JP2021055136A - HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME - Google Patents

HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME Download PDF

Info

Publication number
JP2021055136A
JP2021055136A JP2019177668A JP2019177668A JP2021055136A JP 2021055136 A JP2021055136 A JP 2021055136A JP 2019177668 A JP2019177668 A JP 2019177668A JP 2019177668 A JP2019177668 A JP 2019177668A JP 2021055136 A JP2021055136 A JP 2021055136A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
temperature
cold
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019177668A
Other languages
Japanese (ja)
Inventor
健太郎 平田
Kentaro Hirata
健太郎 平田
光陽 大賀
Mitsuharu Oga
光陽 大賀
優一 亀田
Yuichi Kameda
優一 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019177668A priority Critical patent/JP2021055136A/en
Publication of JP2021055136A publication Critical patent/JP2021055136A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To reduce hydrogen embrittlement while maintaining excellent corrosion resistance and workability.SOLUTION: A hot-dip Zn-Al-Mg plated steel sheet has a Zn-Al-Mg coating layer on a surface of a base steel sheet, and a diffusible hydrogen concentration in the base steel sheet is 0.25 ppm or less.SELECTED DRAWING: Figure 3

Description

本発明は、溶融Zn−Al−Mg系めっき鋼板およびその製造方法に関する。 The present invention relates to a molten Zn-Al-Mg-based plated steel sheet and a method for producing the same.

近年、自動車や建材の分野では軽量化および省資源化を目的とした高強度高防錆鋼板のニーズが高まっている。その高強度高防錆鋼板は、プレス加工や曲げ加工をはじめ様々な加工が施されるため、高強度および高耐食性であることに加え、加工性に優れることも重要である。昨今、需要が増している防錆効果の高い表面処理鋼板として、溶融Zn−Al−Mg系めっき鋼板がある。 In recent years, there has been an increasing need for high-strength, high-rust-preventive steel sheets for the purpose of weight reduction and resource saving in the fields of automobiles and building materials. Since the high-strength, high-rust-preventive steel sheet is subjected to various processes such as press working and bending, it is important to have excellent workability in addition to high strength and high corrosion resistance. As a surface-treated steel sheet having a high rust preventive effect, which is in increasing demand these days, there is a molten Zn-Al-Mg-based plated steel sheet.

しかしながら、この種のめっき鋼板では、めっき原板に高張力鋼を使用した場合、めっきラインで不可避的に鋼板中に侵入する水素に起因して、いわゆる水素脆化を起こしやすく、用途によっては問題となる。一般的な溶融亜鉛系めっきラインでは、めっき原板である基材鋼板は、めっき浴の直前で、水素ガスを含む還元性雰囲気中での加熱処理を受ける。この加熱雰囲気中の水素が基材鋼板中に侵入し、水素脆化の原因となる。また、めっき前に行われる電解脱脂等の湿式工程でも水素の侵入が考えられ、これも水素脆化の要因となり得る。 However, in this type of plated steel sheet, when high-strength steel is used for the original plating plate, so-called hydrogen embrittlement is likely to occur due to hydrogen that inevitably enters the steel sheet at the plating line, which is a problem depending on the application. Become. In a general hot-dip galvanizing line, the base steel sheet, which is the original plating plate, is heat-treated in a reducing atmosphere containing hydrogen gas immediately before the plating bath. Hydrogen in this heating atmosphere penetrates into the base steel sheet and causes hydrogen embrittlement. In addition, hydrogen may enter in a wet process such as electrolytic degreasing performed before plating, which can also cause hydrogen embrittlement.

めっき鋼板における水素脆化は、通常、電気めっきやその前処理の酸洗工程での水素吸蔵によって生じることが知られており、特に980MPa級以上の高張力鋼をめっき原板に使用したときに問題となりやすい。ところが溶融Zn−Al−Mg系めっき鋼板では、780MPa級、あるいは更に590MPa級といった比較的低強度レベルの高張力鋼を使用しても、密着曲げ等の非常に厳しい加工を施すと脆性的破壊が生じることがある。 It is known that hydrogen embrittlement in plated steel sheets is usually caused by hydrogen storage in the pickling process of electroplating and its pretreatment, and it is a problem especially when high-strength steel of 980 MPa class or higher is used for the plating base plate. It is easy to become. However, in hot-dip Zn-Al-Mg galvanized steel sheets, even if high-strength steel with a relatively low strength level such as 780 MPa class or 590 MPa class is used, brittle fracture occurs when very severe processing such as close contact bending is performed. May occur.

