80) is the optimal catalyst for the ozone-catalyzed oxidation reaction at room temperature.

본원발명에서는 상온에서도 VOCs을 제거할 수 있는 바이메탈을 선정하기 위하여, 물리적 특성 및 화학적 특성들을 통하여 바이메탈 촉매를 연구하였다. 우선 최적의 바이메탈을 선정하기 위하여 ZSM-5(SiO2/Al2O3 =280)에 금속을 담지하여 연구를 진행하였다. 단일금속 촉매인 Mn/ZSM-5와 바이메탈 촉매인 Ru-Mn/ZSM-5, Fe-Mn/ZSM-5, Cu-Mn/ZSM-5, Ag-Mn/ZSM-5를 비교하였다. 촉매 중에서 Ru-Mn/ZSM-5(280)가 가장 환원능력이 높았으며, Mn3+/(Mn3++Mn4+) 및 Ovacancy/Olattice의 molar ratio 결과를 통하여 상온에서 톨루엔을 산화 및 오존을 분해함에 있어 다른 촉매들에 비하여 높은 활성을 나타내므로 최적의 바이메탈로 선정하였다.In the present invention, in order to select a bimetal capable of removing VOCs even at room temperature, a bimetal catalyst was studied through physical and chemical properties. First, in order to select an optimal bimetal, a study was conducted by supporting the metal on ZSM-5 (SiO 2 /Al 2 O 3 =280). The single metal catalyst Mn/ZSM-5 and the bimetal catalyst Ru-Mn/ZSM-5, Fe-Mn/ZSM-5, Cu-Mn/ZSM-5, and Ag-Mn/ZSM-5 were compared. Among the catalysts, Ru-Mn/ZSM-5(280) had the highest reducing ability , and through the molar ratio of Mn 3+ /(Mn 3+ +Mn 4+ ) and Ovacancy/Olattice, it oxidized and ozone toluene at room temperature. Since it exhibits higher activity than other catalysts in decomposing the metal, it was selected as the optimal bimetal.

톨루엔 오존촉매산화 반응에 적절한 제올라이트 지지체를 선정하기 위하여, 선정된 바이메탈을 Si/Al이 비율이 다른 제올라이트에 담지하였다. Ru-Mn/ZSM-5(SiO2/Al2O3=23, 80, 280)와 Ru-Mn/Y(SiO2/Al2O3=5.1, 80)을 비교하였다. 촉매의 비표면적과 기공부피가 클수록 톨루엔을 산화하는데 효율이 높았으며 Si/Al의 비율이 80인 제올라이트 촉매가 가장 효율이 높았다. 장기테스트를 진행한 경우, Ru-Mn/ZSM-5 (SiO2/Al2O3=80)은 420분 반응 후 톨루엔 제거율은 41%, 오존 제거율은 43%로 가장 높았으며, Carbon balance(45%)와 CO2 selectivity(34%)로 가장 높았다. 하지만 중간 부산물의 생성이 발생되고 발생된 중간 부산물이 촉매 표면에 침적되어 촉매의 비활성화를 야기하였다. 그로 인해 낮은 톨루엔 제거효율과 낮은 Carbon balance 및 CO2 selectivity를 가진다. 따라서 부산물의 생성을 억제할 수 있도록 Ru-Mn/ZSM-5(80)를 개질하여 톨루엔 및 오존 제거율을 증가시키며 더불어 Carbon balance와 CO2 selectivity를 증가시키기 위한 연구가 추후에 진행될 필요성이 있다.In order to select a zeolite support suitable for the toluene ozone catalytic oxidation reaction, the selected bimetal was supported on a zeolite having a different Si/Al ratio. Ru-Mn/ZSM-5 (SiO 2 /Al 2 O 3 =23, 80, 280) and Ru-Mn/Y (SiO2/Al2O3 =5.1, 80) were compared. The greater the specific surface area and pore volume of the catalyst, the higher the efficiency in oxidizing toluene, and the zeolite catalyst with a Si/Al ratio of 80 had the highest efficiency. In the case of long-term test, Ru-Mn/ZSM-5 (SiO 2 /Al 2 O 3 =80) showed the highest toluene removal rate of 41% and ozone removal rate of 43% after 420 minutes of reaction, and the carbon balance (45 %) and CO 2 selectivity (34%). However, the generation of intermediate by-products occurred and the generated intermediate by-products were deposited on the catalyst surface, causing deactivation of the catalyst. As a result, it has low toluene removal efficiency and low carbon balance and CO 2 selectivity. Therefore, there is a need to improve the toluene and ozone removal rate by modifying Ru-Mn/ZSM-5(80) to suppress the generation of by-products, and to further research to increase the carbon balance and CO2 selectivity.

