JP2000296340A - Ceramic honeycomb carrier - Google Patents

Ceramic honeycomb carrier

Info

Publication number
JP2000296340A
JP2000296340A JP11105980A JP10598099A JP2000296340A JP 2000296340 A JP2000296340 A JP 2000296340A JP 11105980 A JP11105980 A JP 11105980A JP 10598099 A JP10598099 A JP 10598099A JP 2000296340 A JP2000296340 A JP 2000296340A
Authority
JP
Japan
Prior art keywords
specific surface
surface area
pores
high specific
honeycomb structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11105980A
Other languages
Japanese (ja)
Inventor
Hirohisa Suwabe
博久 諏訪部
Osamu Tokutome
修 徳留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11105980A priority Critical patent/JP2000296340A/en
Publication of JP2000296340A publication Critical patent/JP2000296340A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic honeycomb carrier deposited with a high-specific surface area material which is lessened in the deterioration of a low thermal impact characteristic by deposition of active alumina which improves the adhesiveness of the high-specific surface area material, such as active alumina, and has the coefficient of thermal expansion larger than the coefficient of thermal expansion of a honeycomb structure. SOLUTION: The area ratio of the holes of >=1 to <3 times the average grain size of the high-specific surface area material in the minimum diameter when the holes of the cell wall surface of the honeycomb structure of the ceramic honeycomb carrier consisting of the ceramic honeycomb structure deposited with the high-specific surface area, material are viewed in a direction perpendicular to the surface is specified 1 to 12% and the area rate of the pores of >=10 times the average grain size of the high-specific surface area material in the minimum diameter of when the holes existing in the cell wall surface are vied from the direction perpendicular to the surface is specified to <=10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコージェライトハニ
カム構造触媒担体、特に自動車排ガスの浄化用触媒に用
いられる耐久性に優れたハニカム構造触媒担体に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst carrier having a cordierite honeycomb structure, and particularly to a catalyst carrier having excellent durability used for a catalyst for purifying automobile exhaust gas.

【0002】[0002]

【従来の技術】一般に自動車排ガス浄化に用いられるセ
ラミックハニカム触媒は低熱膨張性のコージェライト質
セラミックからなるハニカム構造体表面に比表面積を増
大させるためγ―アルミナ等の高比表面積材料を担持
し、更に白金などの触媒金属を担持することにより製造
される。セラミックハニカム担体にコージェライトセラ
ミックが使用される理由は、コージェライトがセラミッ
クスの中でも熱膨張係数が最も小さく、そのため、排気
ガス中の未燃焼炭化水素、一酸化炭素の触媒反応による
急激な発熱やエンジン始動、停止時の急熱、急冷により
ハニカム構造体内に生じる温度差により引き起こされる
熱応力に耐える高い耐熱衝撃性を有しているからであ
る。
2. Description of the Related Art In general, ceramic honeycomb catalysts used for purifying automobile exhaust gas carry a high specific surface area material such as γ-alumina to increase the specific surface area on the surface of a honeycomb structure made of cordierite ceramic having low thermal expansion. Further, it is produced by supporting a catalytic metal such as platinum. Cordierite ceramic is used as a ceramic honeycomb carrier because cordierite has the smallest coefficient of thermal expansion among ceramics, so it generates sudden heat due to the catalytic reaction of unburned hydrocarbons and carbon monoxide in exhaust gas and engine This is because the honeycomb structure has high thermal shock resistance to withstand thermal stress caused by a temperature difference generated in the honeycomb structure due to rapid heat and rapid cooling during start and stop.

【0003】しかしながら、γ―アルミナの熱膨張係数
はコージェライトセラミックハニカムの2倍以上であ
り、自動車での使用中の振動にも剥がれないよう焼き付
けて担持させる必要がある。そのため、高比表面積材料
を担持された担体の熱膨張係数は高比表面積材料を担持
していない担体の熱膨張係数の1.5〜3倍程度とな
り、ハニカム担体の耐熱衝撃性がハニカム構造体単味よ
り低下する問題があった。さらに近年の排ガス規制の強
化に伴う、排ガス温度の上昇により、高比表面積材料と
ハニカム構造体間の熱膨張係数差により高比表面積材料
が、使用中の振動により剥がれるという問題もあった。
However, the thermal expansion coefficient of γ-alumina is more than twice that of cordierite ceramic honeycomb, and it is necessary to burn and support the γ-alumina so as not to be peeled off even during vibration during use in an automobile. Therefore, the thermal expansion coefficient of the carrier supporting the high specific surface area material is about 1.5 to 3 times the thermal expansion coefficient of the carrier not supporting the high specific surface area material, and the thermal shock resistance of the honeycomb carrier is reduced. There was a problem that it was lower than plain. Furthermore, there has been a problem that the high specific surface area material is peeled off due to vibration during use due to a difference in thermal expansion coefficient between the high specific surface area material and the honeycomb structure due to an increase in exhaust gas temperature accompanying the recent tightening of exhaust gas regulations.

