JP2021061368A - Manufacturing method for chip resistor - Google Patents

Manufacturing method for chip resistor Download PDF

Info

Publication number
JP2021061368A
JP2021061368A JP2019186096A JP2019186096A JP2021061368A JP 2021061368 A JP2021061368 A JP 2021061368A JP 2019186096 A JP2019186096 A JP 2019186096A JP 2019186096 A JP2019186096 A JP 2019186096A JP 2021061368 A JP2021061368 A JP 2021061368A
Authority
JP
Japan
Prior art keywords
resistor
chip
dividing groove
resistance value
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019186096A
Other languages
Japanese (ja)
Other versions
JP7352436B2 (en
Inventor
松本 健太郎
Kentaro Matsumoto
健太郎 松本
功 永坂
Isao Nagasaka
功 永坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2019186096A priority Critical patent/JP7352436B2/en
Publication of JP2021061368A publication Critical patent/JP2021061368A/en
Application granted granted Critical
Publication of JP7352436B2 publication Critical patent/JP7352436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

To provide a manufacturing method for chip resistor, capable of achieving exact and easy resistance value adjustment using a four-terminal measurement as well as easy break of a large-sized substrate after resistance value adjustment.SOLUTION: After front electrodes 2 each being spaced from a primary division groove 11 and opposing thereto at a prescribed interval and a resistor 3 bridging between both the front electrodes 2 are formed in each chip formation region partitioned by the primary division groove 11 and a secondary division groove 12 at the surface of a large-sized substrate 10A, a voltage measurement probe 13 with a larger diameter than a spacing gap G is brought into contact with all the front electrodes 2 of a resistance element group in the resistance element group formed by alternately arranging the adjacent front electrode 2 and the resistor 3 through the spacing gap G, an energization probe 14 is brought into contact with the front electrodes 2 positioned at both ends of the resistance element group and while an electric current is being run between the pair of energization probes 14 under such a state, each of voltage values between the resistors 3 is measured using the pair of voltage measurement probes 13.SELECTED DRAWING: Figure 4

Description

本発明は、絶縁基板上に設けられた抵抗体にトリミング溝を形成することで抵抗値が調整されるチップ抵抗器の製造方法に関するものである。 The present invention relates to a method for manufacturing a chip resistor whose resistance value is adjusted by forming a trimming groove in a resistor provided on an insulating substrate.

チップ抵抗器は、直方体形状の絶縁基板と、絶縁基板の表面に所定間隔を存して対向配置された一対の表電極と、絶縁基板の裏面に所定間隔を存して対向配置された一対の裏電極と、表電極と裏電極を橋絡する端面電極と、対をなす表電極どうしを橋絡する抵抗体と、抵抗体を覆う保護膜等によって主に構成されている。 The chip resistors are a rectangular body-shaped insulating substrate, a pair of front electrodes arranged to face each other on the front surface of the insulating substrate at a predetermined interval, and a pair of front electrodes arranged to face each other on the back surface of the insulating substrate at a predetermined interval. It is mainly composed of a back electrode, an end face electrode that bridges the front electrode and the back electrode, a resistor that bridges the paired front electrodes, a protective film that covers the resistor, and the like.

一般的に、このようなチップ抵抗器を製造する場合、格子状に延びる1次分割溝と2次分割溝が設けられた大判基板を準備し、この大判基板に対して多数個分の表電極や抵抗体や保護膜等を一括して形成した後、この大判基板を1次分割溝と2次分割溝に沿って分割してチップ抵抗器を多数個取りするようにしている。かかるチップ抵抗器の製造過程においては、大判基板の表面における1次分割溝と2次分割溝で区画された各チップ形成領域内に、導電ペーストを印刷・焼成することにより対をなす表電極が形成されると共に、対をなす複数組の表電極間に抵抗ペーストを印刷・焼成することにより多数の抵抗体が形成される。その際、印刷時の位置ずれや滲み、あるいは焼成炉内の温度むら等の影響により、各抵抗体の大きさや膜厚に若干のばらつきを生じることが避け難いため、大判基板の状態で各抵抗体にトリミング溝を形成して所望の抵抗値に設定するという抵抗値調整が行われるようになっている。 Generally, when manufacturing such a chip resistor, a large-format substrate provided with a primary dividing groove and a secondary dividing groove extending in a grid pattern is prepared, and a large number of surface electrodes are provided for the large-format substrate. After forming the resistor, the protective film, and the like all at once, the large-sized substrate is divided along the primary dividing groove and the secondary dividing groove to take a large number of chip resistors. In the manufacturing process of such a chip resistor, a pair of surface electrodes is formed by printing and firing a conductive paste in each chip forming region partitioned by the primary dividing groove and the secondary dividing groove on the surface of a large-format substrate. At the same time, a large number of resistors are formed by printing and firing a resistance paste between a plurality of pairs of surface electrodes. At that time, it is inevitable that the size and film thickness of each resistor will vary slightly due to the effects of misalignment and bleeding during printing, temperature unevenness in the firing furnace, etc., so each resistor in the state of a large-format substrate The resistance value is adjusted by forming a trimming groove on the body and setting the desired resistance value.

この抵抗値調整としては、抵抗体の両端部に接続する表電極にそれぞれ測定用プローブを接触させ、この状態で測定用プローブ間の抵抗値を測定しながら、抵抗体にレーザー光を照射してトリミング溝を形成することにより、抵抗体の抵抗値を上昇させるという手法が広く採用されている。ここで、表電極に接触させる測定用プローブはそれ自体に抵抗値を持っているため、抵抗体の抵抗値を正確に測定するためには、この測定用プローブの抵抗値を含まないように、定電流を供給する通電用プローブと電圧降下を検出する電圧測定用プローブとを用い、これら各プローブをそれぞれ表電極に接触させながら抵抗値を測定する、いわゆる4端子法と呼ばれる測定法が有効である。特に、要求される抵抗値が10Ω以下の低抵抗用チップ抵抗器の製造方法においては、抵抗体の抵抗値を正確に測定する上で4端子測定法を用いて抵抗値調整が必要不可欠となる。 To adjust the resistance value, the measuring probes are brought into contact with the surface electrodes connected to both ends of the resistor, and in this state, the resistor is irradiated with laser light while measuring the resistance value between the measuring probes. A method of increasing the resistance value of a resistor by forming a trimming groove is widely adopted. Here, since the measurement probe in contact with the front electrode has a resistance value by itself, in order to accurately measure the resistance value of the resistor, the resistance value of this measurement probe should not be included. A measurement method called the so-called four-terminal method is effective, in which a probe for energization that supplies a constant current and a probe for voltage measurement that detects a voltage drop are used, and the resistance value is measured while each of these probes is in contact with the front electrode. is there. In particular, in a method for manufacturing a low resistance chip resistor having a required resistance value of 10 Ω or less, it is indispensable to adjust the resistance value by using a 4-terminal measurement method in order to accurately measure the resistance value of the resistor. ..