この種の脆性的破壊も、めっきラインで侵入した水素に起因する事象であることが判明している。また、溶融Zn−Al−Mg系めっき鋼板では、他の一般的な溶融亜鉛系めっき鋼板と比べ、めっき層が鋼板からの水素の離脱を妨げる「障壁」となりやすいことがわかってきた。従って、溶融Zn−Al−Mg系めっきを施した高強度鋼板の加工に対する信頼性レベルを向上させるためには、当該鋼板の水素脆化を抑止する技術の確立が望まれる。 This type of brittle fracture has also been found to be an event caused by hydrogen invading the plating line. Further, it has been found that in the hot-dip Zn-Al-Mg-based plated steel sheet, the plating layer tends to be a "barrier" that prevents hydrogen from being separated from the steel sheet, as compared with other general hot-dip galvanized steel sheets. Therefore, in order to improve the reliability level for processing a high-strength steel sheet subjected to hot-dip Zn-Al-Mg plating, it is desired to establish a technique for suppressing hydrogen embrittlement of the steel sheet.

鋼板の水素脆化対策の手法として、特許文献1には、高張力鋼をめっき原板に用いた溶融Zn−Al−Mg系めっき鋼板のめっき層にクラックを生じさせ、その後にベーキング処理を行い、鋼板中に侵入した水素を放出させることで、鋼板中の拡散性水素濃度を低減させた溶融Zn−Al−Mg系めっき鋼板が開示されている。 As a method for preventing hydrogen embrittlement of steel sheets, Patent Document 1 states that cracks are generated in the plating layer of a hot-dip Zn-Al-Mg-based plated steel sheet using high-tensile steel as a galvanized steel sheet, and then baking treatment is performed. A molten Zn-Al-Mg-based plated steel sheet in which the concentration of diffusible hydrogen in the steel sheet is reduced by releasing hydrogen that has penetrated into the steel sheet is disclosed.

特許第6271067号明細書Patent No. 6271067

しかしながら、前記の特許文献1に開示された溶融Zn−Al−Mg系めっき鋼板では、優れた耐食性および加工性を保持しつつ、水素脆化を低減する観点からは必ずしも十分とは言えなかった。 However, the molten Zn-Al-Mg-based plated steel sheet disclosed in Patent Document 1 is not always sufficient from the viewpoint of reducing hydrogen embrittlement while maintaining excellent corrosion resistance and workability.

本発明の一態様は、前記の問題点に鑑みて為されたものであり、その目的は、優れた耐食性および加工性を保持しつつ、水素脆化を低減することができる溶融Zn−Al−Mg系めっき鋼板を実現することにある。 One aspect of the present invention has been made in view of the above problems, and an object thereof is molten Zn-Al-, which can reduce hydrogen embrittlement while maintaining excellent corrosion resistance and processability. The purpose is to realize a Mg-based plated steel sheet.

前記の課題を解決するために、本発明の一態様に係る溶融Zn−Al−Mg系めっき鋼板の製造方法は、質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.10〜2.50%、P:0.005〜0.050%、B:0.0005〜0.010%、Ti:0.01〜0.20%、Al:0.01〜0.10%、残部がFeおよび不可避的不純物である鋼組成の基材鋼板を、仕上げ圧延が終了するときの前記基材鋼板の温度が800℃以上950℃以下となるように熱間圧延した後、前記基材鋼板の温度が650℃以下となるように巻き取る熱間圧延工程と、前記熱間圧延工程で得られた熱延鋼板に対して、水素濃度を2体積%以上20体積%未満とした炉内で以下の(i)〜(iii)の処理を行う焼鈍工程と、前記焼鈍工程で焼鈍を行った熱延鋼板に対して溶融Zn−Al−Mg系めっきを施す溶融めっき工程とを含む方法である;
(i)前記熱延鋼板が400℃以上750℃以下の温度になるように加熱することで還元反応を促し、
(ii)前記(i)の処理後の前記熱延鋼板が580℃以上750℃以下の温度になるように10秒以上均熱し、
(iii)前記(ii)の処理後の前記熱延鋼板を、5℃/秒以上の平均冷却速度で500℃以下の温度になるまで冷却する。
In order to solve the above-mentioned problems, the method for producing a molten Zn-Al-Mg-based plated steel sheet according to one aspect of the present invention is, in terms of mass%, C: 0.01 to 0.20%, Si: 0.01. ~ 0.50%, Mn: 0.01 to 2.50%, P: 0.005 to 0.050%, B: 0.0005 to 0.010%, Ti: 0.01 to 0.20%, Al: 0.01 to 0.10%, the balance of the base steel sheet having a steel composition of Fe and unavoidable impurities, the temperature of the base steel sheet at the end of finish rolling becomes 800 ° C. or higher and 950 ° C. or lower. After hot-rolling as described above, the hydrogen concentration is set to 2 for the hot-rolled step of winding the base steel sheet so that the temperature of the base steel sheet becomes 650 ° C. or lower and the hot-rolled steel sheet obtained in the hot-rolled step. A fused Zn-Al-Mg system for a ablation step in which the following treatments (i) to (iii) are performed in a furnace having a volume% or more and less than 20% by volume, and a hot-rolled steel sheet annealed in the ablation step. It is a method including a hot-dip plating step of performing plating;
(I) The reduction reaction is promoted by heating the hot-rolled steel sheet to a temperature of 400 ° C. or higher and 750 ° C. or lower.
(Ii) The hot-rolled steel sheet after the treatment of (i) is soaked for 10 seconds or more so that the temperature becomes 580 ° C. or higher and 750 ° C. or lower.
(Iii) The hot-rolled steel sheet after the treatment of (ii) is cooled to a temperature of 500 ° C. or lower at an average cooling rate of 5 ° C./sec or more.

