JP2600562B2 - Manufacturing method of hematite fine particles - Google Patents

Manufacturing method of hematite fine particles

Info

Publication number
JP2600562B2
JP2600562B2 JP4312167A JP31216792A JP2600562B2 JP 2600562 B2 JP2600562 B2 JP 2600562B2 JP 4312167 A JP4312167 A JP 4312167A JP 31216792 A JP31216792 A JP 31216792A JP 2600562 B2 JP2600562 B2 JP 2600562B2
Authority
JP
Japan
Prior art keywords
hematite
water
fine particles
slurry
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4312167A
Other languages
Japanese (ja)
Other versions
JPH05208829A (en
Inventor
健三 塙
良一 浅野
則雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP4312167A priority Critical patent/JP2600562B2/en
Publication of JPH05208829A publication Critical patent/JPH05208829A/en
Application granted granted Critical
Publication of JP2600562B2 publication Critical patent/JP2600562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はヘマタイト微粒子の製造
法に係わり、このヘマタイト微粒子は、塗料用顔料粉
末、ゴム・プラスチック用着色剤、化粧品用顔料および
ヘマタイトの紫外線吸収能を利用した紫外線吸収剤とし
て有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hematite fine particles, which is a pigment powder for paints, a colorant for rubber and plastics, a pigment for cosmetics, and an ultraviolet absorber utilizing the ultraviolet absorbing ability of hematite. Is useful as

【0002】[0002]

【従来の技術】ヘマタイトは赤色を呈しており、毒性が
無く、熱的に安定できわめて安価であるため非常に広く
赤色着色顔料として使われている。また化学的にも安定
であるために無公害防錆・防食用顔料としても大量に使
われている。特に、0.2μm〜0.4μmのヘマタイ
ト微粒子は隠蔽力がもっとも高く最近盛んに研究されて
いる。ベンガラの赤は鮮明性に欠け鮮明感が必要な場合
には有機系の赤色顔料が使われている。有機系の赤色顔
料は高価であり熱的に不安定で融点の高い樹脂には入れ
にくく、また変質しやすい、毒性があるなど問題点が多
い。0.1μm以下のヘマタイト超微粒子は樹脂に混ぜ
たとき均一に分散すると可視光は透過するが紫外線を吸
収するという特性があり、紫外線吸収剤として透明顔料
粉末としても使われている。さらに透明感のある赤色と
して有機系の赤色顔料を置き換えることもできる。
2. Description of the Related Art Hematite has a red color, has no toxicity, is thermally stable and is extremely inexpensive, and is therefore widely used as a red coloring pigment. In addition, since it is chemically stable, it is widely used as a non-polluting rust-preventive and anti-corrosive pigment. In particular, hematite fine particles of 0.2 μm to 0.4 μm have the highest hiding power and have been actively studied recently. When red is not clear, an organic red pigment is used when sharpness is required. Organic red pigments are expensive, are thermally unstable, are difficult to add to resins having a high melting point, are easily degraded, and have many problems such as toxicity. Hematite ultrafine particles having a particle size of 0.1 μm or less have the property of transmitting visible light but absorbing ultraviolet light when dispersed uniformly when mixed with a resin, and are also used as a transparent pigment powder as an ultraviolet absorber. Further, an organic red pigment can be used as the transparent red color.

【0003】ヘマタイト微粒子の製造法としてベンガラ
粉末を粉砕、精製等する方法が知られているが、この方
法で1μm以下で粒径の揃ったヘマタイト微粒子を得る
ことは工業的に不可能である。従って現在一般的にヘマ
タイト微粒子を得る方法として、(1)含水酸化鉄(主
にα−FeOOH,β−FeOOH)あるいは水酸化第
2鉄をオートクレーブ中で加熱処理をしてヘマタイト微
粒子を得る方法(特公昭45−18372,特開昭58
−20733,62−216919,63−16253
5)、(2)湿式合成で含水酸化鉄あるいはマグネタイ
トの微粒子を合成し、水洗、ロ過、乾燥後250℃以上
で加熱処理してヘマタイト微粒子を得る方法(特公昭5
1−21640,特公昭52−13528,特公昭54
−7280,特公昭62−40293,特開昭61−1
63121,特開昭61−232225)などがある。
またこの他に100℃以下の温度で水溶液中からヘマタ
イト粒子を生成させる方法として、特開昭51−819
3公報に記載の方法がある。すなわち、特開昭51−8
193公報に記載の方法は、第1鉄塩水溶液に炭酸水素
アルカリ単独を添加するか、または炭酸水素アルカリと
炭酸アルカリ、水酸化アルカリとの両方を添加し、pH
7〜11、温度65℃〜100℃の温度で酸化反応を行
うものであるが、この方法による場合、ヘマタイト粒子
以外の他の種類の粒子が混在する。
[0003] As a method for producing hematite fine particles, a method of pulverizing and purifying bengal powder is known. However, it is industrially impossible to obtain hematite fine particles having a uniform particle size of 1 µm or less by this method. Accordingly, currently, generally, methods for obtaining hematite fine particles include (1) a method for obtaining hematite fine particles by heating a hydrous iron hydroxide (mainly α-FeOOH, β-FeOOH) or ferric hydroxide in an autoclave ( JP-B-45-18372, JP-A-58
-20733, 62-216919, 63-16253
5), (2) A method of synthesizing fine particles of hydrous iron oxide or magnetite by wet synthesis, washing with water, filtering, drying, and heat-treating at 250 ° C. or more to obtain hematite fine particles (Japanese Patent Publication No.
1-2640, JP-B 52-13528, JP-B 54
-7280, JP-B-62-40293, JP-A-61-1
63121, JP-A-61-232225).
Another method for producing hematite particles from an aqueous solution at a temperature of 100 ° C. or lower is disclosed in JP-A-51-819.
There are three methods described in the publications. That is, JP-A-51-8
According to the method described in JP-A-193-193, an alkali hydrogen carbonate alone is added to an aqueous ferrous salt solution, or both an alkali hydrogen carbonate, an alkali carbonate and an alkali hydroxide are added, and the pH is adjusted.
The oxidation reaction is carried out at a temperature of 7 to 11 and a temperature of 65 to 100 ° C. In this method, particles of other types other than hematite particles are mixed.