4端子測定法を用いた抵抗値調整の従来技術として、図5に示すように、抵抗体100と表電極101が交互に配置されて直列接続状態で連なった抵抗素子群に対し、当該抵抗素子群の両端に位置する表電極101に通電用プローブ102を当接させると共に、当該抵抗素子群の全ての表電極101に電圧測定用プローブ103を当接させ、通電用プローブ102に定電流(I)を流しながら各抵抗体100の電極間電圧(V)を測定するという方法が提案されている(特許文献1参照)。 As a conventional technique for adjusting the resistance value using the four-terminal measurement method, as shown in FIG. 5, the resistance element is applied to a group of resistance elements in which the resistor 100 and the surface electrode 101 are alternately arranged and connected in series. The energizing probes 102 are brought into contact with the surface electrodes 101 located at both ends of the group, and the voltage measuring probes 103 are brought into contact with all the surface electrodes 101 of the resistance element group, and a constant current (I) is applied to the energizing probes 102. ) Has been proposed to measure the voltage (V) between electrodes of each resistor 100 (see Patent Document 1).

このような4端子測定法を用いて抵抗体100の抵抗値調整を行うと、直列接続された抵抗素子群の両端の表電極101間に定電流(I)を流すことによって全ての抵抗体100に当該定電流が流れるため、各々の抵抗体100毎に通電用プローブ102を当接させる必要がなく、また、電圧測定用プローブ103は隣り合う抵抗体100で共通する表電極101に1本あれば足りることになる。したがって、抵抗素子群の全ての表電極101に2本ずつのプローブ102,103を当接させて各々の抵抗体100の抵抗値を測定する4端子測定法に比べると、必要とされるプローブ102,103のトータル本数を減らすことができ、また、電圧測定用プローブ103は隣り合う抵抗体100で共通する表電極101に1本あれば足りるため、広い面積の表電極101に対して電圧測定用プローブ103を容易に接触させることができる。 When the resistance value of the resistor 100 is adjusted using such a four-terminal measurement method, all the resistors 100 are made by passing a constant current (I) between the surface electrodes 101 at both ends of the resistance element group connected in series. Since the constant current flows through the resistor 100, it is not necessary to bring the energizing probe 102 into contact with each resistor 100, and the voltage measuring probe 103 has one on the surface electrode 101 common to the adjacent resistors 100. It will be enough. Therefore, the required probe 102 is compared with the four-terminal measurement method in which two probes 102 and 103 are brought into contact with all the surface electrodes 101 of the resistance element group to measure the resistance value of each resistor 100. , 103 can be reduced in total, and one probe 103 for voltage measurement is required for the surface electrode 101 common to the adjacent resistors 100, so that the voltage measurement probe 103 for a large area can be used for voltage measurement. The probe 103 can be easily brought into contact.

特開2005−150580号公報Japanese Unexamined Patent Publication No. 2005-150580

ところで、図5に示す抵抗体100と表電極101は、格子状に延びる1次分割溝と2次分割溝が設けられた大判基板に対して一括形成されるようになっており、一般的なチップ抵抗器の製造方法では、これら抵抗体100に対して抵抗値調整を行った後、大判基板を1次分割溝と2次分割溝に沿って分割(ブレイク)することで多数のチップ状基板に個片化するようにしている。すなわち、図6に示すように、格子状に延びる1次分割溝105と2次分割溝106が設けられた大判基板104を準備し、この大判基板104の表面における1次分割溝105と2次分割溝106で区画された各チップ形成領域の両端部分に、2次分割溝106と平行かつ1次分割溝105に跨るように導電ペーストを印刷・焼成して表電極101を形成し、また、チップ形成領域内で向かい合う一対の表電極101間に抵抗ペーストを印刷・焼成して抵抗体100を形成するようになっている。 By the way, the resistor 100 and the surface electrode 101 shown in FIG. 5 are collectively formed on a large-format substrate provided with a primary dividing groove and a secondary dividing groove extending in a grid pattern, which is generally used. In the method for manufacturing a chip resistor, a large number of chip-shaped substrates are formed by adjusting the resistance value of these resistors 100 and then dividing (breaking) the large-format substrate along the primary dividing groove and the secondary dividing groove. I try to separate them into individual pieces. That is, as shown in FIG. 6, a large-format substrate 104 provided with a primary dividing groove 105 and a secondary dividing groove 106 extending in a grid pattern is prepared, and the primary dividing groove 105 and the secondary are secondary on the surface of the large-format substrate 104. A surface electrode 101 is formed by printing and firing a conductive paste parallel to the secondary dividing groove 106 and straddling the primary dividing groove 105 at both ends of each chip forming region partitioned by the dividing groove 106. A resistor paste is printed and fired between a pair of surface electrodes 101 facing each other in the chip forming region to form a resistor 100.