前記の課題を解決するために、本発明の一態様に係る溶融Zn−Al−Mg系めっき鋼板の製造方法は、質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.10〜2.50%、P:0.005〜0.050%、B:0.0005〜0.010%、Ti:0.01〜0.20%、Al:0.01〜0.10%、残部がFeおよび不可避的不純物である鋼組成の基材鋼板を、仕上げ圧延が終了するときの前記基材鋼板の温度が800℃以上950℃以下となるように熱間圧延した後、前記基材鋼板の温度が600℃以下の温度となるように巻き取る熱間圧延工程と、前記熱間圧延工程で得られた熱延鋼板を、酸洗し、冷間圧延する冷間圧延工程と、前記冷間圧延工程で得られた冷延鋼板に対して、水素濃度を2体積%以上20体積%未満とした炉内で以下の(i)〜(iii)の処理を行う焼鈍工程と、前記焼鈍工程で焼鈍を行った冷延鋼板に対して溶融Zn−Al−Mg系めっきを施す溶融めっき工程とを含む方法である;
(i)前記冷延鋼板が400℃以上900℃以下の温度になるように加熱することで還元反応を促し、
(ii)前記(i)の処理後の前記冷延鋼板が650℃以上900℃以下の温度になるように10秒以上均熱し、
(iii)前記(ii)の処理後の前記冷延鋼板を5℃/秒以上の平均冷却速度で500℃以下の温度まで冷却する。
In order to solve the above-mentioned problems, the method for producing a molten Zn-Al-Mg-based plated steel sheet according to one aspect of the present invention is, in terms of mass%, C: 0.01 to 0.20%, Si: 0.01. ~ 0.50%, Mn: 0.01 to 2.50%, P: 0.005 to 0.050%, B: 0.0005 to 0.010%, Ti: 0.01 to 0.20%, Al: 0.01 to 0.10%, the balance of the base steel sheet having a steel composition of Fe and unavoidable impurities, the temperature of the base steel sheet at the end of finish rolling becomes 800 ° C. or higher and 950 ° C. or lower. After hot-rolling as described above, the hot-rolling step of winding the base steel sheet so that the temperature of the base steel sheet becomes 600 ° C. or lower and the hot-rolled steel sheet obtained in the hot-rolling step are pickled. The following (i) to (iii) in a furnace in which the hydrogen concentration was 2% by volume or more and less than 20% by volume with respect to the cold rolling step of cold rolling and the cold rolled steel sheet obtained in the cold rolling step. ), And a hot-dip plating step of applying hot-dip Zn-Al-Mg-based plating to the cold-rolled steel sheet that has been annealed in the bubbling step;
(I) The reduction reaction is promoted by heating the cold-rolled steel sheet to a temperature of 400 ° C. or higher and 900 ° C. or lower.
(Ii) The cold-rolled steel sheet after the treatment of (i) is soaked for 10 seconds or more so that the temperature becomes 650 ° C. or higher and 900 ° C. or lower.
(Iii) The cold-rolled steel sheet after the treatment of (ii) is cooled to a temperature of 500 ° C. or lower at an average cooling rate of 5 ° C./sec or more.

