JP2011051836A - Iron oxyhydroxide sol and method for producing the same - Google Patents

Iron oxyhydroxide sol and method for producing the same Download PDF

Info

Publication number
JP2011051836A
JP2011051836A JP2009202363A JP2009202363A JP2011051836A JP 2011051836 A JP2011051836 A JP 2011051836A JP 2009202363 A JP2009202363 A JP 2009202363A JP 2009202363 A JP2009202363 A JP 2009202363A JP 2011051836 A JP2011051836 A JP 2011051836A
Authority
JP
Japan
Prior art keywords
iron
sol
iron oxyhydroxide
acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009202363A
Other languages
Japanese (ja)
Other versions
JP5674083B2 (en
Inventor
Taketoshi Kuroda
武利 黒田
Hiroyuki Izutsu
裕之 井筒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP2009202363A priority Critical patent/JP5674083B2/en
Publication of JP2011051836A publication Critical patent/JP2011051836A/en
Application granted granted Critical
Publication of JP5674083B2 publication Critical patent/JP5674083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an iron oxyhydroxide sol excellent in stability at extremely simple steps and the iron oxyhydroxide sol produced by this production method. <P>SOLUTION: The method for producing the iron oxyhydroxide sol comprises the steps of: adding an alkaline agent to a water-soluble inorganic compound of iron by 0.5-0.9 (the alkaline agent)/(an inorganic acid radical) (molar ratio) to obtain an iron hydroxide solution; adding hydroxycarboxylic acid to the iron hydroxide solution by 0.05-0.20 (the hydroxycarboxylic acid)/(iron (Fe)) (molar ratio); again adding the alkaline agent to the hydroxycarboxylic acid-added solution and adjusting the pH of the hydroxycarboxylic acid-added solution to 6-12 to obtain a crude iron oxyhydroxide sol; and washing the crude iron oxyhydroxide sol to the extent that the filtrate, which is obtained by filtering the crude iron oxyhydroxide sol by using an ultrafiltration membrane having ≤20,000 molecular weight cutoff, has ≤1 mS/cm electric conductivity. The iron oxyhydroxide sol produced by this production method is also provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はオキシ水酸化鉄ゾルの製造方法及びこの方法により製造されたオキシ水酸化鉄ゾル、とりわけ、アルカリ剤とヒドロキシカルボン酸を巧みに利用し安定性に優れたオキシ水酸化鉄ゾルを簡便な工程で製造する方法及びこの方法により製造されたオキシ水酸化鉄ゾルに関する。   The present invention provides a method for producing an iron oxyhydroxide sol and an iron oxyhydroxide sol produced by this method, in particular, an iron oxyhydroxide sol excellent in stability by skillfully using an alkali agent and a hydroxycarboxylic acid. The present invention relates to a method of producing in a process and an iron oxyhydroxide sol produced by this method.

酸化鉄は磁性材料や顔料としてよく知られており、その価数変化の特性から触媒等にも利用されている工業的に有用な物質の一つである。
磁性材料や触媒等の分野では、従来から塩素根や硝酸根、硫酸根等の無機酸根を含まない安定な酸化鉄ゾルが望まれている。このようなイオン性の無機酸根を含まない安定な酸化鉄ゾルを製造する方法として、特許文献1には、クエン酸の存在下で塩化鉄にアルカリ水溶液を添加して鉄水酸化物のゲルを生成させ、これを洗浄後に熟成し、再度洗浄後、クエン酸を添加して水熱処理する方法が提案されている。この方法では、イオン性の無機酸根が洗浄工程において除去され、残存するクエン酸によってゾルが安定化されている。しかし、この方法は反応や洗浄に伴う工程数が多く、工業的製造方法とは言い難い。
Iron oxide is well known as a magnetic material or pigment, and is one of the industrially useful substances used for catalysts and the like because of its valence change characteristics.
In the field of magnetic materials and catalysts, a stable iron oxide sol that does not contain inorganic acid groups such as chlorine, nitrate, and sulfate has been desired. As a method for producing such a stable iron oxide sol containing no ionic inorganic acid radical, Patent Document 1 discloses that an iron hydroxide gel is prepared by adding an alkaline aqueous solution to iron chloride in the presence of citric acid. There has been proposed a method in which it is produced, ripened after washing, washed again, and then hydrothermally treated by adding citric acid. In this method, ionic inorganic acid radicals are removed in the washing step, and the sol is stabilized by the remaining citric acid. However, this method has a large number of steps associated with reaction and washing, and is not an industrial production method.

一方、本願出願人は、酸化チタンコロイド溶液を製造する方法において、オキシ塩化チタン溶液にアルカリ剤を加え、生成したゲルを洗浄した後、ヒドロキシカルボン酸を添加して水熱処理する方法を開示している(特許文献2参照)。さらに、同様の方法で希土類元素の酸化物ゾルを製造する方法を開示している(特許文献3参照)。しかし、これらの方法を用いて、鉄の水溶性無機化合物からオキシ水酸化鉄ゾルを製造しようとした場合、得られる生成物は経時的に沈降するゲルであり、オキシ水酸化鉄ゾルが得られないという問題があった。   On the other hand, the applicant of the present invention discloses a method for producing a titanium oxide colloidal solution by adding an alkali agent to a titanium oxychloride solution, washing the generated gel, and then adding a hydroxycarboxylic acid and hydrothermally treating it. (See Patent Document 2). Furthermore, a method for producing a rare earth oxide sol by the same method is disclosed (see Patent Document 3). However, when these methods are used to produce an iron oxyhydroxide sol from a water-soluble inorganic compound of iron, the resulting product is a gel that settles over time, resulting in an iron oxyhydroxide sol. There was no problem.

特開2006−182604号公報JP 2006-182604 A 特開2002−136869号公報JP 2002-136869 A 特開2006−45015号公報JP 200645015 A

本発明は、安定性に優れたオキシ水酸化鉄ゾルを極めて簡便な工程で製造する方法及びこの方法により製造されたオキシ水酸化鉄ゾルを提供することを目的とする。   An object of the present invention is to provide a method for producing an iron oxyhydroxide sol excellent in stability by an extremely simple process and an iron oxyhydroxide sol produced by this method.