しかしながら、1次分割溝105に跨るように印刷した導電ペーストによって表電極101が形成されるため、導電ペーストが1次分割溝105に沿って2次分割溝106の方向に滲み出しやすくなる。その結果、2次分割溝106を介して隣り合う抵抗体100間が1次分割溝105内に滲み出した導電ペーストによって導通(短絡)してしまうことがあり、その場合、抵抗値調整するために測定している抵抗値を正確に測定することができなくなる。特に、チップ抵抗器の小型化に伴って大判基板104におけるチップ形成領域の面積が小さくなると、2次分割溝106を介して隣り合う表電極101間の距離が短くなるため、上記した導電ペーストの滲み出しに起因する短絡の虞が大きくなる。また、抵抗値調整後に大判基板104を1次分割溝105に沿って分割(1次ブレイク)する際に、表電極101が1次分割溝105に跨って形成されているためブレイクしずらくなり、1次分割時に2次分割溝106に沿って不所望に割れてしまったり、1次分割面のブレイク形状が悪化して端面電極の形成に支障を来たす虞があった。 However, since the surface electrode 101 is formed by the conductive paste printed so as to straddle the primary dividing groove 105, the conductive paste tends to seep out in the direction of the secondary dividing groove 106 along the primary dividing groove 105. As a result, the resistors 100 adjacent to each other via the secondary dividing groove 106 may be electrically connected (short-circuited) by the conductive paste that has exuded into the primary dividing groove 105. In that case, the resistance value is adjusted. It becomes impossible to accurately measure the resistance value being measured. In particular, as the area of the chip forming region on the large-format substrate 104 becomes smaller as the chip resistor becomes smaller, the distance between the adjacent surface electrodes 101 via the secondary dividing groove 106 becomes shorter, so that the above-mentioned conductive paste can be used. The risk of short circuit due to exudation increases. Further, when the large-format substrate 104 is divided (primary break) along the primary dividing groove 105 after adjusting the resistance value, the table electrode 101 is formed so as to straddle the primary dividing groove 105, which makes it difficult to break. At the time of the primary division, there is a possibility that the primary division may be undesirably cracked along the secondary division groove 106, or the break shape of the primary division surface may be deteriorated, which may hinder the formation of the end face electrode.

本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、4端子測定法を用いて抵抗値調整を正確かつ容易に実施することができると共に、抵抗値調整後の大判基板を容易にブレイクすることができるチップ抵抗器の製造方法を提供することにある。 The present invention has been made in view of the actual situation of such a prior art, and an object of the present invention is that the resistance value can be adjusted accurately and easily by using the four-terminal measurement method, and the resistance value is adjusted after the resistance value is adjusted. An object of the present invention is to provide a method for manufacturing a chip resistor capable of easily breaking a large-format substrate.

上記の目的を達成するために、本発明によるチップ抵抗器の製造方法は、格子状に延びる複数の1次分割溝と2次分割溝を有し、前記1次分割溝と前記2次分割溝で1つのチップ抵抗器に相当するチップ形成領域が区画された大判基板に対して、前記各チップ形成領域内に所定間隔を存して対向する表電極の対を形成する工程と、前記チップ形成領域内で対向する前記表電極間を接続するように複数の抵抗体を形成する工程と、を備え、前記表電極は前記1次分割溝を跨いで分断された離間ギャップを有しており、前記離間ギャップを介して隣接する前記表電極と前記抵抗体とが前記2次分割溝の延出方向に沿って交互に配置された抵抗素子群に対して抵抗値調整を行う工程において、前記抵抗素子群の全ての前記表電極に前記離間ギャップよりも大きな径寸法を有する電圧測定用プローブを接触させると共に、前記抵抗素子群の両端に位置する前記表電極に通電用プローブをそれぞれ接触させ、この状態で一対の前記通電用プローブ間に電流を流しつつ前記各電圧測定用プローブで前記抵抗体間の電圧値をそれぞれ測定しながら前記各抵抗体の抵抗値調整を行った後、前記大判基板を前記1次分割溝と前記2次分割溝に沿ってチップ単体に個片化することを特徴としている。 In order to achieve the above object, the method for manufacturing a chip resistor according to the present invention has a plurality of primary dividing grooves and secondary dividing grooves extending in a grid pattern, and the primary dividing groove and the secondary dividing groove. A step of forming a pair of table electrodes facing each other at a predetermined interval in each of the chip forming regions with respect to a large-sized substrate in which a chip forming region corresponding to one chip resistor is partitioned, and the chip forming. A step of forming a plurality of resistors so as to connect the surface electrodes facing each other in the region is provided, and the surface electrodes have a separation gap divided across the primary dividing groove. In the step of adjusting the resistance value with respect to a group of resistance elements in which the front electrode and the resistor adjacent to each other via the separation gap are alternately arranged along the extending direction of the secondary dividing groove, the resistance. A voltage measuring probe having a diameter larger than the separation gap is brought into contact with all the surface electrodes of the element group, and an energizing probe is brought into contact with the table electrodes located at both ends of the resistance element group. In this state, while passing a current between the pair of energizing probes, the resistance value of each resistor is adjusted while measuring the voltage value between the resistors with each of the voltage measuring probes, and then the large format substrate is used. It is characterized in that the chip is individually separated along the primary dividing groove and the secondary dividing groove.

このような工程を含むチップ抵抗器の製造方法では、表電極が1次分割溝を跨いで分断された離間ギャップを有しているため、表電極形成用の導電ペーストが1次分割溝を伝わって2次分割溝の方向へ流れ出すことはなく、2次分割溝介して隣接する表電極同士の短絡を防止することができる。 In the method for manufacturing a chip resistor including such a step, since the front electrode has a separation gap that is divided across the primary dividing groove, the conductive paste for forming the front electrode is transmitted through the primary dividing groove. Therefore, it does not flow out in the direction of the secondary dividing groove, and short-circuiting between adjacent surface electrodes can be prevented through the secondary dividing groove.

そして、離間ギャップを介して隣接する表電極と抵抗体とが2次分割溝の延出方向に沿って交互に配置された抵抗素子群に対して抵抗値調整を行う工程において、抵抗素子群の全ての表電極に離間ギャップよりも大きな径寸法を有する電圧測定用プローブを、離間ギャップGを介して隣接する2つの表電極に跨って接触させると共に、抵抗素子群の両端に位置する表電極に通電用プローブをそれぞれ接触させ、この状態で一対の通電用プローブ間に電流を流しつつ各電圧測定用プローブで抵抗体間の電圧値をそれぞれ測定することにより、表電極が離間ギャップによって1次分割溝を跨いで分断されていても一対の通電用プローブ間に電流を流すことができ、4端子測定法を用いて抵抗体の抵抗値調整を正確かつ容易に実施することができる。 Then, in the step of adjusting the resistance value for the resistance element group in which the adjacent surface electrodes and the resistors are alternately arranged along the extending direction of the secondary dividing groove through the separation gap, the resistance element group A voltage measuring probe having a diameter larger than that of the separation gap is brought into contact with all the front electrodes across two adjacent front electrodes via the separation gap G, and is attached to the front electrodes located at both ends of the resistance element group. By bringing the energizing probes into contact with each other and measuring the voltage value between the resistors with each voltage measuring probe while passing a current between the pair of energizing probes in this state, the front electrode is primaryly divided by the separation gap. A current can be passed between the pair of energizing probes even if they are divided across the groove, and the resistance value of the resistor can be adjusted accurately and easily by using the 4-terminal measurement method.