前記の課題を解決するために、本発明の一態様に係る溶融Zn−Al−Mg系めっき鋼板は、質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.10〜2.50%、P:0.005〜0.050%、B:0.0005〜0.010%、Ti:0.01〜0.20%、Al:0.01〜0.10%、残部がFeおよび不可避的不純物である鋼組成の基材鋼板の表面に、質量%で、Al:1.0〜22.0%、Mg:1.3〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:2.0%以下、残部がZnおよび不可避的不純物であるZn−Al−Mg系被覆層を有し、前記基材鋼板中の拡散性水素濃度が0.25ppm以下である。 In order to solve the above-mentioned problems, the molten Zn-Al-Mg-based galvanized steel sheet according to one aspect of the present invention has a mass% of C: 0.01 to 0.20% and Si: 0.01 to 0.01. 50%, Mn: 0.01 to 2.50%, P: 0.005 to 0.050%, B: 0.0005 to 0.010%, Ti: 0.01 to 0.20%, Al: 0 On the surface of a base steel sheet having a steel composition of .01 to 0.10%, the balance of which is Fe and unavoidable impurities, in mass%, Al: 1.0 to 22.0%, Mg: 1.3 to 10. 0%, Si: 0 to 2.0%, Ti: 0 to 0.10%, B: 0 to 0.05%, Fe: 2.0% or less, the balance is Zn and Zn-Al, which is an unavoidable impurity. It has a −Mg-based coating layer, and the diffusible hydrogen concentration in the base steel sheet is 0.25 ppm or less.

本発明の一態様によれば、優れた耐食性および加工性を保持しつつ、水素脆化を低減することができるという効果を奏する。 According to one aspect of the present invention, it is possible to reduce hydrogen embrittlement while maintaining excellent corrosion resistance and processability.

本発明の実施の一形態に係る焼鈍工程および溶融めっき工程を実施するための焼鈍炉およびポットの概要構成を示す模式図である。It is a schematic diagram which shows the outline structure of the annealing furnace and the pot for carrying out the annealing process and hot dip galvanizing process which concerns on one Embodiment of this invention. 本発明の実施の一形態に係る溶融Zn−Al−Mg系めっき鋼板に関し、基材鋼板の化学成分(質量%)を示す表である。It is a table which shows the chemical composition (mass%) of the base steel sheet with respect to the molten Zn-Al-Mg based galvanized steel sheet which concerns on one Embodiment of this invention. 実施例および比較例の溶融めっき鋼板に関し、熱延条件、冷延条件、溶融めっき焼鈍条件、溶融めっき鋼板の特性、鋼板中の拡散性水素濃度、およびめっき品質を比較した表である。It is a table comparing the hot-dip condition, the cold-dip condition, the hot-dip galvanizing condition, the characteristic of a hot-dip galvanized steel sheet, the diffusible hydrogen concentration in a steel sheet, and the plating quality about the hot-dip galvanized steel sheet of an Example and a comparative example.

〔基材鋼板の化学組成〕
まず、図2に基づき、めっき原板に相当する基材鋼板の化学成分について説明する。本明細書において、基材鋼板の化学成分に関する「%」は特に断らない限り「質量%」を意味する。基材鋼板の鋼組成(化学成分)は、質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.10〜2.50%、P:0.005〜0.050%、B:0.0005〜0.010%、Ti:0.01〜0.20%、Al:0.01〜0.10%、残部がFeおよび不可避的不純物である。なお、図2に示す鋼種A〜Iは、実施例の基材鋼板の化学成分の構成例を示している。
[Chemical composition of base steel sheet]
First, the chemical composition of the base steel sheet corresponding to the original plating plate will be described with reference to FIG. In the present specification, "%" regarding the chemical composition of the base steel sheet means "mass%" unless otherwise specified. The steel composition (chemical composition) of the base steel sheet is C: 0.01 to 0.20%, Si: 0.01 to 0.50%, Mn: 0.1 to 2.50%, P in mass%. : 0.005 to 0.050%, B: 0.0005 to 0.010%, Ti: 0.01 to 0.20%, Al: 0.01 to 0.10%, the balance is Fe and unavoidable impurities Is. The steel types A to I shown in FIG. 2 show a composition example of the chemical composition of the base steel sheet of the example.

(C)
Cは、鋼の高強度化に必要な元素である。引張強さ590MPa以上の強度レベルを得るためには0.01%以上のCの含有量を必要とする。Cの含有量が過剰になると組織の不均一性が顕著となり、加工性が低下する。Cの含有量は0.20%以下に制限され、0.16%以下に管理してもよい。
(C)
C is an element necessary for increasing the strength of steel. In order to obtain a strength level of tensile strength of 590 MPa or more, a C content of 0.01% or more is required. When the C content is excessive, the non-uniformity of the structure becomes remarkable and the processability is lowered. The C content is limited to 0.20% or less and may be controlled to 0.16% or less.