Claims (11)

휘발성유기화합물의 상온 오존촉매산화를 위한 M1-M2 바이메탈 촉매로서,
상기 M1-M2 바이메탈 촉매는 제올라이트에 담지된 것이며,
상기 상온은 섭씨 10도 내지 섭씨 35도이고,
M1은 Ru이며, M2는 Mn이며,
상기 제올라이트는 ZSM-5(SiO2/Al2O3)(80), ZSM-5(SiO2/Al2O3)(280), Y(SiO2/Al2O3)(5.1), Y(SiO2/Al2O3)(80)을 포함하는 그룹에서 선택된 하나 이상인 바이메탈 촉매.
As an M1-M2 bimetal catalyst for room temperature ozone catalytic oxidation of volatile organic compounds,
The M1-M2 bimetal catalyst is supported on zeolite,
The room temperature is 10 degrees Celsius to 35 degrees Celsius,
M1 is Ru, M2 is Mn,
The zeolite is ZSM-5 (SiO 2 /Al 2 O 3 ) (80), ZSM-5 (SiO 2 /Al 2 O 3 ) (280), Y (SiO 2 /Al 2 O 3 ) (5.1), Y (SiO 2 /Al 2 O 3 ) At least one bimetallic catalyst selected from the group comprising (80).
삭제delete 삭제delete 제1항에 있어서,
상기 M1-M2 바이메탈 촉매는 Ru-Mn이고, 상기 제올라이트는 ZSM-5(SiO2/Al2O3)(80)인 바이메탈 촉매.
According to claim 1,
The M1-M2 bimetallic catalyst is Ru-Mn, and the zeolite is ZSM-5 (SiO 2 /Al 2 O 3 ) (80).
제1항에 있어서,
상기 휘발성유기화합물은 트리메틸벤젠, 노네인, 메틸에틸케톤, 이소프로필알콜, 포름알데히드, 벤젠, 톨루엔, 시클로헥산을 포함하는 그룹에서 선택되는 하나 이상인 바이메탈 촉매.
According to claim 1,
The volatile organic compound is at least one selected from the group consisting of trimethylbenzene, nonane, methyl ethyl ketone, isopropyl alcohol, formaldehyde, benzene, toluene, and cyclohexane.
제5항에 있어서,
상기 휘발성유기화합물은 톨루엔인 바이메탈 촉매.
6. The method of claim 5,
The volatile organic compound is toluene bimetal catalyst.
제1항, 제4항 내지 제6항 중 어느 한 항에 따른 바이메탈 촉매를 사용하여 휘발성유기화합물을 상온에서 오존촉매산화하는 방법.[Claim 7] A method for ozone-catalyzed oxidation of a volatile organic compound at room temperature using the bimetal catalyst according to any one of claims 1 to 6. 제7항에 있어서,
오존을 별도로 공급하는 오존촉매산화하는 방법.
8. The method of claim 7,
A method of ozone-catalyzed oxidation by separately supplying ozone.
제7항에 있어서,
상기 상온은 섭씨 10도 내지 섭씨 35도인 오존촉매산화하는 방법.
8. The method of claim 7,
The room temperature is 10 degrees Celsius to 35 degrees Celsius ozone catalytic oxidation method.
제1항, 제4항 내지 제6항 중 어느 한 항에 따른 바이메탈 촉매를 사용하여 휘발성유기화합물을 상온에서 오존촉매산화하는 장치.An apparatus for ozone-catalyzed oxidation of volatile organic compounds at room temperature using the bimetal catalyst according to any one of claims 1 to 6. 제10항에 있어서,
오존을 별도로 공급하는 라인이 부가된 오존촉매산화하는 장치.
11. The method of claim 10,
Ozone catalytic oxidation device with a separate supply line for ozone.
KR1020200082154A 2020-07-03 2020-07-03 Zeolite based bimetallic catalyst for ozone-catalytic oxidation of volatile organic compounds and oxidation method of volatile organic compounds using the same KR102283644B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200082154A KR102283644B1 (en) 2020-07-03 2020-07-03 Zeolite based bimetallic catalyst for ozone-catalytic oxidation of volatile organic compounds and oxidation method of volatile organic compounds using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200082154A KR102283644B1 (en) 2020-07-03 2020-07-03 Zeolite based bimetallic catalyst for ozone-catalytic oxidation of volatile organic compounds and oxidation method of volatile organic compounds using the same

Publications (1)