また、1次分割溝内に導電ペーストが入り込まないため、抵抗値調整後に大判基板を1次分割溝に沿って簡単にブレイクすることができ、ブレイク形状の悪化や不所望な2次割れを抑制することができる。 In addition, since the conductive paste does not enter the primary dividing groove, the large-format substrate can be easily broken along the primary dividing groove after adjusting the resistance value, and deterioration of the break shape and undesired secondary cracking are suppressed. can do.

本発明のチップ抵抗器の製造方法によれば、4端子測定法を用いて抵抗値調整を正確かつ容易に実施することができると共に、抵抗値調整後の大判基板を容易にブレイクすることができる。 According to the method for manufacturing a chip resistor of the present invention, the resistance value can be adjusted accurately and easily by using the four-terminal measurement method, and the large-format substrate after the resistance value adjustment can be easily broken. ..

本発明の実施形態例に係るチップ抵抗器の平面図である。It is a top view of the chip resistor which concerns on embodiment of this invention. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the line II-II of FIG. 該チップ抵抗器の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the chip resistor. 該チップ抵抗器の製造工程で用いられる大判基板の説明図である。It is explanatory drawing of the large-sized substrate used in the manufacturing process of the chip resistor. 従来例に係るチップ抵抗器の抵抗値調整方法を示す説明図である。It is explanatory drawing which shows the resistance value adjustment method of the chip resistor which concerns on a prior art example. 従来例に係るチップ抵抗器の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the chip resistor which concerns on a prior art example.

発明の実施の形態について図面を参照して説明すると、図1は本発明の実施形態例に係るチップ抵抗器の平面図、図2は図1のII−II線に沿う断面図である。 When the embodiment of the invention is described with reference to the drawings, FIG. 1 is a plan view of the chip resistor according to the embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line II-II of FIG.

図1と図2に示すように、本実施形態例に係るチップ抵抗器10は、直方体形状の絶縁基板1と、絶縁基板1の表面の長手方向両端部に設けられた一対の表電極2と、これら両表電極2の間を橋絡する抵抗体3と、抵抗体3を覆う保護層4と、絶縁基板1の裏面の長手方向両端部に設けられた一対の裏電極5と、絶縁基板1の長手方向両端面に設けられた一対の端面電極6と、これら電極部2,5,6を覆う外部電極7等によって主として構成されている。 As shown in FIGS. 1 and 2, the chip resistor 10 according to the present embodiment includes a rectangular-shaped insulating substrate 1 and a pair of surface electrodes 2 provided at both ends of the surface of the insulating substrate 1 in the longitudinal direction. A resistor 3 that bridges between these two front electrodes 2, a protective layer 4 that covers the resistor 3, a pair of back electrodes 5 provided at both ends of the back surface of the insulating substrate 1 in the longitudinal direction, and an insulating substrate. It is mainly composed of a pair of end face electrodes 6 provided on both end faces in the longitudinal direction of 1 and external electrodes 7 and the like covering these electrode portions 2, 5 and 6.

絶縁基板1は、後述する大判基板を縦横の分割溝(1次分割溝と2次分割溝)に沿って分割して多数個取りされたものであり、大判基板の主成分はアルミナを主成分とするセラミックス基板である。 The insulating substrate 1 is obtained by dividing a large-format substrate, which will be described later, along vertical and horizontal dividing grooves (primary dividing groove and secondary dividing groove) and taking a large number of them, and the main component of the large-format substrate is alumina as the main component. It is a ceramic substrate.

一対の表電極2は銀を主成分とする銀系ペーストをスクリーン印刷して乾燥・焼成したものであり、これら表電極2は所定間隔を存して対向するように絶縁基板1の表面に形成されている。これら表電極2は絶縁基板1の長手方向両端より若干内方に離間した位置に形成されており、表電極2と絶縁基板1の長手方向端面との間には若干の間隙が確保されている。 The pair of surface electrodes 2 are made by screen-printing a silver-based paste containing silver as a main component, drying and firing, and these surface electrodes 2 are formed on the surface of the insulating substrate 1 so as to face each other at predetermined intervals. Has been done. These surface electrodes 2 are formed at positions slightly inwardly separated from both ends in the longitudinal direction of the insulating substrate 1, and a slight gap is secured between the surface electrodes 2 and the end faces in the longitudinal direction of the insulating substrate 1. ..

抵抗体3は酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成したものであり、この抵抗体3は両端部が表電極2に重なるように矩形状に形成されている。抵抗体3にはトリミング溝7が形成されており、このトリミング溝7によって抵抗体3の抵抗値が所定値になるように調整されている。トリミング溝7はレーザー光の照射によって抵抗体3にできる切込みであり、本実施形態例では、Lカット形状のトリミング溝7を形成して抵抗体3の抵抗値を調整しているが、トリミング溝7の形状はLカット以外のIカット形状等でも良く、また、トリミング溝7の本数は1つに限定されず複数本でも良い。 The resistor 3 is obtained by screen-printing a resistor paste such as ruthenium oxide, drying and firing, and the resistor 3 is formed in a rectangular shape so that both ends thereof overlap the surface electrode 2. A trimming groove 7 is formed in the resistor 3, and the trimming groove 7 adjusts the resistance value of the resistor 3 to a predetermined value. The trimming groove 7 is a notch formed in the resistor 3 by irradiation with a laser beam. In this embodiment, the trimming groove 7 having an L-cut shape is formed to adjust the resistance value of the resistor 3, but the trimming groove 7 is formed. The shape of 7 may be an I-cut shape other than the L-cut, and the number of trimming grooves 7 is not limited to one and may be a plurality of trimming grooves 7.