本発明者らは、安定性に優れた鉄化合物のゾルの製造方法について鋭意検討を重ねる中で、アルカリ剤とヒドロキシカルボン酸を巧みに利用すれば、極めて簡便な工程でゾルが得られることを発見し、係る知見に基づき本発明を完成したものである。即ち本発明は、
(1)鉄の水溶性無機化合物にアルカリ剤をアルカリ剤/無機酸根(モル比)=0.5〜0.9の範囲で加えて、鉄の水酸化物溶液を得る工程。
(2)工程(1)の鉄の水酸化物溶液に、ヒドロキシカルボン酸を、ヒドロキシカルボン酸/鉄(Fe)(モル比)=0.05〜0.20の範囲で加える工程。
(3)工程(2)のヒドロキシカルボン酸を加えた溶液にアルカリ剤を加えて、pHを6〜12に調整し、粗オキシ水酸化鉄ゾルを得る工程。
(4)工程(3)の粗オキシ水酸化鉄ゾルを分画分子量20000以下の限外ろ過膜でろ過したときのろ液の電気伝導度が1mS/cm以下になるまで洗浄しオキシ水酸化鉄ゾルを得る工程。
上記(1)〜(4)の工程によって製造されるオキシ水酸化鉄ゾルの製造方法及びこの方法により製造されたオキシ水酸化鉄ゾルに関する。
The inventors of the present invention have intensively studied about a method for producing a sol of an iron compound having excellent stability, and that a sol can be obtained in an extremely simple process if an alkali agent and a hydroxycarboxylic acid are skillfully used. The present invention has been completed based on such findings. That is, the present invention
(1) A step of adding an alkali agent to a water-soluble inorganic compound of iron in a range of alkali agent / inorganic acid radical (molar ratio) = 0.5 to 0.9 to obtain an iron hydroxide solution.
(2) A step of adding hydroxycarboxylic acid to the iron hydroxide solution of step (1) in a range of hydroxycarboxylic acid / iron (Fe) (molar ratio) = 0.05 to 0.20.
(3) A step of adding an alkali agent to the solution added with the hydroxycarboxylic acid in step (2) to adjust the pH to 6 to 12 to obtain a crude iron oxyhydroxide sol.
(4) When the crude iron oxyhydroxide sol of step (3) is filtered through an ultrafiltration membrane having a molecular weight cut-off of 20000 or less, the filtrate is washed until the electrical conductivity of the filtrate becomes 1 mS / cm or less. Obtaining a sol;
The present invention relates to a method for producing an iron oxyhydroxide sol produced by the steps (1) to (4) and an iron oxyhydroxide sol produced by this method.

本発明は、アルカリ剤とヒドロキシカルボン酸を巧みに利用し、極めて簡便な工程でオキシ水酸化鉄ゾルを製造する方法であるから、極めて経済的である。そして得られるゾルは優れた安定性を有する。さらに、本発明ゾルは、膜ろ過法や加熱などによる濃縮操作で高濃度化しても安定であり、また、水などで希釈しても優れた安定性を有し、その工業的意義は絶大である。 Since the present invention is a method for producing an iron oxyhydroxide sol in a very simple process by skillfully using an alkali agent and a hydroxycarboxylic acid, it is extremely economical. The resulting sol has excellent stability. Furthermore, the sol of the present invention is stable even when the concentration is increased by a concentration operation such as a membrane filtration method or heating, and has excellent stability even when diluted with water, and its industrial significance is tremendous. is there.

以下、本発明のオキシ水酸化鉄ゾルの製造方法について詳細に説明する。
(1)の工程では、鉄の水溶性無機化合物の酸性水溶液にアルカリ剤をアルカリ剤/無機酸根(モル比)=0.5〜0.9の範囲で加えて、鉄の水酸化物溶液を得る。
本発明に使用する鉄の水溶性無機化合物としては、塩化鉄、硝酸鉄、硫酸鉄等無機の水溶性鉄化合物が好例として挙げられ、鉄は第一鉄、第二鉄のいずれであっても良い。第一鉄化合物の場合、酸化剤、例えば過酸化水素等により第二鉄化合物として使用することが好ましい。
Hereinafter, the manufacturing method of the iron oxyhydroxide sol of this invention is demonstrated in detail.
In the step (1), an alkali agent is added to an acidic aqueous solution of a water-soluble inorganic compound of iron in the range of alkali agent / inorganic acid radical (molar ratio) = 0.5 to 0.9, and an iron hydroxide solution is added. obtain.
Examples of the water-soluble inorganic compound of iron used in the present invention include inorganic water-soluble iron compounds such as iron chloride, iron nitrate, and iron sulfate, and iron may be either ferrous or ferric iron. good. In the case of a ferrous compound, it is preferably used as a ferric compound with an oxidizing agent such as hydrogen peroxide.

本発明においては、先ずこの鉄の水溶性無機化合物の酸性水溶液を調製するが、このときの鉄濃度は格別制約なく適宜選択することができる。鉄濃度が低いと得られるオキシ水酸化鉄ゾルの濃度も低くなり経済的でなく、高きに過ぎるとアルカリ剤との反応後の液の粘度が高くなりハンドリング性が悪くなり生産効率が低下する。一般的には酸化第二鉄(Fe2O3)として0.2〜5質量%程度の濃度が好ましい。調製された鉄の酸性水溶液に、次いでアルカリ剤を添加するが、使用するアルカリ剤としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物も使用できるが、ゾルの使用目的によってはナトリウムやカリウムの含有を好まない場合もあるため、アンモニア、炭酸水素アンモニウムあるいは尿素を使用することが好ましい。さて、本発明において最も肝要なることは、先ず最初にアルカリ剤を添加すること及びアルカリ剤の添加量である。鉄の水溶性無機化合物へのアルカリ剤の添加量は、アルカリ剤/無機酸根(モル比)=0.5〜0.9の範囲であり、アルカリ剤添加の目的は鉄の水酸化物溶液を得ることにある。このときの溶液pHはアルカリ剤の種類により若干異なるが概ね1.5〜2.5となる。アルカリ剤を添加することにより当該水溶液は一旦ゲル状態を呈するが、如何なる工程も要することなくこのゲルは次第に解膠し、透明感のあるコロイド粒子分散溶液となる。この事実が本発明に於ける工程簡素化の第一要因となっているものである。尚、鉄の水溶性無機化合物の酸性水溶液にヒドロキシカルボン酸を添加した後アルカリ剤を添加した場合は、このコロイド粒子分散溶液は得られず、最終的に本発明の安定性に優れたオキシ水酸化鉄ゾルを得ることはできない。
アルカリ剤の添加量が、上記モル比の下限を下廻った場合でもこのコロイド粒子分散溶液は得られるが、次工程のヒドロキシカルボン酸添加時にイオン性の鉄が生成し、安定性の高いゾルを得るための工程(4)洗浄時に、これが漏出し収率が低下すると共に粒子中などに取り込まれて洗浄後にも残存する一部のイオン性の鉄によって粒子間のチャージバランスが崩れ安定性に優れたゾルを得ることができない。また、上限を上廻ると撹拌時間を増やしても分散性の良いコロイド粒子分散溶液が得られず、結果、本発明のオキシ水酸化鉄ゾルを製造することができない。何故分散性の良いコロイド粒子分散溶液が得られないかについては定かではないが、一時的に分散剤として機能する無機酸根が、一部アルカリ剤と反応し、機能性無機酸根が不足するためと推定される。
In the present invention, an acidic aqueous solution of the water-soluble inorganic compound of iron is first prepared. The iron concentration at this time can be appropriately selected without any particular limitation. If the iron concentration is low, the concentration of the iron oxyhydroxide sol obtained is low and not economical, and if it is too high, the viscosity of the liquid after the reaction with the alkali agent becomes high, handling properties are deteriorated, and production efficiency is lowered. Generally, a concentration of about 0.2 to 5% by mass as ferric oxide (Fe 2 O 3 ) is preferable. Next, an alkali agent is added to the prepared acidic aqueous solution of iron. As the alkali agent to be used, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide can be used, but depending on the intended use of the sol. Since there is a case where it is not preferable to contain sodium or potassium, it is preferable to use ammonia, ammonium hydrogen carbonate or urea. Now, what is most important in the present invention is that the alkali agent is added first and the amount of the alkali agent added. The amount of the alkali agent added to the water-soluble inorganic compound of iron is in the range of alkali agent / inorganic acid radical (molar ratio) = 0.5 to 0.9. The purpose of adding the alkali agent is to use the iron hydroxide solution. There is to get. The solution pH at this time is approximately 1.5 to 2.5 although it varies slightly depending on the type of alkaline agent. By adding an alkali agent, the aqueous solution once exhibits a gel state, but this gel is gradually peptized without any steps and becomes a transparent colloidal particle dispersion solution. This fact is the first factor for simplification of the process in the present invention. In addition, when an alkaline agent is added after adding a hydroxycarboxylic acid to an acidic aqueous solution of a water-soluble inorganic compound of iron, this colloidal particle dispersion solution cannot be obtained, and finally the oxywater excellent in stability of the present invention. An iron oxide sol cannot be obtained.
This colloidal particle dispersion solution can be obtained even when the addition amount of the alkaline agent is lower than the lower limit of the above molar ratio, but ionic iron is generated when the hydroxycarboxylic acid is added in the next step to obtain a highly stable sol. Step (4) for cleaning, this reduces the leakage yield, and the ionic iron remaining in the particles after being taken into the particles or the like has lost the charge balance between the particles and has excellent stability. The sol cannot be obtained. If the upper limit is exceeded, even if the stirring time is increased, a colloidal particle dispersion solution with good dispersibility cannot be obtained, and as a result, the iron oxyhydroxide sol of the present invention cannot be produced. It is not clear why a colloidal particle dispersion solution with good dispersibility cannot be obtained, but because the inorganic acid radical that temporarily functions as a dispersant partially reacts with an alkaline agent and the functional inorganic acid radical is insufficient. Presumed.

