JPH0577613B2 - - Google Patents

Info

Publication number
JPH0577613B2
JPH0577613B2 JP9224189A JP9224189A JPH0577613B2 JP H0577613 B2 JPH0577613 B2 JP H0577613B2 JP 9224189 A JP9224189 A JP 9224189A JP 9224189 A JP9224189 A JP 9224189A JP H0577613 B2 JPH0577613 B2 JP H0577613B2
Authority
JP
Japan
Prior art keywords
iron oxide
salt
fine particles
oxide fine
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9224189A
Other languages
Japanese (ja)
Other versions
JPH02271925A (en
Inventor
Hiroshi Sakai
Katsura Ito
Kenzo Hanawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP9224189A priority Critical patent/JPH02271925A/en
Publication of JPH02271925A publication Critical patent/JPH02271925A/en
Publication of JPH0577613B2 publication Critical patent/JPH0577613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種メタリツク塗装、フイルム着色用
顔料および酸化鉄の紫外線吸収能を利用した食品
包装フイルム又は容器用に有用な透明酸化鉄微粒
子の製造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the production of transparent iron oxide fine particles useful for various metallic coatings, film coloring pigments, and food packaging films or containers that utilize the ultraviolet absorbing ability of iron oxide. It is about the method.

[従来の技術] 酸化鉄微粒子粉末は塗料用顔料粉末として広く
利用されており、隠ぺい力や着色力を目的とする
場合、顔料としての最適粒子径は、0.2〜0.4μmの
範囲になるが、平均粒子径が0.1μm以下になると
隠ぺい力が急激に低下して透明性となる。これ
は、粒子が光の波長の1/2以下となつて散乱や回
折現象が起こらないためであると言われている。
この現象を利用して透明性を付与した酸化鉄顔料
が研究されている。
[Prior Art] Iron oxide fine particles are widely used as pigment powders for paints, and when the purpose is to improve hiding power or coloring power, the optimum particle size for pigments is in the range of 0.2 to 0.4 μm. When the average particle diameter becomes 0.1 μm or less, the hiding power decreases rapidly and becomes transparent. This is said to be because the particles are less than half the wavelength of light, so scattering and diffraction phenomena do not occur.
Iron oxide pigments that use this phenomenon to impart transparency are being researched.

これまで酸化鉄微粒子粉末の製造方法は数多く
報告されている。例えば、1)微細な含水酸化鉄
を製造し、それを加熱脱水して酸化鉄微粒子を得
る方法(特公昭51−21640、特公昭52−13528、特
公昭62−40293、特開昭61−163121)、2)微細な
マグネタイトを製造し、それを加熱して酸化鉄微
粒子を得る方法(特公昭54−7280、特開昭61−
232225)、3)含水酸化鉄(主にα−FeOOH、
β−FeOOH)をオートクレーブ中で加熱処理
し、酸化鉄微粒子を得る方法(特開昭58−20733、
特開昭63−162535)、4)第二鉄塩化合物の水溶
液を中和反応後、オートクレーブ中で加熱処理し
酸化鉄微粒子を得る方法(特公昭45−18372、特
開昭62−216919)、5)第二鉄塩にアルカリを添
加して沈殿させ、ロ過洗浄後それを乾燥させるこ
とにより針状酸化鉄微粒子を得る方法(特開昭63
−79726)、6)第二鉄塩溶液中に陰イオン交換樹
脂を加えて水和酸化鉄ゾルとし、これに陰イオン
性界面活性剤を添加して凝集させ、有機溶媒中に
分散させた後、蒸発還流して酸化鉄微粒子を得る
方法(特公昭59−4452)などがある。
Many methods for producing fine iron oxide particles have been reported so far. For example, 1) A method of producing fine hydrated iron oxide and heating and dehydrating it to obtain iron oxide fine particles (Japanese Patent Publications No. 51-21640, No. 52-13528, No. 62-40293, No. 61-163121) ), 2) A method of producing fine magnetite and heating it to obtain iron oxide fine particles (Japanese Patent Publication No. 54-7280, Japanese Patent Application Publication No. 1983-1989-
232225), 3) Hydrous iron oxide (mainly α-FeOOH,
A method for obtaining iron oxide fine particles by heating β-FeOOH) in an autoclave (Japanese Patent Application Laid-Open No. 58-20733,
4) A method for obtaining iron oxide fine particles by heat-treating an aqueous solution of a ferric salt compound in an autoclave after a neutralization reaction (Japanese Patent Publication No. 45-18372, JP-A No. 62-216919), 5) A method of obtaining acicular iron oxide fine particles by adding an alkali to ferric salt to precipitate it, washing it through filtration, and then drying it (Japanese Patent Application Laid-Open No. 63
-79726), 6) Add an anion exchange resin to a ferric salt solution to make a hydrated iron oxide sol, add an anionic surfactant to this to aggregate, and disperse in an organic solvent. There are methods such as evaporation and reflux to obtain iron oxide fine particles (Japanese Patent Publication No. 59-4452).