【0004】[0004]

【発明が解決しようとする課題】セラミックハニカム担
体の、高比表面積材料担持による耐熱衝撃性改善につい
ては、次のような内容が提案されている。特開昭62−
4441号公報では、高比表面積材料を担持せず酸処理
と熱処理で基体の比表面積を増大させ熱膨張係数を低下
させた触媒が開示されている。しかしながらハニカムを
酸処理する技術の問題点は機械的強度の低下である。特
に、近年の触媒コンバーターでは、ハニカム構造体のセ
ル壁の厚さを従来の150μmからその2/3に相当す
る100μm程度に薄くする設計がなされるため、酸処
理により場合によっては酸処理しないものの機械的強度
が1/2になる本技術を採用できない問題点があった。
また、この技術は、γ―アルミナ等高比表面積材料を担
持しないため、比表面積が大きくても浄化性能が低い問
題があった。
The following contents have been proposed for improving the thermal shock resistance of a ceramic honeycomb carrier by supporting a material having a high specific surface area. JP-A-62-2
Japanese Patent No. 4441 discloses a catalyst which does not support a material having a high specific surface area and which has a specific surface area of a substrate increased by an acid treatment and a heat treatment to reduce a thermal expansion coefficient. However, a problem with the technique of acid-treating the honeycomb is a decrease in mechanical strength. In particular, in recent catalytic converters, the thickness of the cell wall of the honeycomb structure is designed to be reduced from 150 μm in the related art to about 100 μm, which is 2 of the conventional value. There was a problem that the present technology in which the mechanical strength was reduced by half could not be adopted.
Further, since this technique does not support a high specific surface area material such as γ-alumina, there is a problem that the purification performance is low even if the specific surface area is large.

【0005】また、特公昭62−8210号公報では、
まずメチルセルロース等をコートし、その後高比表面積
材料を担持し焼き付けることでメチルセルロース等を消
失させることで、ハニカム基体に存在する幅0.5μm
程度以下のマイクロクラックに担体を入り込ませないこ
とにより熱膨張係数の上昇を防止する技術が開示されて
いる。しかしながらこの発明では、マイクロクラックに
γ―アルミナ等の高比表面積材料が入り込まないため熱
膨張係数が上昇しないという目的を達成することはでき
るが、高比表面積材料がマイクロクラックに入り込むこ
とによるいわゆるアンカー効果が薄れる結果、ハニカム
構造体と高比表面積材料との接着強度を低下させ、自動
車の激しい振動に耐えられずに剥がれてしまう問題や、
コーティングに関する工数が増加し、大幅なコストアッ
プになってしまうという問題があった。
In Japanese Patent Publication No. 62-8210,
First, by coating with methylcellulose or the like, and then supporting and baking a material having a high specific surface area to eliminate the methylcellulose or the like, the width of 0.5 μm existing in the honeycomb substrate
A technique has been disclosed in which a carrier is prevented from entering microcracks of a degree or less to prevent an increase in thermal expansion coefficient. However, according to the present invention, it is possible to achieve the object that the coefficient of thermal expansion does not increase because a material having a high specific surface area such as γ-alumina does not enter the microcracks. As a result of the weakening of the effect, the honeycomb structure and the high specific surface area material have a reduced adhesive strength, and may not be able to withstand the severe vibration of the automobile, and may be peeled off,
There has been a problem that the number of man-hours for coating increases and the cost increases significantly.

【0006】これらの問題を解決するため特公平5−5
8773号公報、特開平6−165939号公報では、
気孔率が30%を越え42%以下で、直径0.5〜5μm
の細孔の総細孔容積が全細孔容積の40%以上で、直径
10μm以上の細孔の総容積が全細孔容積の30%以下
であるとともに、ハニカム構造の流路方向の熱膨張係数
が0.3×10-6/℃以下、流路に垂直な方向の熱膨張
係数が0.5×10-6/℃以下であるハニカム構造体に
より触媒担持性の向上及び高比表面積材料及び触媒成分
の担持による耐熱衝撃性劣化の低減がなされることを開
示している。しかしながら、本発明においても、高比表
面積材料の剥離性については記載がなく、また、耐熱衝
撃性劣化が低減されたとはいえ、未だ十分なものではな
かった。また高比表面積材料である活性アルミナの粒径
について5〜10μmの記載はあるものの、高比表面積
材料の粒径とハニカム構造体の細孔の大きさとの相関関
係については何ら記載はない。
To solve these problems, Japanese Patent Publication No. 5-5
8773, JP-A-6-165939,
The porosity is more than 30% and not more than 42%, and the diameter is 0.5 to 5 μm.
The total pore volume of the pores is 40% or more of the total pore volume, the total volume of the pores having a diameter of 10 μm or more is 30% or less of the total pore volume, and the thermal expansion of the honeycomb structure in the flow direction. A catalyst having a coefficient of 0.3 × 10 −6 / ° C. or less and a thermal expansion coefficient in a direction perpendicular to the flow channel of 0.5 × 10 −6 / ° C. or less improve a catalyst supporting property and a high specific surface area material. And that the deterioration of thermal shock resistance due to the loading of the catalyst component is reduced. However, even in the present invention, there is no description about the releasability of the material having a high specific surface area, and although the deterioration of the thermal shock resistance is reduced, it is still insufficient. Further, although there is a description of the particle size of activated alumina as a material having a high specific surface area of 5 to 10 μm, there is no description of the correlation between the particle size of the material having a high specific surface area and the pore size of the honeycomb structure.

【0007】更に特公平6−69534号公報では、前
述の特公平5−58773号公報、特開平6−1659
39号公報に対して、直径0.5〜5μmの細孔の総細
孔容積が全細孔容積に占める割合を40%以上から70
%以上より好ましくは80%以上に限定し、かつ活性ア
ルミナを担持した後の40〜800℃間の熱膨張係数が
1.0×10-6/℃以下とすることにより触媒担持性の
向上及び高比表面積材料及び触媒成分の担持による耐熱
衝撃性劣化の低減がなされることを開示している。しか
しながら、前述したように本発明においても、高比表面
積材料の剥離性については記載がなく、また、耐熱衝撃
性劣化が低減されたとはいえ、未だ十分なものではなか
った。また高比表面積材料である活性アルミナの粒径に
ついて5〜10μmの記載はあるものの、高比表面積材
料の粒径とハニカム構造体の細孔の大きさとの相関関係
については何ら記載はない。
Further, Japanese Patent Publication No. 6-69534 discloses the above-mentioned Japanese Patent Publication No. 5-58773 and Japanese Patent Laid-Open Publication No. 6-1659.
No. 39, the ratio of the total pore volume of the pores having a diameter of 0.5 to 5 μm to the total pore volume is 40% or more to 70%.
% Or more, more preferably 80% or more, and the coefficient of thermal expansion between 40 and 800 ° C. after supporting the activated alumina is set to 1.0 × 10 −6 / ° C. or less to improve catalyst supportability. It discloses that deterioration of thermal shock resistance due to the loading of a high specific surface area material and a catalyst component is reduced. However, as described above, even in the present invention, there is no description about the releasability of the material having a high specific surface area, and even though the thermal shock resistance deterioration is reduced, it is still insufficient. Further, although there is a description of the particle size of activated alumina as a material having a high specific surface area of 5 to 10 μm, there is no description of the correlation between the particle size of the material having a high specific surface area and the pore size of the honeycomb structure.