(Si)
Siは、高強度化に有効である他、セメンタイトの析出を低減する作用を有し、パーライト等の生成を低減するうえで有効である。これらの作用を十分に発揮させるために0.01%以上のSiの含有量を確保する。多量にSiを含有すると、鋼板表面にSi濃化層が生じ、めっき性の低下を招く要因となる。Siの含有量は0.50%以下に制限され、0.25%以下とすることがより好ましい。
(Si)
Si is effective for increasing the strength and also has an effect of reducing the precipitation of cementite, and is effective for reducing the formation of pearlite and the like. In order to fully exert these effects, a Si content of 0.01% or more is secured. If a large amount of Si is contained, a Si-concentrated layer is formed on the surface of the steel sheet, which causes a decrease in plating property. The Si content is limited to 0.50% or less, more preferably 0.25% or less.

(Mn)
Mnは、高強度化に有効である。引張強さ590MPa以上の強度レベルを安定して得るために0.10%以上のMnの含有量を確保する。0.50%以上とすることがより効果的である。Mnの含有量が過大になると偏析が生じやすくなり加工性が低下する。Mnの含有量は2.50%以下とする。
(Mn)
Mn is effective for increasing the strength. In order to stably obtain a strength level of tensile strength of 590 MPa or more, a Mn content of 0.10% or more is secured. It is more effective to set it to 0.50% or more. If the Mn content is excessive, segregation is likely to occur and workability is reduced. The Mn content shall be 2.50% or less.

(P)
Pは、固溶強化に有効である。ここでは0.005%以上のPの含有量を確保する。0.010%以上に管理してもよい。Pの含有量が過大になると偏析が生じやすくなり加工性が低下する。Pの含有量は0.050%以下に制限される。
(P)
P is effective for solid solution strengthening. Here, the content of P of 0.005% or more is secured. It may be managed to 0.010% or more. If the P content is excessive, segregation is likely to occur and workability is reduced. The content of P is limited to 0.050% or less.

(B)
Bは、鋼のオーステナイト−フェライト変態を低減し、変態組織強化に寄与する。また、TiやNbを添加した場合には、オーステナイト−フェライト変態の低減によりTi系炭化物やNb系炭化物の析出温度を低下させ、それらの炭化物を微細化させる効果を有する。前記効果を十分に得るために、0.0005%以上のBの含有量を確保する。0.001%以上とすることがより効果的である。多量のB含有は硼化物の生成による加工性低下を招く要因となる。Bを添加する場合は0.010%以下の範囲で行う必要があり、0.005%以下に管理してもよい。
(B)
B reduces the austenite-ferrite transformation of steel and contributes to the strengthening of the transformed structure. Further, when Ti or Nb is added, it has the effect of lowering the precipitation temperature of Ti-based carbides and Nb-based carbides by reducing the austenite-ferrite transformation and refining those carbides. In order to obtain the above effect sufficiently, the content of B of 0.0005% or more is secured. It is more effective to set it to 0.001% or more. A large amount of B is a factor that causes a decrease in workability due to the formation of boride. When B is added, it is necessary to carry out in the range of 0.010% or less, and it may be controlled to 0.005% or less.

(Ti)
Tiは、Cと結合して微細なTi系炭化物を形成し、高強度化に寄与する。その作用を十分に発揮させるために0.01%以上のTiの含有量を確保する。過剰のTi含有は加工性の低下を招く。Tiの含有量は0.20%以下とし、0.15%以下に管理してもよい。
(Ti)
Ti combines with C to form fine Ti-based carbides, which contributes to high strength. In order to fully exert its action, the Ti content of 0.01% or more is secured. Excessive Ti content causes a decrease in workability. The Ti content may be 0.20% or less and may be controlled to 0.15% or less.

(Al)
Alは、脱酸作用を有する。その作用を十分に発揮させるために、鋼板中のAlの含有量が0.01%以上となるようにAlを添加することが望ましい。過剰のAl含有は加工性の低下を招く。Alの含有量は0.10%以下に制限され0.05%以下に管理してもよい。
(Al)
Al has a deoxidizing effect. In order to fully exert its action, it is desirable to add Al so that the Al content in the steel sheet is 0.01% or more. Excessive Al content causes a decrease in workability. The Al content is limited to 0.10% or less and may be controlled to 0.05% or less.

(S)
不純物として混入するSは0.010%まで許容されるが、0.005%以下であることがより好ましい。過剰な低S化は製鋼負荷の増大を招くので、通常、Sの含有量は0.0005%以上で構わない。
(S)
S mixed as an impurity is allowed up to 0.010%, but more preferably 0.005% or less. Since excessive reduction in S causes an increase in the steelmaking load, the S content may usually be 0.0005% or more.