保護層4はアンダーコート層とオーバーコート層の2層構造からなり、アンダーコート層はガラスペーストをスクリーン印刷して乾燥・焼成したものであり、オーバーコート層はエポキシ系樹脂ペーストをスクリーン印刷して加熱硬化(焼付け)したものである。アンダーコート層はトリミング溝7の形成時にレーザーの熱から抵抗体3を保護するものであり、アンダーコート層は抵抗体3を完全に覆い隠せる程度の大きさに形成されている。オーバーコート層はトリミング溝7形成後の抵抗体3を外部環境(湿度や腐食性ガス等)から保護するものであり、オーバーコート層はアンダーコート層を完全に覆い隠せる程度の大きさに形成されている。 The protective layer 4 has a two-layer structure consisting of an undercoat layer and an overcoat layer. The undercoat layer is screen-printed with a glass paste, dried and fired, and the overcoat layer is screen-printed with an epoxy resin paste. It is heat-cured (baked). The undercoat layer protects the resistor 3 from the heat of the laser when the trimming groove 7 is formed, and the undercoat layer is formed in a size sufficient to completely cover the resistor 3. The overcoat layer protects the resistor 3 after forming the trimming groove 7 from the external environment (humidity, corrosive gas, etc.), and the overcoat layer is formed to a size that can completely cover the undercoat layer. ing.

一対の裏電極5は銀を主成分とする銀系ペーストをスクリーン印刷して乾燥・焼成したものであり、これら裏電極5は表電極2と対応するように絶縁基板1の裏面における長手方向両端部に形成されている。その際、ブレイク性をより向上させるために、裏電極5においても、表電極2と同様に絶縁基板1の長手方向両端より若干内方の離間位置に形成しても良い。 The pair of back electrodes 5 are made by screen-printing a silver-based paste containing silver as a main component, drying and firing, and these back electrodes 5 are both ends in the longitudinal direction on the back surface of the insulating substrate 1 so as to correspond to the front electrodes 2. It is formed in the part. At that time, in order to further improve the breakability, the back electrode 5 may be formed at a position slightly inward from both ends in the longitudinal direction of the insulating substrate 1 as in the front electrode 2.

一対の端面電極6は、絶縁基板1の端面にNi/Crをスパッタリングしたり、樹脂銀を塗布して加熱硬化したものであり、絶縁基板1の表面と裏面に回り込むように断面コ字状に形成することで、これら端面電極6によって対応する表電極2と裏電極5とが橋絡されている。その後、これら端面電極6の表面はNiメッキ層とSnメッキ層からなる2層構造の外部電極7によって被覆されている。 The pair of end face electrodes 6 are obtained by sputtering Ni / Cr on the end faces of the insulating substrate 1 or applying resin silver and curing by heating, and have a U-shaped cross section so as to wrap around the front surface and the back surface of the insulating substrate 1. By forming, the front electrode 2 and the back electrode 5 corresponding to each other are bridged by these end face electrodes 6. After that, the surface of these end face electrodes 6 is covered with an external electrode 7 having a two-layer structure composed of a Ni-plated layer and a Sn-plated layer.

次に、このチップ抵抗器10の製造工程について、図3に示すフローチャートと図4に示す大判基板の説明図を参照しながら説明する。 Next, the manufacturing process of the chip resistor 10 will be described with reference to the flowchart shown in FIG. 3 and the explanatory diagram of the large format substrate shown in FIG.

まず、絶縁基板1が多数個取りされる大判基板10Aを準備する(図3のS−1)。図4(a)に示すように、この大判基板10Aの表面には複数本の1次分割溝11と2次分割溝12が格子状に設けられており、両分割溝11,12によって区切られたマス目の1つ1つが1個分のチップ形成領域となっている。図4には複数個分のチップ形成領域に相当する大判基板10Aが代表して示されているが、実際は多数個分のチップ形成領域に相当する大判基板10Aに対して以下に説明する各工程が一括して行われる。 First, a large-format substrate 10A on which a large number of insulating substrates 1 are taken is prepared (S-1 in FIG. 3). As shown in FIG. 4A, a plurality of primary dividing grooves 11 and secondary dividing grooves 12 are provided in a grid pattern on the surface of the large-format substrate 10A, and are separated by both dividing grooves 11 and 12. Each of the squares is a chip forming area for one piece. Although FIG. 4 shows the large-format substrate 10A corresponding to a plurality of chip forming regions as a representative, each step described below with respect to the large-format substrate 10A corresponding to a large number of chip forming regions is actually shown. Is done all at once.

すなわち、この大判基板10Aの表面にAgを含有する導電ペーストをスクリーン印刷した後、これを乾燥・焼成することにより、図4(b)に示すように、各チップ形成領域の両端部分に、1次分割溝11から離間すると共に所定間隔を存して対向する複数対の表電極2を形成する(図3のS−2)。これにより、1次分割溝11を介して隣り合う2つの表電極2の間に1次分割溝11の溝幅よりも広い離間ギャップGが確保されるため、導電ペーストが1次分割溝11を伝わって2次分割溝12の方向へ流れ出すことはなくなる。なお、これら表電極2の形成工程と同時あるいは前後して、大判基板10Aの裏面にAg系ペーストをスクリーン印刷した後、これを乾燥・焼成することにより、表電極2に対応する複数対の裏電極(図示せず)を形成する(図3のS−3)。 That is, by screen-printing a conductive paste containing Ag on the surface of the large-format substrate 10A and then drying and firing it, as shown in FIG. 4B, 1 is formed on both ends of each chip forming region. A plurality of pairs of surface electrodes 2 that are separated from the next dividing groove 11 and face each other with a predetermined interval are formed (S-2 in FIG. 3). As a result, a separation gap G wider than the groove width of the primary dividing groove 11 is secured between the two adjacent table electrodes 2 via the primary dividing groove 11, so that the conductive paste forms the primary dividing groove 11. It is not transmitted and flows out in the direction of the secondary dividing groove 12. A plurality of pairs of back surfaces corresponding to the front electrode 2 are formed by screen-printing an Ag-based paste on the back surface of the large-format substrate 10A and then drying and firing the paste at the same time as or before and after the forming process of the front electrode 2. An electrode (not shown) is formed (S-3 in FIG. 3).

次に、大判基板10Aの表面に酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して乾燥・焼成することにより、図4(c)に示すように、両端部が表電極2に重なる抵抗体3を形成する(図3のS−4)。これにより、大判基板10Aの表面に、離間ギャップGを介して隣接する表電極2と抵抗体3とが2次分割溝12の延出方向に沿って交互に配置された抵抗素子群が多数形成され、図示の例では、離間ギャップGにより分断された10個の表電極2と4つの抵抗体3とによって1つの抵抗素子群が構成されている。しかる後、ガラスペーストをスクリーン印刷して乾燥・焼成することにより、抵抗体3を覆い隠す図示せぬアンダーコート層を形成する(図3のS−5)。 Next, a resistor paste such as ruthenium oxide is screen-printed on the surface of the large-format substrate 10A, dried and fired to form a resistor 3 having both ends overlapping the surface electrode 2 as shown in FIG. 4 (c). It is formed (S-4 in FIG. 3). As a result, a large number of resistance element groups in which adjacent surface electrodes 2 and resistors 3 are alternately arranged along the extending direction of the secondary dividing groove 12 are formed on the surface of the large-format substrate 10A via a separation gap G. In the illustrated example, one resistance element group is composed of ten surface electrodes 2 and four resistors 3 divided by a separation gap G. After that, the glass paste is screen-printed, dried and fired to form an undercoat layer (S-5 in FIG. 3) that covers the resistor 3.

次に、図4(d)に示すように、抵抗素子群の全ての表電極2に電圧測定用プローブ13を接触させると共に、抵抗素子群の両端に位置する一対の表電極2に通電用プローブ14をそれぞれ接触させる。ここで、電圧測定用プローブ13の径寸法は離間ギャップGよりも大きめに設定されており、このような電圧測定用プローブ13を離間ギャップGを介して隣接する2つの表電極2に跨って接触させることにより、各表電極2が離間ギャップGによって分断されているのにも関わらず、抵抗素子群の両端に位置する一対の表電極2に接触させた通電用プローブ14間に電流を流すことが可能となる。なお、通電用プローブ14の径寸法については、抵抗素子群の両端に位置する表電極2に接触させることが可能であれば良い。 Next, as shown in FIG. 4D, the voltage measuring probe 13 is brought into contact with all the surface electrodes 2 of the resistance element group, and the pair of surface electrodes 2 located at both ends of the resistance element group are energized probes. 14 are brought into contact with each other. Here, the diameter dimension of the voltage measurement probe 13 is set to be larger than the separation gap G, and such a voltage measurement probe 13 is brought into contact with the two adjacent surface electrodes 2 via the separation gap G. By allowing the current to flow between the energizing probes 14 that are in contact with the pair of surface electrodes 2 located at both ends of the resistance element group, even though each surface electrode 2 is divided by the separation gap G. Is possible. The diameter of the energizing probe 14 may be such that it can be brought into contact with the surface electrodes 2 located at both ends of the resistance element group.

そして、この状態で一対の通電用プローブ14間に定電流を流しながら、対をなす電圧測定用プローブ13を用いて各抵抗体3間の電圧値をそれぞれ測定し、測定した電圧値が所定の値となるようにアンダーコート層の上からレーザー光を照射して抵抗体3にトリミング溝7を形成することにより、各抵抗体3の抵抗値を調整する(図3のS−6)。すなわち、電圧測定用プローブ13は、抵抗体3の電圧値を測定するという本来の機能に加えて、離間ギャップGで分断された表電極2間を導通する機能を併せ持っている。 Then, in this state, while passing a constant current between the pair of energizing probes 14, the voltage values between the respective resistors 3 are measured using the paired voltage measuring probes 13, and the measured voltage values are predetermined. The resistance value of each resistor 3 is adjusted by irradiating a laser beam from above the undercoat layer so as to have a value to form a trimming groove 7 in the resistor 3 (S-6 in FIG. 3). That is, the voltage measuring probe 13 has a function of conducting conduction between the surface electrodes 2 divided by the separation gap G, in addition to the original function of measuring the voltage value of the resistor 3.

なお、図4(d)には5つの電圧測定用プローブ13と2つの通電用プローブ14の計7つの接触箇所が黒丸で示されているが、実際は不図示のプローブカードに多数の電圧測定用プローブ13とそれらの両端側に位置する一対の通電用プローブ14とが一列に固定されており、これら電圧測定用プローブ13と通電用プローブ14を図中の左右方向に配列された各表電極2に同時に当接するようにしている。そして、この状態で対をなす両端側の通電用プローブ14間に定電流を流すことにより、通電用プローブ14間に配列された全ての抵抗体3に当該定電流を流しつつ、対をなす電圧測定用プローブ13間の電圧値を順次測定することにより、2次分割溝12の延出方向に沿って一列に配置された抵抗素子群の各抵抗体3の抵抗値調整を行った後、プローブカードを図中の下方へ移動し、2次分割溝12を介して隣接する別の抵抗素子群の各抵抗体3に対して上記と同様の抵抗値調整を実行するようにしている。 In FIG. 4D, a total of seven contact points of the five voltage measuring probes 13 and the two energizing probes 14 are indicated by black circles, but in reality, a large number of voltage measuring probes are shown on a probe card (not shown). The probe 13 and a pair of energizing probes 14 located on both ends thereof are fixed in a row, and the voltage measuring probe 13 and the energizing probe 14 are arranged in the left-right direction in the drawing. At the same time. Then, by passing a constant current between the energizing probes 14 on both ends of the pair in this state, the constant current is passed through all the resistors 3 arranged between the energizing probes 14, and the paired voltage is applied. By sequentially measuring the voltage value between the measuring probes 13, the resistance value of each resistor 3 of the resistance element group arranged in a row along the extending direction of the secondary dividing groove 12 is adjusted, and then the probe is used. The card is moved downward in the drawing so as to perform the same resistance value adjustment as described above for each resistor 3 of another adjacent resistance element group via the secondary dividing groove 12.

このようにして大判基板10Aに形成された全ての抵抗体3の抵抗値調整を行った後、アンダーコート層を覆うようにエポキシ系樹脂ペーストをスクリーン印刷し、これを加熱硬化して図示せぬオーバーコート層を形成する(図3のS−7)ことにより、アンダーコート層とオーバーコート層の2層構造からなる保護層を形成する。 After adjusting the resistance values of all the resistors 3 formed on the large-format substrate 10A in this way, an epoxy resin paste is screen-printed so as to cover the undercoat layer, and this is heat-cured and not shown. By forming the overcoat layer (S-7 in FIG. 3), a protective layer having a two-layer structure of an undercoat layer and an overcoat layer is formed.