アルカリ剤の使用態様や添加態様、酸性溶液の温度について云えば、特に制限されることはないが、アルカリ剤は水溶液とし、濃度はアルカリ剤の種類により異なるが、一般的には30質量%以下の濃度で使用することが好ましい。アルカリ剤の濃度が低い場合もゾルは得られるが、生産性を考慮すると0.2〜30質量%の濃度が好ましい。また、添加態様は連続的であっても間欠的であってもよい。酸性水溶液の温度は、高温の場合、鉄の水溶性無機化合物の加水分解によって粒子が異常に大きくなる傾向があるため、通常10〜60℃、さらには10〜40℃の範囲が好ましい。
鉄の水溶性無機化合物の酸性水溶液撹拌下にアルカリ剤を添加した直後は、前記の通り液全体が一旦ゲル状態となるが、時間とともに徐々に解膠して、最終的には透明感のある褐色のコロイド粒子分散溶液となる。
There are no particular restrictions on the use mode and addition mode of the alkaline agent and the temperature of the acidic solution, but the alkaline agent is an aqueous solution, and the concentration varies depending on the type of alkaline agent, but is generally 30% by mass or less. It is preferable to use at a concentration of Although the sol can be obtained even when the concentration of the alkaline agent is low, a concentration of 0.2 to 30% by mass is preferable in consideration of productivity. Moreover, the addition aspect may be continuous or intermittent. When the temperature of the acidic aqueous solution is high, the particles tend to become abnormally large due to hydrolysis of the water-soluble inorganic compound of iron, and therefore the temperature is usually preferably 10 to 60 ° C, more preferably 10 to 40 ° C.
Immediately after adding the alkali agent while stirring the acidic aqueous solution of the water-soluble inorganic compound of iron, as described above, the entire solution once becomes a gel state, but gradually peptizes over time, and finally has a transparent feeling. A brown colloidal particle dispersion solution is obtained.

次いで(2)の工程では、(1)の工程で得た鉄の水酸化物溶液であるコロイド粒子分散溶液にヒドロキシカルボン酸を、ヒドロキシカルボン酸/鉄(Fe)(モル比)=0.05〜0.20の範囲で添加する。ヒドロキシカルボン酸添加の目的は、生成コロイド粒子の第一段階安定化にあり、このモル比が0.05を下廻ると、本発明のゾルを得ることができない。
一方、0.20を上廻ると、コロイド粒子として存在している鉄成分の一部がイオン化し、高効率で本発明のゾルを製造することができないばかりか不安定ゾルとなる。これはイオン性の鉄によって粒子間のチャージバランスが崩れ、ゾルの不安定性を増幅するものと推定される。
Next, in the step (2), hydroxycarboxylic acid is added to the colloidal particle dispersion solution, which is the iron hydroxide solution obtained in the step (1), and hydroxycarboxylic acid / iron (Fe) (molar ratio) = 0.05. Add in the range of ~ 0.20. The purpose of adding the hydroxycarboxylic acid is to stabilize the produced colloidal particles in the first stage. When this molar ratio is less than 0.05, the sol of the present invention cannot be obtained.
On the other hand, if it exceeds 0.20, part of the iron component existing as colloidal particles is ionized, and not only the sol of the present invention can be produced with high efficiency but also an unstable sol. This is presumed that the charge balance between particles is broken by ionic iron and amplifies the instability of the sol.

本発明に使用するヒドロキシカルボン酸としては、クエン酸、リンゴ酸、酒石酸、乳酸、ヒドロキシ吉草酸、グリセリン酸、トロパ酸、ベンジル酸などが利用できる、特にクエン酸、リンゴ酸、酒石酸等の二価以上のカルボキシル基を有するヒドロキシカルボン酸が少ない含有量で本発明のオキシ水酸化鉄ゾルを製造できることから好ましい。ヒドロキシカルボン酸の添加の態様については格別制約はないが、水溶液とし、撹拌しながらゆっくり添加することが好ましい。   As the hydroxycarboxylic acid used in the present invention, citric acid, malic acid, tartaric acid, lactic acid, hydroxyvaleric acid, glyceric acid, tropic acid, benzylic acid and the like can be used. It is preferable because the iron oxyhydroxide sol of the present invention can be produced with a small content of the above hydroxycarboxylic acid having a carboxyl group. Although there is no special restriction | limiting about the aspect of addition of hydroxycarboxylic acid, It is preferable to set it as aqueous solution and add slowly, stirring.

次いで(3)の工程では、(2)の工程で得たヒドロキシカルボン酸含有溶液にアルカリ剤を加えて、pHを6〜12に調整し、粗オキシ水酸化鉄ゾルを得る。アルカリ剤については前記アルカリ剤と同様でありこれらを適宜使用することができるが、アンモニアが最も好ましい。
pHが6を下廻ると本発明の目的とするゾルを得ることができない。一方、pH12を上廻ってアルカリ剤を添加しても(4)の洗浄工程において更なる洗浄効果即ち、安定化は得られないため経済的でない。何故アルカリ剤添加により安定化が図られるか明らかではないが、機構的にはコロイド状オキシ水酸化鉄を安定化させている鉄原料に由来する塩素根、硝酸根、硫酸根等の無機酸根とヒドロキシカルボン酸との置換を促進しているものと推定される。
Next, in the step (3), an alkaline agent is added to the hydroxycarboxylic acid-containing solution obtained in the step (2) to adjust the pH to 6 to 12 to obtain a crude iron oxyhydroxide sol. The alkali agent is the same as the alkali agent and can be appropriately used, but ammonia is most preferable.
If the pH is lower than 6, the sol targeted by the present invention cannot be obtained. On the other hand, adding an alkaline agent exceeding pH 12 is not economical because a further cleaning effect, that is, stabilization cannot be obtained in the cleaning step (4). Although it is not clear why the addition of an alkali agent can stabilize the structure, it is not possible to understand the mechanism of inorganic acid radicals such as chlorine, nitrate, and sulfate radicals derived from iron raw materials that stabilize colloidal iron oxyhydroxide. It is presumed that the substitution with hydroxycarboxylic acid is promoted.

次いで(4)の工程では、(3)の粗オキシ水酸化鉄ゾルを洗浄し本発明オキシ水酸化鉄ゾルを得る。この工程の目的は、オキシ水酸化鉄の完全なるゾル化とその安定化にある。即ち、洗浄により、鉄原料に由来するイオン性の無機酸根やアルカリ剤添加により副生した塩類を除去することにより粗オキシ水酸化鉄ゾルを完全にゾル化し、これを安定化させることにある。洗浄方法としては、イオン交換樹脂、膜ろ過等を使用する方法があるが、限外ろ過膜による方法が簡便で、本発明の目的に最も適合し推奨される。なお、(3)の工程において粗オキシ水酸化鉄ゾルと称したのは、この工程でオキシ水酸化鉄の微粒子が生成するが、これに加えてイオン性の無機酸根や可溶性塩類等の不純物・夾雑物を含有しているためである。この工程における溶液の状態は、ヒドロキシカルボン酸を添加した時点で一部ゾルを含むゲル状態となり、次にアルカリ剤を加えても色変化は認められるものの前記状態に大きな変化は認められない。即ち、ほぼゲル状態と言えるものだが、本発明では(3)の工程で得られる溶液を粗オキシ水酸化鉄ゾルと称した。   Next, in the step (4), the crude iron oxyhydroxide sol of (3) is washed to obtain the iron oxyhydroxide sol of the present invention. The purpose of this process is to complete the solation of iron oxyhydroxide and its stabilization. That is, by removing ionic inorganic acid radicals derived from iron raw materials and salts by-produced by adding an alkaline agent by washing, the crude iron oxyhydroxide sol is completely solated and stabilized. As a washing method, there are methods using ion exchange resin, membrane filtration, etc., but a method using an ultrafiltration membrane is simple and is most suitable and recommended for the purpose of the present invention. In addition, in the step (3), the crude iron oxyhydroxide sol is referred to as fine particles of iron oxyhydroxide generated in this step. In addition to this, impurities such as ionic inorganic acid radicals and soluble salts This is because it contains impurities. The state of the solution in this step becomes a gel state partially containing sol when the hydroxycarboxylic acid is added, and even if an alkali agent is added next, a color change is recognized, but no significant change is observed in the state. That is, although it can be said that it is almost a gel state, in this invention, the solution obtained at the process of (3) was called crude iron oxyhydroxide sol.

さて、洗浄の程度に関して云えば、分画分子量が20000以下の限外ろ過膜でろ過したときのろ液の電気伝導度が1mS/cm以下になるまで洗浄する。即ち、ろ液の電気伝導度を1mS/cm以下とすることにより、粗オキシ水酸化鉄ゾルは完全にゾル化し、オキシ水酸化鉄ゾル中に含まれる無機酸根を、鉄に対して、概ね無機酸根/鉄(Fe)のモル比で0.02以下とすることができる。この様な限度にまでゾル中の無機酸根を低減させることにより本発明の目的とする粗オキシ水酸化鉄ゾルのゾル化が完成し、長期間保存安定性があり、濃縮、希釈にも耐える安定なゾルを得ることができる。限外ろ過膜等により容易にこのような限度にまで無機酸根を低減させることができるのは、工程(3)の適正なアルカリ剤添加によるものである。
このようにして得られた本発明のオキシ水酸化鉄ゾルは、褐色で透明感のある溶液状のものである。このゾル中の微粒子は、大部分がオキシ水酸化鉄の微結晶である。これは、ゾルの乾燥物の粉末X線回折が、オキシ水酸化鉄特有のブロードな回折パターンを示すことによって確認できる(図1参照)。
Regarding the degree of washing, washing is carried out until the electrical conductivity of the filtrate is 1 mS / cm or less when filtered through an ultrafiltration membrane having a fractional molecular weight of 20000 or less. That is, by setting the electric conductivity of the filtrate to 1 mS / cm or less, the crude iron oxyhydroxide sol is completely solated, and the inorganic acid radicals contained in the iron oxyhydroxide sol are almost inorganic with respect to iron. The molar ratio of acid radical / iron (Fe) can be 0.02 or less. By reducing the inorganic acid radicals in the sol to such a limit, the solification of the crude iron oxyhydroxide sol that is the object of the present invention is completed, it has long-term storage stability, and it can withstand concentration and dilution. Sol can be obtained. The reason why inorganic acid radicals can be easily reduced to such a limit by an ultrafiltration membrane or the like is due to the addition of an appropriate alkali agent in step (3).
The iron oxyhydroxide sol of the present invention thus obtained is a brown and transparent solution. Most of the fine particles in the sol are fine crystals of iron oxyhydroxide. This can be confirmed by the powder X-ray diffraction of the dried sol having a broad diffraction pattern unique to iron oxyhydroxide (see FIG. 1).

得られた本発明のオキシ水酸化鉄ゾルは、優れた安定性を有することから濃縮して高濃度化するのに最適であり、また水などで希釈して利用するのにも最適である。特に濃縮して利用する場合は、(4)の工程の洗浄後に加熱することで低粘度のまま濃縮することができる。このときの加熱温度や時間の条件は、目的とする濃縮の程度によって適宜選択すればよいが、通常60〜200℃で行うことが好ましい。更に好ましくは、100〜140℃で2〜10時間程度の水熱処理である。本発明ゾルにあっては、加熱処理により、粒子サイズが均一化し分散性が向上するため、例えば、酸化鉄(Fe2O3)として10質量%あるいはそれ以上まで高濃度化が可能である。 Since the obtained iron oxyhydroxide sol of the present invention has excellent stability, it is optimal for concentration and concentration, and is also optimal for use by diluting with water or the like. In particular, when it is used after being concentrated, it can be concentrated with low viscosity by heating after washing in the step (4). The heating temperature and time conditions at this time may be appropriately selected depending on the intended degree of concentration, but it is usually preferable to carry out at 60 to 200 ° C. More preferably, the hydrothermal treatment is performed at 100 to 140 ° C. for about 2 to 10 hours. In the sol of the present invention, the particle size is uniformized and the dispersibility is improved by the heat treatment. Therefore, for example, the concentration can be increased to 10% by mass or more as iron oxide (Fe 2 O 3 ).

このようにして製造された本発明のゾルはイオン性の鉄をほとんど含まないという特徴を有する。この特徴によって、腐食や被毒などの問題が回避され、さまざまな工業用途に用いることができる。また、本発明のゾルは、希釈や濃縮だけでなく、酸やアルカリなどの他の物質やアルコール等の両親媒性の有機溶媒との混合に対しても増粘化あるいはゲル化しにくく、また沈殿しにくいという極めて優れた性質を有する。   The sol of the present invention thus produced has a feature that it contains almost no ionic iron. This feature avoids problems such as corrosion and poisoning and can be used in various industrial applications. Further, the sol of the present invention is not only diluted or concentrated, but also difficult to thicken or gel when mixed with other substances such as acids and alkalis and amphiphilic organic solvents such as alcohols. It has extremely excellent properties that it is difficult to do.