(Nb)
Nbは、Cと結合して微細なNb系炭化物を形成し、高強度化に寄与する。また、組織の微細化、均一化にも有効である。従って、必要に応じてNbを含有させることができる。前記効果を十分に得るためには0.005%以上のNbの含有量を確保することがより効果的である。多量のNb含有は加工性の低下を招く。Nbを添加する場合は0.10%以下の範囲で行う。
(Nb)
Nb combines with C to form fine Nb-based carbides, which contributes to high strength. It is also effective for making the structure finer and more uniform. Therefore, Nb can be contained if necessary. In order to obtain the above effect sufficiently, it is more effective to secure the content of Nb of 0.005% or more. A large amount of Nb content causes a decrease in workability. When Nb is added, it is carried out in the range of 0.10% or less.

(Mo、Cr)
Mo、Crは、いずれも固溶強化によって強度を向上させる作用を有するので、必要に応じてMo、Crの1種または2種を添加することができる。前記作用を十分に発揮させるためには、Moについては0.01%以上、Crについても0.01%以上の含有量を確保することがより効果的である。これらの元素を多量に含有すると延性の低下を招く。これらの1種または2種を添加する場合、Moの含有量は0.50%以下、Crの含有量も0.50%以下の範囲とする。
(Mo, Cr)
Since both Mo and Cr have an action of improving the strength by strengthening the solid solution, one or two kinds of Mo and Cr can be added as needed. In order to fully exert the above action, it is more effective to secure a content of 0.01% or more for Mo and 0.01% or more for Cr. A large amount of these elements causes a decrease in ductility. When one or two of these are added, the Mo content is in the range of 0.50% or less, and the Cr content is also in the range of 0.50% or less.

〔Zn−Al−Mg系被覆層〕
本実施形態の前記の化学組成を有する基材鋼板の表面には、Zn−Al−Mg系被覆層を形成する。その被覆層は、溶融Zn−Al−Mg系めっきにより形成されためっき層に由来するものであり、本明細書ではこれを「Zn−Al−Mg系被覆層」と呼ぶ。Zn−Al−Mg系被覆層は、質量%でAl:1.0〜22.0%、Mg:1.3〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:2.0%以下、残部がZnおよび不可避的不純物である。
[Zn-Al-Mg-based coating layer]
A Zn-Al-Mg-based coating layer is formed on the surface of the base steel sheet having the above-mentioned chemical composition of the present embodiment. The coating layer is derived from a plating layer formed by molten Zn-Al-Mg-based plating, and is referred to as "Zn-Al-Mg-based coating layer" in the present specification. The Zn-Al-Mg-based coating layer contains Al: 1.0 to 22.0%, Mg: 1.3 to 10.0%, Si: 0 to 2.0%, Ti: 0 to 0.0% by mass. 10%, B: 0 to 0.05%, Fe: 2.0% or less, the balance is Zn and unavoidable impurities.

Zn−Al−Mg系被覆層の優れた防錆効果を長期にわたって維持するために、Zn−Al−Mg系被覆層の平均厚さは3μm以上であることが好ましい。過剰に厚く形成することは不経済であり、また被覆層自体の加工性低下にもつながる。通常、Zn−Al−Mg系被覆層の平均厚さは100μm以下の範囲とすればよい。ここで、当該被覆層の平均厚さは、板厚方向に平行な断面の観察によって求めることができる。また、本実施形態のZn−Al−Mg系被覆層には、クラックが存在しないことが好ましい。これにより、溶融Zn−Al−Mg系めっき鋼板の加工性をより向上させることができる。 In order to maintain the excellent rust preventive effect of the Zn-Al-Mg-based coating layer for a long period of time, the average thickness of the Zn-Al-Mg-based coating layer is preferably 3 μm or more. It is uneconomical to form an excessively thick layer, and it also leads to a decrease in workability of the coating layer itself. Usually, the average thickness of the Zn-Al-Mg-based coating layer may be in the range of 100 μm or less. Here, the average thickness of the coating layer can be obtained by observing a cross section parallel to the plate thickness direction. Further, it is preferable that the Zn-Al-Mg-based coating layer of the present embodiment has no cracks. As a result, the workability of the molten Zn-Al-Mg-based plated steel sheet can be further improved.

〔基材鋼板中の拡散性水素濃度〕
水素脆化の要因となる基材鋼板中の水素濃度は、基材鋼板の単位体積当たりの拡散性水素量を測定することによって評価することができる。大気圧イオン化質量分析装置で、常温から300℃まで5℃/minの昇温速度で加熱した際に放出される水素の量を測定し、室温から200℃までの放出水素量の合計を拡散性水素量として算出する。測定試料としては、Zn−Al−Mg系被覆層を研磨紙により除去した基材鋼板のみからなる試料を使用することができる。
[Diffusible hydrogen concentration in base steel sheet]
The hydrogen concentration in the base steel plate, which causes hydrogen embrittlement, can be evaluated by measuring the amount of diffusible hydrogen per unit volume of the base steel plate. The amount of hydrogen released when heated from room temperature to 300 ° C at a heating rate of 5 ° C / min is measured with an atmospheric pressure ionized mass spectrometer, and the total amount of hydrogen released from room temperature to 200 ° C is diffusible. Calculated as the amount of hydrogen. As the measurement sample, a sample consisting of only a base steel sheet from which the Zn-Al-Mg-based coating layer has been removed with abrasive paper can be used.

上述した組成範囲の高張力鋼をめっき原板に用いて後述する焼鈍炉100の還元加熱エリア30、均熱エリア40、冷却エリア50において、水素濃度を2体積%以上20体積%未満とすることで、基材鋼板中の拡散性水素濃度を0.25ppm以下とすることができる。基材鋼板中の拡散性水素濃度を0.25ppm以下に低減すると、980MPa級以上の高張力鋼を基材鋼板とする溶融Zn−Al−Mg系めっき鋼板で問題となりやすい水素脆化の現象のみならず、780MPa級あるいは590MPa級の比較的強度レベルの低い高張力鋼を基材鋼板とする溶融Zn−Al−Mg系めっき鋼板でも、水素脆化の現象が顕著に低減される。従って、本発明の実施形態に係る溶融Zn−Al−Mg系めっき鋼板では、基材鋼板中の拡散性水素濃度を0.25ppm以下に規定する。基材鋼板中の拡散性水素濃度は0.20ppm以下であることがより好ましい。前記構成によれば、優れた耐食性および加工性を保持しつつ、水素脆化を低減することができる溶融Zn−Al−Mg系めっき鋼板を実現することができる。 By using the high-strength steel in the composition range described above as the plating base plate and setting the hydrogen concentration to 2% by volume or more and less than 20% by volume in the reduction heating area 30, the soaking area 40, and the cooling area 50 of the annealing furnace 100 described later. , The diffusible hydrogen concentration in the base steel sheet can be set to 0.25 ppm or less. When the diffusible hydrogen concentration in the base steel sheet is reduced to 0.25 ppm or less, only the hydrogen embrittlement phenomenon, which tends to be a problem in hot-dip Zn-Al-Mg-based plated steel sheets using high-tensile steel of 980 MPa class or higher as the base steel sheet. In addition, the phenomenon of hydrogen embrittlement is remarkably reduced even in a molten Zn-Al-Mg-based galvanized steel sheet using a high-tensile steel having a relatively low strength level of 780 MPa class or 590 MPa class as a base steel sheet. Therefore, in the molten Zn-Al-Mg-based plated steel sheet according to the embodiment of the present invention, the diffusible hydrogen concentration in the base steel sheet is specified to be 0.25 ppm or less. The diffusible hydrogen concentration in the base steel sheet is more preferably 0.20 ppm or less. According to the above configuration, it is possible to realize a molten Zn-Al-Mg-based plated steel sheet capable of reducing hydrogen embrittlement while maintaining excellent corrosion resistance and workability.

〔基材鋼板の金属組織〕
基材鋼板のマトリックス(鋼素地)は、ベイニティックフェライト相からなる組織、またはフェライト相とマルテンサイト相との混合組織であることが望ましい。後者の組織において、マルテンサイト量は10〜50体積%であることが好ましい。
[Metal structure of base steel sheet]
It is desirable that the matrix (steel base) of the base steel sheet has a structure composed of a bainitic ferrite phase or a mixed structure of a ferrite phase and a martensite phase. In the latter structure, the amount of martensite is preferably 10 to 50% by volume.

〔機械的特性〕
前記のZn−Al−Mg系被覆層を形成した溶融めっき鋼板の機械的特性は、圧延直角方向の引張試験(JIS Z2241:2011)において、引張強さ590〜1180MPa、破断時における全伸びが10%以上であることが望ましい。
[Mechanical characteristics]
The mechanical properties of the hot-dip galvanized steel sheet on which the Zn-Al-Mg-based coating layer was formed were such that in a tensile test in the direction perpendicular to rolling (JIS Z2241: 2011), the tensile strength was 590 to 1180 MPa and the total elongation at break was 10. It is desirable that it is% or more.

