JPH0729059B2 - Cordierite honeycomb structure - Google Patents

Cordierite honeycomb structure

Info

Publication number
JPH0729059B2
JPH0729059B2 JP5127782A JP12778293A JPH0729059B2 JP H0729059 B2 JPH0729059 B2 JP H0729059B2 JP 5127782 A JP5127782 A JP 5127782A JP 12778293 A JP12778293 A JP 12778293A JP H0729059 B2 JPH0729059 B2 JP H0729059B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
pore volume
cordierite
catalyst
activated alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5127782A
Other languages
Japanese (ja)
Other versions
JPH06165939A (en
Inventor
邦和 浜口
俊行 浜中
節 原田
誠一 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62028365A external-priority patent/JPH0669534B2/en
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5127782A priority Critical patent/JPH0729059B2/en
Publication of JPH06165939A publication Critical patent/JPH06165939A/en
Publication of JPH0729059B2 publication Critical patent/JPH0729059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコージェライトハニカム
構造触媒担体、特に自動車排ガスの浄化用触媒担体に用
いられる活性アルミナの担持性に優れた低膨脹性のハニ
カム構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cordierite honeycomb structure catalyst carrier, and more particularly to a low expansion honeycomb structure excellent in supporting activated alumina used as a catalyst carrier for purifying automobile exhaust gas.

【0002】[0002]

【従来の技術】一般に自動車排ガス浄化に用いられるハ
ニカム触媒は一体構造で低膨脹性のコージェライトハニ
カム構造触媒担体の表面に活性アルミナ等の高比表面積
材料と白金等の触媒金属を担持することにより製造され
る。
2. Description of the Related Art Generally, a honeycomb catalyst used for purification of automobile exhaust gas is formed by supporting a high specific surface area material such as activated alumina and a catalyst metal such as platinum on the surface of an integrated structure and low expansion cordierite honeycomb structure catalyst carrier. Manufactured.

【0003】高比表面積材料及び触媒の担持性即ちコー
タビリティはコージェライトハニカム触媒担体に要求さ
れる重要な特性の一つであり、コージェライトハニカム
触媒の量産性のためコージェライトハニカム構造体には
これを解決する手段として従来より多孔性が要求され続
けていた。
A material having a high specific surface area and supportability of a catalyst, that is, coatability is one of important characteristics required for a cordierite honeycomb catalyst carrier. As a means for solving this, porosity has been conventionally required.

【0004】一方、耐熱衝撃性も上記ハニカム触媒に要
求される重要な特性の一つで、排気ガス中の未燃焼炭化
水素、一酸化炭素の触媒反応による急激な発熱やエンジ
ン始動、停止時の急熱、急冷により温度変化を受け、ハ
ニカム構造体内に生じる温度差により引き起こされる熱
応力に耐える高い耐熱衝撃性が要求される。
On the other hand, thermal shock resistance is also one of the important characteristics required for the above-mentioned honeycomb catalyst, and it is characterized by a rapid heat generation due to the catalytic reaction of unburned hydrocarbons and carbon monoxide in the exhaust gas, engine start and stop. High thermal shock resistance is required to withstand the thermal stress caused by the temperature difference generated in the honeycomb structure due to the temperature change caused by the rapid heating and the rapid cooling.

【0005】この耐熱衝撃性は急熱急冷耐久温度差で表
わされ、その耐久温度差はハニカムの特性のうち熱膨脹
係数に逆比例することが判明しており、熱膨脹係数が小
さいほどその耐久温度差が大きく、ハニカム触媒用のセ
ラミックハニカム構造触媒担体として低膨脹のコージェ
ライトが用いられる最大の理由となっている。
This thermal shock resistance is represented by the difference between the rapid heating and quenching endurance temperature, and it has been found that the endurance temperature difference is inversely proportional to the coefficient of thermal expansion among the characteristics of the honeycomb. The smaller the coefficient of thermal expansion, the more the endurance temperature. The difference is large, which is the main reason why low expansion cordierite is used as a ceramic honeycomb structure catalyst carrier for a honeycomb catalyst.

【0006】従来、コージェライトセラミックが低膨脹
性を示すことは公知であり、例えば米国特許第3885977
号明細書(特開昭50-75611号公報) に開示されているよ
うに、25℃〜1000℃の間での熱膨脹係数が少なくとも一
方向で11×10-7(1/℃)より小さい配向したコージェ
ライトセラミックが知られており、そこではこの配向性
を起させる原因としてカオリン等の板状粘土、積層粘土
に起因する平面的配向を記述している。
It is known in the past that cordierite ceramics exhibit low expansion properties, eg US Pat. No. 3,885,977.
As disclosed in Japanese Patent Application Laid-Open No. 50-75611, orientation in which the coefficient of thermal expansion between 25 ° C and 1000 ° C is less than 11 × 10 -7 (1 / ° C) in at least one direction. A known cordierite ceramic is described therein, which describes planar orientation caused by plate-like clay such as kaolin and laminated clay as a cause of causing this orientation.

