JP4843292B2 - Fine particle cobalt trioxide containing acid component and method for producing the same - Google Patents

Fine particle cobalt trioxide containing acid component and method for producing the same Download PDF

Info

Publication number
JP4843292B2
JP4843292B2 JP2005318334A JP2005318334A JP4843292B2 JP 4843292 B2 JP4843292 B2 JP 4843292B2 JP 2005318334 A JP2005318334 A JP 2005318334A JP 2005318334 A JP2005318334 A JP 2005318334A JP 4843292 B2 JP4843292 B2 JP 4843292B2
Authority
JP
Japan
Prior art keywords
cobalt
fine
hydroxide
carbonate
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005318334A
Other languages
Japanese (ja)
Other versions
JP2007126307A (en
Inventor
裕美 寺田
徹 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Ukima Chemicals and Color Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2005318334A priority Critical patent/JP4843292B2/en
Publication of JP2007126307A publication Critical patent/JP2007126307A/en
Application granted granted Critical
Publication of JP4843292B2 publication Critical patent/JP4843292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、VOCをはじめとする有害ガスや悪臭ガスの吸着剤および除去剤として有用な微粒子四三酸化コバルトおよびその製造方法に関する。   The present invention relates to particulate cobalt trioxide useful as an adsorbent and remover for harmful gases and malodorous gases including VOC and a method for producing the same.

四三酸化コバルトは、従来から触媒や陶磁器の着色剤などに使用されており、このような用途に使用される四三酸化コバルトは粒子径は大きく、数十μmレベルの大きさでの使用が一般的である。上記の四三酸化コバルトの製造は、通常乾式で行われており、例えば、四三酸化コバルトの粗粒子を粉砕し微粒子化することにより四三酸化コバルトを製造している。   Cobalt tetroxide has been used in the past for catalysts and ceramic colorants. Cobalt tetroxide used in such applications has a large particle size and can be used at a size of several tens of micrometers. It is common. The above-described production of cobalt tetroxide is usually carried out by a dry method. For example, cobalt tetroxide is produced by pulverizing coarse particles of cobalt tetroxide to make fine particles.

しかしながら、こうした乾式粉砕方法では、ナノメートルサイズの微粒子四三酸化コバルトを製造することは不可能であり、微粒子四三酸化コバルトが要求される用途には粒子径が大きく、事実上使用不可能であった。本発明者らは、その点を解決するための手段として、湿式法を採用してナノメートルサイズの四三酸化コバルト顔料を製造する方法を見い出し、既に出願している(特願2005−239450)。   However, such a dry pulverization method cannot produce nanometer-sized fine particle cobalt tetroxide, and the particle size is large for applications requiring fine particle cobalt tetroxide. there were. As a means for solving this problem, the present inventors have found a method for producing a nanometer-sized cobalt tetroxide pigment by employing a wet method, and have already filed an application (Japanese Patent Application No. 2005-239450). .

しかしながら、上記出願発明では、300℃以上の温度で焼成するため得られる顔料の比表面積は大きくても50m2/g以下である。VOCなどの有害ガスや悪臭ガスの吸着剤あるいは除去剤として使用する目的にはこのサイズでは粒子が大きすぎる。また、この方法によって得られる四三酸化コバルト顔料のJIS K5101−17−1の方法によるpH値は7〜9であり、有害ガスや悪臭ガスの吸着剤あるいは除去剤として使用する目的には、このpH値を示す四三酸化コバルトでは充分な特性を示さない。 However, in the above-mentioned application invention, the specific surface area of the pigment obtained for firing at a temperature of 300 ° C. or higher is at most 50 m 2 / g or less. This size is too large for the purpose of use as an adsorbent or remover for harmful gases such as VOCs and odorous gases. Further, the pH value of the tribasic cobalt oxide pigment obtained by this method is 7 to 9 according to the method of JIS K5101-17-1. For the purpose of using it as an adsorbent or remover for harmful gases and odorous gases, Cobalt tetroxide exhibiting a pH value does not exhibit sufficient characteristics.

従って本発明の目的は、粒子径を小さくし、BET比表面積が125〜300m2/gの範囲にあり、VOCなどの有害ガスや悪臭ガスの吸着剤あるいは除去剤として有用な全く新しい微粒子四三酸化コバルトおよびその製造方法を提供することである。 Accordingly, an object of the present invention is to provide a completely new fine particle having a small particle diameter and a BET specific surface area in the range of 125 to 300 m 2 / g, and useful as an adsorbent or remover for harmful gases such as VOC and odorous gases. It is to provide cobalt oxide and a method for producing the same.

本発明は上記目的を達成する手段として、四三酸化コバルトの製造に湿式法を採用することで、粒子径を小さくすることが可能になり、かつアルカリ沈殿剤として炭酸ナトリウムなどのアルカリを使用することで、塩基性炭酸塩の熱処理時にポアーの生成もあり、BET比表面積が50〜300m2/gの範囲にある大きな値を有し、かつ酸性を示す微粒子四三酸化コバルトを得るべく鋭意研究した結果、本発明に至った。 As a means for achieving the above object, the present invention employs a wet method for the production of cobalt tetroxide, thereby making it possible to reduce the particle size and using an alkali such as sodium carbonate as an alkaline precipitant In order to obtain fine particles of cobalt tetroxide having a large BET specific surface area in the range of 50 to 300 m 2 / g and showing acidity, there is also generation of pores during heat treatment of basic carbonate. As a result, the present invention has been achieved.