しかる後、大判基板10Aを1次分割溝11に沿って短冊状基板に1次分割する(図3のS−8)。その際、表電極2が1次分割溝11から離間した位置に形成されており、1次分割溝11内に表電極形成用の導電ペーストが入り込んでいないため、大判基板10Aを1次分割溝11に沿って簡単にブレイクすることができ、ブレイク形状の悪化や不所望な2次割れを抑制することができる。 After that, the large-format substrate 10A is primaryly divided into strip-shaped substrates along the primary division groove 11 (S-8 in FIG. 3). At that time, since the table electrode 2 is formed at a position separated from the primary dividing groove 11, and the conductive paste for forming the table electrode does not enter the primary dividing groove 11, the large-format substrate 10A is divided into the primary dividing groove 11. It is possible to easily break along No. 11, and it is possible to suppress deterioration of the break shape and undesired secondary cracking.

次に、この短冊状基板の分割面にNi/Crをスパッタリングしたり、短冊状基板の分割面にAgを含有させた樹脂ペーストを塗布して加熱硬化することにより、短冊状基板の表面と裏面に回り込むように断面コの字状に形成することで、短冊状基板の両端面に表電極2と裏電極5間を導通する端面電極を形成する(図3のS−9)。この時、短冊状基板の長手方向側端部(エッジ部)に表電極2が形成されていないため、1次分割時に表電極2のバリは発生しない。しだって、短冊状基板の長手方向側端部が1次分割後に形成される端面電極にて覆われるため、表電極2のバリの剥がれによる断線が発生しない。 Next, Ni / Cr is sputtered on the divided surface of the strip-shaped substrate, or a resin paste containing Ag is applied to the divided surface of the strip-shaped substrate and heat-cured to cure the front and back surfaces of the strip-shaped substrate. By forming the strip-shaped substrate in a U-shaped cross section so as to wrap around the strip-shaped substrate, end face electrodes conducting between the front electrode 2 and the back electrode 5 are formed on both end faces of the strip-shaped substrate (S-9 in FIG. 3). At this time, since the table electrode 2 is not formed on the longitudinal side end portion (edge portion) of the strip-shaped substrate, burrs on the table electrode 2 do not occur during the primary division. Therefore, since the end portion of the strip-shaped substrate in the longitudinal direction is covered with the end face electrode formed after the primary division, the front electrode 2 does not break due to the peeling of the burr.

次に、短冊状基板を2次分割溝12に沿って複数のチップ状基板に2次分割し(図3のS−10)、これらチップ状基板に対して電解メッキを施してNiメッキ層とSnメッキ層を順次形成する(図3のS−11)。これらNiメッキ層とSnメッキ層により、端面電極の表面を覆う外部電極が形成され、図1と図2に示すチップ抵抗器10が多数個取りされる。 Next, the strip-shaped substrate is secondarily divided into a plurality of chip-shaped substrates along the secondary dividing groove 12 (S-10 in FIG. 3), and these chip-shaped substrates are electrolytically plated to form a Ni-plated layer. The Sn plating layer is sequentially formed (S-11 in FIG. 3). The Ni-plated layer and the Sn-plated layer form an external electrode that covers the surface of the end face electrode, and a large number of chip resistors 10 shown in FIGS. 1 and 2 are taken.

以上説明したように、本実施形態例に係るチップ抵抗器10の製造方法では、表電極2が大判基板10Aの1次分割溝11を跨いで分断された離間ギャップGを有しているため、表電極形成用の導電ペーストが1次分割溝11を伝わって2次分割溝12の方向へ流れ出すことはなく、2次分割溝12を介して隣接する表電極2同士の短絡を防止することができる。 As described above, in the method for manufacturing the chip resistor 10 according to the present embodiment, the surface electrode 2 has a separation gap G divided across the primary dividing groove 11 of the large format substrate 10A. The conductive paste for forming the surface electrode does not flow out through the primary dividing groove 11 in the direction of the secondary dividing groove 12, and it is possible to prevent a short circuit between the adjacent table electrodes 2 via the secondary dividing groove 12. it can.

そして、離間ギャップGを介して隣接する表電極2と抵抗体3とが2次分割溝12の延出方向に沿って交互に配置された抵抗素子群に対して抵抗値調整を行う工程において、抵抗素子群の全ての表電極2に離間ギャップGよりも大きな径寸法を有する電圧測定用プローブ13を接触させると共に、抵抗素子群の両端に位置する表電極2に通電用プローブ14をそれぞれ接触させ、この状態で一対の通電用プローブ14間に電流を流しながら、対をなす電圧測定用プローブ13で各抵抗体間の電圧値をそれぞれ測定することにより、4端子測定法を用いて抵抗体3の抵抗値調整を正確かつ容易に実施することができる。しかも、1次分割溝11内に導電ペーストが入り込まないため、抵抗値調整後に大判基板10Aを1次分割溝11に沿って簡単にブレイクすることができ、ブレイク形状の悪化や不所望な2次割れを抑制することができる。 Then, in the step of adjusting the resistance value with respect to the resistance element group in which the adjacent surface electrodes 2 and the resistors 3 are alternately arranged along the extending direction of the secondary dividing groove 12 via the separation gap G. The voltage measuring probes 13 having a diameter larger than the separation gap G are brought into contact with all the surface electrodes 2 of the resistance element group, and the energizing probes 14 are brought into contact with the surface electrodes 2 located at both ends of the resistance element group. In this state, while passing a current between the pair of energizing probes 14, the voltage values between the resistors are measured by the pair of voltage measuring probes 13, respectively. The resistance value can be adjusted accurately and easily. Moreover, since the conductive paste does not enter the primary dividing groove 11, the large-format substrate 10A can be easily broken along the primary dividing groove 11 after adjusting the resistance value, resulting in deterioration of the break shape and an undesired secondary. Cracking can be suppressed.