本発明のゾルの安定なpH領域は3〜10であり、さらにpH6〜8の範囲でより安定である。通常、(4)の工程後に得られるゾルのpHは6〜12を示すが、必要に応じてゾルが安定な範囲内で酸やアルカリを添加してpH調整をすることができる。例えば、得られたゾルにヒドロキシカルボン酸を加えることでpHを低下させることができ、アンモニア等を添加することでアルカリ性にすることもできる。   The stable pH range of the sol of the present invention is 3 to 10, and more stable in the range of pH 6 to 8. Usually, the pH of the sol obtained after the step (4) is 6 to 12, but if necessary, the pH can be adjusted by adding acid or alkali within a stable range of the sol. For example, the pH can be lowered by adding hydroxycarboxylic acid to the obtained sol, and it can be made alkaline by adding ammonia or the like.

以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらに制限されるものではない。尚、実施例において%は、特に断らない限り全て質量%を示す。   EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In Examples, “%” means “% by mass” unless otherwise specified.

〈分析〉
(1)酸化鉄濃度は、旧JIS K-5407-8に準じてゾルを800℃で焼成した後の焼成残分により算出した。また鉄濃度は、酸化鉄濃度から計算により求めた。
(2)ヒドロキシカルボン酸は、使用原料にはヒドロキシカルボン酸由来以外の炭素源が無いことより、全有機炭素を全有機炭素(TOC)分析装置TOC-Vc(島津製作所(株)製)により測定し、それをヒドロキシカルボン酸の分子量に換算した。
(3)塩素は、硝酸銀をチオシアン酸アンモニウム溶液で逆滴定して定量した。また硝酸は、ケルダール法によりPROGRAM KJELDALH 3(フォス・ジャパン(株)製)を用いて測定した。
(4)ゾルの乾燥物の物質の同定には、X線回折装置XRD-7000(島津製作所(株)製)を用いた。
(5)電気伝導度は、電気伝導度計CM-14S(TOA ELECTRON Ltd.製)を用いて測定した。
(6)メジアン径は、動的光散乱色粒度分布測定装置LB-500(堀場製作所(株)製)を用いて測定した。
<analysis>
(1) The iron oxide concentration was calculated from the firing residue after firing the sol at 800 ° C. according to the old JIS K-5407-8. The iron concentration was calculated from the iron oxide concentration.
(2) Hydroxycarboxylic acid is measured using total organic carbon (TOC) analyzer TOC-Vc (manufactured by Shimadzu Corporation) because there is no carbon source other than hydroxycarboxylic acid in the raw materials used. It was converted to the molecular weight of hydroxycarboxylic acid.
(3) Chlorine was quantified by back titrating silver nitrate with an ammonium thiocyanate solution. Nitric acid was measured using PROGRAM KJELDALH 3 (manufactured by Foss Japan Co., Ltd.) by the Kjeldahl method.
(4) An X-ray diffractometer XRD-7000 (manufactured by Shimadzu Corporation) was used to identify the substance of the dried sol.
(5) The electric conductivity was measured using an electric conductivity meter CM-14S (manufactured by TOA ELECTRON Ltd.).
(6) The median diameter was measured using a dynamic light scattering color particle size distribution analyzer LB-500 (manufactured by Horiba, Ltd.).

〈ろ過法〉
限外ろ過膜として、分画分子量が10000である型式SLP-1053(旭化成(株)製)を用いた限外ろ過装置によりろ過した。
〈鉄成分のろ過漏れ率〉
鉄成分のろ過漏れ率は、ろ過前の鉄成分の質量に対するろ液中の鉄成分の質量の百分率により算出した。
〈保存安定性試験〉
保存安定性試験は、試料を50mL容サンプル瓶に入れて封入し、35℃恒温槽で行った。
<Filtration method>
As an ultrafiltration membrane, filtration was performed by an ultrafiltration apparatus using a model SLP-1053 (manufactured by Asahi Kasei Co., Ltd.) having a molecular weight cut-off of 10,000.
<Filtration leakage rate of iron components>
The filtration leakage rate of the iron component was calculated by the percentage of the mass of the iron component in the filtrate with respect to the mass of the iron component before filtration.
<Storage stability test>
The storage stability test was conducted by placing the sample in a 50 mL sample bottle and enclosing it in a 35 ° C. constant temperature bath.

[実施例1]
酸化鉄(Fe2O3)換算で2%の塩化第二鉄水溶液10000g(pH1.3)に、28%アンモニア水溶液365g(NH3/Clのモル比=0.8)を撹拌下で添加し、ゲル状態の液を得た。2時間撹拌後、この液は透明感のある褐色のコロイド粒子分散溶液となった。このときのpHは2.1であった。次に、この液に10%クエン酸水溶液481g(クエン酸/Feのモル比=0.10)を撹拌下で添加した後、直ぐに10%アンモニア水溶液によりpHを8.7に調整した。その後、限外ろ過装置を用いて、ろ液の電気伝導度が100μS/cm以下になるまで洗浄し、Fe2O3として10.2%のゾルを得た。このときのろ液中の鉄成分の分析値は検出限界以下だったため、鉄成分のろ過漏れ率は0%とした。得られたゾルのpHは6.6、メジアン径は6nmであり、クエン酸/Fe(モル比)=0.10であった。このゾルの乾燥物の粉末X線回折はFeO(OH)の回折パターンを示したことより、得られたゾルがオキシ水酸化鉄ゾルであることが確認できた。本発明で得た上記オキシ水酸化鉄ゾルをエバポレーターによりFe2O3濃度15.0%まで濃縮したゾル、および上記オキシ水酸化鉄ゾルをイオン交換水で5.0%まで希釈したゾルについて3ヶ月の保存安定性試験を行った結果、安定状態を維持していた。この事から本発明のゾルは極めて安定性が高いことが分かる。
[Example 1]
To a 2% ferric chloride aqueous solution 10000 g (pH 1.3) in terms of iron oxide (Fe 2 O 3 ), a 28% ammonia aqueous solution 365 g (NH 3 / Cl molar ratio = 0.8) was added with stirring, and the gel A liquid in a state was obtained. After stirring for 2 hours, this solution became a transparent brown colloidal particle dispersion solution. The pH at this time was 2.1. Next, 481 g of a 10% citric acid aqueous solution (citric acid / Fe molar ratio = 0.10) was added to this solution with stirring, and immediately the pH was adjusted to 8.7 with a 10% aqueous ammonia solution. Thereafter, using an ultrafiltration device, the electrical conductivity of the filtrate is washed until below 100 .mu.S / cm, to obtain a 10.2% sol as Fe 2 O 3. Since the analytical value of the iron component in the filtrate at this time was below the detection limit, the filtration leakage rate of the iron component was set to 0%. The obtained sol had a pH of 6.6, a median diameter of 6 nm, and citric acid / Fe (molar ratio) = 0.10. The powder X-ray diffraction pattern of the dried sol showed a diffraction pattern of FeO (OH), confirming that the obtained sol was an iron oxyhydroxide sol. 3 months storage stability of the sol obtained by concentrating the iron oxyhydroxide sol obtained in the present invention to an Fe 2 O 3 concentration of 15.0% by an evaporator and the sol obtained by diluting the iron oxyhydroxide sol to 5.0% with ion-exchanged water As a result of the sex test, the stable state was maintained. This indicates that the sol of the present invention is extremely stable.