すなわち、本発明は、コバルトの水溶性塩を、水性媒体中において炭酸ナトリウム、水酸化ナトリウムまたは炭酸水素ナトリウムによりコバルトの水酸化物、炭酸塩またはそれらの混合物として析出させ、析出物を熱処理した後、得られた微粒子をpHが1より大きく3以下の範囲で酸処理することを特徴とする酸成分を含む微粒子四三酸化コバルトの製造方法を提供する。 That is, the present invention is a water-soluble salt of cobalt, sodium carbonate in an aqueous medium, with sodium or sodium bicarbonate hydroxide, cobalt hydroxide, carbonate Shioma other precipitating as their mixtures, the precipitate Provided is a method for producing fine particle cobalt tetraoxide containing an acid component, characterized in that after the heat treatment, the obtained fine particles are acid-treated in a pH range of 1 to 3 inclusive.

上記本発明においては、熱処理温度が200〜400℃の範囲にあることが好ましい。また、前記析出物を熱処理する前に、コバルトの水酸化物、炭酸塩またはそれらの混合物である析出物を酸化剤で酸化することが好ましい。 In the above-described present invention, the heat treatment temperature is preferably in the range of 200 to 400 ° C.. Moreover, before heat-treating the precipitate, it is preferable to oxidize the precipitate which is a hydroxide, carbonate or a mixture thereof with an oxidizing agent.

また、本発明は、ナノメートルサイズで、酸性度として顔料試験方法JIS K5101−17−1の方法によるpH値が5.5以下であり、かつ、BET比表面積が、125〜300m2/gであることを特徴とする微粒子四三酸化コバルトを提供する。 Further, the present invention is a nanometer size, the acidity is a pH value of 5.5 or less by the method of the pigment test method JIS K5101-17-1, and the BET specific surface area is 125 to 300 m 2 / g. There is provided a particulate cobalt trioxide characterized by being.

本発明により得られる微粒子四三酸化コバルトは、VOCをはじめとする有害ガスや悪臭ガスの吸着剤あるいは除去剤として極めて高い効果を示し有用である。さらに本微粒子はそのまま使用することの他、各種加工体に組み込むことも可能である。   The particulate cobalt trioxide obtained by the present invention is very useful as an adsorbent or remover for harmful gases such as VOC and malodorous gases. Furthermore, the fine particles can be used as they are, or incorporated into various processed bodies.

以下に好ましい実施形態を挙げて本発明をさらに詳細に説明する。
本発明の微粒子四三酸化コバルトのコバルト源としては、硝酸コバルト、塩化コバルト、硫酸コバルトなどのコバルトの塩類が使用可能である。また、酸化コバルトや炭酸コバルトを対応する無機酸で溶解してコバルト塩の水溶液として使用することも可能である。この塩溶液からコバルトを酸化物、水酸化物ないし炭酸塩として沈殿させるアルカリ物質しては水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムなどが使用可能である。このようなアルカリは水溶液として使用することが好ましい。
Hereinafter, the present invention will be described in more detail with reference to preferred embodiments.
As the cobalt source of the fine particulate tribasic cobalt oxide of the present invention, cobalt salts such as cobalt nitrate, cobalt chloride, and cobalt sulfate can be used. It is also possible to use cobalt oxide or cobalt carbonate dissolved in a corresponding inorganic acid as an aqueous solution of a cobalt salt. As an alkaline substance for precipitating cobalt from the salt solution as an oxide, hydroxide or carbonate, sodium hydroxide, sodium carbonate, sodium hydrogen carbonate and the like can be used. Such an alkali is preferably used as an aqueous solution.

以上のようなコバルト塩水溶液とアルカリ水溶液を別々に調製し、両者を予め用意した沈殿用水中に同時に滴下し、目的とする水酸化コバルト(炭酸コバルトや酸化コバルトを含んでいてもよい)を生成させることができる。   Prepare the cobalt hydroxide aqueous solution (which may contain cobalt carbonate and cobalt oxide) by preparing both the cobalt salt aqueous solution and alkaline aqueous solution separately and dropping them into the precipitating water prepared in advance. Can be made.

この際使用するアルカリとして、水酸化ナトリウムを使用した場合は、生成する沈澱物が非常に微細になり、その結果、乾燥時に非常に微細な粒子が凝集して硬い塊になり、使用の際の分散が困難で、ハンドリングが大変になる。しかしながら、水酸化ナトリウムの使用は、これらの状態を招きやすいだけで、本発明で目的とする特性を有する微粒子四三酸化コバルトを得ることはできる。これに対してアルカリ源として炭酸ナトリウムを使用する場合は、沈澱した微粒子四三酸化コバルトの凝集が少なく、微粒子四三酸化コバルトの分散が容易であり、ソフトな微粒子四三酸化コバルトの製造には好ましい。   In this case, when sodium hydroxide is used as the alkali to be used, the precipitate formed is very fine, and as a result, very fine particles are aggregated to form a hard lump during drying. Dispersion is difficult and handling becomes difficult. However, the use of sodium hydroxide is easy to cause these states, and fine cobalt tetroxide having the desired properties in the present invention can be obtained. On the other hand, when sodium carbonate is used as the alkali source, the precipitated fine particles of cobalt tetroxide are less agglomerated and the fine particles of cobalt tetroxide are easily dispersed. preferable.