【0004】[0004]

【発明が解決しようとする課題】上記のようなヘマタイ
ト微粒子の製造法で、オートクレーブを用いた方法では
設備が大規模となり経済的、工業的に不利となる。ま
た、含水酸化鉄を加熱脱水してヘマタイト微粒子を得る
場合には250℃以上の温度が必要であり、マグネタイ
トを熱処理してヘマタイト微粒子を得る場合には400
℃以上が必要となり、このような250℃以上の焼成工
程のある製造法では焼成時に凝集が起こり塗料、プラス
チックなどのビヒクル中に一次粒子の粒径を保ちながら
分散させることは困難である。0.1μm以下のヘマタ
イト超微粒子で現在市販されているものは微細な含水酸
化鉄に焼結防止処理を施して加熱脱水してヘマタイト微
粒子としたものである。針状であるために焼成時の凝集
以外にもお互いがフロックを作りやすく塗料・プラスチ
ックなどのビヒクル中への分散が非常に難しく、用途が
限られている。このような点から分散性の良い凝集のな
いヘマタイト微粒子を安価に得る製法が強く望まれてい
る。
In the above-mentioned method for producing hematite fine particles, the method using an autoclave requires a large-scale facility, which is economically and industrially disadvantageous. In addition, a temperature of 250 ° C. or more is required to obtain hematite fine particles by heating and dehydrating hydrous iron oxide, and to obtain hematite fine particles by heat-treating magnetite, 400 ° C.
C. or more is required, and in such a production method having a baking step at 250 ° C. or more, agglomeration occurs during baking, and it is difficult to disperse the particles in a vehicle such as a paint or a plastic while maintaining the particle size of the primary particles. Currently commercially available ultrafine hematite particles having a diameter of 0.1 μm or less are obtained by subjecting a fine hydrous iron oxide to a sintering prevention treatment and dehydrating by heating to obtain hematite fine particles. Since they are needle-shaped, they can easily form flocs other than agglomeration during firing, and it is extremely difficult to disperse them in vehicles such as paints and plastics. From such a point of view, there is a strong demand for a method for inexpensively obtaining fine particles of hematite having good dispersibility and no aggregation.

【0005】[0005]

【課題を解決するための手段】粒度分布が狭く、分散性
の極めて優れたヘマタイト微粒子を安価に製造する方法
を検討した結果、本発明に到達した。すなわち、水溶性
ハロゲン化合物、水溶性硫酸化合物、水溶性硝酸化合物
の中から選ばれた少なくとも1種の化合物のイオンの存
在下で、含水酸化鉄の水懸濁液を、pH値3〜11で6
0〜100℃に加熱しヘマタイト微粒子を生成させるこ
とを特徴とするヘマタイト微粒子の製造法を、更に、第
1鉄塩水溶液とアルカリ水溶液とを反応させ水酸化第1
鉄を造り、この水懸濁液中のFeに対し二価の鉄イオン
を全て三価の鉄イオンに酸化するのに必要な量(以下こ
れを「当量」とする)以上の過酸化水素水を加え、得ら
れた含水酸化鉄を用い、その水懸濁液を水溶性ハロゲン
化合物、水溶性硫酸化合物、水酸性硝酸化合物の中から
選ばれた少なくとも1種の化合物のイオンの存在下で、
上記のpH値、温度範囲にてヘマタイト微粒子を造る製
造法も見出した。
Means for Solving the Problems As a result of studying a method of inexpensively producing hematite fine particles having a narrow particle size distribution and extremely excellent dispersibility, the present invention has been achieved. That is, in the presence of ions of at least one compound selected from the group consisting of a water-soluble halogen compound, a water-soluble sulfate compound, and a water-soluble nitrate compound, an aqueous suspension of hydrated iron hydroxide is adjusted to a pH value of 3 to 11 6
A method for producing hematite microparticles, which comprises heating to 0 to 100 ° C. to produce hematite microparticles, further comprising reacting an aqueous ferrous salt solution with an aqueous alkali solution to form a first hydroxide.
Hydrogen peroxide water in an amount required to produce iron and oxidize all divalent iron ions to trivalent iron ions with respect to Fe in the aqueous suspension (hereinafter referred to as “equivalent”) And using the obtained iron oxide hydroxide, the aqueous suspension thereof in the presence of ions of at least one compound selected from a water-soluble halogen compound, a water-soluble sulfate compound, and a water-acid nitrate compound,
A production method for producing hematite fine particles in the above-mentioned pH value and temperature range was also found.

【0006】含水酸化鉄を加熱脱水してヘマタイト微粒
子を得る場合には250℃以上の温度が必要である。し
かし、本発明では、100℃以下の温度で上記のイオン
存在下で含水酸化鉄を脱水し、分散性が極めて優れ粒度
分布が狭いヘマタイト微粒子を得ることができるのであ
る。また、X線分析でヘマタイト粒子以外の他の種類の
粒子の混在は認められなかった。
In order to obtain hematite fine particles by heating and dehydrating hydrous iron oxide, a temperature of 250 ° C. or higher is required. However, in the present invention, it is possible to dehydrate the hydrous iron oxide at a temperature of 100 ° C. or less in the presence of the above-mentioned ions, and to obtain hematite fine particles having extremely excellent dispersibility and a narrow particle size distribution. X-ray analysis did not show any mixture of particles other than hematite particles.

【0007】含水酸化鉄と水溶性の前述の3種の化合物
の少なくとも1種を含む水懸濁液を得る方法としては、
第1鉄塩水溶液にアルカリ水溶液を加えて水酸化第1鉄
の沈殿物を生成させ、それを酸素を含むガスや過酸化水
素水のような酸化剤で酸化して得られる含水酸化鉄を水
洗・ロ過・乾燥したものと適当な水溶性の前述の化合物
の少なくとも1種を水に溶かしたり、過剰のアルカリを
中和して生成する副生塩を利用して直接水懸濁液を得る
方法もある。過酸化水素を酸化剤として使用する場合、
二価の鉄イオンを全て三価の鉄イオンに酸化するのに必
要な量即ち、当量以上が必要となるが、当量未満では、
加熱後の生成物にヘマタイト粒子以外の他の種類の粒子
が混在する。
A method for obtaining an aqueous suspension containing iron oxide hydroxide and at least one of the above-mentioned water-soluble three compounds includes:
An aqueous alkaline solution is added to the aqueous ferrous salt solution to form a precipitate of ferrous hydroxide, which is oxidized with an oxygen-containing gas or an oxidizing agent such as a hydrogen peroxide solution, and the obtained iron oxide hydroxide is washed with water.・ A water suspension is obtained by dissolving at least one of the above-mentioned compounds, which have been filtered and dried and a suitable water-soluble compound, in water or by using a by-product salt generated by neutralizing excess alkali. There are ways. When using hydrogen peroxide as an oxidizing agent,
An amount necessary to oxidize all divalent iron ions to trivalent iron ions, that is, an equivalent or more is necessary, but if it is less than the equivalent,
Other types of particles other than hematite particles are mixed in the product after heating.