[実施例2]
酸化鉄(Fe2O3)換算で0.5%の硝酸第二鉄水溶液40000g(pH1.3)に、10%炭酸アンモニウム溶液766g(NH3/NO3のモル比=0.6)を撹拌下で添加し、ゲル状の液を得た。2時間撹拌後、この液は透明感のある褐色のコロイド粒子分散溶液となった。このときのpHは1.8であった。次に、この液に10%リンゴ酸水溶液504g(リンゴ酸/Feのモル比=0.15)を撹拌下で添加した後、30分間の撹拌を経て10%アンモニア水溶液によりpHを9.1に調整した。その後、限外ろ過装置を用いて、ろ液の電気伝導度が50μS/cm以下になるまで洗浄し、Fe2O3として15.0%のゾルを得た。このとき、ろ液中に検出された鉄成分のろ過漏れ率は1%であった。
得られたゾルのpHは7.2、メジアン径は10nmであり、リンゴ酸/Fe(モル比)=0.14であった。このゾルの乾燥物の粉末X線回折はFeO(OH)の回折パターンを示したことより、得られたゾルがオキシ水酸化鉄ゾルであることが確認できた。また、3ヶ月の保存安定性試験を行った結果、安定状態を維持していた。
[Example 2]
To 40000 g of 0.5% ferric nitrate aqueous solution (pH 1.3) in terms of iron oxide (Fe 2 O 3 ), add 766 g of 10% ammonium carbonate solution (NH 3 / NO 3 molar ratio = 0.6) with stirring. A gel-like liquid was obtained. After stirring for 2 hours, this solution became a transparent brown colloidal particle dispersion solution. The pH at this time was 1.8. Next, 504 g of a 10% malic acid aqueous solution (molar ratio of malic acid / Fe = 0.15) was added to this solution with stirring, and the pH was adjusted to 9.1 with 10% ammonia aqueous solution after stirring for 30 minutes. Thereafter, using an ultrafiltration device, the electrical conductivity of the filtrate is washed until below 50 [mu] S / cm, to obtain a 15.0% sol as Fe 2 O 3. At this time, the filtration leakage rate of the iron component detected in the filtrate was 1%.
The obtained sol had a pH of 7.2, a median diameter of 10 nm, and malic acid / Fe (molar ratio) = 0.14. The powder X-ray diffraction pattern of the dried sol showed a diffraction pattern of FeO (OH), confirming that the obtained sol was an iron oxyhydroxide sol. In addition, as a result of conducting a storage stability test for 3 months, the stable state was maintained.

[実施例3]
酸化鉄(Fe2O3)換算で3%の硝酸第二鉄水溶液6667g(pH1.2)に、1%アンモニア水8942g(NH3/NO3のモル比=0.7)を撹拌下で添加し、ゲル状の液を得た。2時間撹拌後、この液は透明感のある褐色のコロイド粒子分散溶液となった。このときのpHは1.9であった。次に、この液に10%酒石酸水溶液752g(酒石酸/Feのモル比=0.20)を撹拌下で添加した後、30分間の撹拌を経て10%アンモニア水溶液によりpHを10.0に調整した。その後、限外ろ過装置を用いて、ろ液の電気伝導度が400μS/cm以下になるまで洗浄し、Fe2O3として5.1%のゾルを得た。このとき、ろ液中に検出された鉄成分のろ過漏れ率は3%であった。
得られたゾルのpHは7.5、メジアン径は11nmであり、酒石酸/Fe(モル比)=0.18であった。このゾルの乾燥物の粉末X線回折はFeO(OH)の回折パターンを示したことより、得られたゾルがオキシ水酸化鉄ゾルであることが確認できた。また、3ヶ月の保存安定性試験を行った結果、安定状態を維持していた。
[Example 3]
To 6667 g (pH 1.2) of 3% ferric nitrate aqueous solution in terms of iron oxide (Fe 2 O 3 ), 892 g of 1% aqueous ammonia (NH 3 / NO 3 molar ratio = 0.7) was added with stirring. A gel-like liquid was obtained. After stirring for 2 hours, this solution became a transparent brown colloidal particle dispersion solution. The pH at this time was 1.9. Next, 752 g of a 10% tartaric acid aqueous solution (tartaric acid / Fe molar ratio = 0.20) was added to this solution under stirring, and the pH was adjusted to 10.0 with a 10% aqueous ammonia solution after 30 minutes of stirring. Thereafter, using an ultrafiltration device, the electrical conductivity of the filtrate is washed until below 400 [mu] S / cm, to obtain a 5.1% sol as Fe 2 O 3. At this time, the filtration leakage rate of the iron component detected in the filtrate was 3%.
The obtained sol had a pH of 7.5, a median diameter of 11 nm, and tartaric acid / Fe (molar ratio) = 0.18. The powder X-ray diffraction pattern of the dried sol showed a diffraction pattern of FeO (OH), confirming that the obtained sol was an iron oxyhydroxide sol. In addition, as a result of conducting a storage stability test for 3 months, the stable state was maintained.

[比較例1]
酸化鉄(Fe2O3)換算で2%の塩化第二鉄水溶液10000g(pH1.3)に、28%アンモニア水502g(NH3/Clのモル比=1.1)を撹拌下で添加し、ゲル状の液を得た。このときのpHは8.6であり、24時間撹拌後もこの液は透明感のないゲル状であった。その後、実施例1と同様に10%クエン酸水溶液481g(クエン酸/Feのモル比=0.10)を撹拌下で添加した後、直ぐに10%アンモニア水溶液によりpHを8.7に調整した。その後、限外ろ過装置を用いて、ろ液の電気伝導度が100μS/cm以下になるまで洗浄したが、得られた生成物は経時的に沈降するゲルであり、分散性に優れたオキシ水酸化鉄ゾルは得られなかった。即ち、アルカリ剤/無機酸根(モル比)が本発明の範囲を逸脱すると本発明のオキシ水酸化鉄ゾルが得られないことが分かる。
[Comparative Example 1]
To 10000 g of 2% ferric chloride aqueous solution (pH 1.3) in terms of iron oxide (Fe 2 O 3 ), add 502 g of 28% aqueous ammonia (NH 3 / Cl molar ratio = 1.1) under stirring and gel A liquid was obtained. The pH at this time was 8.6, and even after stirring for 24 hours, this liquid was in a gel state with no clearness. Thereafter, as in Example 1, 481 g of a 10% citric acid aqueous solution (citric acid / Fe molar ratio = 0.10) was added with stirring, and the pH was immediately adjusted to 8.7 with a 10% aqueous ammonia solution. Thereafter, using an ultrafiltration device, the filtrate was washed until the electric conductivity of the filtrate reached 100 μS / cm or less, but the resulting product was a gel that settled with time and had excellent dispersibility. An iron oxide sol was not obtained. That is, it can be seen that the iron oxyhydroxide sol of the present invention cannot be obtained when the alkali agent / inorganic acid radical (molar ratio) departs from the scope of the present invention.

[比較例2]
実施例1と同様にして透明感のある褐色のコロイド粒子分散溶液を得た後、この液に10%クエン酸水溶液4812g(クエン酸/Feのモル比=1.00)を撹拌下で添加した後、直ちに10%アンモニア水溶液によりpH8.7に調整した。その後、限外ろ過装置を用いて、ろ液の電気伝導度が100μS/cm以下になるまで洗浄し、Fe2O3として0.2%のゾルを得た。しかしながら、このときのろ液中に検出された鉄成分のろ過漏れ率は98%であった。即ち、鉄に対するヒドロキシカルボン酸添加量が多きに過ぎ適正でないと殆どゾルを形成しないことが分かる。
[Comparative Example 2]
After obtaining a transparent colloidal particle dispersion solution having a transparent feeling in the same manner as in Example 1, 4812 g of a 10% citric acid aqueous solution (citric acid / Fe molar ratio = 1.00) was added to this liquid under stirring. The pH was immediately adjusted to 8.7 with a 10% aqueous ammonia solution. Thereafter, using an ultrafiltration device, the electrical conductivity of the filtrate is washed until below 100 .mu.S / cm, to obtain a 0.2% sol as Fe 2 O 3. However, the filtration leakage rate of the iron component detected in the filtrate at this time was 98%. That is, it can be seen that the sol is hardly formed unless the amount of hydroxycarboxylic acid added to iron is too large and appropriate.

[比較例3]
酸化鉄(Fe2O3)換算で2%の塩化第二鉄水溶液10000gに10%クエン酸水溶液481g(クエン酸/Feのモル比=0.10)を撹拌下で添加した後、直ちに10%アンモニア水によりpH8.7に調整した。その後、限外ろ過装置を用いて、ろ液の電気伝導度が100mS/cm以下になるまで洗浄し、Fe2O3として5.1%のゾルを得た。しかし、ろ液中に検出された鉄成分のろ過漏れ率は9%であった。即ち、一部イオン性の鉄となり収率が悪化することが分かる。このオキシ水酸化鉄ゾルをエバポレーターによりFe2O3濃度15%まで濃縮しようとしたところ、濃縮途中で増粘した。また、濃縮前のゾルについて3ヶ月の保存安定性試験を行ったところ、増粘し、本発明のゾルとは性状を著しく異にしゾルと云えるものではなかった。
[Comparative Example 3]
10% aqueous citric acid solution 481 g (citric acid / Fe molar ratio = 0.10) was added to 10000 g of 2% ferric chloride aqueous solution in terms of iron oxide (Fe 2 O 3 ) with stirring, and immediately 10% aqueous ammonia To pH 8.7. Thereafter, using an ultrafiltration device, the electrical conductivity of the filtrate is washed until below 100 mS / cm, to obtain a 5.1% sol as Fe 2 O 3. However, the filtration leakage rate of the iron component detected in the filtrate was 9%. That is, it turns out that it becomes a partly ionic iron and a yield deteriorates. When this iron oxyhydroxide sol was concentrated to an Fe 2 O 3 concentration of 15% by an evaporator, the viscosity increased during the concentration. In addition, when the sol before concentration was subjected to a storage stability test for 3 months, the viscosity increased and the properties of the sol of the present invention differed significantly, and it was not a sol.

[比較例4]
実施例1と同様にして透明感のある褐色のコロイド粒子分散溶液を得た後、この液に10%クエン酸水溶液481g(クエン酸/Feのモル比=0.10)を撹拌下で添加した後、直ぐに10%アンモニア溶液によりpHを3.0に調整した。その後、限外ろ過装置を用いて、ろ液の電気伝導度が100mS/cm以下になるまで洗浄したが、得られた生成物は経時的に沈降するゲルであり、分散性に優れたオキシ水酸化鉄ゾルは得られなかった。即ち、工程(3)のアルカリ剤添加後のpHが本発明の範囲を逸脱すると本発明のオキシ水酸化鉄ゾルが得られないことが分かる。また、ろ液中に検出された鉄成分のろ過漏れ率は27%であったことから、アルカリ剤の添加後のpHが本発明の範囲を逸脱した場合はイオン性の鉄が生成し、洗浄時に系外へ除去されることが分かる。
以上の結果を表1にまとめた。

[Comparative Example 4]
After obtaining a transparent brown colloidal particle dispersion solution in the same manner as in Example 1, 481 g of a 10% aqueous citric acid solution (citric acid / Fe molar ratio = 0.10) was added to this liquid under stirring. Immediately the pH was adjusted to 3.0 with 10% ammonia solution. After that, using an ultrafiltration device, the filtrate was washed until the electric conductivity of the filtrate reached 100 mS / cm or less. The resulting product was a gel that settled with time, and had excellent dispersibility. An iron oxide sol was not obtained. That is, it can be seen that the iron oxyhydroxide sol of the present invention cannot be obtained if the pH after addition of the alkaline agent in the step (3) is out of the range of the present invention. Moreover, since the filtration leakage rate of the iron component detected in the filtrate was 27%, when the pH after addition of the alkaline agent deviated from the scope of the present invention, ionic iron was produced and washed. It can be seen that it is sometimes removed from the system.
The above results are summarized in Table 1.

Figure 2011051836
Figure 2011051836

実施例1、実施例2及び実施例3の本発明ゾルの乾燥物の粉末X線回折を示す図である。It is a figure which shows the powder X-ray diffraction of the dried material of this invention sol of Example 1, Example 2, and Example 3. FIG.

Claims (3)

下記の工程(1)〜(4)によって製造されるオキシ水酸化鉄ゾルの製造方法。
(1)鉄の水溶性無機化合物にアルカリ剤をアルカリ剤/無機酸根(モル比)=0.5〜0.9の範囲で加えて、鉄の水酸化物溶液を得る工程。
(2)工程(1)の鉄の水酸化物溶液に、ヒドロキシカルボン酸を、ヒドロキシカルボン酸/鉄(Fe)(モル比)=0.05〜0.20の範囲で加える工程。
(3)工程(2)のヒドロキシカルボン酸を加えた溶液に、アルカリ剤を加えてpHを6〜12に調整し、粗オキシ水酸化鉄ゾルを得る工程。
(4)工程(3)の粗オキシ水酸化鉄ゾルを分画分子量20000以下の限外ろ過膜でろ過したときのろ液の電気伝導度が1mS/cm以下になるまで洗浄しオキシ水酸化鉄ゾルを得る工程。
The manufacturing method of the iron oxyhydroxide sol manufactured by the following process (1)-(4).
(1) A step of adding an alkali agent to a water-soluble inorganic compound of iron in a range of alkali agent / inorganic acid radical (molar ratio) = 0.5 to 0.9 to obtain an iron hydroxide solution.
(2) A step of adding hydroxycarboxylic acid to the iron hydroxide solution of step (1) in a range of hydroxycarboxylic acid / iron (Fe) (molar ratio) = 0.05 to 0.20.
(3) A step of obtaining a crude iron oxyhydroxide sol by adding an alkaline agent to the solution obtained by adding the hydroxycarboxylic acid in step (2) to adjust the pH to 6 to 12.
(4) When the crude iron oxyhydroxide sol of step (3) is filtered through an ultrafiltration membrane having a molecular weight cut-off of 20000 or less, the filtrate is washed until the electrical conductivity of the filtrate becomes 1 mS / cm or less. Obtaining a sol;
工程(2)のヒドロキシカルボン酸が、クエン酸、リンゴ酸及び酒石酸から選ばれた1種以上である請求項1記載のオキシ水酸化鉄ゾルの製造方法。 The method for producing an iron oxyhydroxide sol according to claim 1, wherein the hydroxycarboxylic acid in step (2) is at least one selected from citric acid, malic acid and tartaric acid. 請求項1又は2に記載の製造方法によって製造されたオキシ水酸化鉄ゾル Iron oxyhydroxide sol produced by the production method according to claim 1 or 2.
JP2009202363A 2009-09-02 2009-09-02 Iron oxyhydroxide sol and method for producing the same Active JP5674083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202363A JP5674083B2 (en) 2009-09-02 2009-09-02 Iron oxyhydroxide sol and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202363A JP5674083B2 (en) 2009-09-02 2009-09-02 Iron oxyhydroxide sol and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011051836A true JP2011051836A (en) 2011-03-17
JP5674083B2 JP5674083B2 (en) 2015-02-25

Family

ID=43941252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202363A Active JP5674083B2 (en) 2009-09-02 2009-09-02 Iron oxyhydroxide sol and method for producing the same

Country Status (1)

Country Link
JP (1) JP5674083B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017119598A (en) * 2015-12-28 2017-07-06 多木化学株式会社 Nickel sol
KR20180063203A (en) 2015-10-09 2018-06-11 닛뽕소다 가부시키가이샤 Oxy iron hydroxide nano dispersion
CN114503198A (en) * 2019-09-30 2022-05-13 同和电子科技有限公司 Iron-based oxide magnetic powder and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379798A (en) * 1976-12-24 1978-07-14 Hitachi Maxell Ltd Production of fine powder of transition metal oxide or oxyhydroxide
JPS61218522A (en) * 1985-03-22 1986-09-29 Sachimaru Senoo Iron hydroxide colloidal solution stable in neutrality/ weak alkalinity
JPH02279525A (en) * 1989-04-18 1990-11-15 Showa Denko Kk Production of lepidocrocite
JPH03109215A (en) * 1989-09-22 1991-05-09 Ube Ind Ltd Granular beta-feooh and production thereof
JPH0977503A (en) * 1995-09-16 1997-03-25 Catalysts & Chem Ind Co Ltd Production of metal oxide or hydroxide sol
JP2002136869A (en) * 2000-11-01 2002-05-14 Taki Chem Co Ltd Photocatalytic composition and its manufacturing method
JP2006045015A (en) * 2004-08-06 2006-02-16 Taki Chem Co Ltd Oxide sol or hydroxide sol of rare earth element
JP2006182604A (en) * 2004-12-28 2006-07-13 Catalysts & Chem Ind Co Ltd Method for producing metal oxide sol and metal oxide sol
JP2010522683A (en) * 2007-03-28 2010-07-08 インフィニューム インターナショナル リミテッド Method for producing iron oxide colloid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379798A (en) * 1976-12-24 1978-07-14 Hitachi Maxell Ltd Production of fine powder of transition metal oxide or oxyhydroxide
JPS61218522A (en) * 1985-03-22 1986-09-29 Sachimaru Senoo Iron hydroxide colloidal solution stable in neutrality/ weak alkalinity
JPH02279525A (en) * 1989-04-18 1990-11-15 Showa Denko Kk Production of lepidocrocite
JPH03109215A (en) * 1989-09-22 1991-05-09 Ube Ind Ltd Granular beta-feooh and production thereof
JPH0977503A (en) * 1995-09-16 1997-03-25 Catalysts & Chem Ind Co Ltd Production of metal oxide or hydroxide sol
JP2002136869A (en) * 2000-11-01 2002-05-14 Taki Chem Co Ltd Photocatalytic composition and its manufacturing method
JP2006045015A (en) * 2004-08-06 2006-02-16 Taki Chem Co Ltd Oxide sol or hydroxide sol of rare earth element
JP2006182604A (en) * 2004-12-28 2006-07-13 Catalysts & Chem Ind Co Ltd Method for producing metal oxide sol and metal oxide sol
JP2010522683A (en) * 2007-03-28 2010-07-08 インフィニューム インターナショナル リミテッド Method for producing iron oxide colloid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
神鳥和彦: "鉄酸化物粒子の形態制御とそのキャラクタリゼイション", 大阪教育大学科学機器共同利用センター年報, vol. 第26号, JPN6014053993, 2001, pages 21 - 30, ISSN: 0002969935 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063203A (en) 2015-10-09 2018-06-11 닛뽕소다 가부시키가이샤 Oxy iron hydroxide nano dispersion
JPWO2017061116A1 (en) * 2015-10-09 2018-06-21 日本曹達株式会社 Iron oxyhydroxide nano dispersion
EP3360850A4 (en) * 2015-10-09 2019-05-15 Nippon Soda Co., Ltd. Iron oxyhydroxide nanodispersion liquid
US10781109B2 (en) 2015-10-09 2020-09-22 Nippon Soda Co., Ltd. Iron oxyhydroxide nanodispersion liquid
JP2017119598A (en) * 2015-12-28 2017-07-06 多木化学株式会社 Nickel sol
CN114503198A (en) * 2019-09-30 2022-05-13 同和电子科技有限公司 Iron-based oxide magnetic powder and method for producing same

Also Published As

Publication number Publication date
JP5674083B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
CN107200359B (en) A kind of iron oxide pigment and its production method
JP6286155B2 (en) Method for producing crystalline iron arsenate from a solution containing pentavalent arsenic
JP2010285340A (en) Scorodite-type iron/arsenic compound particle, production method thereof, and arsenic-containing solid
JPH02294414A (en) Production of fine copper powder
JP5674083B2 (en) Iron oxyhydroxide sol and method for producing the same
CN106467315B (en) One pot of precipitation method prepares Ce0.8Sm0.2O1.9‑La1‑xSrxFe1‑yCoyO3‑δThe method of superfine powder
JP5744940B2 (en) Method for treating radioactive Cs-contaminated water, radioactive Cs adsorbent and method for producing the same
JP3272759B2 (en) Manufacture of trimanganese oxide
JP2007244954A (en) Wastewater treatment agent, and method for reducing fluorine ion in wastewater
JP2007284715A (en) Method for producing nickel nanoparticle, and nickel nanoparticle
JP7342227B2 (en) Tantalum acid dispersion and tantalate compound
JP4488831B2 (en) Method for producing rare earth oxide sol or hydroxide sol
JP2020193140A (en) Manufacturing method of cobalt ferrite particle and cobalt ferrite particle manufactured by the method
JP6446229B2 (en) Method for producing crystalline iron arsenate from a solution containing pentavalent arsenic
JPH0222012B2 (en)
KR20100100208A (en) Preparation method of silver powders
JP4836532B2 (en) Method for producing neodymium oxide sol
JPH07241404A (en) Iron based inorganic flocculant and its production
JP2007284713A (en) Method for producing nickel fine powder and nickel fine powder
JP4651000B2 (en) Method for producing niobium oxide sol
JP6696711B2 (en) Nickel sol
Burnett et al. The effect of co-precipitation on cadmium (II) adsorption on hydrous aluminium (III) hydroxide in the presence of a range of chelates
TWI417249B (en) Method for manufacturing particle of ferric ferrous oxide powder
JP2012140252A (en) Metal oxide sol, and method for producing the same
CN115380004A (en) Use of additives for producing copper (II) hydrogen phosphate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141218

R150 Certificate of patent or registration of utility model

Ref document number: 5674083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250