また、炭酸ナトリウムをアルカリとして使用すると生成する塩基性炭酸コバルトから、その後の熱処理工程中に炭酸ガスが抜けるため、ポアーが生成して得られる微粒子四三酸化コバルトの比表面積をアップさせる効果があるのでさらに好ましい。この時の沈澱温度は50〜70℃が好ましい。それより低いとコバルトイオンが不溶性物として沈澱しにくく、沈澱時の炭酸ナトリウムが理論量をはるかに超える量が必要であり、得られる微粒子四三酸化コバルトに不均一性が見られると共に熱処理後の洗浄がし難い。   In addition, since the carbon dioxide gas is released from the basic cobalt carbonate produced when sodium carbonate is used as an alkali during the subsequent heat treatment step, there is an effect of increasing the specific surface area of the particulate cobalt trioxide obtained by generating pores. Therefore, it is more preferable. The precipitation temperature at this time is preferably 50 to 70 ° C. If it is lower than that, it is difficult for cobalt ions to precipitate as an insoluble substance, and the amount of sodium carbonate during precipitation is much higher than the theoretical amount. It is difficult to wash.

また、アルカリ添加時のpHは6.0〜8.0の範囲が適当であり、これより低いpH領域ではコバルト水酸化物の沈澱は生成しない。また、これより高いpH領域では得られる微粒子四三酸化コバルトの嵩が大きく、飛散しやすくなるため、ハンドリング性が悪くなる。   In addition, the pH at the time of alkali addition is suitably in the range of 6.0 to 8.0, and precipitation of cobalt hydroxide is not generated in a lower pH range. In addition, in the pH range higher than this, the bulk of the obtained fine cobalt tetroxide is large and easily scattered, so that the handling property is deteriorated.

アルカリ添加により生成する粒子は、この工程中数nmの微細なコロイド粒子として沈澱し、徐々に凝集して、数nm〜100nmの範囲に調整される。この粒子径は熱処理時に若干の収縮はあるものの、基本的には最終工程終了までこの大きさに維持される。   The particles produced by the addition of alkali precipitate as fine colloidal particles of several nm during this step, and gradually aggregate to adjust to a range of several nm to 100 nm. This particle size is basically kept at this size until the end of the final process, although there is some shrinkage during the heat treatment.

これに対して従来から行なわれている乾式による四三酸化コバルト粒子の製造方法の場合は、粗大な四三酸化コバルト粒子の粉砕により粒子径の調整が行なわれるため、粉砕が均一でなく、得られる粒子径も数十μm程度で、大きさや粒子の形態も不揃いなものになる。従って数nm〜100nmの微細な粒子径を有し、BET比表面積が50〜300m2/gと大きな値を有する微粒子四三酸化コバルトの調製には湿式法による製造が優れている。また、沈澱物スラリー濃度は6質量%(対生成する微粒子比)以内が適当である。これ以上高いと粒子は大きめになり目的とする微粒子四三酸化コバルトから離れていく。 On the other hand, in the case of the conventional method for producing cobalt tetroxide particles by dry method, the particle size is adjusted by pulverizing coarse cobalt tetroxide particles, so that the pulverization is not uniform, and thus obtained. The particle diameter is about several tens of μm, and the size and shape of the particles are not uniform. Therefore, the production by the wet method is excellent for the preparation of fine cobalt trioxide having a fine particle diameter of several nm to 100 nm and a BET specific surface area having a large value of 50 to 300 m 2 / g. The concentration of the precipitate slurry is suitably within 6% by mass (ratio of fine particles to be produced). If it is higher than this, the particles become larger and move away from the target fine particle cobalt trioxide.

以上のようにして合成した沈殿物スラリーに、過酸化水素などの酸化剤を添加することにより、予め液相で2価コバルトを3価のコバルト沈殿物に酸化させることも本発明が目的とする微粒子四三酸化コバルトの合成に有益である。過酸化水素などの酸化剤の添加は、沈澱反応が終了した後、また、反応中に、塩溶液およびアルカリ溶液と同時滴下で行なってもよい。いずれの場合も良好な結果を得ることができる。過酸化水素などの酸化剤の添加の目的はコバルトイオンの酸化であるが、この操作によりコバルトの水酸化物または炭酸塩は脱水されて酸化物に変化したり、わずかに結晶化した3価コバルト水酸化物に変化する。このような過程により熱処理工程中の微粒子四三酸化コバルトの生成がより低温で生成しやすくなる。   It is also an object of the present invention to oxidize divalent cobalt to a trivalent cobalt precipitate in a liquid phase in advance by adding an oxidizing agent such as hydrogen peroxide to the precipitate slurry synthesized as described above. Useful for the synthesis of particulate cobalt trioxide. Addition of an oxidizing agent such as hydrogen peroxide may be performed by dropwise addition of the salt solution and the alkali solution after the precipitation reaction is completed and during the reaction. In either case, good results can be obtained. The purpose of the addition of an oxidizing agent such as hydrogen peroxide is to oxidize cobalt ions. By this operation, the hydroxide or carbonate of cobalt is dehydrated to be converted into an oxide or slightly crystallized trivalent cobalt. Change to hydroxide. By such a process, the production | generation of the fine particle cobalt tetroxide in a heat treatment process becomes easy to produce | generate at low temperature.