Publication Number Publication Date
KR102283644B1 true KR102283644B1 (en) 2021-07-30

Family

ID=77148633

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200082154A KR102283644B1 (en) 2020-07-03 2020-07-03 Zeolite based bimetallic catalyst for ozone-catalytic oxidation of volatile organic compounds and oxidation method of volatile organic compounds using the same

Country Status (1)

Country Link
KR (1) KR102283644B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471682A (en) * 2022-01-18 2022-05-13 安庆市长三角未来产业研究院 Catalyst suitable for CVOCs catalytic combustion and preparation method and application thereof
CN114632514A (en) * 2022-02-28 2022-06-17 中国环境科学研究院 Ozone oxidation catalyst and preparation method thereof
CN115155651A (en) * 2022-08-05 2022-10-11 杭州果蔬鲜科技有限公司 Platinum-based metal catalyst, and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jie Guan 외, IOP Conf. Ser.: Earth Environ. Sci., 310, 042028 (2019.09.05.)
Roberto Fiorenza, Catalysts, 10, 661 (2020.06.12.)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471682A (en) * 2022-01-18 2022-05-13 安庆市长三角未来产业研究院 Catalyst suitable for CVOCs catalytic combustion and preparation method and application thereof
CN114471682B (en) * 2022-01-18 2023-07-07 安庆市长三角未来产业研究院 Catalyst applicable to CVOCs catalytic combustion as well as preparation method and application thereof
CN114632514A (en) * 2022-02-28 2022-06-17 中国环境科学研究院 Ozone oxidation catalyst and preparation method thereof
CN114632514B (en) * 2022-02-28 2023-10-03 中国环境科学研究院 Ozone oxidation catalyst and preparation method thereof
CN115155651A (en) * 2022-08-05 2022-10-11 杭州果蔬鲜科技有限公司 Platinum-based metal catalyst, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Ryu et al. Removal of toluene using ozone at room temperature over mesoporous Mn/Al2O3 catalysts
KR102283644B1 (en) Zeolite based bimetallic catalyst for ozone-catalytic oxidation of volatile organic compounds and oxidation method of volatile organic compounds using the same
Kim et al. Catalytic ozonation of toluene using Mn–M bimetallic HZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature
Du et al. Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke
Guo et al. Enhanced catalytic benzene oxidation over a novel waste-derived Ag/eggshell catalyst
US9399208B2 (en) Catalysts for oxidation of carbon monoxide and/or volatile organic compounds
Pozan Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion
Kim et al. Effect of zeolite acidity and structure on ozone oxidation of toluene using Ru-Mn loaded zeolites at ambient temperature
Tang et al. Pt/MnOx–CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature
Tang et al. Complete oxidation of formaldehyde over Ag/MnOx–CeO2 catalysts
Li et al. Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide
Grabchenko et al. Design of Ag-CeO2/SiO2 catalyst for oxidative dehydrogenation of ethanol: Control of Ag–CeO2 interfacial interaction
He et al. Facile preparation of 3D ordered mesoporous CuO x–CeO 2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds
Soares et al. Nitrate reduction catalyzed by Pd–Cu and Pt–Cu supported on different carbon materials
Yao et al. Niobium doping enhanced catalytic performance of Mn/MCM-41 for toluene degradation in the NTP-catalysis system
Gopi et al. Ozone catalytic oxidation of toluene over 13X zeolite supported metal oxides and the effect of moisture on the catalytic process
Sobczak et al. Au–Cu on Nb2O5 and Nb/MCF supports–surface properties and catalytic activity in glycerol and methanol oxidation
Odoom-Wubah et al. Towards efficient Pd/Mn3O4 catalyst with enhanced acidic sites and low temperature reducibility for Benzene abatement
KR101483079B1 (en) Catalyst For Hydrocarbon Oxidation, Odor Removal And Its Preparation Method
Hou et al. The promotion effect of tungsten on monolith Pt/Ce 0.65 Zr 0.35 O 2 catalysts for the catalytic oxidation of toluene
Gaálová et al. Gold versus platinum on ceria–zirconia mixed oxides in oxidation of ethanol and toluene
Chengjun et al. Synergetic effect of thermo-photocatalytic oxidation of benzene on Pt-TiO2/Ce-MnOx
Kwon et al. Influence of attrition milling on V/Ti catalysts for the selective oxidation of ammonia
Liu et al. Catalytic oxidation of methyl bromide using ruthenium-based catalysts
Ghavami et al. Synthesis of MnO x/Al 2 O 3 catalyst by Polyol method and its application in room temperature ozonation of toluene in air

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant