JP6483884B2 - Method for producing supported catalyst for malodor treatment - Google Patents

Method for producing supported catalyst for malodor treatment Download PDF

Info

Publication number
JP6483884B2
JP6483884B2 JP2018058081A JP2018058081A JP6483884B2 JP 6483884 B2 JP6483884 B2 JP 6483884B2 JP 2018058081 A JP2018058081 A JP 2018058081A JP 2018058081 A JP2018058081 A JP 2018058081A JP 6483884 B2 JP6483884 B2 JP 6483884B2
Authority
JP
Japan
Prior art keywords
catalyst
supported catalyst
cobalt
carrier
cobalt oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018058081A
Other languages
Japanese (ja)
Other versions
JP2018126738A (en
Inventor
正一 染川
正一 染川
潤 井上
潤 井上
川見 佳正
佳正 川見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Sankyo Kosan Co Ltd
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Sankyo Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI), Sankyo Kosan Co Ltd filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Publication of JP2018126738A publication Critical patent/JP2018126738A/en
Application granted granted Critical
Publication of JP6483884B2 publication Critical patent/JP6483884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0258Other waste gases from painting equipments or paint drying installations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、悪臭処理用の担持触媒の製造方法に関するものである。   The present invention relates to a method for producing a supported catalyst for malodor treatment.

工場の排ガスなどから排出される悪臭成分は住居環境に悪い影響を及ぼし、苦情の発生原因ともなりうる。このような悪臭の実例として、例えば塗装工場や印刷工場、化学品製造過程などから排出される揮発性有機化合物(Volatile Organic Compounds:以下「VOC」と表記する)や、皮革工場、し尿処理工場などから排出されるアンモニア化合物、塗装工場や飲食店などから排出されるヤニ類がある。これら化合物の多くは、人体や自然環境にとって有害である。   Malodorous components emitted from factory exhaust gas can adversely affect the living environment and cause complaints. Examples of such bad odors include, for example, volatile organic compounds (hereinafter referred to as “VOC”) emitted from painting factories, printing factories, chemical manufacturing processes, leather factories, human waste processing factories, etc. There are ammonia compounds discharged from the sea, and spears discharged from paint factories and restaurants. Many of these compounds are harmful to the human body and the natural environment.

これらの悪臭の処理方法としては直接燃焼法、触媒燃焼法、物理化学的吸着法、生物処理法、プラズマ法など各種のものが提案されているが、これらの中で、触媒燃焼法は装置及び維持管理が簡単であることから広く採用されている。   Various methods such as a direct combustion method, a catalytic combustion method, a physicochemical adsorption method, a biological treatment method, and a plasma method have been proposed as treatment methods for these malodors. Widely adopted because it is easy to maintain.

現在、VOC等悪臭処理に用いられる触媒の多くが白金、パラジウムなどの貴金属を使用している。貴金属は高い触媒活性を示すが、高価であるためその代替材料が求められてきた。1980年頃には自動車用排ガス処理触媒の貴金属代替案として、Co、Cu、Ceなどの比較的安価な金属を使用した金属酸化物触媒が提案されていた(非特許文献1)。しかしながら触媒作製時や処理運転中に金属酸化物同士のシンタリング(凝集)が進み、分解効率が大幅に低下する事例が生じていた。また、白金などの貴金属に比べてその単位表面積当たりの触媒活性が低いため、同じ性能を確保するためにはより多くの触媒体積が必要となり、圧力損失が高くなる問題が生じたために、実用には至らない状況が続いてきた。さらに、その触媒活性は触媒作製方法、被処理ガスの組成、反応温度などの使用条件によってその性能は大幅に変動し、貴金属を用いた触媒に比べて不安定であった。   Currently, most catalysts used for malodor treatment such as VOC use noble metals such as platinum and palladium. Although noble metals show high catalytic activity, alternative materials have been sought because they are expensive. Around 1980, a metal oxide catalyst using a relatively inexpensive metal such as Co, Cu, or Ce was proposed as a noble metal alternative to an exhaust gas treatment catalyst for automobiles (Non-patent Document 1). However, there have been cases in which the decomposition efficiency of the metal oxide is greatly reduced due to the progress of sintering (aggregation) between metal oxides during the preparation of the catalyst and during the treatment operation. In addition, since the catalytic activity per unit surface area is lower than that of noble metals such as platinum, more catalyst volume is required to ensure the same performance, and the problem of increased pressure loss has occurred. The situation that did not reach has continued. Furthermore, the catalyst activity varied greatly depending on the use conditions such as the catalyst preparation method, the composition of the gas to be treated, the reaction temperature, etc., and was unstable compared to the catalyst using noble metal.

ただ、環境問題が注目されるようになった近年、再び貴金属に代わる安価な触媒に関心が集まるようになり、Cu、Co、Ce等の金属酸化物触媒をはじめとするいくつかの特許が出願されている(特許文献1〜4)。特許文献1では酸化セリウム(CeO)触媒が水蒸気含有VOCの分解に有効であることが報告されている。特許文献2では塩素を含むVOC処理にはCo、Ce系酸化物を含む担体にV(バナジウム)を分散させた複合酸化物触媒を用いることが有効であることが提案されている。また本出願人らは特許文献3で、Cu、Co、Ce複合酸化物触媒がVOC分解に有効であることと、その触媒が吸収する光エネルギーを熱エネルギーに変換することで高効率化を図る新しい使用法を提案している。 However, in recent years when environmental problems have attracted attention, attention has again been focused on inexpensive catalysts that can replace noble metals, and several patents have been filed, including metal oxide catalysts such as Cu, Co, and Ce. (Patent Documents 1 to 4). Patent Document 1 reports that a cerium oxide (CeO 2 ) catalyst is effective in decomposing water vapor-containing VOCs. Patent Document 2 proposes that it is effective to use a composite oxide catalyst in which V (vanadium) is dispersed in a support containing Co and Ce-based oxides for VOC treatment containing chlorine. In addition, in the patent document 3, the present applicants aim to achieve high efficiency by using a Cu, Co, Ce complex oxide catalyst that is effective for VOC decomposition and converting light energy absorbed by the catalyst into thermal energy. Proposed new usage.

また、環境浄化用または自動車用等の触媒も含め、現在産業界で実用化されている触媒は圧力損失が低いことと粉砕化による詰まりを防止できることから、例えばペレット状或いはハニカム状の担体に触媒を担持させたものが使用されている。このことから、最適な形状に加工された担体に触媒を担持させた担持触媒を開発することは実用上において重要な課題となる。しかしながら、これら担体に貴金属と同様の手法で金属酸化物触媒を担持させた触媒を用いて排ガス処理を行っても、白金触媒に比べてその性能は大幅に劣り、また、その担持法や担持された触媒層の構造でその活性が変動しやすいという難点がある。このことは前記の非特許文献1でも実用化を阻む大きな理由として述べられている。作製条件によって性能が大きく変化することは実用化の障害となる。そこで、Co、Ce系酸化物触媒を実用的に安価に量産することを目的として、本出願人はセリウム酸化物及びコバルト酸化物、或いはさらに銅酸化物を添加した新しい触媒担持方法を特許文献4で提案している。これにより、低コスト且つ白金触媒と同等以上の性能を確保できるようになった。しかし、その後の長時間耐久性試験において、触媒剥離が生じて性能が徐々に劣化する場合があることが明らかとなった。また、同素材、例えばコージェライト製の担体でも、ハニカム状と比較してボール状触媒では触媒の付着性が必ずしも良好でない場合があることも確認された。   In addition, catalysts currently used in industry, including catalysts for environmental purification or automobiles, have low pressure loss and can prevent clogging due to pulverization. The thing which carried | supported is used. For this reason, it is an important practical issue to develop a supported catalyst in which a catalyst is supported on a carrier processed into an optimum shape. However, even when exhaust gas treatment is performed using a catalyst in which a metal oxide catalyst is supported on these carriers in the same manner as a noble metal, its performance is significantly inferior to that of platinum catalysts. Further, the activity of the catalyst layer tends to fluctuate. This is also described as a major reason for impeding practical use in Non-Patent Document 1 described above. A large change in performance depending on manufacturing conditions is an obstacle to practical use. Therefore, for the purpose of mass-producing Co and Ce-based oxide catalysts practically and inexpensively, the present applicant has proposed a new catalyst loading method in which cerium oxide and cobalt oxide, or further copper oxide is added. Proposed in As a result, it has become possible to ensure performance at a low cost and equivalent to or better than that of a platinum catalyst. However, in subsequent long-term durability tests, it has become clear that catalyst delamination may occur and performance may gradually deteriorate. It was also confirmed that even with the same material, for example, a cordierite carrier, the adhesion of the catalyst may not always be good in the ball-shaped catalyst as compared with the honeycomb-shaped catalyst.

J.T.kummer, Prog, Energy Combust. Sci.6(1980)177-199J.T.kummer, Prog, Energy Combust.Sci.6 (1980) 177-199

特許第4602165号Japanese Patent No. 4602165 特許第3626754号Japanese Patent No. 3626754 特開2010−94671号JP 2010-94671 A 特開2012−200628号JP 2012-200688

本出願人は、前記Co、Ce系酸化物触媒の担持方法によって、貴金属を使用しなくても市販の白金触媒と同等以上のVOC・悪臭除去性能を確保することに成功したが、長時間の実機スケールでの試験において触媒層が剥離し、性能が徐々に劣化する場合があるという問題が生じていた。触媒の付着性は高温雰囲気下での焼結によって格段によくなる傾向はあるが、高温雰囲気で焼成すると比表面積の低下と触媒化合物の崩壊がおこり、活性の失活が起こる懸念がある。実用的に使用するためには、これら課題を克服することは必須である。   Although the present applicant succeeded in securing the VOC / smelly odor removal performance equal to or better than that of a commercially available platinum catalyst without using a precious metal by the method of supporting the Co and Ce-based oxide catalyst, In a test on an actual machine scale, there was a problem that the catalyst layer was peeled off and the performance was gradually deteriorated. The adhesion of the catalyst tends to be remarkably improved by sintering in a high-temperature atmosphere, but when fired in a high-temperature atmosphere, there is a concern that the specific surface area decreases and the catalyst compound collapses, and the activity is deactivated. In order to use it practically, it is essential to overcome these problems.

そこで、本発明は、Co、Ce系酸化物担持触媒のさらなる高性能化、安定性の向上を図ることができ、長時間活性を有効に保持することのできる担持触媒を提供することを課題としている。   Accordingly, an object of the present invention is to provide a supported catalyst that can further improve the performance and stability of the Co and Ce-based oxide supported catalyst and can effectively maintain the activity for a long time. Yes.

発明者は、平均粒子径0.8〜2μmに機械的に制御することで得られたコバルト酸化物の粒子に着目した。そして、処理されたコバルト酸化物粒子同士を粗状態で担体表面に配置し、その隙間にコバルト酸化物及びセリウム酸化物或いはさらに銅酸化物を分散させた多孔質構造体を有する触媒とすることで多孔質構造を保持し、且つ触媒層が担体から剥離しにくい触媒層になるという知見を得た。さらに上述構造の触媒体に粘土粉末を介在させることで、より分散性を向上させることができた。   The inventor paid attention to particles of cobalt oxide obtained by mechanical control to an average particle size of 0.8 to 2 μm. Then, the treated cobalt oxide particles are arranged on the surface of the carrier in a rough state, and a catalyst having a porous structure in which cobalt oxide and cerium oxide or further copper oxide are dispersed in the gap is provided. The inventors have found that the catalyst layer becomes a catalyst layer that retains the porous structure and hardly peels from the carrier. Furthermore, the dispersibility could be further improved by interposing the clay powder in the catalyst body having the above structure.

本発明はこのような知見に基づいて完成されたものである。   The present invention has been completed based on such findings.

すなわち、本発明は以下のことを特徴としている。   That is, the present invention is characterized by the following.

本発明の悪臭処理用担持触媒の製造方法は、以下の工程を含むことを特徴とする。   The method for producing a supported catalyst for malodor treatment according to the present invention includes the following steps.

a)平均粒子径0.8〜2.0μmのコバルト酸化物粒子を、コバルトイオン生成可能な塩または化合物、セリウムイオンを生成可能な塩または化合物、および水と混合して触媒浸漬液を調製する工程、b)得られた触媒浸漬液を担体に浸漬処理する工程、及びc)浸漬処理後の担体を焼成する工程。   a) A catalyst immersion liquid is prepared by mixing cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm with a salt or compound capable of generating cobalt ions, a salt or compound capable of generating cerium ions, and water. A step, b) a step of immersing the obtained catalyst soaking solution in a carrier, and c) a step of firing the carrier after the immersion treatment.

この悪臭処理用担持触媒の製造方法においては、あらかじめコバルトの塩または化合物を焼成または乾固処理した後に粉砕して平均粒子径0.8〜2.0μmのコバルト酸化物粒子を調製することが好ましい。   In this method for producing a malodor-treated supported catalyst, it is preferable to prepare cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm by calcining or drying a cobalt salt or compound in advance and then pulverizing it. .

本発明の方法によれば、得られる触媒が触媒層が担体から剥離しにくい。これにより、実用での使用が可能となる。本発明のCo、Ce系酸化物担持触媒は、例えば塗装乾燥工程で排出されるヤニや、印刷工場などで使用される酢酸エチルなどの脂肪酸エステル類を従来の白金触媒より約100℃低い温度で完全分解できる等の特徴がある。このため、既存の白金触媒では対応が困難であった分野へも用途拡大が可能になり、環境触媒や排ガス処理装置市場の活性化、労働環境の改善、住居環境の改善等に貢献できる。   According to the method of the present invention, it is difficult for the catalyst obtained to peel off the catalyst layer from the carrier. Thereby, it can be used practically. The Co, Ce-based oxide-supported catalyst of the present invention is, for example, a fatty acid ester such as an aniline discharged in a coating drying process or an ethyl acetate used in a printing factory at a temperature lower by about 100 ° C. than a conventional platinum catalyst. Features such as complete disassembly. This makes it possible to expand applications to fields that were difficult to handle with existing platinum catalysts, contributing to the activation of the environmental catalyst and exhaust gas treatment equipment market, improvement of the working environment, improvement of the living environment, and the like.

Co粉末の平均粒子径の違いによる超音波による剥離性試験結果の比較(ハニカム型)(A:改良後、B:改良前)。Comparison of ultrasonic peelability test results by difference in average particle diameter of Co 3 O 4 powder (honeycomb type) (A: after improvement, B: before improvement). 実機スケールでの長期試験結果[SV:30000h-1、運転温度:320℃(但し、除去率測定時は280℃に変更した)、VOC:酢酸エチル約700ppm](ハニカム型)(A:改良後、B:改良前)。Long-term test results on actual machine scale [SV: 30000h −1 , operating temperature: 320 ° C. (however, changed to 280 ° C. when measuring removal rate), VOC: about 700 ppm ethyl acetate] (honeycomb type) (A: after improvement , B: Before improvement). Co粉末の平均粒子径の違いによる超音波による剥離性試験結果の比較(ボール型)(A:改良後、B:改良前)。Comparison of ultrasonic peelability test results based on differences in average particle size of Co 3 O 4 powder (ball type) (A: after improvement, B: before improvement). 実機スケールでの長期試験結果[SV:22000h-1、運転温度:320℃(但し、除去率測定時は280℃に変更した)、VOC:酢酸エチル約700ppm](ボール型)。Long-term test results on an actual scale [SV: 22000 h −1 , operating temperature: 320 ° C. (however, changed to 280 ° C. when measuring the removal rate), VOC: ethyl acetate about 700 ppm] (ball type). 実施例1の粉砕処理後のCo粉末の粒子径分布(平均粒子径1.09μm)。The particle size distribution (average particle size of 1.09 μm) of the Co 3 O 4 powder after the grinding treatment of Example 1. 実施例1の粉砕処理前のCo粉末の粒子径分布(平均粒子径2.55μm)。2 is a particle size distribution (average particle size 2.55 μm) of Co 3 O 4 powder before pulverization in Example 1. FIG.

本発明の悪臭処理用の担持触媒では、担体物質に、前記のとおりの特徴のある触媒粒子が担持されている。すなわち、担持触媒は、担体(担体物質)と、この担体に担持される触媒粒子とを備える。   In the supported catalyst for malodor treatment of the present invention, catalyst particles having the above-described characteristics are supported on a support material. That is, the supported catalyst includes a support (support material) and catalyst particles supported on the support.

触媒粒子は、平均粒子径0.8〜2.0μmのコバルト酸化物粒子のまわりがコバルトイオンを前駆体とするコバルト酸化物及びセリウムイオンを前駆体とするセリウム酸化物で覆われている。ここで平均粒子径は、レーザー回折法によって求めた粒度分布における積算値50%での粒径(d0.5)を意味する。また、「コバルト酸化物粒子のまわりがコバルト酸化物及びセリウム酸化物で覆われている」とは、コバルト酸化物粒子の表面にコバルト酸化物及びセリウム酸化物が形成されていることを意図する。したがって、本発明の担持触媒において、触媒粒子は、平均粒子径0.8〜2.0μmのコバルト酸化物粒子と、コバルトイオンを前駆体とするコバルト酸化物と、セリウムイオンを前駆体とするセリウム酸化物と、を有して構成されおり、前記コバルト酸化物及び前記セリウム酸化物が前記コバルト酸化物粒子の表面に形成されている。後述するが、触媒粒子は、コバルト酸化物粒子のまわりがコバルト酸化物及びセリウム酸化物の他、銅イオンを前駆体とする銅酸化物で覆われていてもよい。すなわち、触媒粒子は、さらに銅イオンを前駆体とする銅酸化物を有して構成され、前記コバルト酸化物、前記セリウム酸化物、及び前記銅酸化物が前記コバルト酸化物粒子の表面に形成されていてもよい。担持触媒は、触媒粒子の分散性向上のために、複合ケイ酸塩を主体とする粘土鉱物を有してもよく、触媒粒子同士が分散された構造であってもよい。   In the catalyst particles, cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm are covered with cobalt oxide having cobalt ions as a precursor and cerium oxide having cerium ions as a precursor. Here, the average particle size means the particle size (d0.5) at an integrated value of 50% in the particle size distribution obtained by the laser diffraction method. Moreover, “the periphery of the cobalt oxide particles is covered with cobalt oxide and cerium oxide” means that cobalt oxide and cerium oxide are formed on the surface of the cobalt oxide particles. Therefore, in the supported catalyst of the present invention, the catalyst particles include cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm, cobalt oxide having cobalt ion as a precursor, and cerium having cerium ion as a precursor. And the cobalt oxide and the cerium oxide are formed on the surface of the cobalt oxide particles. As will be described later, the catalyst particles may be covered with copper oxide having copper ions as precursors in addition to cobalt oxide and cerium oxide. That is, the catalyst particles further include a copper oxide having copper ions as a precursor, and the cobalt oxide, the cerium oxide, and the copper oxide are formed on the surface of the cobalt oxide particles. It may be. The supported catalyst may have a clay mineral mainly composed of a composite silicate in order to improve the dispersibility of the catalyst particles, or may have a structure in which the catalyst particles are dispersed.

コバルト酸化物粒子は、各種のコバルト化合物、例えば炭酸塩、硝酸塩、硫酸塩、塩化物等の無機酸塩やアルコラート、カルボン酸塩、錯塩等の有機化合物や有機塩等の焼成物、乾固物であってよい。なかでも炭酸塩を前駆体とした化合物を空気中250〜400℃で低温焼成することで作製したものが好ましい。また、コバルト酸化物粒子は、平均粒子径が0.8〜2.0μmの範囲内に粉砕処理されたものであることも好ましい。粉砕処理は乾式粉砕処理でもよいし湿式粉砕処理でもよくその処理方法は問わない。例えば、乾式ジェットミルを用いて粉砕処理を行ってもよいし、乾式ビーズミル法や湿式回転ボールミル法等によって粉砕処理を行ってもよい。   Cobalt oxide particles are a variety of cobalt compounds such as carbonates, nitrates, sulfates, chlorides and other inorganic acid salts, alcoholates, carboxylates, complex salts and other organic compounds and calcined products such as organic salts, and dried solids. It may be. Among these, a compound prepared by baking a compound having a carbonate as a precursor at a low temperature of 250 to 400 ° C. in air is preferable. Moreover, it is also preferable that the cobalt oxide particles have been pulverized within an average particle size range of 0.8 to 2.0 μm. The pulverization process may be a dry pulverization process or a wet pulverization process, and the processing method is not limited. For example, the pulverization may be performed using a dry jet mill, or the pulverization may be performed by a dry bead mill method, a wet rotating ball mill method, or the like.

本発明においては、コバルト酸化物粒子の平均粒子径は0.8〜2.0μmの範囲内とするが、その理由は以下のとおりである。   In the present invention, the average particle diameter of the cobalt oxide particles is in the range of 0.8 to 2.0 μm for the following reason.

すなわち、平均粒子径が0.8μm未満の場合には、コバルトの酸化物粒子同士が凝集しやすくなり、加熱下でその比表面積低下を招き、活性が低下しやすいので好ましくない。また、2.0μmを超える場合には、担体との接着面積が小さく、剥離しやすくなるため好ましくない。かかる観点から、活性が低下しにくく耐久性が良好でありしかも剥離性が良好な、耐久性と剥離性とのバランスが良好な担持触媒を得るためには、コバルト酸化物粒子の平均粒子径は0.8〜2.0μmの範囲が好ましい。   That is, when the average particle diameter is less than 0.8 μm, cobalt oxide particles are likely to aggregate with each other, causing a decrease in the specific surface area under heating and reducing the activity, which is not preferable. Moreover, when exceeding 2.0 micrometers, since an adhesion area with a support | carrier is small and it will become easy to peel, it is unpreferable. From this point of view, in order to obtain a supported catalyst having a good balance between durability and releasability, the average particle diameter of the cobalt oxide particles is as follows. The range of 0.8-2.0 micrometers is preferable.

そして本発明での前記コバルトイオン、セリウムイオンは、コバルト、そしてセリウムが塩もしくは化合物として水溶性のものとして形成される。例えば、硝酸塩、硫酸塩等々である。このようなコバルトイオン、セリウムイオンには、銅イオンを共存させてもよい。銅イオンを共存させて製造した担持触媒は、コバルト酸化物粒子のまわりがコバルト酸化物及びセリウム酸化物の他、銅イオンを前駆体とする銅酸化物で覆われたものとなる。銅イオンは、触媒粒子の酸化物重量比で0.1〜5wt%の範囲になるようにコバルトイオン及びセリウムイオンに共存させるのがより好ましい。これによって、触媒性能がより良好な担持触媒を得ることができる。   The cobalt ions and cerium ions in the present invention are formed as cobalt and cerium water-soluble as salts or compounds. For example, nitrate, sulfate and the like. Such cobalt ions and cerium ions may coexist with copper ions. In the supported catalyst produced by coexisting copper ions, the cobalt oxide particles are covered with copper oxide having a copper ion as a precursor in addition to cobalt oxide and cerium oxide. It is more preferable that the copper ions coexist in the cobalt ions and the cerium ions so that the weight ratio of the catalyst particles is 0.1 to 5 wt%. Thereby, a supported catalyst with better catalytic performance can be obtained.

複合ケイ酸塩を主体とする粘土鉱物としては、例えば、カオリン、ベントナイト白土、活性白土、珪藻土の少なくとも1つの粘土鉱物粉末であることが好ましいものとして例示される。   Examples of the clay mineral mainly composed of the composite silicate include at least one clay mineral powder of kaolin, bentonite clay, activated clay, and diatomaceous earth.

そして、本発明において用いられる担体は従来公知のものをはじめとして各種のものでよい。例えば、好ましいものとしては、ステンレス鋼、鉄鋼、銅合金、アルミニウム合金及びセラミックス材の何れか1つを所望形状に成形したものが例示される。   And the support | carrier used in this invention may be various things including a conventionally well-known thing. For example, a preferable example is one in which any one of stainless steel, steel, copper alloy, aluminum alloy, and ceramic material is formed into a desired shape.

また、担体については、直径5μm〜50μmの気孔を表面に有する多孔質構造体を採用することができ、本発明の担持触媒として、この担体に触媒粒子が保持された構造にすることもできる。上記した気孔を有する多孔質構造体を担体として採用することで、触媒粒子の剥離をより効果的に抑えることができる。より好ましくは直径20μm〜40μmの気孔を表面に有する多孔質構造体を担体として採用することが望ましい。   As the support, a porous structure having pores with a diameter of 5 μm to 50 μm on the surface can be adopted, and the supported catalyst of the present invention can also have a structure in which catalyst particles are held on this support. By adopting the porous structure having pores as described above as a carrier, it is possible to more effectively suppress the separation of the catalyst particles. More preferably, a porous structure having pores with a diameter of 20 μm to 40 μm on the surface is employed as the carrier.

以上のようなエレメント(要素)により構成される本発明の悪臭処理用担持触媒は、各種の方法であってもよいが、好ましくは以下のプロセスによって製造することができる。   The malodor treatment supported catalyst of the present invention constituted by the elements as described above may be various methods, but can be preferably produced by the following process.

すなわち、まず、平均粒子径0.8〜2.0μmのコバルト酸化物粒子を、コバルトイオン生成可能な塩や化合物、セリウムイオン生成可能な塩や化合物、そして水とともに混合して触媒浸漬液を調製する。必要に応じて、銅イオン生成可能な塩や化合物や、カオリン、活性白土等の複合ケイ酸塩を主体とする粘土鉱物を混合して触媒浸漬液を調製してもよい。   That is, first, cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm are mixed with a salt or compound capable of generating cobalt ions, a salt or compound capable of generating cerium ions, and water to prepare a catalyst immersion liquid. To do. If necessary, a catalyst soaking solution may be prepared by mixing a salt or compound capable of producing copper ions and clay minerals mainly composed of complex silicates such as kaolin and activated clay.

次いで、これを担体に浸漬処理し、脱水後に焼成する。この焼成によってコバルトイオン、セリウムイオンは各々酸化物に変換されることになる。触媒浸漬液に銅イオンが含まれる場合には、この焼成によって銅イオンも酸化物に変換されることになる。   Next, this is dipped in a carrier and baked after dehydration. By this firing, cobalt ions and cerium ions are each converted into oxides. When copper ions are contained in the catalyst immersion liquid, the copper ions are also converted into oxides by this firing.

以上の製造プロセスは、従来の多段浸漬法とは相違して一段階での浸漬であって、簡便で効率的である。しかも、触媒の担体への付着強度、そして触媒活性もより向上し、長期安定化された高性能悪臭処理用担持触媒が実現されることになる。   Unlike the conventional multi-stage dipping method, the above manufacturing process is dipping in one stage, and is simple and efficient. In addition, the adhesion strength of the catalyst to the carrier and the catalytic activity are further improved, and a supported catalyst for high-performance malodor treatment that is stabilized for a long time is realized.

担持状態の触媒の構造は、その粒子粒度分布においても、従来法での均一粒子の付着とは異なる特徴的なものとして確認される。   The structure of the catalyst in the supported state is confirmed as a characteristic different from the uniform particle adhesion in the conventional method even in the particle size distribution.

本発明の担持触媒において、複合ケイ酸塩を主体とする粘土鉱物が添加されて得られた担持触媒についての
(a)平均粒子径0.8〜2.0μmのコバルト酸化物粒子、
(b)コバルトイオンを前駆体とするコバルト酸化物、
(c)セリウムイオンを前駆体とするセリウム酸化物、
(d)複合ケイ酸塩を主体とする粘土鉱物
の質量比については、悪臭処理の対象となる主なVOCの種類や処理条件等を考慮して設定することができる。
(A) cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm, with respect to the supported catalyst obtained by adding a clay mineral mainly composed of composite silicate in the supported catalyst of the present invention;
(B) cobalt oxide having cobalt ion as a precursor;
(C) a cerium oxide having a cerium ion as a precursor,
(D) The mass ratio of the clay mineral mainly composed of the composite silicate can be set in consideration of the main type of VOC to be treated for malodor, the treatment conditions, and the like.

一般的には、(a)(b)(c)(d)の合計量100質量%とした場合、以下の範囲が考慮される。   Generally, when the total amount of (a), (b), (c), and (d) is 100% by mass, the following ranges are considered.

(a):20〜50質量%
(b):6〜12質量%
(c):39〜66質量%
(d):2〜5質量%
このうち、特に好ましく考慮されることは、(a)と(b)についての比率である。その理由として、コバルト酸化物粒子の分散状態を保持することが考慮される。
(A): 20 to 50% by mass
(B): 6 to 12% by mass
(C): 39 to 66% by mass
(D): 2 to 5% by mass
Among these, the ratio for (a) and (b) is particularly preferably considered. As the reason, it is considered to maintain the dispersed state of the cobalt oxide particles.

また、担体への担持量についても、触媒の使用対象のVOCの種類や処理条件等を考慮して適宜に定めることができるが、一般的には、質量比として、担体に対して10〜30wt%の範囲が好ましく考慮される。   Further, the amount supported on the carrier can be appropriately determined in consideration of the type of VOC to be used for the catalyst and the processing conditions, but generally, the mass ratio is 10 to 30 wt. % Range is preferably considered.

なお、本発明の担持触媒の使用形態については従来のVOC悪臭処理と同様に様々であってよい。   In addition, about the usage form of the supported catalyst of this invention, it may be various similarly to the conventional VOC malodor treatment.

以下に実施例、比較例を説明する。
<触媒剥離性の評価>
試料を110℃で24時間保持した後の質量を測定する(M1とする)。また、試料に担持されている触媒量(M2とする)も求めておく。次いで、試料に対し、超音波洗浄器を用いて、30秒間超音波を印加する。その後、110℃で24時間保持した後、シリカゲルの入っているデシケーター内で放冷後、試料の質量を測定する(M3とする)。触媒の剥離率h(%)をh=(M1−M3)/M2×100の式から求める。また、そのときの触媒の付着状態を観察した。
<触媒耐久性の評価>
ガスヒーターで320℃に加熱した空気を、所定の空間速度(SV)となるように流量を設定し、常時、触媒と接触するように送り込み続けた。分解率の測定時には、反応槽に入るガスの温度を280℃となるようにヒータ温度を調整し、反応槽に入る前のガスと、反応槽を通過したガスをPIDセンサで分析し、それぞれのガスの濃度を求めた(反応槽に入る前のガスの濃度をC1、反応槽を通過したガスの濃度をC2とする)。分解率c(%)をc=C2/C1×100の式から求める。なお、この時のSVは実施例1、比較例2では30000h-1、実施例2では22000h-1となるように風量を調整した。
<ハニカム担体>
[実施例1]
コバルト炭酸塩を空気中で300℃−5時間焼成してコバルト酸化物(Co)を得た後、粉砕処理を行った。ここで、粉砕処理後のコバルト酸化物の平均粒子径は1.09μmであり(図5)、粉砕処理前(未粉砕)のコバルト酸化物の平均粒子径は2.55μmであった(図6)。粉砕処理後のコバルト酸化物(平均粒子径1.09μm)10gに対して蒸留水を20ml、活性白土粉末1g、硝酸コバルト10g、硝酸セリウム39gを加え、よく攪拌混合して溶液1とした。ハニカム型のセラミックス担体を、溶液1の貯留容器中に1分間浸漬した後、セラミックス担体を空気中において300℃−1時間焼成することにより担持触媒を得た。
[比較例1]
実施例1において得られた未粉砕のコバルト酸化物10gに対して蒸留水を20ml、活性白土粉末1g、硝酸コバルト10g、硝酸セリウム13gを加え、良く攪拌混合して第1液とした。ハニカム型のセラミックス担体を、上記で調整した第1液の貯留容器内に1分間浸漬した後、セラミックス担体を取り出して空気中において250℃−1時間焼成した。その後、冷却したハニカム型のセラミックス担体を、第2液である硝酸セリウム溶液(硝酸セリウム水和物20g+蒸留水20ml)の貯留容器中に1分間浸漬した後、空気中において550℃−1時間焼成し、担持触媒を製造した。
〔性能評価〕
実施例1、比較例1において得られた担持触媒について、前記方法によってハニカム型セラミック担体担持触媒の剥離性と耐久性を評価した。
Examples and comparative examples will be described below.
<Evaluation of catalyst peelability>
The mass after holding the sample at 110 ° C. for 24 hours is measured (referred to as M1). Further, the amount of catalyst (M2) carried on the sample is also obtained. Next, ultrasonic waves are applied to the sample for 30 seconds using an ultrasonic cleaner. Then, after hold | maintaining at 110 degreeC for 24 hours, after standing to cool in the desiccator containing a silica gel, the mass of a sample is measured (it is set as M3). The catalyst peeling rate h (%) is obtained from the equation h = (M1-M3) / M2 × 100. Moreover, the adhesion state of the catalyst at that time was observed.
<Evaluation of catalyst durability>
The flow rate of air heated to 320 ° C. with a gas heater was set so as to obtain a predetermined space velocity (SV), and the air was continuously fed in contact with the catalyst. When measuring the decomposition rate, the heater temperature is adjusted so that the temperature of the gas entering the reaction vessel is 280 ° C., and the gas before entering the reaction vessel and the gas passing through the reaction vessel are analyzed with a PID sensor. The gas concentration was determined (the gas concentration before entering the reaction tank is C1, and the gas concentration that has passed through the reaction tank is C2). The decomposition rate c (%) is obtained from the equation c = C2 / C1 × 100. Incidentally, SV Example 1 at this time, Comparative Example 2, 30000h -1, and an air-flow so that 22000H -1 in Example 2.
<Honeycomb carrier>
[Example 1]
The cobalt carbonate was fired in air at 300 ° C. for 5 hours to obtain cobalt oxide (Co 3 O 4 ), and then pulverized. Here, the average particle diameter of the cobalt oxide after the pulverization treatment was 1.09 μm (FIG. 5), and the average particle diameter of the cobalt oxide before the pulverization treatment (unground) was 2.55 μm (FIG. 6). ). 20 ml of distilled water, 1 g of activated clay powder, 10 g of cobalt nitrate, and 39 g of cerium nitrate were added to 10 g of the pulverized cobalt oxide (average particle size 1.09 μm), and the mixture was mixed well to obtain Solution 1. After immersing the honeycomb-type ceramic carrier in a storage container for solution 1 for 1 minute, the ceramic carrier was fired in air at 300 ° C. for 1 hour to obtain a supported catalyst.
[Comparative Example 1]
20 ml of distilled water, 1 g of activated clay powder, 10 g of cobalt nitrate, and 13 g of cerium nitrate were added to 10 g of the unpulverized cobalt oxide obtained in Example 1, and the mixture was stirred well to obtain the first liquid. After immersing the honeycomb-type ceramic carrier in the first liquid storage container prepared as described above for 1 minute, the ceramic carrier was taken out and fired in air at 250 ° C. for 1 hour. After that, the cooled honeycomb-type ceramic carrier is immersed in a storage container of the second liquid cerium nitrate solution (cerium nitrate hydrate 20 g + distilled water 20 ml) for 1 minute and then fired in air at 550 ° C. for 1 hour. Thus, a supported catalyst was produced.
[Performance evaluation]
With respect to the supported catalysts obtained in Example 1 and Comparative Example 1, the peelability and durability of the honeycomb type ceramic carrier supported catalyst were evaluated by the above method.

図1は、剥離性についての評価を示したものである。   FIG. 1 shows the evaluation of peelability.

評価結果Aは実施例1のものであって、剥離が生じていないことが確認される。一方、評価結果Bの比較例1の場合には剥離が生じていることがわかる。   Evaluation result A is that of Example 1, and it is confirmed that no peeling occurs. On the other hand, in the case of the comparative example 1 of the evaluation result B, it can be seen that peeling has occurred.

また、図2は、耐久性の実機スケールでの長期試験30000h-1、運転温度:320℃(但し、除去率測定時は280℃に変更)、VOC:酢酸エチル約700ppmの評価結果を示したものである。 Further, FIG. 2 shows the evaluation results of a long-term durability test of 30000 h −1 on an actual scale, operating temperature: 320 ° C. (however, changed to 280 ° C. when measuring the removal rate), VOC: about 700 ppm of ethyl acetate. Is.

評価結果Aは実施例1のものであって、長期耐久性に優れていることがわかる。一方、評価結果Bは比較例1のものであって、経時劣化が進行することが確認される。   The evaluation result A is that of Example 1, and it is understood that the long-term durability is excellent. On the other hand, the evaluation result B is that of Comparative Example 1, and it is confirmed that deterioration with time progresses.

また、実施例1のコバルト酸化物の粉砕処理において平均粒子径0.8未満になるように粉砕処理したコバルト酸化物を用いて実施例1と同様の方法で担持触媒を製造し、この担持触媒を用いて触媒剥離性の評価を実施したところ、実施例1の結果と比べて触媒保持性が低下した結果となった。
<ボール型担体>
[実施例2]
実施例1において得られた粉砕処理後のコバルト酸化物(平均粒子径1.09μm)10gに対して蒸留水を20ml、活性白土粉末1g、硝酸コバルト10g、硝酸セリウム39gを加え、良く攪拌混合して溶液1とした。ボール型のセラミックス担体を、溶液1の貯留容器中に1分間浸漬した後、セラミックス担体を空気中において300℃−1時間焼成することにより担持触媒を得た。また、このときのセラミック担体としては、気孔形成剤として活性炭を含むセラミックス原料を用いて作製したボール型担体(直径35μmの気孔を表面に有する多孔質構造体)と気孔形成剤を使用せずに作製したボール型担体を用いた。
[比較例2]
実施例1において得られた未粉砕のコバルト酸化物(平均粒子径2.25μm)10gに対して蒸留水を20ml、活性白土粉末1g、硝酸コバルト10g、硝酸セリウム13gを加え、良く攪拌混合して第1液とした。実施例2で使用したボール型のセラミックス担体を、上記で調整した第1液の貯留容器内に1分間浸漬した後、セラミックス担体を取り出して空気中において250℃−1時間焼成した。その後、冷却したボール型のセラミックス担体を、第2液である硝酸セリウム溶液(硝酸セリウム水和物20g+蒸留水20ml)の貯留容器中に1分間浸漬した後、空気中において550℃−1時間焼成し、担持触媒を製造した。
[実施例3]
実施例1と同様の粉砕処理により得られた粉砕処理後のコバルト酸化物(平均粒子径0.86μm)10gに対して蒸留水を20ml、活性白土粉末1g、硝酸コバルト10g、硝酸セリウム39gを加え、良く攪拌混合して溶液1とした。ボール型のセラミックス担体を、溶液1の貯留容器中に1分間浸漬した後、セラミックス担体を空気中において300℃−1時間焼成することにより担持触媒を得た。また、このときのセラミック担体としては、気孔形成剤として活性炭を含むセラミックス原料を用いて作製したボール型担体(直径35μmの気孔を表面に有する多孔質構造体)を用いた。
[実施例4]
実施例1と同様の粉砕処理により得られた粉砕処理後のコバルト酸化物(平均粒子径1.99μm)10gに対して蒸留水を20ml、活性白土粉末1g、硝酸コバルト10g、硝酸セリウム39gを加え、良く攪拌混合して溶液1とした。ボール型のセラミックス担体を、溶液1の貯留容器中に1分間浸漬した後、セラミックス担体を空気中において300℃−1時間焼成することにより担持触媒を得た。また、このときのセラミック担体としては、気孔形成剤として活性炭を含むセラミックス原料を用いて作製したボール型担体(直径35μmの気孔を表面に有する多孔質構造体)を用いた。
〔性能評価〕
実施例2−4、比較例2において得られた担持触媒について、前記方法によってボール型セラミック担持触媒について、前記方法によってボール型セラミックス担体担持触媒の剥離性と耐久性を評価した。
Further, a supported catalyst was produced in the same manner as in Example 1 using the cobalt oxide pulverized so as to have an average particle size of less than 0.8 in the pulverization treatment of the cobalt oxide of Example 1, and this supported catalyst. As a result of evaluating the catalyst releasability using the catalyst, the catalyst retention was reduced as compared with the result of Example 1.
<Ball type carrier>
[Example 2]
20 ml of distilled water, 1 g of activated clay powder, 10 g of cobalt nitrate, and 39 g of cerium nitrate are added to 10 g of the pulverized cobalt oxide (average particle size 1.09 μm) obtained in Example 1, and mixed well. Solution 1 was obtained. A ball-type ceramic carrier was immersed in a storage container of Solution 1 for 1 minute, and then the ceramic carrier was fired in air at 300 ° C. for 1 hour to obtain a supported catalyst. Further, as the ceramic carrier at this time, a ball type carrier (a porous structure having pores with a diameter of 35 μm on the surface) produced using a ceramic raw material containing activated carbon as a pore forming agent and a pore forming agent are not used. The produced ball type carrier was used.
[Comparative Example 2]
Add 20 ml of distilled water, 1 g of activated clay powder, 10 g of cobalt nitrate, and 13 g of cerium nitrate to 10 g of unground cobalt oxide (average particle size 2.25 μm) obtained in Example 1, and mix well. The first liquid was used. The ball-type ceramic carrier used in Example 2 was immersed in the first liquid storage container prepared as described above for 1 minute, and then the ceramic carrier was taken out and fired in air at 250 ° C. for 1 hour. Thereafter, the cooled ball-shaped ceramic carrier is immersed in a storage container of the second liquid cerium nitrate solution (cerium nitrate hydrate 20 g + distilled water 20 ml) for 1 minute, and then fired in air at 550 ° C. for 1 hour. Thus, a supported catalyst was produced.
[Example 3]
20 ml of distilled water, 1 g of activated clay powder, 10 g of cobalt nitrate, and 39 g of cerium nitrate were added to 10 g of the cobalt oxide (average particle size 0.86 μm) after the grinding treatment obtained by the same grinding treatment as in Example 1. The solution 1 was mixed well by stirring. A ball-type ceramic carrier was immersed in a storage container of Solution 1 for 1 minute, and then the ceramic carrier was fired in air at 300 ° C. for 1 hour to obtain a supported catalyst. In addition, as the ceramic carrier at this time, a ball-type carrier (a porous structure having pores with a diameter of 35 μm on the surface) produced using a ceramic raw material containing activated carbon as a pore-forming agent was used.
[Example 4]
20 ml of distilled water, 1 g of activated clay powder, 10 g of cobalt nitrate, and 39 g of cerium nitrate were added to 10 g of the cobalt oxide (average particle size 1.99 μm) obtained by the same grinding treatment as in Example 1. The solution 1 was mixed well by stirring. A ball-type ceramic carrier was immersed in a storage container of Solution 1 for 1 minute, and then the ceramic carrier was fired in air at 300 ° C. for 1 hour to obtain a supported catalyst. In addition, as the ceramic carrier at this time, a ball-type carrier (a porous structure having pores with a diameter of 35 μm on the surface) produced using a ceramic raw material containing activated carbon as a pore-forming agent was used.
[Performance evaluation]
About the supported catalyst obtained in Example 2-4 and Comparative Example 2, the peelability and durability of the ball-type ceramic carrier-supported catalyst were evaluated by the above method and the ball-type ceramic carrier-supported catalyst by the above method.

図3は、剥離性についての評価結果を示したものである。また、表1には、比較例2および実施例2−4において得られた担持触媒での剥離率測定の結果を示した。   FIG. 3 shows the evaluation results for peelability. Table 1 also shows the results of the peel rate measurement using the supported catalyst obtained in Comparative Example 2 and Example 2-4.

図3の評価結果Aは実施例2において直径35μmの気孔を表面に有する多孔質構造体の担体を用いて製造した担持触媒のものであって、剥離が生じていないことが確認される。一方、図3の評価結果Bは比較例2において気孔形成剤を使用せずに作製した担体を用いて製造した担持触媒のものであって、剥離が生じていることがわかる。剥離率においては、実施例2のものは、比較例2の場合に比して、約50分の1に低下している。実施例3−4の担持触媒についても、比較例2の場合に比して、剥離率が低下していることが確認できた。   The evaluation result A in FIG. 3 is for a supported catalyst manufactured using a porous structure carrier having pores with a diameter of 35 μm on the surface in Example 2, and it is confirmed that no peeling occurs. On the other hand, the evaluation result B of FIG. 3 is that of the supported catalyst manufactured using the support prepared without using the pore forming agent in Comparative Example 2, and it can be seen that peeling occurs. In the peeling rate, the thing of Example 2 has fallen to about 1/50 compared with the case of the comparative example 2. FIG. As for the supported catalyst of Example 3-4, it was confirmed that the peel rate was lower than that of Comparative Example 2.

また、図4は、実施例2において直径35μmの気孔を表面に有する多孔質構造体の担体を用いて製造した担持触媒のものについての耐久性の実機スケールでの長期試験〔SV:22000h-1、運転温度:320℃(但し、除去率測定時は280℃に変更)、VOC:酢酸エチル約700ppm〕の評価結果を示したものであって、長期耐久性に優れていることがわかる。実施例3−4の担持触媒についても、長期耐久性に優れていることが確認された。 Further, FIG. 4 shows a long-term test on a real scale of a supported catalyst manufactured using a porous structure carrier having pores having a diameter of 35 μm on the surface in Example 2 [SV: 22000 h −1. , Operating temperature: 320 ° C. (however, changed to 280 ° C. when measuring the removal rate), VOC: about 700 ppm of ethyl acetate], and shows that the long-term durability is excellent. It was confirmed that the supported catalyst of Example 3-4 was also excellent in long-term durability.

以上より、担体に、触媒粒子が担持され、前記触媒粒子は、平均粒子径0.8〜2.0μmのコバルト酸化物粒子のまわりが、コバルトイオンを前駆体とするコバルト酸化物及びセリウムイオンを前駆体とするセリウム酸化物で覆われている担持触媒は、剥離しにくく、また耐久性に優れていることが確認できた。このことから、当該担持触媒は、Co、Ce系酸化物担持触媒のさらなる高性能化、安定性の向上を図ることができ、長時間活性を有効に保持できることが確認された。
[実施例5]
実施例2において溶液1に、触媒粒子の酸化物重量比で0.3wt%となるように銅イオンを添加してコバルトイオン及びセリウムイオンに共存させ、この溶液を用いて実施例2と同様の方法で担持触媒を製造した。担体は気孔形成剤を使用せずに作製した担体を用いた。この担持触媒と、同担体を用いて製造した実施例2の担持触媒との触媒性能を評価するために、酢酸エチル1000ppmの分解率を測定した。測定条件は、SVを22000h-1 とし、触媒を充填した反応槽を所定の温度に設定した。また、触媒槽導入前と触媒槽通過後のガスをCO計にて分析した。
From the above, catalyst particles are supported on the carrier, and the catalyst particles have cobalt oxide and cerium ions having cobalt ions as precursors around the cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm. It was confirmed that the supported catalyst covered with the cerium oxide as a precursor was difficult to peel off and was excellent in durability. From this, it was confirmed that the supported catalyst can further improve the performance and stability of the Co and Ce-based oxide supported catalyst, and can effectively maintain the activity for a long time.
[Example 5]
In Example 2, a copper ion was added to solution 1 so that the oxide particle weight ratio of the catalyst particles was 0.3 wt%, and coexisted in cobalt ions and cerium ions. Using this solution, the same as in Example 2 was used. A supported catalyst was produced by this method. As the carrier, a carrier prepared without using a pore-forming agent was used. In order to evaluate the catalytic performance of this supported catalyst and the supported catalyst of Example 2 produced using the same support, the decomposition rate of 1000 ppm of ethyl acetate was measured. The measurement conditions were such that SV was 22000 h −1 and the reaction tank filled with the catalyst was set to a predetermined temperature. Further, the gas before introduction of the catalyst tank and after passing through the catalyst tank was analyzed with a CO 2 meter.

その結果を表2に示す。   The results are shown in Table 2.