過酸化水素の添加量は、生成するコバルト化合物の理論生成量に対し、10質量%(35%過酸化水素)もあれば充分その効果を発揮することができる。10質量%以上は効果の差は殆どなくなり、50質量%以上は資材としての過酸化水素の浪費になる。   If the amount of hydrogen peroxide added is 10% by mass (35% hydrogen peroxide) with respect to the theoretically generated amount of the cobalt compound to be produced, the effect can be sufficiently exerted. When the amount is 10% by mass or more, there is almost no difference in effect, and when it is 50% by mass or more, hydrogen peroxide as a material is wasted.

以上の如くして生成したコバルト化合物は、その中に含まれている不純物を取り除くため、デカンテーションやヌッチェなどによる水洗を行い、スラリー中の電導度が300μS/cm以下になるまで充分に水洗を行う。水洗が不充分な場合は、最終微粒子四三酸化コバルトの有毒ガスなどの吸着あるいは除去性能に悪影響を及ぼす。このようにして得られたコバルト化合物は水分を取り除くため100〜110℃で12時間以上乾燥し、熱処理に供することができる。   The cobalt compound produced as described above is washed with water by decantation or Nutsche in order to remove impurities contained therein, and sufficiently washed with water until the conductivity in the slurry is 300 μS / cm or less. Do. Insufficient washing with water will adversely affect the adsorption or removal performance of the toxic gas etc. of the final fine particle cobalt trioxide. The cobalt compound thus obtained can be dried at 100 to 110 ° C. for 12 hours or more in order to remove moisture and subjected to heat treatment.

この際、乾燥物はピンクないしわずかに褐色の色に変化する。完全に黒色の微粒子四三酸化コバルトにするためにはさらに温度を上げ、熱処理する必要がある。この際の温度は200℃以上にすれば徐々に黒色に変化するが、かなり長時間を有するため、250℃以上望ましくは300℃付近が適当である。400℃を超えると微粒子四三酸化コバルトの比表面積が減少して本発明の目的から逸脱する。熱処理の時間はその温度、量にもよるが300℃くらいでは1時間も保持すればよい。また、この熱処理操作には酸素を微粒子四三酸化コバルトに強制的に送る熱風循環型が適している。   At this time, the dried product changes to a pink or slightly brown color. In order to obtain completely black fine particles of cobalt trioxide, it is necessary to further increase the temperature and perform heat treatment. At this time, the temperature gradually changes to black when the temperature is 200 ° C. or higher. However, since it has a considerably long time, 250 ° C. or higher, desirably 300 ° C. is appropriate. When the temperature exceeds 400 ° C., the specific surface area of the fine cobalt tetroxide is reduced and departs from the object of the present invention. The heat treatment time may be maintained for about 1 hour at about 300 ° C. depending on the temperature and amount. In addition, a hot air circulation type in which oxygen is forcibly sent to the fine cobalt tetroxide is suitable for this heat treatment operation.

このようにして得られた四三酸化コバルトは、熱処理により生成したナトリウムイオンなどの不純物を取り除くため、再度デカンテーションやヌッチェなどによる水洗を行い、スラリーの電導度が300μS/cm以下になるまで不純物イオンを洗い流す。水洗が不充分な場合は、最終微粒子四三酸化コバルトの有毒ガスなどの吸着あるいは除去性能に悪影響を及ぼす。   The cobalt trioxide obtained in this manner is washed again with water by decantation or Nutsche to remove impurities such as sodium ions generated by heat treatment, and until the conductivity of the slurry becomes 300 μS / cm or less. Wash out the ions. Insufficient washing with water will adversely affect the adsorption or removal performance of the toxic gas etc. of the final fine particle cobalt trioxide.

このようにして得られた四三酸化コバルトは酸処理に供される。酸処理は乾燥した四三酸化コバルトを使用してもよいが、上記の水洗後のスラリーを使用するのが好都合である。デカンテーションで水洗したスラリーに希釈した酸水溶液を加え、pH5以下にしてよく混合する。望ましくはpH1〜3にするのがよい。このときのpH値が5以上では得られる微粒子四三酸化コバルトが充分な酸性度を示さず、また、1以下では酸性度が強すぎて四三酸化コバルトがかなり溶け出してしまう。充分混合された後にデカンテーションを1回ないしはデカンテーションしないで、そのまま濾過および乾燥する。この際に使用する酸の種類はプロトンを発生する酸であればなんでもよい。硫酸、硝酸、塩酸、燐酸、酢酸など使用可能であるが、ろ過性、種々の特性から硫酸が最も適している。   The cobalt trioxide obtained in this way is subjected to acid treatment. The acid treatment may use dried cobalt tetroxide, but it is convenient to use the slurry after washing with water. The diluted acid aqueous solution is added to the slurry washed with decantation, and the pH is adjusted to 5 or less and mixed well. Desirably, the pH is adjusted to 1 to 3. If the pH value at this time is 5 or more, the resulting fine cobalt tetroxide does not show sufficient acidity, and if it is 1 or less, the acidity is too strong and the cobalt tetroxide is considerably dissolved. After mixing well, it is filtered and dried as it is without decanting once or decanting. Any kind of acid may be used as long as it generates protons. Sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, acetic acid, and the like can be used, but sulfuric acid is most suitable because of filterability and various characteristics.