[発明が解決しようとする課題] 上記の様な従来の酸化鉄微粒子では、含水酸化
鉄を加熱脱水して酸化鉄微粒子を得る場合、少な
くとも250℃以上の熱処理が必要であり、マグネ
タイトを熱処理して酸化鉄微粒子を得る場合は
400℃以上の温度が必要となり、このような焼成
工程のある製造方法では焼成時に凝集が起こり、
プラスチツク、塗料などのビヒクル中に一次粒子
の粒径を保ちながら分散させることが困難であ
る。また、オートクレーブを用いた製造法では、
酸化鉄微粒子の平均粒径を0.1μm以下にするのは
困難であり、透明酸化鉄微粒子を製造し難い。ま
た、特開昭63−79726で得られる粒子や、含水酸
化鉄を原料にして得られた酸化鉄微粒子の形状は
針状をしているが、針状粒子ほど吸油量が多く、
分散性も悪く透明性も十分でない。
[Problems to be Solved by the Invention] Conventional iron oxide fine particles as described above require heat treatment at at least 250°C or higher when heating and dehydrating hydrous iron oxide to obtain iron oxide fine particles. When obtaining iron oxide fine particles by
Temperatures of 400°C or higher are required, and manufacturing methods that include such a firing process can cause agglomeration during firing.
It is difficult to disperse primary particles in vehicles such as plastics and paints while maintaining the particle size. In addition, in the manufacturing method using an autoclave,
It is difficult to reduce the average particle size of iron oxide fine particles to 0.1 μm or less, and it is difficult to produce transparent iron oxide fine particles. In addition, the particles obtained in JP-A-63-79726 and the iron oxide fine particles obtained using hydrated iron oxide as a raw material have an acicular shape, and the acicular particles have a higher oil absorption capacity.
It has poor dispersibility and insufficient transparency.

また、特公昭51−12318では長軸:短軸=5:
1以下の紡錘状粒子の微細な酸化鉄顔料の製造法
の記載があるが透明度は必ずしも満足できるもの
ではない。
In addition, in Tokuko Sho 51-12318, major axis: minor axis = 5:
Although there is a description of a method for producing a fine iron oxide pigment having spindle-shaped particles of 1 or less, the transparency is not necessarily satisfactory.

[課題を解決するための手段] 本発明は、形状が球状で粒度分布が狭く、透明
性、分散性が極めて優れた透明酸化鉄微粒子を製
造する方法を検討した結果、次の製造法を見出し
た。すなわち、第二鉄塩水溶液中に水酸化アルカ
リ、炭酸アルカリ、アンモニアのうち少なくとも
一種をPH値が6〜10になるように添加し、その際
50℃以下で反応させ、水酸化第二鉄の沈澱物およ
び塩を生成させた後、該生成塩を含有した状態で
乾燥し、酸化鉄を生成させた後、洗浄し乾燥する
ことを特徴とする透明球状酸化鉄微粒子の製造方
法である。
[Means for Solving the Problems] The present invention has been made by studying methods for producing transparent iron oxide fine particles that are spherical in shape, have a narrow particle size distribution, and have extremely excellent transparency and dispersibility, and have discovered the following production method. Ta. That is, at least one of alkali hydroxide, alkali carbonate, and ammonia is added to the ferric salt aqueous solution so that the pH value becomes 6 to 10, and at that time,
The method is characterized in that it is reacted at 50°C or lower to produce a precipitate and salt of ferric hydroxide, and then dried in a state containing the produced salt to produce iron oxide, and then washed and dried. This is a method for producing transparent spherical iron oxide fine particles.