【0008】また、本発明において含水酸化鉄と水溶性
の前述の3種の化合物の少なくとも1種を含む水懸濁液
を得る方法としては、第2鉄塩水溶液に過剰のアルカリ
を添加して沈殿物を生成させ、水洗・ロ過・乾燥して得
られる含水酸化鉄と適当な水溶性の前述の化合物の少な
くとも1種を水に溶かす方法と、過剰のアルカリを中和
することにより生成する副生塩を利用して直接水懸濁液
を得る方法がある。第1鉄塩水溶液を出発原料として生
成する含水酸化鉄は製法条件により種々のものがあるが
そのいずれのものも使用可能である。第2鉄塩水溶液を
出発原料として生成する含水酸化鉄はFe(OH)3
記述される非晶質のものであり、ヘマタイト化の挙動は
α−,β−,γ−,δ−FeOOHの場合と同じであ
る。得られるヘマタイト微粒子の粒径が異なるので目的
に応じて原材料を使い分ければ良い。
[0008] In the present invention, a method for obtaining an aqueous suspension containing iron oxide hydroxide and at least one of the above-mentioned water-soluble three compounds is described by adding an excess alkali to an aqueous ferric salt solution. A method in which a precipitate is formed, and a method of dissolving at least one of the above-mentioned compounds containing water-soluble iron hydroxide and a suitable water-soluble compound obtained by washing, filtering and drying in water, and neutralizing the excess alkali. There is a method of directly obtaining an aqueous suspension using a by-product salt. There are various types of hydrous iron oxide produced from the aqueous ferrous salt solution as a starting material, and any of them can be used depending on the production conditions. The hydrous iron hydroxide produced from the aqueous ferric salt solution as a starting material is an amorphous one described as Fe (OH) 3, and the behavior of hematite formation is represented by α-, β-, γ-, δ-FeOOH. Same as case. Since the obtained hematite fine particles have different particle diameters, the raw materials may be properly used depending on the purpose.

【0009】含水酸化鉄としてFe(OH)3 を用いた
場合は0.03〜0.2μm粒径、α−またはγ−Fe
OOHの場合は0.1μm前後の粒径、δ−またはβ−
FeOOHの場合は0.01〜0.03μm粒径のヘマ
タイト微粒子を造ることができる。特に細かい粒径のヘ
マタイト微粒子を造るのには、δ−FeOOHを用いる
のが好ましい。そこで、上記に述べた様に第1鉄塩水溶
液にアルカリ水溶液を加え、水酸化第1鉄を造り、当量
以上の過酸化水素水を加えて含水酸化鉄、即ち、δ−F
eOOHが得られるが、当量以上の過酸化水素を酸化剤
として用いる条件以外の反応条件等につき以下に詳しく
述べる。 (1)水酸化第1鉄を造る原料である第1鉄塩として
は、塩化第1鉄、硝酸第1鉄、硫酸第1鉄等が好まし
い。また、その水溶液濃度は溶解限度まで限定はない。 (2)アルカリ(水溶液)としては、KOH、NaO
H、Na2 CO3 、NaHCO3 、K2 CO3 、KHC
3 、NH3 水等を用いる。アルカリの添加は第1鉄塩
に対し当量以上が望ましい。水溶液濃度は溶解限度まで
限定はない。 (3)過酸化水素水の濃度について 一般的には市販品は約35%H22 水ですが、稀釈し
ても、そのままの濃度でもよい。
When Fe (OH) 3 is used as the iron oxide hydroxide, the particle diameter is 0.03 to 0.2 μm, α- or γ-Fe
In the case of OOH, a particle size of about 0.1 μm, δ- or β-
In the case of FeOOH, hematite fine particles having a particle size of 0.01 to 0.03 μm can be produced. In particular, δ-FeOOH is preferably used for producing hematite fine particles having a fine particle diameter. Therefore, as described above, an aqueous alkali solution is added to the aqueous ferrous salt solution to produce ferrous hydroxide, and an equivalent amount or more of hydrogen peroxide solution is added thereto to add iron oxide hydroxide, that is, δ-F
Although eOOH can be obtained, reaction conditions and the like other than the condition using an equivalent amount or more of hydrogen peroxide as an oxidizing agent will be described in detail below. (1) As a ferrous salt which is a raw material for producing ferrous hydroxide, ferrous chloride, ferrous nitrate, ferrous sulfate and the like are preferable. The concentration of the aqueous solution is not limited to the solubility limit. (2) As alkali (aqueous solution), KOH, NaO
H, Na 2 CO 3 , NaHCO 3 , K 2 CO 3 , KHC
O 3 or NH 3 water is used. The addition of the alkali is desirably at least equivalent to the ferrous salt. The concentration of the aqueous solution is not limited to the solubility limit. (3) Concentration of aqueous hydrogen peroxide Generally, a commercially available product is about 35% H 2 O 2 water, but it may be diluted or used as it is.

【0010】(4)δ−FeOOHの合成時の温度につ
いては限定するものではないが、H22 水の関係で0
〜40℃の範囲が好ましい。また、該合成時のpH値は
水酸化第1鉄Fe(OH)2 が存在できるpHが必要
で、pH>3が好ましい。また、δ−FeOOHはFe
(OH)2 の急速酸化が必要なため、空気を吹き込むと
ゲータイトα−FeOOHなどができ好ましくないが、
特に反応時の雰囲気は限定するものではない。更に、δ
−FeOOH合成時の溶媒は水が一般的であるが、鉄イ
オンが存在することができるアルコール、有機酸等の溶
媒中でも反応は可能である。
(4) The temperature at the time of synthesizing δ-FeOOH is not limited, but it is 0 in relation to H 2 O 2 water.
The range of -40C is preferred. In addition, the pH value at the time of the synthesis needs to be a pH at which ferrous hydroxide Fe (OH) 2 can be present, and is preferably pH> 3. Δ-FeOOH is Fe
Since rapid oxidation of (OH) 2 is necessary, blowing in air is not preferable because goethite α-FeOOH can be formed.
In particular, the atmosphere during the reaction is not limited. Furthermore, δ
The solvent used for the synthesis of -FeOOH is generally water, but the reaction can be carried out in a solvent such as an alcohol or an organic acid in which iron ions can be present.

【0011】次に含水酸化鉄からヘマタイト微粒子に造
ることについて詳しく述べる。添加する水溶性ハロゲン
化合物、水溶性硫酸化合物、水溶性硝酸化合物の中で
も、アルカリ金属、特にNa,Kの塩化物と硫酸化合物
が扱いやすい。2種類以上の化合物の混合物でもよい。
本発明は含水酸化鉄にこれらの化合物、特に中性塩(p
H=3〜11)を添加することのほか、含水酸化鉄を生
成する時に前述の化合物を添加してもよい。含水酸化鉄
生成後、過剰のアルカリを中和して副生する塩を利用す
る場合には原料の鉄化合物とアルカリの種類で混合され
る化合物の種類が決まってくる。たとえば第1塩化鉄と
水酸化ナトリウムとを反応させてFe(OH)2 を得て
それを酸化させて含水酸化鉄を得る場合には、アルカリ
を塩酸で中和すれば含水酸化鉄と塩化ナトリウムの混合
物を得ることができる。硝酸第2鉄と水酸化カリウムと
を反応させて含水酸化鉄とし、過剰のアルカリを硫酸で
中和した場合には含水酸化鉄と硝酸カリウム、塩化カリ
ウムの混合物を得る。水懸濁液のpHはpH3以上11
以下であれば良いがヘマタイトをすみやかに終了させる
ためにはpH4〜9が好ましい。pH11を越えると本
発明におけるヘマタイト微粒子は得られず、α−FeO
OHの成長が見られる。またpH3未満であると含水酸
化鉄は全く変化しない。
Next, the production of hematite fine particles from iron oxide hydroxide will be described in detail. Among the water-soluble halogen compounds, water-soluble sulfate compounds and water-soluble nitrate compounds to be added, alkali metals, particularly chlorides and sulfates of Na and K, are easy to handle. A mixture of two or more compounds may be used.
In the present invention, these compounds, especially neutral salts (p
In addition to the addition of H = 3 to 11), the above-mentioned compound may be added when producing hydrous iron oxide. In the case of using a salt produced as a by-product by neutralizing excess alkali after the production of hydrous iron oxide, the type of the compound mixed with the iron compound as the raw material and the type of alkali are determined. For example, when iron (I) chloride is reacted with sodium hydroxide to obtain Fe (OH) 2 and oxidized to obtain iron oxide hydroxide, neutralize the alkali with hydrochloric acid to obtain iron oxide hydroxide and sodium chloride. Can be obtained. When ferric nitrate and potassium hydroxide are reacted with each other to obtain iron hydroxide, and when the excess alkali is neutralized with sulfuric acid, a mixture of iron hydroxide and potassium nitrate and potassium chloride is obtained. PH of water suspension is pH 3 or higher 11
The pH may be as low as possible, but pH 4 to 9 is preferable for prompt termination of hematite. When the pH exceeds 11, hematite fine particles in the present invention cannot be obtained, and α-FeO
OH growth is seen. When the pH is less than 3, the content of the iron oxide hydroxide does not change at all.

【0012】また加熱温度は、90℃以下であるとヘマ
タイト生成に時間がかかり、好ましくは90℃以上が良
い。加熱方法は、該化合物のイオンを含む含水酸化鉄ス
ラリーを60℃以上に保持した恒温槽に反応容器を入れ
ても良いし、容器をヒーターやバーナー、蒸気などで直
接加熱しても良い。投げこみヒーターを投入して加熱し
ても構わない。また蒸気を直接投入して溶液を加熱して
も良い。加熱時間は60℃では20〜1000時間、8
0℃では2〜100時間、90℃では1〜30時間、1
00℃では1〜300分の範囲程度が適している。ま
た、加熱時の存在する塩濃度はスラリー濃度と関係なく
溶液に対して0.5wt%以上が必要であり、上限濃度は
飽和値までである。
When the heating temperature is 90 ° C. or lower, it takes a long time to produce hematite, and preferably 90 ° C. or higher. As for the heating method, the reaction vessel may be placed in a thermostat in which the iron oxide hydroxide slurry containing the ion of the compound is kept at 60 ° C. or higher, or the vessel may be directly heated by a heater, a burner, steam, or the like. It may be heated by throwing in a throw-in heater. Alternatively, the solution may be heated by directly introducing steam. The heating time is 20 to 1000 hours at 60 ° C., 8
0 ° C for 2 to 100 hours, 90 ° C for 1 to 30 hours, 1
At 00 ° C., a range of about 1 to 300 minutes is suitable. Further, the concentration of the salt present during heating must be 0.5 wt% or more with respect to the solution regardless of the slurry concentration, and the upper limit concentration is up to the saturation value.

【0013】[0013]

【実施例】以下実施例および比較例により更に詳しく説
明する。 実施例1 塩化第1鉄0.2mol を500mlの蒸溜水に溶解した水
溶液を、水酸化ナトリウム0.8mol を500mlの蒸溜
水に溶解した水溶液に添加して、水酸化第1鉄のスラリ
ーを作った。このスラリーに常温でH22 (0.4mo
l /l)1000ml(当量の4倍量)を加えδ−FeO
OHのスラリーを得た。このスラリーに塩酸(1N)を
加えpH3.5とし、そのスラリーをマントルヒーター
で加熱して95℃で1時間保持した。その後デカンテー
ション洗いをくり返して塩化ナトリウムを水洗して除去
したのち、ロ過して乾燥した。得られた粉末をX線回折
した結果、ヘマタイトの回折ピークであった。透過型電
子顕微鏡観察の結果、0.01μm〜0.02μmの球
形のヘマタイト微粒子であることが確認された。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples. Example 1 A ferrous hydroxide slurry was prepared by adding an aqueous solution in which 0.2 mol of ferrous chloride was dissolved in 500 ml of distilled water to an aqueous solution in which 0.8 mol of sodium hydroxide was dissolved in 500 ml of distilled water. Was. H 2 O 2 (0.4 mol
l / l) 1000 ml (4 equivalents) was added and δ-FeO
An OH slurry was obtained. Hydrochloric acid (1N) was added to the slurry to adjust the pH to 3.5, and the slurry was heated with a mantle heater and maintained at 95 ° C. for 1 hour. Thereafter, decantation was repeated, and sodium chloride was removed by washing with water, followed by filtration and drying. As a result of X-ray diffraction of the obtained powder, a diffraction peak of hematite was obtained. As a result of observation with a transmission electron microscope, it was confirmed that the particles were spherical hematite fine particles of 0.01 μm to 0.02 μm.

【0014】実施例2 硫酸第1鉄0.2mol を500mlの蒸溜水に溶解した水
溶液を、水酸化カリウム0.8mol を500mlの蒸溜水
に溶解した水溶液に添加して、水酸化第1鉄のスラリー
を作った。このスラリーに常温でH22 (0.4mol
/l)1000ml(当量の4倍量)を加えδ−FeOO
Hのスラリーを得た。このスラリーに塩酸(1N)を加
えpH9.5とし、その含水酸化鉄と硫酸カリウムのス
ラリーをマントルヒーターで加熱して95℃で1時間保
持した。その後デカンテーション洗いをくり返して硫酸
カリウムを水洗して除去したのち、ロ過して乾燥した。
得られた粉末をX線回折した結果、ヘマタイトの回折ピ
ークであった。透過型電子顕微鏡観察の結果、0.03
μm〜0.06μmの球形のヘマタイト微粒子であるこ
とが確認された。
Example 2 An aqueous solution in which 0.2 mol of ferrous sulfate was dissolved in 500 ml of distilled water was added to an aqueous solution in which 0.8 mol of potassium hydroxide was dissolved in 500 ml of distilled water. A slurry was made. This slurry is mixed with H 2 O 2 (0.4 mol
/ L) 1000 ml (4 times the equivalent) was added and δ-FeOO was added.
H slurry was obtained. Hydrochloric acid (1N) was added to this slurry to adjust the pH to 9.5, and the slurry of hydrous iron oxide and potassium sulfate was heated with a mantle heater and maintained at 95 ° C. for 1 hour. Thereafter, decantation was repeated, potassium sulfate was removed by washing with water, and then filtered and dried.
As a result of X-ray diffraction of the obtained powder, a diffraction peak of hematite was obtained. As a result of observation with a transmission electron microscope, 0.03
It was confirmed that the particles were spherical hematite fine particles of μm to 0.06 μm.

【0015】実施例3 硝酸第2鉄0.2mol を500mlの蒸溜水に溶解した水
溶液を、水酸化ナトリウム0.6mol を500mlの蒸溜
水に溶解した水溶液に添加して、含水酸化鉄(水酸化第
2鉄)のスラリーを作った。このときpHは5.8であ
った。このスラリーに投げこみヒーターを入れて、98
℃に30分維持した。その後デカンテーション洗いをく
り返して硝酸ナトリウムを水洗して除去したのち、ロ過
して乾燥した。得られた粉末をX線回折した結果、ヘマ
タイトの回折ピークであった。透過型電子顕微鏡観察の
結果、0.06μm〜0.08μmの球形のヘマタイト
微粒子であることが確認された。
Example 3 An aqueous solution in which 0.2 mol of ferric nitrate was dissolved in 500 ml of distilled water was added to an aqueous solution in which 0.6 mol of sodium hydroxide was dissolved in 500 ml of distilled water, and iron-containing hydroxide (hydroxide) was added. A ferric slurry was made. At this time, the pH was 5.8. Put the heater into the slurry
C. for 30 minutes. Thereafter, decantation was repeated, and sodium nitrate was removed by washing with water, followed by filtration and drying. As a result of X-ray diffraction of the obtained powder, a diffraction peak of hematite was obtained. As a result of observation with a transmission electron microscope, it was confirmed that the particles were spherical hematite fine particles of 0.06 μm to 0.08 μm.

【0016】実施例4 塩化第2鉄25mol を25lの蒸溜水に溶解した水溶液
を、炭酸ナトリウム41.2mol を25lの蒸溜水に溶
解した水溶液に添加して、含水酸化鉄(水酸化第2鉄)
のスラリーを作った。このときpHは6.0であった。
このスラリーに蒸気を直接吹きこみ煮沸状態を2時間維
持した。その後セラミックフィルターを用いた微粉洗浄
装置で塩化ナトリウムを水洗して除去したのちスプレー
ドライヤーを用いてスラリーを乾燥した。得られた粉末
をX線回折した結果、ヘマタイトの回折ピークであっ
た。透過型電子顕微鏡観察の結果、0.06μm〜0.
08μmの球形のヘマタイト微粒子であることが確認さ
れた。
EXAMPLE 4 An aqueous solution in which 25 mol of ferric chloride was dissolved in 25 l of distilled water was added to an aqueous solution of 41.2 mol of sodium carbonate dissolved in 25 l of distilled water to obtain an aqueous solution of ferric hydroxide (ferric hydroxide). )
Made a slurry. At this time, the pH was 6.0.
Steam was directly blown into the slurry and the boiling state was maintained for 2 hours. Thereafter, the sodium chloride was washed with water using a fine powder washing device using a ceramic filter to remove it, and then the slurry was dried using a spray drier. As a result of X-ray diffraction of the obtained powder, a diffraction peak of hematite was obtained. As a result of observation with a transmission electron microscope, 0.06 μm to 0.
It was confirmed that the particles were spherical hematite fine particles of 08 μm.

【0017】実施例5 実施例2と同様の方法で原料の鉄化合物とアルカリの種
類を以下の組合せで行った。 塩化第1鉄−水酸化カリウム、塩化第1鉄−水酸化ナト
リウム、塩化第1鉄−アンモニア水、硝酸第1鉄−水酸
化カリウム、硝酸第1鉄−水酸化ナトリウム、硝酸第1
鉄−アンモニア水、硫酸第1鉄−水酸化ナトリウム、硫
酸第1鉄−アンモニア水 得られた粉末をX線回折した結果、ヘマタイトの回折ピ
ークであった。透過型電子顕微鏡観察の結果、0.02
μm〜0.1μmの球形のヘマタイト微粒子であること
が確認された。
Example 5 In the same manner as in Example 2, the iron compound and the alkali as raw materials were used in the following combinations. Ferrous chloride-potassium hydroxide, ferrous chloride-sodium hydroxide, ferrous chloride-ammonia water, ferrous nitrate-potassium hydroxide, ferrous nitrate-sodium hydroxide, nitric acid
Iron-ammonia water, ferrous sulfate-sodium hydroxide, ferrous sulfate-ammonia water The X-ray diffraction of the obtained powder showed a diffraction peak of hematite. As a result of observation with a transmission electron microscope, 0.02
It was confirmed that the particles were spherical hematite fine particles of μm to 0.1 μm.

【0018】実施例6 実施例3と同様の方法で原料の鉄化合物とアルカリの種
類を以下の組合せで行った。 塩化第2鉄−水酸化カリウム、塩化第2鉄−水酸化ナト
リウム、塩化第2鉄−アンモニア水、硝酸第2鉄−水酸
化カリウム、硝酸第2鉄−アンモニア水、硝酸第2鉄−
水酸化カリウム、硫酸第2鉄−水酸化ナトリウム、硫酸
第2鉄−アンモニア水 得られた粉末をX線回折した結果、ヘマタイトの回折ピ
ークであった。透過型電子顕微鏡観察の結果、0.02
μm〜0.1μmの球形のヘマタイト微粒子であること
が確認された。
Example 6 In the same manner as in Example 3, the raw material iron compound and alkali were used in the following combinations. Ferric chloride-potassium hydroxide, ferric chloride-sodium hydroxide, ferric chloride-ammonia water, ferric nitrate-potassium hydroxide, ferric nitrate-ammonia water, ferric nitrate-
Potassium hydroxide, ferric sulfate-sodium hydroxide, and ferric sulfate-aqueous ammonia The obtained powder was subjected to X-ray diffraction. As a result, a diffraction peak of hematite was obtained. As a result of observation with a transmission electron microscope, 0.02
It was confirmed that the particles were spherical hematite fine particles of μm to 0.1 μm.

【0019】実施例7 0.2μmのゲータイトα−FeOOHの乾燥粉100
gとNaCl20gとを蒸溜水1000lに投入し、N
aClをイオンで含む含水酸化鉄のスラリーを得た。こ
のスラリーをマントルヒーターで撹拌しながら加熱し、
98℃で2時間維持した。このスラリーを水洗・ロ過・
乾燥して得られた粉末をX線回折した結果、ヘマタイト
のピークのみであった。また透過型電子顕微鏡を観察し
たところ粒径0.2〜0.4μmの球状粒子であること
が確認できた。
Example 7 Dry powder 100 of 0.2 μm goethite α-FeOOH
g of NaCl and 20 g of NaCl are introduced into 1000 l of distilled water.
A slurry of hydrous iron oxide containing aCl as an ion was obtained. This slurry is heated while stirring with a mantle heater,
Maintained at 98 ° C. for 2 hours. Wash this slurry with water,
As a result of X-ray diffraction of the powder obtained by drying, only a peak of hematite was found. Observation with a transmission electron microscope confirmed that the particles were spherical particles having a particle size of 0.2 to 0.4 μm.

【0020】実施例8 塩化第1鉄0.5mol を500mlの蒸溜水に溶解した水
溶液を、水酸化ナトリウム1.5mol を500mlの蒸溜
水に溶解した水溶液に添加して、水酸化第1鉄のスラリ
ーを作った。このスラリーに常温でH22 (0.5mo
l /l)1000ml(当量の2倍量)を加えδ−FeO
OHのスラリーを得た。このスラリーに塩酸(1N)を
加えpH=7.0とし、そのスラリーをマントルヒータ
ーで加熱して95℃で1時間保持した。その後デカンテ
ーション洗いを繰り返して塩化ナトリウムを水洗して除
去した後ロ過して乾燥した。得られた粉末をX線回折し
たところ、ヘマタイトの回折ピークであった。透過型電
子顕微鏡観察の結果、0.01〜0.03μmの球状ヘ
マタイト微粒子であることが確認された。
Example 8 An aqueous solution in which 0.5 mol of ferrous chloride was dissolved in 500 ml of distilled water was added to an aqueous solution in which 1.5 mol of sodium hydroxide was dissolved in 500 ml of distilled water. A slurry was made. At room temperature, the slurry is mixed with H 2 O 2 (0.5 mol
l / l) 1000 ml (2 times the equivalent) and add δ-FeO
An OH slurry was obtained. Hydrochloric acid (1N) was added to the slurry to adjust the pH to 7.0, and the slurry was heated with a mantle heater and maintained at 95 ° C. for 1 hour. Thereafter, decantation washing was repeated to remove sodium chloride by washing with water, followed by filtration and drying. X-ray diffraction of the obtained powder showed a diffraction peak of hematite. As a result of observation with a transmission electron microscope, it was confirmed that the particles were spherical hematite fine particles of 0.01 to 0.03 μm.

【0021】実施例9 塩化第1鉄0.1mol を500mlの蒸溜水に溶解した水
溶液を、水酸化ナトリウム0.4mol を500mlの蒸溜
水に溶解した水溶液に添加して、水酸化第1鉄のスラリ
ーを作った。このスラリーに常温でH22 (0.2mo
l /l)1000ml(当量の4倍量)を加えδ−FeO
OHのスラリーを得た。このスラリーに塩酸(1N)を
加えpH=7.0とし、そのスラリーをマントルヒータ
ーで加熱して95℃で1時間保持した。その後デカンテ
ーション洗いを繰り返して塩化ナトリウムを水洗して除
去した後ロ過して乾燥した。得られた粉末をX線回折し
たところ、ヘマタイトの回折ピークであった。透過型電
子顕微鏡観察の結果、0.01〜0.03μmの球状ヘ
マタイト微粒子であることが確認された。
Example 9 An aqueous solution obtained by dissolving 0.1 mol of ferrous chloride in 500 ml of distilled water was added to an aqueous solution obtained by dissolving 0.4 mol of sodium hydroxide in 500 ml of distilled water. A slurry was made. This slurry is mixed with H 2 O 2 (0.2mo.
l / l) 1000 ml (4 equivalents) was added and δ-FeO
An OH slurry was obtained. Hydrochloric acid (1N) was added to the slurry to adjust the pH to 7.0, and the slurry was heated with a mantle heater and maintained at 95 ° C. for 1 hour. Thereafter, decantation washing was repeated to remove sodium chloride by washing with water, followed by filtration and drying. X-ray diffraction of the obtained powder showed a diffraction peak of hematite. As a result of observation with a transmission electron microscope, it was confirmed that the particles were spherical hematite fine particles of 0.01 to 0.03 μm.

【0022】比較例1 塩化第1鉄0.2mol を500mlの蒸溜水に溶解した水
溶液を、水酸化ナトリウム0.8mol を500mlの蒸溜
水に溶解した水溶液に添加して、水酸化第1鉄のスラリ
ーを作った。このスラリーに常温でH22 (0.4mo
l /l)1000mlを加えδ−FeOOHのスラリーを
得た。このスラリーを水洗して塩化ナトリウムを除去
し、塩等の化合物が存在しない状態で、マントルヒータ
ーで95℃で1時間加熱した。ロ過・乾燥して得られた
粉末をX線回折した結果、回折ピークはδ−FeOOH
で変化なかった。
Comparative Example 1 An aqueous solution in which 0.2 mol of ferrous chloride was dissolved in 500 ml of distilled water was added to an aqueous solution in which 0.8 mol of sodium hydroxide was dissolved in 500 ml of distilled water. A slurry was made. H 2 O 2 (0.4 mol
l / l) to obtain a slurry of δ-FeOOH. The slurry was washed with water to remove sodium chloride, and heated at 95 ° C. for 1 hour with a mantle heater in the absence of compounds such as salts. As a result of X-ray diffraction of the powder obtained by filtration and drying, the diffraction peak was δ-FeOOH.
Did not change.

【0023】比較例2 塩化第1鉄0.2mol を500mlの蒸溜水に溶解した水
溶液を、水酸化ナトリウム0.8mol を500mlの蒸溜
水に溶解した水溶液に添加して、水酸化第1鉄のスラリ
ーを作った。このスラリーに常温でH22 (0.4mo
l /l)1000mlを加えδ−FeOOHのスラリーを
得た。この時のスラリーのpHはpH13.5であっ
た。このスラリーをpH13.5のままマントルヒータ
ーで95℃で1時間加熱した。得られた沈殿物を水洗し
て塩化ナトリウムと水酸化ナトリウムを除去した。得ら
れた粉末をX線回折した結果、回折ピークはδ−FeO
OHのままであった。
Comparative Example 2 An aqueous solution in which 0.2 mol of ferrous chloride was dissolved in 500 ml of distilled water was added to an aqueous solution in which 0.8 mol of sodium hydroxide was dissolved in 500 ml of distilled water. A slurry was made. H 2 O 2 (0.4 mol
l / l) to obtain a slurry of δ-FeOOH. The pH of the slurry at this time was pH 13.5. This slurry was heated at 95 ° C. for 1 hour with a mantle heater while maintaining the pH at 13.5. The obtained precipitate was washed with water to remove sodium chloride and sodium hydroxide. As a result of X-ray diffraction of the obtained powder, the diffraction peak was δ-FeO
Remained OH.

【0024】比較例3 硝酸第2鉄0.2mol を500mlの蒸溜水に溶解した水
溶液を、水酸化ナトリウム0.5mol を500mlの蒸溜
水に溶解した水溶液に添加して、含水酸化鉄(水酸化第
2鉄)のスラリーを作った。このときpHは2.5であ
った。このスラリーに投げこみヒーターを入れて、98
℃に30分維持した。その後デカンテーション洗いを繰
り返して硝酸ナトリウムを水洗して除去したのち、ロ過
して乾燥した。得られた粉末をX線回折した結果非晶質
であり、なんのピークも観察されなかった。
Comparative Example 3 An aqueous solution obtained by dissolving 0.2 mol of ferric nitrate in 500 ml of distilled water was added to an aqueous solution obtained by dissolving 0.5 mol of sodium hydroxide in 500 ml of distilled water. A ferric slurry was made. At this time, the pH was 2.5. Put the heater into the slurry
C. for 30 minutes. Thereafter, decantation washing was repeated to remove sodium nitrate by washing with water, followed by filtration and drying. The resulting powder was amorphous by X-ray diffraction, and no peak was observed.

【0025】比較例4 塩化第1鉄0.2mol を500mlの蒸溜水に溶解した水
溶液を、水酸化ナトリウム0.8mol を500mlの蒸溜
水に溶解した水溶液に添加して、水酸化第1鉄のスラリ
ーを作った。このスラリーに常温でH22 (0.4mo
l /l)1000ml(当量の4倍量)を加えδ−FeO
OHのスラリーを得た。このスラリーに塩酸(1N)を
加えpH2.0とし、そのスラリーをマントルヒーター
で加熱して95℃で1時間保持した。その後デカンテー
ション洗いを繰り返して塩化ナトリウムを水洗して除去
した後ロ過して乾燥した。透過型電子顕微鏡観察の結
果、非晶質であり、回折ピークは観察されなかった。
Comparative Example 4 An aqueous solution in which 0.2 mol of ferrous chloride was dissolved in 500 ml of distilled water was added to an aqueous solution in which 0.8 mol of sodium hydroxide was dissolved in 500 ml of distilled water. A slurry was made. H 2 O 2 (0.4 mol
l / l) 1000 ml (4 equivalents) was added and δ-FeO
An OH slurry was obtained. Hydrochloric acid (1N) was added to the slurry to adjust the pH to 2.0, and the slurry was heated with a mantle heater and maintained at 95 ° C. for 1 hour. Thereafter, decantation washing was repeated to remove sodium chloride by washing with water, followed by filtration and drying. As a result of observation with a transmission electron microscope, the sample was amorphous and no diffraction peak was observed.

【0026】比較例5 塩化第1鉄0.2mol を500mlの蒸溜水に溶解した水
溶液を、水酸化ナトリウム0.8mol を500mlの蒸溜
水に溶解した水溶液に添加して、水酸化第1鉄のスラリ
ーを作った。このスラリーに常温でH22 (0.2mo
l /l)400ml(当量の0.8倍量)を加えた。この
スラリーに塩酸(1N)を加えpH8.5とし、そのス
ラリーをマントルヒーターで加熱して95℃で1時間保
持した。その後デカンテーション洗いを繰り返して塩化
ナトリウムを水洗して除去した後ロ過して乾燥した。得
られた粉末をX線回折した結果、ヘマタイトおよびマグ
ネタイトの回折ピークであった。
Comparative Example 5 An aqueous solution in which 0.2 mol of ferrous chloride was dissolved in 500 ml of distilled water was added to an aqueous solution in which 0.8 mol of sodium hydroxide was dissolved in 500 ml of distilled water. A slurry was made. This slurry is mixed with H 2 O 2 (0.2mo.
(l / l) 400 ml (0.8 equivalents) was added. Hydrochloric acid (1N) was added to the slurry to adjust the pH to 8.5, and the slurry was heated with a mantle heater and maintained at 95 ° C. for 1 hour. Thereafter, decantation washing was repeated to remove sodium chloride by washing with water, followed by filtration and drying. X-ray diffraction of the obtained powder showed diffraction peaks of hematite and magnetite.

【0027】[0027]

【発明の効果】本発明によれば、粒度分布が狭く、分散
性の極めて優れたヘマタイト微粒子を低温でかつ複雑な
装置や操作を必要とせず、従って安価に製造することが
でき、しかも、得られたヘマタイトは塗料、プラスチッ
クなどのビヒクル中での分散性に非常に優れている。
According to the present invention, hematite fine particles having a narrow particle size distribution and extremely excellent dispersibility can be produced at low temperature and without the need for complicated equipment and operation, and therefore can be produced at low cost. The obtained hematite has excellent dispersibility in vehicles such as paints and plastics.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−226740(JP,A) 特開 昭51−8193(JP,A) 特公 平2−47410(JP,B2) 特公 昭57−44608(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-226740 (JP, A) JP-A-51-8193 (JP, A) JP-B 2-47410 (JP, B2) JP-B-57- 44608 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水溶性ハロゲン化合物、水溶性硫酸化合
物、水溶性硝酸化合物の中から選ばれた少なくとも1種
の化合物のイオンの存在下で、含水酸化鉄の水懸濁液
を、pH値3〜11で60〜100℃に加熱しヘマタイ
ト微粒子を生成させることを特徴とするヘマタイト微粒
子の製造法。
1. An aqueous suspension of iron oxide hydroxide in the presence of ions of at least one compound selected from the group consisting of a water-soluble halogen compound, a water-soluble sulfate compound, and a water-soluble nitrate compound, and a pH value of 3 A method for producing fine particles of hematite, characterized in that the fine particles are heated to 60 to 100 ° C. to produce fine particles of hematite.
【請求項2】 第1鉄塩水溶液とアルカリ水溶液とを反
応させ水酸化第1鉄を造り、この水懸濁液中のFeに対
し二価の鉄イオンを全て三価の鉄イオンに酸化するのに
必要な量以上の過酸化水素水を加え、得られた含水酸化
鉄を用いることを特徴とする特許請求の範囲第1項記載
のヘマタイト微粒子の製造法。
2. A ferrous hydroxide solution is produced by reacting an aqueous solution of a ferrous salt with an aqueous alkali solution to oxidize all divalent iron ions to trivalent iron ions with respect to Fe in the aqueous suspension. 2. The method for producing hematite fine particles according to claim 1, wherein an aqueous solution of hydrogen peroxide in an amount necessary for the above is added, and the obtained hydrous iron oxide is used.
JP4312167A 1991-11-25 1992-11-20 Manufacturing method of hematite fine particles Expired - Lifetime JP2600562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4312167A JP2600562B2 (en) 1991-11-25 1992-11-20 Manufacturing method of hematite fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-308970 1991-11-25
JP30897091 1991-11-25
JP4312167A JP2600562B2 (en) 1991-11-25 1992-11-20 Manufacturing method of hematite fine particles

Publications (2)

Publication Number Publication Date
JPH05208829A JPH05208829A (en) 1993-08-20
JP2600562B2 true JP2600562B2 (en) 1997-04-16

Family

ID=26565763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4312167A Expired - Lifetime JP2600562B2 (en) 1991-11-25 1992-11-20 Manufacturing method of hematite fine particles

Country Status (1)

Country Link
JP (1) JP2600562B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049803A1 (en) 2000-10-09 2002-04-18 Bayer Ag Composite particles used e.g. for pigmenting paint or plastics comprise unagglomerated primary pigment particles adhering to colorless carrier particles and separated from one another by a minimum distance
JP2004210633A (en) * 2002-12-20 2004-07-29 Jfe Chemical Corp Iron oxide and its manufacturing method
US7399454B2 (en) * 2004-04-29 2008-07-15 Metalox International, Llc Metallurgical dust reclamation process
JP5507318B2 (en) * 2010-04-20 2014-05-28 新日鐵住金株式会社 Treatment method for wastewater containing metal ions

Also Published As

Publication number Publication date
JPH05208829A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
US4090888A (en) Production of black iron oxide pigments
JPH04214037A (en) Black manganese/iron oxide pigment
JPS62277145A (en) Aqueous collidal dispartion of serium for iv compound and its preparation
US5885545A (en) Highly transparent, yellow iron oxide pigments, process for the production thereof and use thereof
JP3456665B2 (en) Transparent iron oxide pigment and method for producing the same
US5614012A (en) Highly transparent, red iron oxide pigments, process for the production thereof and use thereof
JP2600562B2 (en) Manufacturing method of hematite fine particles
US2696426A (en) Process for the preparation of iron oxide pigments
JPS6122428A (en) Manufacture and use of ferromagnetic pigment
JP2002020119A (en) Black multiple oxide particles and method for producing the same
US4618375A (en) Transparent iron oxide pigments
JP3682079B2 (en) Iron oxide pigment, method for producing the same, and use thereof
SU1458368A1 (en) Method of producing seeds of red ferric oxide pigment
JPS62128930A (en) Production of hematite grain powder
SU786882A3 (en) Method of magnetite production
JPH03223121A (en) Production of fine hematite particle
JPH062562B2 (en) Method for producing transparent metal oxide
JP4745485B2 (en) Magnetite production method
JPH0577613B2 (en)
JPH0623053B2 (en) Method for producing equiaxed magnetic iron oxide pigment
KR100442710B1 (en) Synthesis of Iron Oxide Nanoparticles
JPH02133324A (en) Production of sr ferrite particles
JP2737756B2 (en) Production method of spherical hematite particles
JPH03208820A (en) Production of fine platy hematite particles
JPH0580412B2 (en)