以上のようにして得られた酸性を示す微粒子四三酸化コバルトは、50〜300m2/gという高いBET比表面積を有し、VOCをはじめとする有害ガスや悪臭ガス、特にアセトアルデヒドの吸着剤あるいは除去剤として極めて高い効果を示す。 The fine particles of cobalt tetroxide showing acidity obtained as described above have a high BET specific surface area of 50 to 300 m 2 / g, and adsorbents of harmful gases such as VOC and malodorous gases, especially acetaldehyde. Very effective as a remover.

次に実施例および比較例を挙げて本発明をさらに具体的に説明する。なお、文中、「部」および「%」とあるのは特に断りのない限り質量基準である。
[実施例1]
市販の硫酸コバルト7水塩543部を水1,000部に溶解しコバルト塩溶液を作成する。同様にアルカリ源として炭酸ナトリウム269部を水800部に溶解し、アルカリ溶液を作成する。得られた溶液は予め用意した沈殿水2,000部に撹拌しながら同時滴下する。この際の沈殿条件はpH7.4、沈殿温度50℃で、約45分程度かけて滴下を終了する。次いで、沈殿スラリー液の温度を70℃まで上昇させ、沈殿を完全なものとするため、熟成を60分行う。
Next, the present invention will be described more specifically with reference to examples and comparative examples. In the text, “parts” and “%” are based on mass unless otherwise specified.
[Example 1]
543 parts of commercially available cobalt sulfate heptahydrate is dissolved in 1,000 parts of water to prepare a cobalt salt solution. Similarly, 269 parts of sodium carbonate as an alkali source is dissolved in 800 parts of water to prepare an alkaline solution. The obtained solution is simultaneously added dropwise to 2,000 parts of prepared water with stirring. The precipitation conditions at this time are pH 7.4, precipitation temperature 50 ° C., and dropping is completed over about 45 minutes. Next, the temperature of the precipitation slurry is raised to 70 ° C., and ripening is performed for 60 minutes in order to complete the precipitation.

このようにして得られた沈殿スラリーは、デカンテーションにより水洗を行い、電導度で300μS/cm以下になるまで洗い、副生する残塩を洗い出す。水洗が終了したスラリーはヌッチェにより濾過を行い、余分な水をしぼりペースト状にして乾燥を行う。その際の温度は110℃で乾燥は12時間行い、乾燥終了後取り出し熱処理に供する。   The precipitated slurry thus obtained is washed with water by decantation until the conductivity becomes 300 μS / cm or less, and the residual salt produced as a by-product is washed out. The slurry that has been washed with water is filtered with a Nutsche, and excess water is squeezed into a paste to be dried. The temperature at that time is 110 ° C., and drying is performed for 12 hours.

熱処理は循環型熱風乾燥機を用いて行い、300℃になるように調整し、その温度で2時間保持し、自然冷却後取り出す。熱処理後の微粒子四三酸化コバルトは水に邂逅するとpH11.2とアルカリ性を示し、残存アルカリが排出したことを裏付けている。水洗を行い、pH8前後、電導度で300μS/cm以下までデカンテーションで水洗する。   The heat treatment is performed using a circulating hot air dryer, adjusted to 300 ° C., held at that temperature for 2 hours, and taken out after natural cooling. The microparticulate cobalt tetraoxide after heat treatment is alkaline with pH 11.2 when immersed in water, confirming that residual alkali has been discharged. Wash with water, and wash with water by decantation until the pH is around 8 and the conductivity is 300 μS / cm or less.

このようにして得られた微粒子四三酸化コバルトスラリーは、次に酸処理される。予め用意した3%希硫酸液を当該スラリーに撹拌しながら、スラリーのpH値が2.5になるまで添加する。暫く撹拌するとpH値が上がるのでさらにpH2.5を維持するよう少量の5%硫酸液を加え、30分間保持する。得られた酸性スラリーはデカンテーションすることなく、そのままの状態で濾過乾燥する。乾燥は110℃で12時間行う。得られた微粒子四三酸化コバルトの顔料試験法JIS K5101 17−1の測定によるpH値は4.1を示した。また、BET比表面積は130m2/gであった。 The fine particle cobalt trioxide slurry thus obtained is then acid treated. While stirring 3% dilute sulfuric acid solution prepared in advance, the slurry is added until the pH value of the slurry becomes 2.5. Since the pH value rises after stirring for a while, a small amount of 5% sulfuric acid solution is added to maintain the pH of 2.5, and the mixture is kept for 30 minutes. The obtained acidic slurry is filtered and dried as it is without being decanted. Drying is performed at 110 ° C. for 12 hours. The pH value measured by the pigment test method JIS K5101 17-1 of the obtained fine particle cobalt trioxide was 4.1. The BET specific surface area was 130 m 2 / g.