この方法により造られる透明球状酸化鉄微粒子
は平均粒子径として0.01〜0.1μmで、粒子の長短
径比は0.7以上の球状の形状を有したものである。
The transparent spherical iron oxide fine particles produced by this method have a spherical shape with an average particle diameter of 0.01 to 0.1 μm and a length-to-width ratio of 0.7 or more.

本発明に用いられる第二鉄塩としては、硝酸
塩、硫酸塩、塩化物等があるが、分散性の極めて
優れた酸化鉄微粒子を得るには塩化物が特に望ま
しい。この第二鉄塩溶液のPH調整をするためのア
ルカリ溶液としては、例えば、NaOH、KOH、
Na2CO3、K2CO3、NH4OH、NH3を使用するこ
とができるが、結晶性のよい酸化鉄粒子を得るに
は炭酸アルカリ、アンモニア水またはガスが好ま
しい。
Ferric salts used in the present invention include nitrates, sulfates, chlorides, etc., but chlorides are particularly desirable in order to obtain iron oxide fine particles with extremely excellent dispersibility. Examples of alkaline solutions for adjusting the pH of this ferric salt solution include NaOH, KOH,
Although Na 2 CO 3 , K 2 CO 3 , NH 4 OH, and NH 3 can be used, alkali carbonate, aqueous ammonia, or gas are preferred in order to obtain iron oxide particles with good crystallinity.

アルカリ溶液を添加し、反応させる温度は、高
温になるにつれて粒径が粗大化し、低温で反応さ
せる程、微細化するため、粒径0.1μm以下の透明
微粒子にするためには、50℃以下でなければなら
ない。より好ましい反応温度は30℃以下であリ、
アルカリ溶液がNa2CO3の場合には、10℃以下が
より好ましい。
The temperature at which the alkaline solution is added and reacted should be 50°C or lower to obtain transparent fine particles with a particle size of 0.1 μm or less, as the higher the temperature, the coarser the particle size and the lower the reaction temperature, the finer the particle size. There must be. A more preferable reaction temperature is 30°C or less,
When the alkaline solution is Na 2 CO 3 , the temperature is more preferably 10° C. or lower.

反応温度の下限は、溶液反応であるため氷点で
ある。
The lower limit of the reaction temperature is the freezing point because it is a solution reaction.

この様にして溶液のPHを6〜10に調整する。PH
が10を超える場合最終生成物に含水酸化鉄が混在
し、PHが6未満の場合、生成した酸化鉄の粒径
は、0.3μmを超え粒度分布も広くなり、透明性に
劣り透明顔料としては望ましくない。また、反応
ば、アルカリ溶液中に第二鉄塩溶液を添加して
も、第二鉄塩溶液中にアルカリ溶液を添加しても
よい。この時撹拌を行つて溶液を均一化し沈澱を
生じさせることが望ましい。
Adjust the pH of the solution to 6-10 in this way. PH
If the final product contains hydrated iron oxide and the pH is less than 6, the particle size of the produced iron oxide will exceed 0.3 μm and the particle size distribution will be wide, resulting in poor transparency and not being suitable as a transparent pigment. Undesirable. Further, in the case of reaction, a ferric salt solution may be added to an alkaline solution, or an alkaline solution may be added to a ferric salt solution. At this time, it is desirable to stir the solution to homogenize the solution and form a precipitate.

また、第二鉄塩溶液中に水と溶解性をもつ低級
アルコール等の有機溶剤を含有していてもよい。
Further, the ferric salt solution may contain an organic solvent such as a lower alcohol that is soluble in water.

PH値を6〜10にして、生成した水酸化第二鉄の
沈澱物を普通はロ過する。
The pH value is adjusted to 6-10, and the ferric hydroxide precipitate formed is usually filtered.

この沈澱物を生成塩の存在下で乾燥する。 This precipitate is dried in the presence of the formed salt.

ここが本発明において最も重要な点であり、特
開昭63−79726の従来技術と異なり、生成塩の存
在下でないと球状酸化鉄は生成しない。生成塩の
存在下で乾燥するために沈澱物の洗浄は行わずに
そのままロ過する。ロ過は公知の方法でよい(例
えば吸引ロ過)。得られたケーキには原料濃度、
ロ過性の違いで、乾燥粉換算で20〜60wt%の生
成塩が含まれている。そして生成塩を含んだケー
キをそのまま乾燥することにより、酸化鉄微粒子
が生成する。ロ過ケーキの乾燥粉換算での含塩率
が20wt%未満になると酸化鉄が生じにくくなる
ので、その時は塩を後から添加してもよい。通常
は30wt%以上あることが好ましい。
This is the most important point in the present invention, and unlike the prior art disclosed in JP-A-63-79726, spherical iron oxide is not produced unless the salt is present. Since the precipitate is dried in the presence of the salt produced, the precipitate is not washed and is directly filtered. Filtration may be performed by a known method (for example, suction filtration). The resulting cake contains raw material concentration,
Depending on their filtration properties, they contain 20 to 60 wt% of produced salt in terms of dry powder. Then, by drying the cake containing the produced salt as it is, iron oxide fine particles are produced. If the salt content of the filtration cake is less than 20 wt% in terms of dry powder, iron oxide will be difficult to form, so in that case salt may be added later. Usually, it is preferable that the content is 30wt% or more.

この時の塩の種類としては、原料溶液とアルカ
リの選択によりNaCl、KCl、NaNO3、KNO3
Na2SO4、K2SO4、NH4Cl、(NH42SO4、NH4
NO3、Na2CO3、(NH42CO3等があるが、NH4
Cl、NACl、KClが好ましい。生成塩と含塩率を
増加するために添加する塩は同一である必要はな
い。
The types of salt at this time include NaCl, KCl, NaNO 3 , KNO 3 , depending on the raw material solution and alkali selection.
Na 2 SO 4 , K 2 SO 4 , NH 4 Cl, (NH 4 ) 2 SO 4 , NH 4
There are NO 3 , Na 2 CO 3 , (NH 4 ) 2 CO 3 , etc., but NH 4
Cl, NACl, KCl are preferred. The salt produced and the salt added to increase the salt content do not have to be the same.

沈澱物生成後、ロ過することなくスラリー状態
で乾燥しても本発明の目的は達成できる。
After the precipitate is formed, the object of the present invention can be achieved even if the precipitate is dried in a slurry state without filtration.

乾燥法には特に制限はないが、凝集を防ぐため
乾燥温度は300℃以下が望ましい。その後、生成
塩等の不純物を除去するためにこの乾燥粉を洗浄
する。洗浄は塩が除去できればどんな方法でも構
わない。
Although there are no particular restrictions on the drying method, it is desirable that the drying temperature be 300°C or lower to prevent agglomeration. Thereafter, this dried powder is washed to remove impurities such as formed salts. Any cleaning method may be used as long as the salt can be removed.

本発明により得られた透明酸化鉄微粒子粉末
は、透明性に優れ、球状であるため微細ではある
が分散性にも優れているため、PETやアクリロ
ニトリル系等の樹脂中に分散させて、飲料用、医
薬用、化粧品用樹脂ボトル、食品包装フイルム、
メタリツク塗装等の用途があり、また化粧品、触
媒、吸着剤等に使用することも可能である。
The transparent iron oxide fine particles obtained by the present invention have excellent transparency and are spherical, so although they are fine, they have excellent dispersibility. , pharmaceutical and cosmetic resin bottles, food packaging films,
It has applications such as metallic coatings, and can also be used in cosmetics, catalysts, adsorbents, etc.

〔実施例〕〔Example〕

以下、本発明を実施例をもつて説明する。 Hereinafter, the present invention will be explained using examples.

実施例 1 0.5mol/のFeCl3水溶液600mlに25%のアン
モニア水溶液を添加した。この時の反応温度は10
℃で、スラリーのPHをPHメータで調節して、スラ
リーのPHが7.0になるように添加した。このスラ
リーを10℃で1時間撹拌した後吸引ロ過し、120
℃で乾燥した。その後、塩化アンモニウムを除去
するため洗浄し、再び乾燥した。得られた乾燥粉
はX線回折の測定の結果、ヘマタイト構造を有し
ていた。SEM観察の結果、ヘマタイトの形状は
球形で粒径は0.05μmできわめて粒度分布がシヤ
ープであつた。
Example 1 A 25% ammonia aqueous solution was added to 600 ml of a 0.5 mol/FeCl 3 aqueous solution. The reaction temperature at this time is 10
℃, the pH of the slurry was adjusted using a PH meter, and the slurry was added so that the pH of the slurry was 7.0. This slurry was stirred at 10℃ for 1 hour, filtered with suction,
Dry at °C. Thereafter, it was washed to remove ammonium chloride and dried again. As a result of X-ray diffraction measurement, the obtained dry powder had a hematite structure. As a result of SEM observation, the shape of hematite was spherical, the particle size was 0.05 μm, and the particle size distribution was extremely sharp.

比較例 1 0.5mol/のFeCl3水溶液600mlに25%のアン
モニア水溶液を添加した。この時の反応温度は10
℃で、スラリーのPHをPHメータで調節して、スラ
リーのPHが7.0になるように添加した。このスラ
リーを10℃で1時間撹拌した後、水洗を行い吸引
ロ過し、120℃で乾燥した。得られた乾燥粉はX
線回折の結果、非晶質でヘマタイト構造は有して
いなかつた。
Comparative Example 1 A 25% ammonia aqueous solution was added to 600 ml of a 0.5 mol/FeCl 3 aqueous solution. The reaction temperature at this time is 10
℃, the pH of the slurry was adjusted using a PH meter, and the slurry was added so that the pH of the slurry was 7.0. This slurry was stirred at 10°C for 1 hour, washed with water, filtered under suction, and dried at 120°C. The obtained dry powder is
As a result of line diffraction, it was found to be amorphous and had no hematite structure.

比較例 2 0.5mol/のFeCl3水溶液600mlに1.0mol/
炭酸ナトリウム水溶液を添加した。この時の反応
温度は80℃で、スラリーのPHをPHメータで調節し
て、スラリーのPHが、7.0になるように添加した。
このスラリーを80℃で1時間撹拌した後吸引ロ過
し、120℃で乾燥した。得られた乾燥粉はX線回
折の結果、β−FeOOH構造を有していた。
Comparative Example 2 1.0 mol/in 600 ml of 0.5 mol/FeCl 3 aqueous solution
Aqueous sodium carbonate solution was added. The reaction temperature at this time was 80°C, and the pH of the slurry was adjusted using a PH meter, and the slurry was added so that the pH of the slurry was 7.0.
This slurry was stirred at 80°C for 1 hour, filtered under suction, and dried at 120°C. As a result of X-ray diffraction, the obtained dry powder had a β-FeOOH structure.

比較例 3 0.5mol/のFeCl3水溶液600mlに25%のアン
モニア水溶液を10℃で添加した。この時スラリー
のPHをPHメータで調節して、スラリーのPHが11.0
になるように添加した。このスラリーを10℃で1
時間撹拌した後吸引ロ過し、120℃で乾燥した。
得られた乾燥粉はX線回折の結果、ヘマタイトと
α−FeOOH構造が混在していた。
Comparative Example 3 A 25% ammonia aqueous solution was added to 600 ml of a 0.5 mol/FeCl 3 aqueous solution at 10°C. At this time, adjust the PH of the slurry with a PH meter, and the PH of the slurry is 11.0.
It was added so that This slurry was heated to 10°C.
After stirring for an hour, the mixture was suction filtered and dried at 120°C.
As a result of X-ray diffraction, the obtained dry powder contained a mixture of hematite and α-FeOOH structures.

[発明の効果] 本発明の透明酸化鉄微粒子の製造方法によれ
ば、粒度分布が狭い0.1μm以下の酸化鉄を簡便に
製造することができ、しかも、球形である酸化鉄
微粒子のため、塗料の構造ではビヒクル中への分
散が良好であり透明性のすぐれた塗膜を得ること
が可能となる。
[Effects of the Invention] According to the method for producing transparent iron oxide fine particles of the present invention, iron oxide with a narrow particle size distribution of 0.1 μm or less can be easily produced, and since the iron oxide fine particles are spherical, they can be used in paints. With this structure, dispersion into the vehicle is good and it is possible to obtain a coating film with excellent transparency.

Claims (1)

【特許請求の範囲】[Claims] 1 第二鉄塩水溶液中に水酸化アルカリ、炭酸ア
ルカリ、アンモニアのうち少なくとも一種をPH値
が6〜10になるように添加し、50℃以下で反応さ
せ、水酸化第二鉄の沈殿物および塩を生成させた
後、該生成塩を含有した状態で乾燥し、酸化鉄を
生成させた後、洗浄し乾燥することを特徴とする
透明球状酸化鉄微粒子の製造方法。
1. Add at least one of alkali hydroxide, alkali carbonate, and ammonia to a ferric salt aqueous solution so that the pH value becomes 6 to 10, and react at 50°C or less to form a precipitate of ferric hydroxide and A method for producing transparent spherical iron oxide fine particles, which comprises generating a salt, drying the particles in a state containing the generated salt, generating iron oxide, and then washing and drying the particles.
JP9224189A 1989-04-12 1989-04-12 Production of transparent spheroidal fine iron oxide particles Granted JPH02271925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9224189A JPH02271925A (en) 1989-04-12 1989-04-12 Production of transparent spheroidal fine iron oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9224189A JPH02271925A (en) 1989-04-12 1989-04-12 Production of transparent spheroidal fine iron oxide particles

Publications (2)

Publication Number Publication Date
JPH02271925A JPH02271925A (en) 1990-11-06
JPH0577613B2 true JPH0577613B2 (en) 1993-10-27

Family

ID=14048939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9224189A Granted JPH02271925A (en) 1989-04-12 1989-04-12 Production of transparent spheroidal fine iron oxide particles

Country Status (1)

Country Link
JP (1) JPH02271925A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058822B2 (en) * 1997-09-30 2008-03-12 住友金属鉱山株式会社 Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane
MX2017013891A (en) * 2015-06-26 2018-03-15 M Technique Co Ltd Method for producing ultraviolet protective agent composition, and ultraviolet protective agent composition obtained thereby.
CN110422886A (en) * 2019-08-23 2019-11-08 上海新禹固废处理有限公司 A kind of preparation method of hydrated ferric oxide

Also Published As

Publication number Publication date
JPH02271925A (en) 1990-11-06

Similar Documents

Publication Publication Date Title
KR100277164B1 (en) A preparing method for crystalline micropowder of Titania from aqueous Titanium(Ⅳ) chloride by homogeneous precipitation process at low temperature
US7326399B2 (en) Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same
TWI395715B (en) Vlunite type compound particles, manufacturing process thereof and use thereof
US20080305025A1 (en) Methods for Production of Metal Oxide Nano Particles, and Nano Particles and Preparations Produced Thereby
US20080311031A1 (en) Methods For Production of Metal Oxide Nano Particles With Controlled Properties, and Nano Particles and Preparations Produced Thereby
JPH0641456A (en) Process for producing composite pigment
AU2006296647A1 (en) Method for preparing surface-modified, nanoparticulate metal oxides, metal hydroxides and/or metal oxyhydroxides
US5004711A (en) Process of producing colloidal zirconia sols and powders using an ion exchange resin
Durand-Keklikian et al. Preparation and characterization of well-defined colloidal nickel compounds
JP3456665B2 (en) Transparent iron oxide pigment and method for producing the same
US2686731A (en) Ultrafine pigments and methods of making same
US3545993A (en) Pigment
JPH0577613B2 (en)
US4618375A (en) Transparent iron oxide pigments
JPH04164814A (en) Production of ultra-fine zinc oxide powder having excellent dispersibility
JPH01153760A (en) Production of pearl gloss pigment composed of bismuth oxychloride
JPS6071529A (en) Manufacture of spherical magnetite powder
JPH062562B2 (en) Method for producing transparent metal oxide
KR101717907B1 (en) Near-infrared absorption white material and its manufacturing method
JP2767484B2 (en) Method for producing particulate metal oxide
JPH05163022A (en) Spherical anatase titanium oxide and its production
JP2600562B2 (en) Manufacturing method of hematite fine particles
JP2827917B2 (en) Method for producing α-ferric oxide
JPH0445453B2 (en)
JPH0617212B2 (en) Face fee