【0008】また特開平9−262484号公報では4
0〜800℃の平均熱膨張係数が0.4×10−6/℃
以下であるセラミックハニカム基体に、γ−アルミナ等
の担体を担持して40〜800℃の平均熱膨張係数を
0.7×10−6/℃としたセラミックハニカム触媒に
より、機械的強度の低下がなく、担体が剥がれない高い
耐熱衝撃性をもったセラミックハニカム触媒が開示され
ている。しかしながら、本発明においても、高比表面積
材料の剥離性については記載がなく、且つ、高比表面積
材料の粒径とハニカム構造体の細孔の大きさとの相関関
係については何ら記載はない。
In Japanese Patent Application Laid-Open No. 9-262484, 4
The average coefficient of thermal expansion from 0 to 800 ° C. is 0.4 × 10 −6 / ° C.
A ceramic honeycomb substrate having a carrier such as γ-alumina supported on a ceramic honeycomb substrate having an average thermal expansion coefficient of 0.7 × 10 −6 / ° C. at 40 to 800 ° C. reduces mechanical strength as follows. There is disclosed a ceramic honeycomb catalyst having high thermal shock resistance in which the carrier does not peel off. However, even in the present invention, there is no description about the releasability of the high specific surface area material, and there is no description about the correlation between the particle diameter of the high specific surface area material and the pore size of the honeycomb structure.

【0009】本発明の目的は、上述した不具合を解消し
て、活性アルミナ等の高比表面積材料の付着性を改善
し、かつコージェライトハニカム構造体よりも熱膨張係
数の大きな活性アルミナの担持により耐熱衝撃性劣化の
少ない高比表面積材料が担持されたセラミックハニカム
担体を提供するものである。
An object of the present invention is to solve the above-mentioned problems, improve the adhesion of a material having a high specific surface area such as activated alumina, and carry activated alumina having a larger thermal expansion coefficient than a cordierite honeycomb structure. An object of the present invention is to provide a ceramic honeycomb carrier on which a material having a high specific surface area with little thermal shock resistance deterioration is carried.

【0010】[0010]

【課題を解決するための手段】本発明のセラミックハニ
カム担体は、高比表面積材料を担持したセラミックハニ
カム構造体からなるセラミックハニカム担体において、
該ハニカム構造体セル壁表面の気孔を表面に対して垂直
方向から見た場合の最小径が前記高比表面積材料の平均
粒径の1倍以上3倍未満である気孔の面積率が1〜12
%であると共にセル壁表面に存在する気孔を表面に対し
て垂直方向から見た場合の最小径が前記高比表面積材料
の平均粒径10倍以上の気孔の面積率が10%以下であ
ることを特徴とするものである。
The ceramic honeycomb carrier of the present invention is a ceramic honeycomb carrier comprising a ceramic honeycomb structure supporting a material having a high specific surface area.
The area ratio of pores having a minimum diameter of 1 to more than 3 times the average particle diameter of the high specific surface area material when the pores on the cell wall surface of the honeycomb structure are viewed from a direction perpendicular to the surface is 1 to 12
% And the area ratio of pores having a minimum diameter of 10 times or more of the high specific surface area material when the pores existing on the cell wall surface are viewed from a direction perpendicular to the surface is 10% or less. It is characterized by the following.

【0011】更に本発明のセラミックハニカム担体にお
ける高比表面積材料は、平均粒径が1〜10μmである
ことを特徴とするものである。
Further, the material having a high specific surface area in the ceramic honeycomb carrier of the present invention is characterized by having an average particle size of 1 to 10 μm.

【0012】[0012]

【作用】本発明に於いて活性アルミナ等の高比表面積材
料の付着性が良好なのは、高比表面積材料の粒径とハニ
カム構造体表面の気孔の大きさとの有る一定の範囲にお
いて、両者の付着力が最大になる範囲を見出したことに
よる。本来、ハニカム構造体と高比表面積材料の付着力
が発生するのは、高比表面積材料が、ハニカム構造体表
面の気孔やマイクロクラックに入り込むことによるいわ
ゆるアンカー効果と考えられている。また、高比表面積
材料の担持性に関しては、従来より吸水率、気孔率との
相関や、特定の細孔径領域の細孔が担持性に著しく寄与
することが指摘されている。これらの要因以上に今回、
一定の粒径の高比表面積材料とハニカム構造体セル壁表
面の一定の大きさの気孔の組み合わせが両者間に働く付
着力に著しく寄与することが明らかになった。すなわち
従来公知例の中で言われている細孔径、細孔容積の測定
には水銀圧入法が用いられているが、本方法は細孔の測
定を行う場合の一般的方法として古くから広く使われて
いるものの、本方法によればハニカム構造体中に含まれ
る開気孔全ての測定が行われることになる。
In the present invention, the adhesion of a material having a high specific surface area such as activated alumina is good because the material having a high specific surface area and the pore size on the surface of the honeycomb structure are within a certain range. This is due to finding a range where the strength is maximized. Originally, it is considered that the adhesive force between the honeycomb structure and the high specific surface area material occurs because of the so-called anchor effect caused by the high specific surface area material entering pores or microcracks on the surface of the honeycomb structure. Further, regarding the supportability of a material having a high specific surface area, it has been pointed out that correlation with water absorption and porosity and pores in a specific pore diameter region significantly contribute to the supportability. More than these factors,
It has been clarified that the combination of a high specific surface area material with a certain particle size and a certain size of pores on the honeycomb structure cell wall surface significantly contributes to the adhesive force acting between them. That is, the mercury intrusion method has been used for measuring the pore diameter and the pore volume, which is known in the prior art, but this method has been widely used as a general method for measuring pores since ancient times. However, according to the method, all the open pores included in the honeycomb structure are measured.