また、得られた微粒子四三酸化コバルトのVOCをはじめとする有害ガスや悪臭ガスの吸着および除去能を評価するため、次の試験に供した。300ml容三角フラスコに2%アセトアルデヒド水溶液を1μl入れ、25℃に静置してガス化した。その中に得られた微粒子四三酸化コバルトを0.2g投入してから密閉し、所定の時間経過後北川式ガス検知器を用いてフラスコ内のアセトアルデヒド残存濃度を測定した。その結果は表1に示したように、アセトアルデヒドが非常に効率よく吸着あるいは除去されていることがわかった。なお、ブランクは微粒子四三酸化コバルトを投入しなかった場合を示す。   Moreover, in order to evaluate the adsorption | suction and removal capability of noxious gas and malodorous gas including VOC of the obtained fine particle cobalt tetroxide, it used for the next test. A 300 ml Erlenmeyer flask was charged with 1 μl of a 2% acetaldehyde aqueous solution and allowed to stand at 25 ° C. for gasification. 0.2 g of the obtained fine cobalt tetroxide was put in and sealed, and after a predetermined time, the residual concentration of acetaldehyde in the flask was measured using a Kitagawa gas detector. As a result, as shown in Table 1, it was found that acetaldehyde was adsorbed or removed very efficiently. In addition, a blank shows the case where fine particle cobalt trioxide is not thrown in.

[実施例2]
炭酸ナトリウム240部、沈殿条件pH6.8、温度60℃とする以外は実施例1と同様の操作により合成を行い微粒子四三酸化コバルトを得た。このようにして得られた微粒子四三酸化コバルトの300℃熱処理後の水への邂逅後のスラリーpH値は4.9を示し、3%硫酸での処理必要量は実施例1より少なかった。
このようにして得られた微粒子四三酸化コバルトは実施例1と同様な試験により評価したところ、BET比表面積160m2/gを有し、有毒ガスなどの吸着あるいは除去能力も表1に示した通り良好な結果であった。
[Example 2]
Synthesis was carried out in the same manner as in Example 1 except that 240 parts of sodium carbonate, precipitation condition pH 6.8, and temperature 60 ° C. were obtained to obtain fine-particle cobalt tetraoxide. The thus-obtained slurry pH value after soaking in water after 300 ° C. heat treatment was 4.9, and the amount of treatment with 3% sulfuric acid was less than that in Example 1.
The fine cobalt tetroxide obtained in this manner was evaluated by the same test as in Example 1. As a result, it had a BET specific surface area of 160 m 2 / g, and the adsorption or removal ability of toxic gases and the like is also shown in Table 1. The result was good.

[実施例3]
炭酸ナトリウムを290部とし、コバルト塩水溶液とアルカリ水溶液を同時滴下する際、35%過酸化水素水60部を水120部に溶解した溶液を同時に滴下して、予めコバルトを3価に酸化すること以外は実施例1と同様の操作により合成を行い微粒子四三酸化コバルトを得た。このようにして得られた微粒子四三酸化コバルトは実施例1と同様な試験により、顔料試験法JIS K5101 17−1の測定によるpH値は4.0を示した。また、BET比表面積は125m2/gであった。また、アセトアルデヒドの吸着除去能力は表1に示した通り良好な結果であった。
[Example 3]
When 290 parts of sodium carbonate is added and a cobalt salt aqueous solution and an aqueous alkali solution are dropped simultaneously, a solution obtained by dissolving 60 parts of 35% hydrogen peroxide in 120 parts of water is dropped simultaneously to oxidize cobalt to trivalent in advance. Except for the above, synthesis was performed in the same manner as in Example 1 to obtain fine-particle cobalt tetraoxide. The fine particle cobalt trioxide obtained in this way was subjected to the same test as in Example 1, and the pH value measured by the pigment test method JIS K5101 17-1 was 4.0. The BET specific surface area was 125 m 2 / g. Moreover, as shown in Table 1, the acetaldehyde adsorption / removal ability was good.