この結果から、銅イオンを添加して製造した担持触媒は、触媒性能がより良好であることが確認できた。   From this result, it was confirmed that the supported catalyst produced by adding copper ions had better catalytic performance.

Claims (2)

以下の工程を含むことを特徴とする悪臭処理用担持触媒の製造方法。
a)平均粒子径0.8〜2.0μmのコバルト酸化物粒子を、コバルトイオン生成可能な塩または化合物、セリウムイオンを生成可能な塩または化合物、および水と混合して触媒浸漬液を調製する工程、
b)得られた触媒浸漬液を担体に浸漬処理する工程、及び
c)浸漬処理後の担体を焼成する工程。
A method for producing a malodor-treated supported catalyst, comprising the following steps.
a) A catalyst immersion liquid is prepared by mixing cobalt oxide particles having an average particle diameter of 0.8 to 2.0 μm with a salt or compound capable of generating cobalt ions, a salt or compound capable of generating cerium ions, and water. Process,
b) a step of immersing the obtained catalyst immersion liquid in a carrier; and c) a step of firing the carrier after the immersion treatment.
請求項1記載の方法において、あらかじめコバルトの塩または化合物を焼成または乾固処理した後に粉砕して平均粒子径0.8〜2.0μmのコバルト酸化物粒子を調製することを特徴とする悪臭処理用担持触媒の製造方法。

The malodor treatment according to claim 1, wherein cobalt oxide particles having an average particle size of 0.8 to 2.0 µm are prepared by calcining or drying and solidifying a cobalt salt or compound in advance. For producing a supported catalyst.

JP2018058081A 2013-03-29 2018-03-26 Method for producing supported catalyst for malodor treatment Active JP6483884B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013074842 2013-03-29
JP2013074842 2013-03-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015508824A Division JP6357466B2 (en) 2013-03-29 2014-03-31 Supported catalyst for malodor treatment

Publications (2)

Publication Number Publication Date
JP2018126738A JP2018126738A (en) 2018-08-16
JP6483884B2 true JP6483884B2 (en) 2019-03-13

Family

ID=51624676

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015508824A Active JP6357466B2 (en) 2013-03-29 2014-03-31 Supported catalyst for malodor treatment
JP2018058081A Active JP6483884B2 (en) 2013-03-29 2018-03-26 Method for producing supported catalyst for malodor treatment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015508824A Active JP6357466B2 (en) 2013-03-29 2014-03-31 Supported catalyst for malodor treatment

Country Status (2)

Country Link
JP (2) JP6357466B2 (en)
WO (1) WO2014157721A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7344505B2 (en) * 2019-08-14 2023-09-14 地方独立行政法人東京都立産業技術研究センター Method for manufacturing catalyst for VOC treatment
JP7427187B2 (en) * 2019-10-31 2024-02-05 地方独立行政法人東京都立産業技術研究センター VOC treatment catalyst, VOC treatment device, and VOC treatment method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322193A (en) * 1976-08-12 1978-03-01 Agency Of Ind Science & Technol Minute globular porous cobalt oxide particles and production thereof
JP2000033270A (en) * 1998-07-17 2000-02-02 Hitachi Metals Ltd Photocatalytic body
JP2000296340A (en) * 1999-04-14 2000-10-24 Hitachi Metals Ltd Ceramic honeycomb carrier
JP4843292B2 (en) * 2005-11-01 2011-12-21 大日精化工業株式会社 Fine particle cobalt trioxide containing acid component and method for producing the same
DE102007012928B4 (en) * 2007-03-19 2009-09-03 Umicore Ag & Co. Kg Process for introducing a catalytic coating into the pores of a ceramic flow honeycomb body
WO2009078246A1 (en) * 2007-12-14 2009-06-25 Nissan Motor Co., Ltd. Purification catalyst
JP5422320B2 (en) * 2008-09-22 2014-02-19 地方独立行政法人東京都立産業技術研究センター Catalyst for decomposing volatile organic compounds and method for decomposing volatile organic compounds
JP5414719B2 (en) * 2010-03-31 2014-02-12 地方独立行政法人東京都立産業技術研究センター INORGANIC OXIDE FORMED CATALYST FOR DECOMPOSING VOLATILE ORGANIC COMPOUNDS AND METHOD FOR PRODUCING THE SAME
JP5717491B2 (en) * 2011-03-24 2015-05-13 地方独立行政法人東京都立産業技術研究センター Carrier catalyst for volatile organic compounds and process for producing the same

Also Published As

Publication number Publication date
JP6357466B2 (en) 2018-07-11
WO2014157721A1 (en) 2014-10-02
JP2018126738A (en) 2018-08-16
JPWO2014157721A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
EP3244995B1 (en) Nitrous oxide removal catalysts for exhaust systems
WO2016123523A1 (en) Rhodium-containing catalysts for automotive emissions treatment
CN101069849A (en) Carbon oxide and volatile organic compound oxidation decomposing catalyst
JP5336235B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
TWI442972B (en) The method of preparation of cerium oxide supported gold-palladium catalysts and its application in destruction of volatile organic compounds
CN108246312A (en) Catalyst and preparation method with low temperature active purification of volatile organic pollutant
JP5335505B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
JP6483884B2 (en) Method for producing supported catalyst for malodor treatment
Yang et al. Reducing the competitive adsorption between SO2 and NO by Al2O3@ TiO2 core-shell structure adsorbent
EP2939741A1 (en) Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
CN109772442B (en) Supported composite transition metal oxide, preparation method and application as catalyst
JP5717491B2 (en) Carrier catalyst for volatile organic compounds and process for producing the same
CN1193824C (en) Purified catalyst, its preparing method and gas purifying apparatus
WO2013108756A1 (en) Production method for base metal catalyst for exhaust gas purification
WO2021043267A1 (en) Low-temperature denitration catalyst
JP6225807B2 (en) VOC decomposition removal catalyst, method for producing the same, and VOC decomposition removal method using the same
CN105764600B (en) Exhaust treatment system
WO2021049525A1 (en) Powdered complex oxide containing elemental cerium and element zirconium, exhaust gas purification catalyst composition using same, and method for producing same
JP7427187B2 (en) VOC treatment catalyst, VOC treatment device, and VOC treatment method
JP2009078202A (en) Catalytic metal-deposited oxygen storage material, method for manufacturing the same and catalyst using the same
KR101400608B1 (en) Catalyst for selective oxidation of ammonia, manufacturing method same and process for selective oxidation of ammonia using same
TWI433721B (en) Preparation and pretreatment of cerium oxide supported nano-palladium catalysts and its application in destruction of volatile organic compounds in air
JP2004160421A (en) Catalyst for treatment of exhaust gas and exhaust gas treatment method
JP2017094309A (en) Aldehyde removal catalyst, method for producing the same, and aldehyde gas removal method
JP2002370032A (en) Exhaust cleaning catalyst, catalyst molding and catalyst-coated structure each using the catalyst, and exhaust cleaning method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190214

R150 Certificate of patent or registration of utility model

Ref document number: 6483884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250