なお、上記の実施形態例では、離間ギャップGで分断された10個の表電極2と4つの抵抗体3とを有する抵抗素子群に対して抵抗値調整する場合について説明したが、1つの抵抗素子群が有する表電極や抵抗体の数は上記実施形態例に限定されず、例えば、離間ギャップGで分断された12個の表電極2と5つの抵抗体3とが交互に配置された抵抗素子群であっても良い。 In the above embodiment, the case where the resistance value is adjusted with respect to the resistance element group having the ten surface electrodes 2 and the four resistors 3 divided by the separation gap G has been described, but one resistor has been described. The number of surface electrodes and resistors possessed by the element group is not limited to the above embodiment, and for example, a resistor in which 12 surface electrodes 2 divided by a separation gap G and 5 resistors 3 are alternately arranged. It may be a group of elements.

1 絶縁基板
2 表電極
3 抵抗体
4 保護層
5 裏電極
6 端面電極
7 トリミング溝
10 チップ抵抗器
10A 大判基板
11 1次分割溝
12 2次分割溝
13 電圧測定用プローブ
14 通電用プローブ
G 離間ギャップ
1 Insulated substrate 2 Front electrode 3 Resistor 4 Protective layer 5 Back electrode 6 End face electrode 7 Trimming groove 10 Chip resistor 10A Large format board 11 Primary division groove 12 Secondary division groove 13 Voltage measurement probe 14 Energizing probe G Separation gap

Claims (1)

格子状に延びる複数の1次分割溝と2次分割溝を有し、前記1次分割溝と前記2次分割溝で1つのチップ抵抗器に相当するチップ形成領域が区画された大判基板に対して、前記各チップ形成領域内に所定間隔を存して対向する表電極の対を形成する工程と、前記チップ形成領域内で対向する前記表電極間を接続するように複数の抵抗体を形成する工程と、を備え、
前記表電極は前記1次分割溝を跨いで分断された離間ギャップを有しており、前記離間ギャップを介して隣接する前記表電極と前記抵抗体とが前記2次分割溝の延出方向に沿って交互に配置された抵抗素子群に対して抵抗値調整を行う工程において、
前記抵抗素子群の全ての前記表電極に前記離間ギャップよりも大きな径寸法を有する電圧測定用プローブを接触させると共に、前記抵抗素子群の両端に位置する前記表電極に通電用プローブをそれぞれ接触させ、
この状態で一対の前記通電用プローブ間に電流を流しつつ前記各電圧測定用プローブで前記抵抗体間の電圧値をそれぞれ測定しながら前記各抵抗体の抵抗値調整を行った後、前記大判基板を前記1次分割溝と前記2次分割溝に沿ってチップ単体に個片化することを特徴とするチップ抵抗器の製造方法。
For a large-sized substrate having a plurality of primary dividing grooves and secondary dividing grooves extending in a grid pattern, and a chip forming region corresponding to one chip resistor is partitioned by the primary dividing groove and the secondary dividing groove. A plurality of resistors are formed so as to connect the steps of forming a pair of facing surface electrodes in each chip forming region at predetermined intervals and the facing surface electrodes in the chip forming region. With the process of
The front electrode has a separation gap that is divided across the primary division groove, and the front electrode and the resistor that are adjacent to each other through the separation gap are in the extending direction of the secondary division groove. In the process of adjusting the resistance value for the resistance element groups arranged alternately along the line,
A voltage measuring probe having a diameter larger than the separation gap is brought into contact with all the surface electrodes of the resistance element group, and an energizing probe is brought into contact with the front electrodes located at both ends of the resistance element group. ,
In this state, the resistance value of each resistor is adjusted while passing a current between the pair of energizing probes and measuring the voltage value between the resistors with each voltage measuring probe, and then the large-format substrate. A method for manufacturing a chip resistor, which comprises individualizing the chip into a single chip along the primary dividing groove and the secondary dividing groove.
JP2019186096A 2019-10-09 2019-10-09 How to manufacture chip resistors Active JP7352436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019186096A JP7352436B2 (en) 2019-10-09 2019-10-09 How to manufacture chip resistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019186096A JP7352436B2 (en) 2019-10-09 2019-10-09 How to manufacture chip resistors

Publications (2)

Publication Number Publication Date
JP2021061368A true JP2021061368A (en) 2021-04-15
JP7352436B2 JP7352436B2 (en) 2023-09-28

Family

ID=75381514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019186096A Active JP7352436B2 (en) 2019-10-09 2019-10-09 How to manufacture chip resistors

Country Status (1)

Country Link
JP (1) JP7352436B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150580A (en) 2003-11-19 2005-06-09 Minowa Koa Inc Trimming method of resistance element and probe unit
JP5706186B2 (en) 2011-02-24 2015-04-22 コーア株式会社 Chip resistor and manufacturing method thereof

Also Published As

Publication number Publication date
JP7352436B2 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
JP6373723B2 (en) Chip resistor
JP6933453B2 (en) Chip parts, mounting structure of chip parts, manufacturing method of chip resistors
JP7152184B2 (en) CHIP RESISTOR AND CHIP RESISTOR MANUFACTURING METHOD
JPH1126204A (en) Resistor and manufacture thereof
JP6181500B2 (en) Chip resistor and manufacturing method thereof
WO2007029635A1 (en) Chip resistor and method for producing the same
JPH10289803A (en) Resistor and manufacture thereof
WO2016047259A1 (en) Chip resistor and method for producing same
US11940401B2 (en) Sulfurization detection resistor and manufacturing method therefor
JP7352436B2 (en) How to manufacture chip resistors
JP7333726B2 (en) Manufacturing method of chip resistor
JP6453599B2 (en) Manufacturing method of chip resistor
JP6170726B2 (en) Manufacturing method of chip resistor
JP6453598B2 (en) Chip resistor
JP2021005683A (en) Chip resistor
JP2015060955A (en) Method for manufacturing thick film resistor
JP2013165112A (en) Aggregate substrate for chip resistor and manufacturing method of chip resistor
JP7359714B2 (en) Sulfide detection sensor
JP2019201139A (en) Manufacturing method for chip resistor
JP2016225572A (en) Chip resistor and method of manufacturing the same
WO2022153638A1 (en) Chip resistor and method for producing chip resistor
JP2021072420A (en) Method for manufacturing chip resistor
JP7197425B2 (en) Sulfurization detection resistor
JP2022159796A (en) Chip resistor and manufacturing method thereof
JP5973867B2 (en) Method for manufacturing multiple chip resistors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230915

R150 Certificate of patent or registration of utility model

Ref document number: 7352436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150