【0007】さらに特開昭53-82822号公報では、タルク
等のマグネシア源原料を10〜50μmの限定された粗粒域
で用いることにより、コージェライトセラミックが極め
て低熱膨脹を示すことが開示されている。
Further, JP-A-53-82822 discloses that cordierite ceramic exhibits extremely low thermal expansion by using a magnesia source material such as talc in a limited coarse grain region of 10 to 50 μm. There is.

【0008】しかしながら、ハニカム触媒は低膨脹のコ
ージェライト材質の表面にこれに比べてはるかに熱膨脹
率の大きい活性アルミナ等の高比表面積材料を担持する
ため、コージェライトハニカム担体の低熱膨脹化のみで
はハニカム触媒の耐熱衝撃性を改善することはできな
い。即ち、高比表面積材料の担持による熱膨脹上昇をで
きる限り小さくする技術が要求されているのである。
However, since the honeycomb catalyst carries a high specific surface area material such as activated alumina having a much higher thermal expansion coefficient on the surface of the low expansion cordierite material, the low thermal expansion of the cordierite honeycomb carrier is not sufficient. The thermal shock resistance of the honeycomb catalyst cannot be improved. That is, there is a demand for a technique for minimizing the increase in thermal expansion due to the loading of the high specific surface area material.

【0009】[0009]

【発明が解決しようとする課題】コージェライトハニカ
ム担体の多孔性向上、触媒担持性改良、高比表面積材料
の担持に関する耐熱衝撃性改善については、次のような
内容が提案されている。
The following contents have been proposed for improving the porosity of a cordierite honeycomb carrier, improving the catalyst supporting property, and improving the thermal shock resistance related to supporting a high specific surface area material.

【0010】 米国特許第3,950,175 号明細書(特開
昭50−75612 号) には、原料中のタルク又は粘土の一部
又は全量を、パイロフェライト、カイアナイト、石英、
溶融シリカのようなシリカ又はシリカアルミナ源原料に
よって置換することにより少なくとも20%の10μm より
大きな径の開孔を有するコージェライト系多孔質セラミ
ックスが得られることが開示されている。
US Pat. No. 3,950,175 (JP-A-50-75612) discloses that a part or the whole amount of talc or clay in a raw material is replaced with pyroferrite, kyanite, quartz,
It is disclosed that substitution with silica such as fused silica or a silica-alumina source material yields at least 20% cordierite-based porous ceramics with open pores larger than 10 μm.

【0011】 特公昭51− 44913号公報では、セラミ
ック材料よりなるハニカム構造体の薄壁表面にセラミッ
ク粉末を被着焼成して、孔径5μm 以上の細孔容積 0.1
cm3/g以上を有する表面層を形成し、触媒担持性を改良
することを開示している。
In Japanese Patent Publication No. S51-44913, a ceramic powder is adhered and fired on a thin wall surface of a honeycomb structure made of a ceramic material, and a pore volume of 0.1 μm or more with a pore diameter of 5 μm or more.
It is disclosed to form a surface layer having a cm 3 / g or more to improve the catalyst supporting property.

【0012】 特開昭58-14950号公報では、コージェ
ライトハニカム構造体への高比表面積材料である活性ア
ルミナのコーティングに際して、予めメチルセルロース
等の有機物質をプレコートしてコージェライトハニカム
のマイクロクラックに活性アルミナが浸入することによ
るコージェライトハニカム触媒の耐熱衝撃性改善を開示
している。上記〜の技術については、以下のような
種々の問題点が存在する。
In Japanese Patent Laid-Open No. 58-14950, when a cordierite honeycomb structure is coated with activated alumina, which is a material having a high specific surface area, an organic substance such as methylcellulose is pre-coated in advance to activate the microcrack of the cordierite honeycomb. It discloses the improvement of thermal shock resistance of cordierite honeycomb catalyst by infiltration of alumina. The above-mentioned technologies (1) to (3) have the following various problems.

【0013】については、新たに10μm 以上の細孔に
熱膨脹の高い活性アルミナ等の高比表面積材料が浸入し
やすく、10μm 以上の細孔容積が多いほどハニカム触媒
の耐熱衝撃性が劣化することが判明した。つまり、10μ
m 以上の細孔による多孔性はコーティング後の耐熱衝撃
性を損う欠点が有る。
With respect to the above, a new material having a high specific surface area such as activated alumina, which has a high thermal expansion coefficient, can easily infiltrate into the pores of 10 μm or more, and the thermal shock resistance of the honeycomb catalyst deteriorates as the pore volume of 10 μm or more increases. found. In other words, 10μ
Porosity due to pores of m or more has a drawback that the thermal shock resistance after coating is impaired.

【0014】については、セラミックス粉末の被着工
程が必要であり、大幅なコストアップとなり、また本願
発明で示すような0.5 〜5μm の微細気孔は付与しにく
い欠点が有る。
With respect to the above, there is a drawback that a step of depositing the ceramic powder is required, resulting in a large increase in cost, and it is difficult to provide the fine pores of 0.5 to 5 μm as shown in the present invention.