【0013】しかしながら、本発明者らが本件に関し、
鋭意実験を行った結果、水銀圧入法により得られる開気
孔の寸法よりもハニカム構造体のセル壁表面の気孔を表
面に対して垂直方向から見た場合の最小径が、高比表面
積材料の付着性に大きく貢献することを見いだしたので
ある。これはセラミックハニカム中に存在する気孔の形
態が、セラミック体内部に存在する場合と、セラミック
体最表面に存在する場合とで、異なる形態を示すことに
も起因する。具体的にはハニカム構造体セル壁表面の気
孔を表面に対して垂直方向から見た場合の最小径が高比
表面積材料の平均粒径の1倍以上3倍未満である気孔の
面積率が1〜12%の場合である。ここでの最小径と
は、図2示すように、各気孔の重心を通り且つ外周の2
点を結ぶ径の中でも最小のものと定義する。ここで気孔
をセル壁表面に対して垂直方向から見た場合の最小径が
高比表面積材料の1倍未満の場合は、高比表面積材料が
気孔に入り込むいわゆるアンカー効果が得られないため
付着力が得られないのである。一方、気孔をセル壁表面
に対して垂直方向から見た場合の最小径が高比表面積材
料の3倍を越える場合は、熱膨張係数の大きな高比表面
積材料がハニカム構造体の内部まで侵入することによる
ハニカム担体の熱膨張係数が上昇してしまい、耐熱衝撃
性が劣化してしまうのである。
[0013] However, the present inventors have made
As a result of intensive experiments, the minimum diameter of the pores on the cell wall surface of the honeycomb structure when viewed from the direction perpendicular to the surface is smaller than the size of the open pores obtained by the mercury intrusion method. It was found that it greatly contributed to sex. This is also due to the fact that the form of the pores present in the ceramic honeycomb is different between the case where the pores exist inside the ceramic body and the case where it exists on the outermost surface of the ceramic body. Specifically, when the pores on the surface of the honeycomb structure cell wall are viewed from a direction perpendicular to the surface, the area ratio of pores whose minimum diameter is 1 to 3 times the average particle diameter of the high specific surface area material is 1 to 3 1212%. As shown in FIG. 2, the minimum diameter is defined as the minimum diameter which passes through the center of gravity of each pore and
Define the smallest diameter connecting the points. If the minimum diameter of the pores when viewed from the direction perpendicular to the cell wall surface is less than one time that of the high specific surface area material, the so-called anchor effect for the high specific surface area material to enter the pores cannot be obtained, so that the adhesive force is not obtained. Cannot be obtained. On the other hand, when the minimum diameter of the pores when viewed from the direction perpendicular to the cell wall surface exceeds three times that of the high specific surface area material, the high specific surface area material having a large thermal expansion coefficient enters the inside of the honeycomb structure. As a result, the thermal expansion coefficient of the honeycomb carrier increases, and the thermal shock resistance deteriorates.

【0014】また、ハニカム構造体セル壁表面の気孔を
表面に対して垂直方向から見た場合の最小径が高比表面
積材料の平均粒径の1倍以上3倍未満である気孔の面積
率が1%未満の場合は、アンカー効果は得られるがその
大きさは小さく十分な付着力が得られないのである。一
方、ハニカム構造体セル壁表面の気孔を表面に対して垂
直方向から見た場合の最小径が高比表面積材料の平均粒
径の1倍以上3倍未満である気孔の面積率が12%を越
える場合は、付着力は大きくなるものの、熱膨張係数の
大きな高比表面積材料がハニカム構造体に侵入した箇所
が増えるため、ハニカム担体の熱膨張係数が上昇してし
まい、耐熱衝撃性が劣化してしまうのである。
Further, when the pores on the surface of the cell wall of the honeycomb structure are viewed from a direction perpendicular to the surface, the area ratio of pores whose minimum diameter is at least 1 to less than 3 times the average particle diameter of the high specific surface area material is as follows. If it is less than 1%, the anchor effect can be obtained, but the size is small and sufficient adhesion cannot be obtained. On the other hand, when the pores on the surface of the honeycomb structure cell wall are viewed from the direction perpendicular to the surface, the area ratio of the pores whose minimum diameter is 1 to 3 times the average particle diameter of the high specific surface area material is 12% or less. If it exceeds, although the adhesive force increases, the number of places where the high specific surface area material having a large coefficient of thermal expansion enters the honeycomb structure increases, so that the coefficient of thermal expansion of the honeycomb carrier increases and the thermal shock resistance deteriorates. It will be.

【0015】さらに本発明ではセル壁表面に存在する気
孔を表面に対して垂直方向から見た場合の最小径が前記
高比表面積材料の平均粒径10倍以上の気孔の面積率が
10%以下とした。つまりセル壁表面に存在する気孔を
表面に対して垂直方向から見た場合の最大径が前記高比
表面積材料の平均粒径10倍以上の気孔は、高比表面積
材料の粒径よりかなり大きくなるため、ハニカム壁と高
比表面積材料との間の付着力への貢献度は小さい。しか
も熱膨張係数の大きな高比表面積材料がハニカム壁内部
にまで侵入してしまうためにハニカム担体の熱膨張係数
が大きくなり、しかもこの面積率が10%を越えるとそ
の影響が大きくなるのである。一方、当然ながらセラミ
ックス材料の耐熱衝撃抵抗は機械強度に比例し、ヤング
率、熱膨張係数に反比例すると言われている。機械的強
度をあげるためには、セラミック材料中に内在する欠
陥、例えば気孔、結晶粒、結晶粒界、転移等を起点とし
て脆性破壊が進展するため、これらの欠陥の大きさを小
さくすることにより達成するのが一般的である。このた
めセル壁表面に存在する気孔を表面に対して垂直方向か
ら見た場合の最大径が前記高比表面積材料の平均粒径1
0倍以上の気孔の面積率が10%以下としたことによ
り、気孔サイズも有る程度小さい範囲に押さえることが
でき、このためハニカム構造体の機械的強度が改善さ
れ、結果として耐熱衝撃が向上するのである。
Further, in the present invention, when the pores present on the cell wall surface are viewed from a direction perpendicular to the surface, the minimum diameter is 10% or less of the area ratio of pores having an average particle diameter of 10 times or more of the high specific surface area material. And That is, pores having a maximum diameter of 10 times or more the average particle diameter of the high specific surface area material when the pores existing on the cell wall surface are viewed from the direction perpendicular to the surface are considerably larger than the particle diameter of the high specific surface area material. Therefore, the contribution to the adhesion between the honeycomb wall and the high specific surface area material is small. In addition, the high specific surface area material having a large coefficient of thermal expansion penetrates into the inside of the honeycomb wall, so that the coefficient of thermal expansion of the honeycomb carrier becomes large, and when the area ratio exceeds 10%, the influence becomes large. On the other hand, it is naturally said that the thermal shock resistance of the ceramic material is proportional to the mechanical strength and inversely proportional to the Young's modulus and the coefficient of thermal expansion. In order to increase the mechanical strength, defects inherent in the ceramic material, for example, pores, crystal grains, crystal grain boundaries, brittle fracture progresses starting from the transition, etc., by reducing the size of these defects It is common to achieve. Therefore, when the pores present on the cell wall surface are viewed from a direction perpendicular to the surface, the maximum diameter is the average particle diameter of the high specific surface area material.
By setting the area ratio of the pores of 0 times or more to 10% or less, the pore size can be suppressed to a certain small range, and therefore, the mechanical strength of the honeycomb structure is improved, and as a result, the thermal shock is improved. It is.

【0016】本発明において高比表面積材料の平均粒径
が1〜10μmとするのは特にこの範囲においてハニカ
ム構造体と高比表面積材料間の付着力が最大になるため
である。
In the present invention, the reason why the average particle size of the high specific surface area material is 1 to 10 μm is that the adhesive force between the honeycomb structure and the high specific surface area material is maximized particularly in this range.

【0017】[0017]

【発明の実施の形態】以下、本発明の実際の実施例を説
明する。 (実施例1)原料粉末としてカオリン、仮焼カオリン、
タルク、アルミナ、水酸化アルミを用い、これらがコー
ジェライト組成(5SiO2・2Al2O3・2MgO)になるよう配
合し、これにバインダーとしてメチルセルロース、潤滑
剤としてステアリン酸を添加し、更に水を加え、混練し
て押し出し成形可能な坏土とした。次いでそれぞれのバ
ッチの坏土を公知の押し出し成形法によりリブ厚さ19
0μm、1平方センチ当たりのセル数62個の四画セル
形状を有する直径93mm、高さ150mmのハニカム構
造体を成形した。ハニカム構造体を乾燥した後、141
5℃の温度で焼成を行い、NO.1のコージェライト質
ハニカム構造体を得た。この時のハニカム構造体のセル
壁表面の気孔を表面に対して垂直方向から見た場合の気
孔の最小径の測定結果を図1、表1に示す。表1は、図
1に示す最小径と累積気孔面積との関係のグラフから特
定範囲の大きさの気孔の面積を数字で表したものであ
り、全ての気孔の占める面積は156112μmで、
気孔の面積率は17.7%であった。セル壁表面の気孔
をセル壁表面に対して垂直方向から見た気孔を観察する
に当たっては、走査型電子顕微鏡によりセル壁表面を倍
率80倍で写真撮影し、得られた写真データをスキャナ
ーにより画像データとして読み込み、得られた画像デー
タに対して市販の画像解析ソフトウェア(メディアサイ
バネティクス社製イメージプロプラス ヴァージョン
3.0)により解析を行った。ここでの最小径とは、図
2示すように、各気孔の重心を通り且つ外周の2点を結
ぶ径の中でも最小のものと定義する。得られたコージェ
ライトハニカム構造体に対し、市販の活性アルミナ・セ
リア粉末(平均粒径2μm、5μm、10μm)に硝酸ア
ルミニウム溶液を加えたスラリー中に浸漬し取り出した
後、余分なスラリーを吹き飛ばし、150℃2時間の乾
燥した後、550℃の温度で焼成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an actual embodiment of the present invention will be described. (Example 1) As raw material powder, kaolin, calcined kaolin,
Talc, alumina, using aluminum hydroxide, these are blended cordierite composition (5SiO 2 · 2Al 2 O 3 · 2MgO) to become so, stearic acid was added thereto methylcellulose as a binder, as a lubricant, a further water In addition, it was kneaded to obtain an extrudable clay. Next, the kneaded material of each batch was subjected to a rib thickness 19 by a known extrusion molding method.
A honeycomb structure having a diameter of 93 mm and a height of 150 mm having a quadrangular cell shape of 0 μm and 62 cells per square centimeter was formed. After drying the honeycomb structure, 141
Baking is performed at a temperature of 5 ° C. Thus, a cordierite-based honeycomb structure No. 1 was obtained. FIG. 1 and Table 1 show the measurement results of the minimum diameter of the pores when the pores on the cell wall surface of the honeycomb structure at this time were viewed from a direction perpendicular to the surface. Table 1 shows the area of pores having a specific range of sizes from the graph of the relationship between the minimum diameter and the cumulative pore area shown in FIG. 1 by numbers. The area occupied by all pores is 156112 μm 2 ,
The area ratio of the pores was 17.7%. When observing the pores of the cell wall surface in a direction perpendicular to the cell wall surface, a photograph was taken of the cell wall surface at a magnification of 80 times with a scanning electron microscope, and the obtained photographic data was imaged with a scanner. The data was read as data, and the obtained image data was analyzed using commercially available image analysis software (Image Pro Plus version 3.0, manufactured by Media Cybernetics). Here, the minimum diameter is defined as the smallest diameter passing through the center of gravity of each pore and connecting two points on the outer periphery, as shown in FIG. The obtained cordierite honeycomb structure was immersed in a slurry obtained by adding an aluminum nitrate solution to a commercially available activated alumina / ceria powder (average particle size: 2 μm, 5 μm, 10 μm), taken out, and then the excess slurry was blown off. After drying at 150 ° C. for 2 hours, it was fired at a temperature of 550 ° C.

【0018】[0018]

【表1】 [Table 1]

【0019】次に、これらのハニカム担体の熱衝撃試験
を実施した。熱衝撃試験は、室温20℃の条件で620
℃に保った電気炉に試料を入れ、30分経過後、電気炉
から試料を取り出し、空気中で自然冷却する。冷却終了
後、外観を目視で観察し、ハニカム担体の外周面を細い
金属棒で全周にわたって軽くたたき、クラックが観察さ
れずかつ打音が金属音なら合格とした。また同時に活性
アルミナの剥離の有無も確認し、剥離が認められなけれ
ば合格とした。この場合炉内温度620℃―室温20℃
=600℃が熱衝撃温度差となる。引き続き、電気炉の
温度を25℃上昇させ、同じ工程を繰り返しクラック及
び剥離が観察されるか打音が濁音となるまで続けた。合
格した最高温度をもって耐熱衝撃温度と定義した。3種
類の活性アルミナ・セリア粉末に対する試験結果を表2
に示す。表2中の不合格判定内容とは熱衝撃温度差+2
5℃で不合格判定となった時の、内容を示す。内容は、
ハニカム構造体にクラックが発生した場合、或いは高比
表面積材料の剥離が発生した場合の2通りある。
Next, these honeycomb carriers were subjected to a thermal shock test. The thermal shock test was performed at 620 at room temperature of 20 ° C.
The sample is placed in an electric furnace kept at 0 ° C., and after 30 minutes, the sample is taken out of the electric furnace and naturally cooled in the air. After cooling was completed, the external appearance was visually observed, and the outer peripheral surface of the honeycomb carrier was lightly tapped with a thin metal rod over the entire circumference. At the same time, the presence or absence of peeling of the activated alumina was also confirmed. In this case, furnace temperature 620 ° C-room temperature 20 ° C
= 600 ° C is the thermal shock temperature difference. Subsequently, the temperature of the electric furnace was increased by 25 ° C., and the same process was repeated until cracks and peeling were observed or the hammering sound became dull. The highest temperature that passed was defined as the thermal shock temperature. Table 2 shows the test results for three types of activated alumina / ceria powder.
Shown in The rejection judgment content in Table 2 is the thermal shock temperature difference +2
The content at the time of a failure judgment at 5 ° C is shown. Contents,
There are two cases: when a crack occurs in the honeycomb structure, and when the high specific surface area material peels off.

【0020】[0020]

【表2】 [Table 2]