[比較例1]
市販の硫酸銅5水塩105.6部、硫酸マンガン1水塩133.3部および硫酸コバルト7水塩55.4部を水800部に溶解し、混合溶液を作成する。同様にアルカリ源として水酸化ナトリウム125部を水800部に溶解し、アルカリ溶液を作成する。また、同様に酸化剤溶液として過酸化水素80部を水200部で希釈した溶液を作成する。得られた溶液は予め用意した沈殿水1000部に、撹拌しながら3点同時滴下する。この際、pH10.7、沈殿温度25〜30℃で45分かけて滴下を終了する。余ったアルカリはすべて投入する。次いで、沈殿スラリー液の温度は30℃のまま熟成し、沈殿を完全なものにする。
[Comparative Example 1]
Commercially available copper sulfate pentahydrate 105.6 parts, manganese sulfate monohydrate 133.3 parts and cobalt sulfate heptahydrate 55.4 parts are dissolved in water 800 parts to prepare a mixed solution. Similarly, 125 parts of sodium hydroxide as an alkali source is dissolved in 800 parts of water to prepare an alkaline solution. Similarly, a solution is prepared by diluting 80 parts of hydrogen peroxide with 200 parts of water as an oxidant solution. The obtained solution is simultaneously dropped into 1000 parts of prepared precipitation water with stirring at three points. Under the present circumstances, dripping is complete | finished over 45 minutes at pH10.7 and the precipitation temperature of 25-30 degreeC. All excess alkali is added. Next, the temperature of the precipitation slurry is aged at 30 ° C. to complete the precipitation.

得られた沈殿スラリーはデカンテーションにより水洗を行い、電導度300μS/cm以下まで洗い、副生する残塩を洗い出す。水洗が終了したスラリーはヌッチェでろ過し、乾燥させる。乾燥は110℃で12時間行い、試験サンプルに供する。   The resulting precipitated slurry is washed with water by decantation, washing to an electric conductivity of 300 μS / cm or less, and residual salt produced as a by-product is washed out. The slurry after washing with water is filtered through a Nutsche and dried. Drying is performed at 110 ° C. for 12 hours and used for the test sample.

得られた銅、マンガン、コバルトの水酸化物または酸化物混合物はBET比表面積が240m2/gと大きな値を有し、各種ガス状物質を効率よく吸着することで知られている。 The obtained copper, manganese, cobalt hydroxide or oxide mixture has a BET specific surface area as large as 240 m 2 / g and is known to efficiently adsorb various gaseous substances.

以上のようにして得られた各種サンプルの試験結果を表1に記す。表から明らかなように酸成分を含む微粒子四三酸化コバルトは非常に脱臭が困難であるアセトアルデヒドガスを効率よく吸着あるいは除去する能力があることがわかる。   The test results of various samples obtained as described above are shown in Table 1. As can be seen from the table, the fine cobalt tetroxide containing the acid component has the ability to efficiently adsorb or remove acetaldehyde gas, which is very difficult to deodorize.

Figure 0004843292
Figure 0004843292

従来、VOCなどの悪臭ガスや有害ガスの吸着剤あるいは除去剤として活性炭が一般に使用されてきた。一方、硫化水素などの脱臭剤としては銅、コバルト、マンガン系の複合酸化物が高い吸着能と除去特性を有し、各方面に利用されてきた。しかし、アセトアルデヒドなどのVOCガスには良好な性能を示す吸着剤や脱臭剤は存在しなかった。本発明の酸成分を含有する微粒子四三酸化コバルトは、アセトアルデヒドを非常に効率よく、吸着あるいは除去する能力を有し、これらのガスの脱臭剤として使用可能である。また、各種VOCの脱臭剤としても使用が可能である。   Conventionally, activated carbon has been generally used as an adsorbent or remover for malodorous gases such as VOC and harmful gases. On the other hand, as a deodorizer such as hydrogen sulfide, copper, cobalt, and manganese-based composite oxides have high adsorption ability and removal characteristics and have been used in various fields. However, there has been no adsorbent or deodorant exhibiting good performance in VOC gas such as acetaldehyde. The particulate cobalt trioxide containing the acid component of the present invention has the ability to adsorb or remove acetaldehyde very efficiently, and can be used as a deodorizing agent for these gases. It can also be used as a deodorizer for various VOCs.

Claims (4)

ナノメートルサイズで、酸性度として顔料試験方法JIS K5101−17−1の方法によるpH値が5.5以下であり、かつ、BET比表面積が、125〜300m2/gであることを特徴とする微粒子四三酸化コバルト。 Nanometer sized, pH values by the method of pigment test method JIS K5101-17-1 as acidity is 5.5 or less, and, BET specific surface area, characterized in that it is a 125 ~300m 2 / g Fine cobalt trioxide. 請求項1に記載の微粒子四三酸化コバルトを製造する方法であって、コバルトの水溶性塩を、水性媒体中において炭酸ナトリウム、水酸化ナトリウムまたは炭酸水素ナトリウムによりコバルトの水酸化物、炭酸塩またはそれらの混合物として析出させ、析出物を熱処理した後、得られた微粒子をpHが1より大きく3以下の範囲で酸処理することを特徴とする酸成分を含む微粒子四三酸化コバルトの製造方法。 A method of manufacturing a particulate tricobalt tetroxide according to claim 1, the water-soluble salts of cobalt, sodium carbonate in an aqueous medium, with sodium or sodium bicarbonate hydroxide, cobalt hydroxide, carbonate or is precipitated as mixtures thereof, after heat treatment of the precipitate, resulting microparticles and the pH is fine tricobalt tetroxide containing an acid component, characterized in that the acid treatment with 3 or less in the range greater than 1 Production method. 熱処理温度が、200〜400℃の範囲にある請求項に記載の微粒子四三酸化コバルトの製造方法。 The method for producing particulate cobalt trioxide according to claim 2 , wherein the heat treatment temperature is in the range of 200 to 400 ° C. 前記析出物を熱処理する前に、コバルトの水酸化物、炭酸塩またはそれらの混合物である析出物を酸化剤で酸化する請求項2または3に記載の微粒子四三酸化コバルトの製造方法。The method for producing fine-particle cobalt trioxide according to claim 2 or 3, wherein the precipitate, which is a hydroxide, carbonate or a mixture of cobalt, is oxidized with an oxidizing agent before heat-treating the precipitate.
JP2005318334A 2005-11-01 2005-11-01 Fine particle cobalt trioxide containing acid component and method for producing the same Active JP4843292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318334A JP4843292B2 (en) 2005-11-01 2005-11-01 Fine particle cobalt trioxide containing acid component and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318334A JP4843292B2 (en) 2005-11-01 2005-11-01 Fine particle cobalt trioxide containing acid component and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007126307A JP2007126307A (en) 2007-05-24
JP4843292B2 true JP4843292B2 (en) 2011-12-21