【0015】については、活性アルミナ等の高比表面
積材料とコージェライトハニカム担体との付着性が劣化
し、コート層がハクリしやすい欠点が有る。また、コー
ティングに関する工数が増加し、大幅なコストアップと
なる。
With respect to the above, there is a drawback that the adhesion between the high specific surface area material such as activated alumina and the cordierite honeycomb carrier is deteriorated and the coat layer is easily peeled off. In addition, the number of man-hours related to coating increases, resulting in a significant cost increase.

【0016】以上のように、高比表面積材料及び触媒成
分の担持性とコーティング後のコージェライトハニカム
触媒の耐熱衝撃性向上を同時に満足するコージェライト
ハニカム構造触媒担体が望まれている。
[0016] As described above, there is a demand for a cordierite honeycomb structure catalyst carrier which simultaneously satisfies the support of the high specific surface area material and the catalyst component and the improvement of the thermal shock resistance of the cordierite honeycomb catalyst after coating.

【0017】本発明の目的は上述した不具合を解消し
て、コージェライト担体よりも熱膨脹係数の大きい活性
アルミナの担持により耐熱衝撃性劣化の少ないハニカム
構造触媒担体として使用するのに好適なコージェライト
ハニカム構造体を提供しようとするものである。
The object of the present invention is to solve the above-mentioned problems, and by supporting activated alumina having a thermal expansion coefficient larger than that of the cordierite carrier, the cordierite honeycomb suitable for use as a honeycomb structure catalyst carrier having less thermal shock resistance deterioration. It is intended to provide a structure.

【0018】[0018]

【課題を解決するための手段】本発明のコージェライト
ハニカム構造体は、主成分の化学組成が重量基準でSi
2 42〜56%、Al2 3 30〜45%、MgO 12 〜16%
で結晶相の主成分がコージェライトから成るハニカム構
造体で、該ハニカム構造体の気孔率が30%を超え42%以
下であって、直径0.5 〜5μmの細孔の総細孔容積が全
細孔容積の70%以上で、直径10μm以上の細孔の総細孔
容積が全細孔容積の10%以下であるとともに、活性アル
ミナを担持した後の流路方向の40〜800 ℃間の熱膨脹係
数が1.0×10-6/℃以下であることを特徴とする。本発
明を実施するに当っては、ハニカム構造体の気孔率が30
%を超え36%以下であることが好ましい。更に本発明を
実施するに当っては、ハニカム構造体の直径0.5 〜5μ
mの細孔の総細孔容積が全細孔容積の80%以上であるの
が好ましい。
In the cordierite honeycomb structure of the present invention, the chemical composition of the main component is Si based on weight.
O 2 42-56%, Al 2 O 3 30-45%, MgO 12-16%
And a honeycomb structure in which the main component of the crystal phase is cordierite, and the porosity of the honeycomb structure is more than 30% and 42% or less, and the total pore volume of the pores having a diameter of 0.5 to 5 μm is all fine. The total pore volume of pores with a diameter of 10 μm or more at 70% or more of the pore volume is 10% or less of the total pore volume, and thermal expansion between 40 and 800 ℃ in the flow direction after supporting activated alumina. The coefficient is 1.0 × 10 −6 / ° C. or less. In carrying out the present invention, the porosity of the honeycomb structure is 30
% And 36% or less is preferable. Furthermore, in carrying out the present invention, the diameter of the honeycomb structure is 0.5 to 5 μm.
The total pore volume of the pores of m is preferably 80% or more of the total pore volume.

【0019】[0019]

【作用】本発明のハニカム構造体の化学組成は、従来低
膨脹コージェライトセラミックスの組成として知られて
いるコージェライト理論組成点(2MgO ・2Al2O3・5SiO2)
を中心とした重量基準でSiO2 42 〜56%、好ましくは47
〜53%、Al2O3 30〜45%好ましくは32〜38%、MgO 12〜
16%好ましくは12.5〜15%の領域で、種々の製造条件変
更、即ち原料銘柄、原料粒度の変更、焼成条件の変更に
より、目的とする30〜42%の気孔率、直径0.5 〜5μm
の細孔の総細孔容積が全細孔容積の70%以上かつ直径10
μm 以上の細孔容積が全細孔容積の10%以下を達成する
ことが可能である。
The chemical composition of the honeycomb structure of the present invention is the theoretical composition point of the cordierite (2MgO 2Al 2 O 3 5SiO 2 ) conventionally known as the composition of low expansion cordierite ceramics.
SiO 2 42-56%, preferably 47
~ 53%, Al 2 O 3 30-45%, preferably 32-38%, MgO 12 ~
In the range of 16%, preferably 12.5 to 15%, various porosity of 30 to 42%, diameter of 0.5 to 5 μm, which is the target, can be obtained by changing various manufacturing conditions, that is, change of raw material brand, raw material particle size, and firing condition.
The total pore volume of the pores is 70% or more of the total pore volume and the diameter is 10
It is possible to achieve 10% or less of the total pore volume with a pore volume of μm or more.

【0020】主成分以外の化学成分は熱膨脹特性に悪影
響を及ぼす場合が多く、TiO2 , CaO, K2O , Na2O , Fe2
O3 , P2O5等の不純物は全体として2.5 %以下に抑える
ことが望ましく、特にCaO , K2O , Na2Oのアルカリ成分
が少ないほど熱膨脹特性に好影響を及ぼす。
Chemical components other than the main component often adversely affect the thermal expansion characteristics, and TiO 2 , CaO, K 2 O, Na 2 O, Fe 2
Impurities such as O 3 and P 2 O 5 are preferably suppressed to 2.5% or less as a whole, and particularly, the smaller the alkali components of CaO, K 2 O and Na 2 O, the better the thermal expansion characteristics.

【0021】結晶相は実質的にコージェライト結晶から
成ることが好ましく、コージェライト結晶量として90重
量%以上、他の含有結晶としてのムライト、及びスピネ
ル(サフィリンを含む)を含む。
The crystal phase preferably consists essentially of cordierite crystals, and contains 90 wt% or more of cordierite crystals, mullite as other contained crystals, and spinel (including sapphirine).

【0022】活性アルミナ等高比表面積材料の触媒担持
性に関して、従来より吸水率、気孔率との相関が指摘さ
れていたが、その気孔率の要因以上に今回、特にある一
定の細孔径領域即ち0.5 〜5μm が担持性に著しく寄与
することが明らかになった。また、従来多孔性を維持す
るためにコージェライト担体に導入していた10μm 以上
の細孔は逆に触媒担持性を劣化させ、さらに担持量のバ
ラツキを増大することが判明した。
Regarding the catalyst-supporting property of a high specific surface area material such as activated alumina, a correlation with water absorption rate and porosity has been conventionally pointed out. It was revealed that 0.5 to 5 μm significantly contributes to the supporting property. Further, it was found that pores of 10 μm or more, which were conventionally introduced into the cordierite carrier to maintain the porosity, adversely deteriorate the catalyst supporting property and further increase the dispersion of the supporting amount.

【0023】0.5 〜5μm の細孔の寄与の理由として
は、活性アルミナの粒子径と毛細管吸水現象より付着速
度がこの領域の細孔径に対して最大になるものと考えら
れる。また、10μm 以上の細孔については、表面気孔へ
の高比表面積材料の浸入によって担持量のバラツキが出
るものと考えられる。
It is considered that the reason for the contribution of the pores of 0.5 to 5 μm is that the adhesion rate becomes the maximum with respect to the pore diameter in this region due to the particle diameter of activated alumina and the capillary water absorption phenomenon. In addition, regarding pores with a diameter of 10 μm or more, it is considered that the amount of supported particles varies due to the infiltration of the high specific surface area material into the surface pores.

【0024】触媒担持性と気孔率の相関も認められ、気
孔率30%以下で触媒担持性が劣化する。一方、0.5 〜5
μm 細孔容積の比率を維持し気孔率を向上することは触
媒担持性を向上させるが、ハニカム触媒に要求されるも
う一つの重要な特性である機械的強度が劣化する。
A correlation between the catalyst supportability and the porosity is also recognized, and the catalyst supportability deteriorates when the porosity is 30% or less. On the other hand, 0.5-5
Maintaining the ratio of the pore volume of μm to improve the porosity improves the catalyst supporting property, but deteriorates the mechanical strength which is another important property required for the honeycomb catalyst.

【0025】工業的に最も数多く採用されているリブ厚
150μm 、1平方センチ当り62セルのハニカム構造体で
流路方向の圧縮強度は実用上100kgf/cm2 以上、好まし
くは200kgf/cm2 以上が必要であり、気孔率に対応させ
るとそれぞれ42%、36%にあたる。
Rib thickness most industrially adopted
150 [mu] m, 1 compressive strength in the flow path direction in the honeycomb structure of square centimeter per 62 cells practically 100 kgf / cm 2 or more, preferably requires 200 kgf / cm 2 or more, respectively 42% made to correspond to the porosity, It corresponds to 36%.

【0026】担持後の耐熱衝撃性に関して、新たに10μ
m 以上の細孔が重要な役割を果すことが判明した。触媒
活性を維持するために通常使用される高比表面積の活性
アルミナ粒径は、5〜10μm の粒子径を有している。こ
のため、活性アルミナの付着速度は低いものの10μm 以
上の気孔にはこの活性アルミナ粒子が浸入しやすく、特
にハニカム隔壁の内部にまで浸入してしまうために、担
体の大幅な熱膨脹上昇をもたらす。よって、従来より触
媒担持性向上のため導入が図られてきた10μm以上の細
孔は、触媒担持性および担持後の耐熱衝撃性両面で好ま
しくない要因であることが明らかとなった。
Regarding the thermal shock resistance after loading, a new value of 10 μm
It was found that pores of m or larger play an important role. The high specific surface area activated alumina particles commonly used to maintain catalytic activity have a particle size of 5 to 10 .mu.m. For this reason, although the deposition rate of activated alumina is low, the activated alumina particles easily infiltrate into pores of 10 μm or more, and particularly penetrate into the inside of honeycomb partition walls, resulting in a large increase in thermal expansion of the carrier. Therefore, it has been clarified that the pores of 10 μm or more, which have been conventionally introduced to improve the catalyst supporting property, are unfavorable factors in both the catalyst supporting property and the thermal shock resistance after the supporting.

【0027】本発明の構成において、0.5 〜5μm 細孔
容積は全細孔容積の70%以上より好ましくは80%以上占
めることにより、良好な触媒担持性が得られる。また、
10μm 以上の細孔容積を全細孔容積の10%以下に抑える
ことによって、触媒担持性の向上及びバラツキ抑制、担
持後の熱膨脹上昇を最小限に抑えることが可能となる。
活性アルミナ担持後の本発明のコージェライトハニカム
構造体の熱膨脹係数は、この効果を明確に得るためには
40〜800 ℃の間の熱膨脹係数が1.0 ×10-6/℃以下であ
る必要がある。上述した条件をともに満足する細孔分布
を有することにより、触媒担持性、コート後の耐熱衝撃
性の大幅な向上が可能となる。
In the constitution of the present invention, good catalyst-supporting property can be obtained by making the pore volume of 0.5 to 5 μm account for 70% or more, preferably 80% or more of the total pore volume. Also,
By suppressing the pore volume of 10 μm or more to 10% or less of the total pore volume, it becomes possible to improve the catalyst supportability and suppress the dispersion, and to minimize the increase in thermal expansion after the support.
The coefficient of thermal expansion of the cordierite honeycomb structure of the present invention after supporting activated alumina is not enough to obtain this effect clearly.
The coefficient of thermal expansion between 40 and 800 ° C must be 1.0 × 10 -6 / ° C or less. By having a pore size distribution that satisfies both of the above conditions, it becomes possible to greatly improve the catalyst supporting property and the thermal shock resistance after coating.

【0028】[0028]

【実施例】本発明の好ましい細孔分布を有するコージェ
ライトハニカム構造体の製造にあたっては、従来公知の
種々の方法から選択して製造することが可能である。例
えば、所定粒度の原料を混合し、この混合物に可塑剤及
び粘結剤を加えて可塑化した変形可能なバッチとし、こ
の可塑化したバッチを押出し成形法により成形後乾燥
し、次いで所定の温度で焼成して得ることができる。こ
のとき、以下の点に注意すると好ましい。
EXAMPLES In producing the cordierite honeycomb structure having the preferable pore distribution of the present invention, it is possible to select and produce from various conventionally known methods. For example, a raw material having a predetermined particle size is mixed, a plasticizer and a binder are added to the mixture to make a plasticized deformable batch, and the plasticized batch is molded by an extrusion molding method and then dried, and then at a predetermined temperature. It can be obtained by firing at. At this time, it is preferable to pay attention to the following points.

【0029】原料特にタルク原料の粒度分布カーブで特
定の粗粒分をカットすることおよび微粒のアルミナ原料
を使用することが有効である。気孔率の適正化には微粒
のグラファイト、小麦粉、でんぷん粉の使用も有効であ
る。
It is effective to cut a specific coarse particle portion in the particle size distribution curve of the raw material, especially the talc raw material, and to use a fine alumina raw material. The use of fine graphite, wheat flour, and starch powder is also effective for optimizing the porosity.

【0030】また、焼成工程において1000〜1400℃の昇
温速度を制御すること、即ち50℃/Hr 以下に抑制した昇
温を選択することが有効である。さらに、最高温度と保
持時間を変更することにより0.5 〜5μm の細孔量を増
加させることができる。
Further, it is effective to control the temperature rising rate of 1000 to 1400 ° C. in the firing step, that is, to select the temperature rising suppressed to 50 ° C./Hr or less. Further, by changing the maximum temperature and the holding time, it is possible to increase the pore amount of 0.5 to 5 μm.

【0031】焼成条件変更による0.5 〜5μm 細孔増加
では、その方向がコージェライトハニカム担体の熱膨脹
係数増加に対応するため担体の熱膨脹係数を1.0 ×10-6
/℃以下に抑えなければならない。
When the pore size is increased by 0.5 to 5 μm by changing the firing conditions, the direction corresponds to the increase in the coefficient of thermal expansion of the cordierite honeycomb carrier, so the coefficient of thermal expansion of the carrier is 1.0 × 10 −6.
Must be kept below / ° C.

【0032】以下、実際の例について説明する。実施例1 第1表に示す化学組成のタルク、カオリン、仮焼カオリ
ン、アルミナを使用して第2表に示す調合割合で原料の
粒度変更、焼成条件として1000〜1400℃の昇温速度、最
高温度、保持時間を変更して、公知の押出製法により第
3表No. 1〜No. 13の細孔分布を有するリブ厚 150μm
、1平方センチ当りのセル数62ケの直径101mm 、長さ1
52mm の円筒形コージェライトハニカム構造触媒担体を
得た。
An actual example will be described below. Example 1 Talc, kaolin, calcined kaolin, and alumina having the chemical compositions shown in Table 1 were used, and the particle size of the raw materials was changed at the compounding ratio shown in Table 2, the heating rate was 1000 to 1400 ° C., and the maximum was the firing conditions. A rib thickness of 150 μm having a pore distribution of No. 1 to No. 13 in Table 3 by a known extrusion manufacturing method while changing the temperature and the holding time.
62 cells per square centimeter, diameter 101 mm, length 1
A 52 mm cylindrical cordierite honeycomb structure catalyst carrier was obtained.

【0033】一方、高比表面積材料として、平均粒子径
9μm のベーマイト相活性アルミナ95重量部とアルミナ
ゾル5重量部及びpH調整剤として希硝酸を使用して固型
分30%のコーティング用スラリーを調整した。前記No.
1〜No.13 のハニカム構造体各5個をこのスラリー20l
中にそれぞれ各2分間浸漬し、空気気流中で余分なスラ
リーを吹き出し、120 ℃で乾燥した。スラリーへの浸漬
〜乾燥の工程をそれぞれ2回実施の後 700℃で焼成し
た。
On the other hand, as a high specific surface area material, 95 parts by weight of boehmite phase activated alumina having an average particle size of 9 μm, 5 parts by weight of alumina sol and dilute nitric acid as a pH adjusting agent were used to prepare a coating slurry having a solid content of 30%. did. Said No.
20 liters of each of 5 honeycomb structures 1 to No. 13
Each was immersed for 2 minutes in each, and the excess slurry was blown out in an air stream and dried at 120 ° C. The steps of dipping in the slurry to drying were each performed twice, and then firing was performed at 700 ° C.

【0034】焼成後の重量を測定し、合計2回のディッ
ピングによる担持量を測定した。n= 5の担持量の平均
値と0.5 〜5μm 細孔量との関係を図1に、担持量と10
μm以上細孔量との関係を図2にそれぞれ示す。
The weight after calcination was measured, and the supported amount by a total of two dippings was measured. The relationship between the average value of the amount of n = 5 and the amount of pores of 0.5 to 5 μm is shown in FIG.
FIG. 2 shows the relationship with the pore size of μm or more.

【0035】また、担持前後のコージェライトハニカム
構造体の熱膨脹係数及びコーティング品の電気炉スポー
リング破壊温度についても第3表に示す。
Table 3 also shows the coefficient of thermal expansion of the cordierite honeycomb structure before and after loading and the electric furnace spalling breakdown temperature of the coated product.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】上述した結果から、0.5 〜5μm および10
μm 以上の細孔容積の全細孔容積に占める割合が本発明
の規定内である試験No. 3〜5,7〜10および12は、担
持量、熱膨脹係数、電気炉スポーリング破壊温度の点
で、本発明の規定外の細孔容積分布を有する試験No.
1,2,6,11, 13と比べて良好であることがわかっ
た。また、本発明の細孔容積の範囲内のものは、担持後
の熱膨脹係数が1.0 ×10-6/℃以下であり、担持後も優
れた熱衝撃特性が得られた。
From the above results, 0.5-5 μm and 10
Test Nos. 3 to 5, 7 to 10 and 12, in which the ratio of the pore volume of μm or more to the total pore volume is within the regulations of the present invention, are points of the supported amount, the coefficient of thermal expansion, and the electric furnace spalling fracture temperature. In, the test No. having a pore volume distribution outside the specifications of the present invention.
It was found to be better than 1, 2, 6, 11, and 13. Further, those having a pore volume within the range of the present invention have a thermal expansion coefficient of 1.0 × 10 −6 / ° C. or less after loading, and excellent thermal shock characteristics were obtained even after loading.

【0040】実施例2 実施例1と同様にして、第4表3,4(第3表3,4と
同バッチ)、14, 20,21さらに造孔剤として微粒グラフ
ァイトを用いて第4表15〜19, 22の細孔分布を有するリ
ブ厚 150μm 、1平方センチ当りセル数62ケの直径 101
mm、長さ 152mmの円筒形コージェライトハニカム構造触
媒担体を得た。実施例1で使用したコーティング用スラ
リーを用いて同様の実験方法にて活性アルミナ担持量を
測定した。この結果と活性アルミナ担持前の圧縮強度測
定結果を第4表に示す。また、図3に気孔率と担持量、
圧縮強度の関係を示す。
Example 2 In the same manner as in Example 1, Tables 4 and 3 (the same batch as Tables 3 and 4), 14, 20, and 21 were used, and fine graphite was used as a pore-forming agent. Rib thickness 150μm with pore distribution of 15 to 19 and 22, diameter of 62 cells per square centimeter 101
A cylindrical cordierite honeycomb structure catalyst carrier having a length of mm and a length of 152 mm was obtained. Using the coating slurry used in Example 1, the amount of active alumina supported was measured by the same experimental method. Table 4 shows this result and the result of measuring the compressive strength before supporting activated alumina. Moreover, in FIG. 3, porosity and loading amount,
The relationship of compressive strength is shown.

【0041】[0041]

【表4】 [Table 4]

【0042】上述した結果から、気孔率および細孔容積
分布が本発明の規定内である試験No. 3, 4, 14〜18, 21
及び22は、担持量、圧縮強度の点で、本発明の規定外の
気孔率および細孔容積分布を有する試験No. 19, 20と比
べて良好であることがわかった。
From the above-mentioned results, Test No. 3, 4, 14 to 18, 21 whose porosity and pore volume distribution are within the definition of the present invention.
It was found that Nos. 22 and 22 were better than the test Nos. 19 and 20 having a porosity and a pore volume distribution outside the limits of the present invention in terms of the carried amount and the compressive strength.

【0043】また、本発明の試験No. 3と参考例の試験
No. 1, 2についてCeO2及び活性アルミナを触媒として
担持させたときの界面の様子をSEM により撮影した。図
4〜図6は、それぞれ本発明の試験No. 3および参考例
試験No. 2,1の粒子構造を示す図である。図4に示す
本発明の例では活性アルミナ層が表面に均一に形成され
ているのに対し、図5,図6に示す参考例では活性アル
ミナ層が表面に均一に形成されず、また図6では担体内
部にまで浸透している様子がわかる。
Further, the test No. 3 of the present invention and the test of the reference example
Regarding Nos. 1 and 2, the state of the interface when CeO 2 and activated alumina were supported as a catalyst was photographed by SEM. 4 to 6 are views showing the particle structures of Test No. 3 and Reference Example Test Nos. 2 and 1 of the present invention, respectively. In the example of the present invention shown in FIG. 4, the activated alumina layer is uniformly formed on the surface, whereas in the reference examples shown in FIGS. 5 and 6, the activated alumina layer is not uniformly formed on the surface, and FIG. Shows that it has penetrated into the inside of the carrier.

【0044】[0044]

【発明の効果】以上詳細に説明したところから明らかな
ように、本発明のコージェライトハニカム構造体によれ
ば、所定の気孔率および細孔容積分布を有するコージェ
ライトハニカム構造体をハニカム構造触媒担体として使
用することにより、活性アルミナの担持性が良好でコー
ティング後のコージェライトハニカム触媒の耐熱衝撃性
も良好な活性アルミナを担持するためのコージェライト
ハニカム構造触媒担体を得ることができる。
As is clear from the above description, according to the cordierite honeycomb structure of the present invention, a cordierite honeycomb structure having a predetermined porosity and pore volume distribution can be used as a honeycomb structure catalyst carrier. As a result, it is possible to obtain a cordierite honeycomb structure catalyst carrier for supporting activated alumina which has good supportability of activated alumina and good thermal shock resistance of the coated cordierite honeycomb catalyst.

【図面の簡単な説明】[Brief description of drawings]

【図1】触媒担持量と0.5 〜5μm 細孔容積の全細孔容
積に占める割合との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the amount of catalyst supported and the ratio of 0.5-5 μm pore volume to the total pore volume.

【図2】触媒担持量と10μm 以上の細孔容積の全細孔容
積に占める割合との関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the amount of catalyst supported and the ratio of the pore volume of 10 μm or more to the total pore volume.

【図3】気孔率と触媒担持量および圧縮強度との関係を
示したグラフである。
FIG. 3 is a graph showing the relationship between the porosity, the catalyst loading amount, and the compression strength.

【図4】本発明の担体と活性アルミナの担持界面の粒子
構造を示すSEM 写真である。
FIG. 4 is an SEM photograph showing a particle structure of a supporting interface between the carrier of the present invention and activated alumina.

【図5】参考例の担体と活性アルミナの担持界面の粒子
構造を示すSEM 写真である。
FIG. 5 is an SEM photograph showing a particle structure at a supporting interface between a carrier of Reference Example and activated alumina.

【図6】参考例の担体と活性アルミナの担持界面の粒子
構造を示すSEM 写真である。
FIG. 6 is an SEM photograph showing a particle structure of a supporting interface between a carrier of Reference Example and activated alumina.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 35/10 301 F 8017−4G ZAB 8017−4G C04B 35/195 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 35/10 301 F 8017-4G ZAB 8017-4G C04B 35/195 ZAB

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主成分の化学組成が重量基準でSiO2
42〜56%、Al2 3 30〜45%、MgO 12 〜16%で結
晶相の主成分がコージェライトから成るハニカム構造体
で、該ハニカム構造体の気孔率が30%を超え42%以下で
あって、直径0.5〜5μmの細孔の総細孔容積が全細孔
容積の70%以上で、直径10μm以上の細孔の総細孔容積
が全細孔容積の10%以下であるとともに、活性アルミナ
を担持した後の流路方向の40〜800 ℃間の熱膨脹係数が
1.0 ×10-6/℃以下であることを特徴とする活性アルミ
ナを担持するためのコージェライトハニカム構造体。
1. The chemical composition of the main component is SiO 2 on a weight basis.
42-56%, Al 2 O 3 30-45%, MgO 12-16%, and the main component of the crystal phase is cordierite, and the honeycomb structure has a porosity of more than 30% and 42% or less. And the total pore volume of pores having a diameter of 0.5 to 5 μm is 70% or more of the total pore volume, and the total pore volume of pores having a diameter of 10 μm or more is 10% or less of the total pore volume. , The thermal expansion coefficient between 40 and 800 ℃ in the flow direction after supporting activated alumina is
A cordierite honeycomb structure for supporting activated alumina, which is 1.0 × 10 −6 / ° C. or less.
【請求項2】 前記ハニカム構造体の気孔率が30%を超
え36%以下である請求項1記載の活性アルミナを担持す
るためのコージェライトハニカム構造体。
2. The cordierite honeycomb structure for supporting activated alumina according to claim 1, wherein the porosity of the honeycomb structure is more than 30% and 36% or less.
【請求項3】 前記ハニカム構造体の直径0.5 〜5μm
の細孔の総細孔容積が全細孔容積の80%以上である請求
項1記載の活性アルミナを担持するためのコージェライ
トハニカム構造体。
3. The honeycomb structure has a diameter of 0.5 to 5 μm.
The cordierite honeycomb structure for supporting activated alumina according to claim 1, wherein the total pore volume of the pores is 80% or more of the total pore volume.
JP5127782A 1987-02-12 1993-05-06 Cordierite honeycomb structure Expired - Lifetime JPH0729059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5127782A JPH0729059B2 (en) 1987-02-12 1993-05-06 Cordierite honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62028365A JPH0669534B2 (en) 1987-02-12 1987-02-12 Cordierite honeycomb structure
JP5127782A JPH0729059B2 (en) 1987-02-12 1993-05-06 Cordierite honeycomb structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62028365A Division JPH0669534B2 (en) 1987-02-12 1987-02-12 Cordierite honeycomb structure

Publications (2)

Publication Number Publication Date
JPH06165939A JPH06165939A (en) 1994-06-14
JPH0729059B2 true JPH0729059B2 (en) 1995-04-05

Family

ID=26366453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5127782A Expired - Lifetime JPH0729059B2 (en) 1987-02-12 1993-05-06 Cordierite honeycomb structure

Country Status (1)

Country Link
JP (1) JPH0729059B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165943A (en) * 1987-02-12 1994-06-14 Ngk Insulators Ltd Cordierite honeycomb structure
US6087281A (en) * 1998-02-25 2000-07-11 Corning Incorporated Low CTE cordierite bodies with narrow pore size distribution and method of making same
JP2001226173A (en) 1999-12-07 2001-08-21 Denso Corp Manufacturing process of honeycomb structure
JP2003176127A (en) * 2001-08-08 2003-06-24 Showa Denko Kk alpha-ALUMINA FOR CORDIERITE CERAMIC, METHOD OF PRODUCING THE SAME, AND STRUCTURE OF CORDIERITE CERAMIC USING THE alpha-ALUMINA
JP5010221B2 (en) 2006-09-11 2012-08-29 株式会社デンソー Ceramic catalyst body
CN110143825B (en) * 2019-05-13 2021-11-02 山东国瓷功能材料股份有限公司 Cordierite ceramic honeycomb filter body with narrow pore diameter distribution and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165943A (en) * 1987-02-12 1994-06-14 Ngk Insulators Ltd Cordierite honeycomb structure
JPH0669534B2 (en) * 1987-02-12 1994-09-07 日本碍子株式会社 Cordierite honeycomb structure

Also Published As

Publication number Publication date
JPH06165939A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
JPH0669534B2 (en) Cordierite honeycomb structure
US4869944A (en) Cordierite honeycomb-structural body and a method for producing the same
JP5313658B2 (en) Ceramic structure and manufacturing method thereof
US4295892A (en) Cordierite ceramic honeycomb and a method for producing the same
JP2981034B2 (en) Method for firing ceramic honeycomb structure
JP4082559B2 (en) Catalyst body and method for producing the same
WO2014163036A1 (en) Ceramic honeycomb structure and method for producing same
KR20060135493A (en) Honeycomb structured body and exhaust gas purifying apparatus
JP2004066069A (en) Ceramic catalyst
JP2003080080A (en) Ceramic filter and ceramic filter with catalyst
JP2002234779A (en) Honeycomb structure and production method therefor
JPH085710B2 (en) Method for manufacturing thermal shock resistant ceramics
JP4567285B2 (en) Exhaust gas purification catalyst body
JPH10174885A (en) Cordierite honeycomb structural body and its production
KR100739409B1 (en) Silicon carbide-based catalytic body and process for producing the same
EP1354629A1 (en) Cordierite honeycomb structural body and method of manufacturing the structural body
JPH1157496A (en) Preparation of cordierite ceramic honeycomb structure body
JP2000225340A (en) Honeycomb structure
JPH11333293A (en) Honeycomb structure and its manufacture
JPH013067A (en) Manufacturing method of cordierite honeycomb structure
JPH0582343B2 (en)
US4769356A (en) Catalyst for purifying exhaust gas
JPH0729059B2 (en) Cordierite honeycomb structure
JPH0651596B2 (en) Method for manufacturing cordierite honeycomb structure
JPH06165943A (en) Cordierite honeycomb structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980407

EXPY Cancellation because of completion of term