【0021】(比較例1)実施例1と同様の方法により
リブ厚さ190μm、1平方センチ当たりのセル数62
個の四画セル形状を有する直径93mm、高さ150mm
のハニカム構造体を成形、乾燥、焼成し、3種類のハニ
カム構造体NO.2、3、4を得た。ここでは、使用す
る原料粉末の粒径、グレードや焼成の条件を調整するこ
とによりセル壁表面に存在する気孔の大きさの異なるハ
ニカム構造体を得た。この時の焼成体のセル壁表面の気
孔を表面に対して垂直方向から見た場合の気孔の最小径
の測定結果を表3に示す。3種類のハニカム構造体の全
気孔の面積率は17.6〜18.2の間であった。実施
例1と同様に、得られたコージェライトハニカム構造体
に対し、市販の活性アルミナ・セリア粉末(平均粒径5
μm)に硝酸アルミニウム溶液を加えたスラリー中に浸
漬し取り出した後、余分なスラリーを吹き飛ばし、15
0℃2時間の乾燥した後、550℃の温度で焼成した。
ついで実施例1と同様の方法により熱衝撃試験を行った
結果を表2に併せて示す。表2の結果から明らかなよう
にセル壁表面の気孔のうち最小径が高比表面積材料の平
均粒径の1倍以上3倍未満の大きさを持つものの面積率
が1〜12%であり、且つセル壁表面の気孔のうち最小
径が高比表面積材料の平均粒径10倍以上の気孔の面積
率が10%以下である実施例1では、比較例1に比べて
熱衝撃温度差がが高く、しかも高比表面積材料の剥離も
なく、本発明が極めて有効で有ることが確認できる。こ
れに対して比較例1のハニカム構造体NO.2では、セ
ル壁表面の気孔のうち最小径が高比表面積材料の平均粒
径10倍以上の気孔の面積率が10%を越えているた
め、熱衝撃温度差600℃でハニカム構造体に割れが発
生した。またハニカム構造体NO.3では、セル壁表面
の気孔のうち最小径が高比表面積材料の平均粒径1倍以
上3倍未満の気孔の面積率が12%を越えているため、
熱衝撃性温度差650℃でハニカム構造体に割れが発生
した。またハニカム構造体NO.4では、セル壁表面の
気孔のうち最小径が高比表面積材料の平均粒径1倍以上
3倍未満の気孔の面積率が1%未満のため、高比表面積
材料の密着性が低下し、熱衝撃温度差625℃で高比表
面積材料の剥離が発生した。
(Comparative Example 1) A rib thickness of 190 μm and a number of cells per square centimeter of 62 were determined in the same manner as in Example 1.
93mm in diameter and 150mm in height with 4 cell shapes
Are formed, dried, and fired, and three types of honeycomb structures NO. 2, 3, 4 were obtained. Here, a honeycomb structure having different pore sizes on the cell wall surface was obtained by adjusting the particle size, grade, and firing conditions of the raw material powder to be used. Table 3 shows the measurement results of the minimum diameter of the pores when the pores on the cell wall surface of the fired body were viewed from a direction perpendicular to the surface. The area ratio of the total pores of the three kinds of honeycomb structures was between 17.6 to 18.2. As in Example 1, a commercially available activated alumina / ceria powder (average particle size of 5%) was applied to the obtained cordierite honeycomb structure.
μm), and immersed in a slurry containing an aluminum nitrate solution and taken out.
After drying at 0 ° C. for 2 hours, firing was performed at a temperature of 550 ° C.
Next, the results of a thermal shock test performed in the same manner as in Example 1 are also shown in Table 2. As is evident from the results in Table 2, among the pores on the cell wall surface, the area ratio of those having a minimum diameter of 1 to 3 times the average particle diameter of the high specific surface area material is 1 to 12%, Further, in Example 1 in which the minimum area among the pores on the cell wall surface is 10% or less in the area ratio of the pores having an average particle diameter of 10 times or more of the high specific surface area material, the thermal shock temperature difference is smaller than that in Comparative Example 1. It is confirmed that the present invention is extremely effective because the material is high and the high specific surface area material does not peel off. On the other hand, the honeycomb structure NO. In 2, the area ratio of pores having a minimum diameter of 10 times or more of the high specific surface area material among the pores on the cell wall surface exceeds 10%, so that the honeycomb structure is cracked at a thermal shock temperature difference of 600 ° C. There has occurred. The honeycomb structure NO. In 3, the area ratio of pores having a minimum diameter of 1 to 3 times the average diameter of the high specific surface area material among the pores on the cell wall surface exceeds 12%,
A crack occurred in the honeycomb structure at a thermal shock temperature difference of 650 ° C. The honeycomb structure NO. In 4, since the area ratio of pores having a minimum diameter of 1 to 3 times the average particle diameter of the high specific surface area material among the pores on the cell wall surface is less than 1%, the adhesion of the high specific surface area material is reduced, At a thermal shock temperature difference of 625 ° C., peeling of the high specific surface area material occurred.

【0022】[0022]

【表3】 [Table 3]

【0023】本発明は上述した実施例に限定されるもの
でなく、例えば、実施例では、セラミックハニカム構造
体の断面形状が円形状のものを用いたが、例えば楕円形
状のものでも、本発明の効果が得られるのは当然のこと
である。
The present invention is not limited to the above-described embodiment. For example, in the embodiment, the ceramic honeycomb structure having a circular cross section is used. It is natural that the effect is obtained.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、本発明
によれば、担持する高比表面積材料の粒径とハニカム構
造体のセル壁表面に存在する気孔のセル壁表面での大き
さとの関係を規定しているため、高比表面積材料が剥が
れない高い耐熱衝撃性をもったセラミックハニカム担体
を得ることができる。
As is apparent from the above description, according to the present invention, the difference between the particle size of the high specific surface area material to be supported and the size of the pores existing on the cell wall surface of the honeycomb structure on the cell wall surface is obtained. Since the relationship is defined, it is possible to obtain a ceramic honeycomb carrier having high thermal shock resistance in which the high specific surface area material does not peel off.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1におけるハニカム構造体のセル壁表面
に存在する気孔のセル壁表面に対して垂直方向から見た
時の最小径と気孔の累積面積との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the minimum diameter of pores existing on the cell wall surface of a honeycomb structure and the cumulative area of pores when viewed from a direction perpendicular to the cell wall surface in Example 1.

【図2】気孔の最小径の定義を示すための図である。FIG. 2 is a diagram showing a definition of a minimum diameter of a pore.

【符号の説明】 1 気孔、 2 重心、 3 最小径、[Explanation of symbols] 1 pore, 2 center of gravity, 3 minimum diameter,