Family

ID=38149266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318334A Active JP4843292B2 (en) 2005-11-01 2005-11-01 Fine particle cobalt trioxide containing acid component and method for producing the same

Country Status (1)

Country Link
JP (1) JP4843292B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6357466B2 (en) * 2013-03-29 2018-07-11 地方独立行政法人東京都立産業技術研究センター Supported catalyst for malodor treatment
CN112850801B (en) * 2019-11-28 2023-10-31 荆门市格林美新材料有限公司 Preparation method of large-particle cobaltosic oxide
CN112408501A (en) * 2020-11-26 2021-02-26 格林美(江苏)钴业股份有限公司 Synthetic method for regulating and controlling specific surface area of cobaltosic oxide
CN112264016B (en) * 2020-11-27 2023-05-23 青岛大学 High-defect cobaltosic oxide catalyst for formaldehyde catalytic oxidation and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322193A (en) * 1976-08-12 1978-03-01 Agency Of Ind Science & Technol Minute globular porous cobalt oxide particles and production thereof
JPS6227309A (en) * 1985-07-26 1987-02-05 Tokuyama Soda Co Ltd Production of fine metallic oxide particle
JPH02311318A (en) * 1989-05-24 1990-12-26 Sumitomo Metal Mining Co Ltd Production of tricobalt tetroxide
DE69010178T2 (en) * 1989-08-21 1994-12-08 Tayca Corp METHOD FOR PRODUCING POWDERED PEROVSKITE CONNECTIONS.
JP4277324B2 (en) * 1997-03-25 2009-06-10 戸田工業株式会社 Method for producing fine powder of cobalt tetraoxide
JP3828401B2 (en) * 2001-11-05 2006-10-04 シーアイ化成株式会社 Cobalt black pigment and method for producing the same

Also Published As

Publication number Publication date
JP2007126307A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
TWI453165B (en) Methods of making water treatment compositions
JP6286620B2 (en) Iron powder and heating element and heating tool using the same
JP4843292B2 (en) Fine particle cobalt trioxide containing acid component and method for producing the same
CN109621997B (en) NiCo2S4/C microsphere nano composite material, preparation method and application thereof
CN107555481A (en) A kind of Mn oxide material and preparation method thereof
CN111097381A (en) Renewable modified activated carbon adsorbent and preparation method and application thereof
JP2013527118A (en) Organic templated nano metal oxyhydroxide
CN116351477B (en) Formaldehyde-removing supported Pt 6 Cluster catalyst and preparation method thereof
WO2013097403A1 (en) Method for preparing magnetic iron oxide
CN102134105B (en) Method for accessorily preparing nanometer cobaltosic oxide granules at room temperature by utilizing amino acids
CN1230472C (en) Method for preparing nano iron oxide red
CN112717931B (en) Iron-based composite desulfurizer, preparation method thereof and application thereof in removing hydrogen sulfide in gas
Gopalan Cyclodextrin-stabilized metal nanoparticles: Synthesis and characterization
JP2017024940A (en) Carbonaceous composite and method for producing the same
JP4378160B2 (en) Porous granular basic magnesium carbonate and method for producing the same
JP2006307330A (en) Silver particulate having high dispersibility, method for producing the same, and its use
CN112138629A (en) Nitrogen-doped magnetic mesoporous carbon and preparation method and application thereof
JP3427856B2 (en) Granular goethite fine particle powder, method for producing the same, and method for producing granular iron oxide fine particle powder using the fine particle powder
JP6598239B2 (en) Fluorine adsorbent and method for producing the same
KR20180116519A (en) A method for mass production of an antimicrobial silver-hydroxy apatite complex having controlled mean particle size and its distribution, and a silver-hydroxy apatite complex powder by the method
JP2018130695A (en) Photocatalytic aggregate and method for producing same
CN108176363B (en) Preparation method of formaldehyde catching gel
JP5321937B2 (en) Process for producing macaroni-like calcium carbonate
JP2011051836A (en) Iron oxyhydroxide sol and method for producing the same
JP2600562B2 (en) Manufacturing method of hematite fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111007

R150 Certificate of patent or registration of utility model

Ref document number: 4843292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250