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G091 AA02 AB01 BA09 BA10 BA39 GA06 GA07 GA11 GA16 GA20 GB01X GB04X GB10X GB17X 4D048 AA06 AB02 BA03X BA10X BA19X BA41X BB02 BB17 4G069 AA01 AA04 AA08 AA09 AA12 BA01B BA01C BA13B BB12C BC16B BC16C BC43B BC43C CA03 CA08 CA13 DA06 EA19 EB18X EC17X EC18X ED06 FA02 FA03 FB15 FC02  ──────────────────────────────────────────────────続 き Continued on front page F-term (reference) 3G091 AA02 AB01 BA09 BA10 BA39 GA06 GA07 GA11 GA16 GA20 GB01X GB04X GB10X GB17X 4D048 AA06 AB02 BA03X BA10X BA19X BA41X BB02 BB17 4G069 AA01 AA04 AA08BA13BBC BC BC CA03 CA08 CA13 DA06 EA19 EB18X EC17X EC18X ED06 FA02 FA03 FB15 FC02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高比表面積材料を担持したセラミックハ
ニカム構造体からなるセラミックハニカム担体におい
て、該ハニカム構造体セル壁表面の気孔を表面に対して
垂直方向から見た場合の最小径が前記高比表面積材料の
平均粒径の1倍以上3倍未満である気孔の面積率が1〜
12%であると共にセル壁表面に存在する気孔を表面に
対して垂直方向から見た場合の最小径が前記高比表面積
材料の平均粒径10倍以上の気孔の面積率が10%以下
であることを特徴とするセラミックハニカム担体。
1. A ceramic honeycomb carrier comprising a ceramic honeycomb structure carrying a material having a high specific surface area, wherein the minimum diameter of pores in the cell wall surface of the honeycomb structure when viewed from a direction perpendicular to the surface is the high ratio. The area ratio of pores that are 1 to 3 times the average particle size of the surface area material is 1 to 3
When the pores present on the cell wall surface are viewed from a direction perpendicular to the surface, the minimum diameter is 12% and the area ratio of pores having an average particle diameter of 10 times or more of the high specific surface area material is 10% or less. A ceramic honeycomb carrier, characterized in that:
【請求項2】 高比表面積材料の平均粒径が1〜10μ
mであることを特徴とする請求項1項記載のセラミック
ハニカム担体。
2. The high specific surface area material has an average particle size of 1 to 10 μm.
The ceramic honeycomb carrier according to claim 1, wherein m is m.
JP11105980A 1999-04-14 1999-04-14 Ceramic honeycomb carrier Pending JP2000296340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11105980A JP2000296340A (en) 1999-04-14 1999-04-14 Ceramic honeycomb carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11105980A JP2000296340A (en) 1999-04-14 1999-04-14 Ceramic honeycomb carrier

Publications (1)

Publication Number Publication Date
JP2000296340A true JP2000296340A (en) 2000-10-24

Family

ID=14421908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11105980A Pending JP2000296340A (en) 1999-04-14 1999-04-14 Ceramic honeycomb carrier

Country Status (1)

Country Link
JP (1) JP2000296340A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118865A1 (en) * 2008-03-27 2009-10-01 イビデン株式会社 Honeycomb structure
JP2011041946A (en) * 2010-09-21 2011-03-03 Ngk Insulators Ltd Honeycomb structure for cleaning exhaust gas and honeycomb catalyst for cleaning exhaust gas
US8247339B2 (en) 2006-09-11 2012-08-21 Denso Corporation Ceramic catalyst body
WO2014157721A1 (en) * 2013-03-29 2014-10-02 地方独立行政法人東京都立産業技術研究センター Loaded catalyst for bad odor treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8247339B2 (en) 2006-09-11 2012-08-21 Denso Corporation Ceramic catalyst body
WO2009118865A1 (en) * 2008-03-27 2009-10-01 イビデン株式会社 Honeycomb structure
US8211818B2 (en) 2008-03-27 2012-07-03 Ibiden Co., Ltd. Honeycomb structural body
JP5185837B2 (en) * 2008-03-27 2013-04-17 イビデン株式会社 Honeycomb structure
JP2011041946A (en) * 2010-09-21 2011-03-03 Ngk Insulators Ltd Honeycomb structure for cleaning exhaust gas and honeycomb catalyst for cleaning exhaust gas
WO2014157721A1 (en) * 2013-03-29 2014-10-02 地方独立行政法人東京都立産業技術研究センター Loaded catalyst for bad odor treatment

Similar Documents

Publication Publication Date Title
JP4459476B2 (en) Porous honeycomb structure and manufacturing method thereof
US4849275A (en) Cordierite honeycomb structural bodies
JP4548968B2 (en) Ceramic support and ceramic catalyst body
KR100736306B1 (en) Honeycomb Structured Body and Exhaust Gas Purifying Apparatus
KR100736303B1 (en) Honeycomb Structured Body
JP4082559B2 (en) Catalyst body and method for producing the same
EP1862279A1 (en) Honeycomb structure and method of manufacturing the same
JP6709652B2 (en) Porous ceramic structure
US5997984A (en) Cordierite honeycomb structural body and method for its production
JPWO2003080539A1 (en) HONEYCOMB STRUCTURE, METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR MEASURING PERIPHERAL STORAGE OF HONEYCOMB STRUCTURE
JP2008246472A (en) Hexagonal cell honeycomb carrier and hexagonal cell honeycomb catalyst
JPH09262484A (en) Ceramic honeycomb catalyst having high thermal shock resistance
JP3887565B2 (en) Ceramic honeycomb catalyst carrier and manufacturing method thereof
WO2002020154A1 (en) Method for producing catalyst body and carrier having alumina carried thereon
JP2000296340A (en) Ceramic honeycomb carrier
JP2007175694A (en) Honeycomb structure
JP3755738B2 (en) Cordierite honeycomb structure
JP2003260353A (en) Carrier carrying alumina, catalyst body and method for manufacturing carrier carrying alumina
JP2003205246A (en) Catalyst and carrier for the same
JPH0729059B2 (en) Cordierite honeycomb structure
JP3587365B2 (en) Cordierite-based ceramic honeycomb catalyst carrier and method for producing the same
JP4411566B2 (en) Cordierite ceramic honeycomb structure catalyst carrier and method for producing the same
JP2002095968A (en) Exhaust gas cleaning catalyst
JP6820739B2 (en) Exhaust gas purification catalyst
JP5010221B2 (en) Ceramic catalyst body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070223