〔めっき品質〕
めっき品質は目視、および光学顕微鏡による観察で倍率200倍にて確認し、鋼板表面に一様にめっきが付着したものをめっき品質良好(○)とし、めっきが付着していない部分を有するものをめっき品質不良(×)とした。
[Plating quality]
The plating quality is confirmed visually and by observing with an optical microscope at a magnification of 200 times. The one with plating uniformly attached to the surface of the steel sheet is regarded as good plating quality (○), and the one with a part without plating is regarded as good. The plating quality was poor (x).

〔製造方法〕
次に、図1に基づき、本発明の実施の一形態に係る溶融Zn−Al−Mg系めっき鋼板の製造方法について説明する。図1は、焼鈍工程および溶融めっき工程を実施する装置であり、焼鈍炉100およびポット60を備える。また、焼鈍炉100は、予熱エリア10、直火エリア20、還元加熱エリア30、均熱エリア40、冷却エリア50の各エリアに分割されている。なお、鋼帯(基材鋼板)1は、焼鈍炉100の予熱エリア10から入り、冷却エリア50から出て、ポット60を通過する。
〔Production method〕
Next, a method for producing a molten Zn-Al-Mg-based plated steel sheet according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is an apparatus for performing an annealing step and a hot-dip galvanizing step, which includes an annealing furnace 100 and a pot 60. Further, the annealing furnace 100 is divided into each area of a preheating area 10, a direct fire area 20, a reduction heating area 30, a soaking area 40, and a cooling area 50. The steel strip (base steel plate) 1 enters from the preheating area 10 of the annealing furnace 100, exits from the cooling area 50, and passes through the pot 60.

まず、焼鈍工程および溶融めっき工程の前に、熱間圧延工程が実施される。熱間圧延工程では、鋼帯1を、仕上げ圧延が終了するときの温度が800℃以上950℃以下となるように熱間圧延した後、650℃以下の温度で巻き取る。 First, a hot rolling step is carried out before the annealing step and the hot dip galvanizing step. In the hot rolling step, the steel strip 1 is hot-rolled so that the temperature at the end of finish rolling is 800 ° C. or higher and 950 ° C. or lower, and then wound at a temperature of 650 ° C. or lower.

なお、熱間圧延工程と焼鈍工程との間に、冷間圧延工程を追加しても良い。この場合は、熱間圧延工程にて鋼帯1を、仕上げ圧延が終了するときの温度が800℃以上950℃以下となるように熱間圧延した後、600℃以下の温度で巻き取り、冷間圧延工程にて、前記熱間圧延工程で得られた熱延鋼板を、酸洗し、冷間圧延する。 A cold rolling step may be added between the hot rolling step and the annealing step. In this case, the steel strip 1 is hot-rolled in the hot-rolling step so that the temperature at the end of finish rolling is 800 ° C. or higher and 950 ° C. or lower, and then wound at a temperature of 600 ° C. or lower and cooled. In the hot-rolling step, the hot-rolled steel sheet obtained in the hot-rolling step is pickled and cold-rolled.

次に、焼鈍炉100およびポット60を用いて実施される工程は、焼鈍工程と、溶融めっき工程とを少なくとも含んでいる。焼鈍工程は、焼鈍炉100において実施される。また、溶融めっき工程は、ポット60において実施される。 Next, the steps carried out using the annealing furnace 100 and the pot 60 include at least an annealing step and a hot dip galvanizing step. The annealing step is carried out in the annealing furnace 100. Further, the hot-dip galvanizing step is carried out in the pot 60.

予熱エリア10では、鋼帯1に対して予熱が行われる。直火エリア20では、直火還元バーナー(MIDバーナー)の採用により、直火エリア20における鋼帯1の過酸化の防止が可能となっている。ここでは、バーナーによる直接加熱により、530℃まで加熱されて鋼帯1の表面の圧延油や汚れが除去される。 In the preheating area 10, preheating is performed on the steel strip 1. In the direct fire area 20, by adopting a direct fire reduction burner (MID burner), it is possible to prevent peroxidation of the steel strip 1 in the direct fire area 20. Here, by direct heating with a burner, the steel strip 1 is heated to 530 ° C. to remove rolling oil and dirt on the surface of the steel strip 1.

還元加熱エリア30では、熱間圧延工程と焼鈍工程との間に、冷間圧延工程を追加しないケースでは、前記熱延鋼板を400℃以上750℃以下の温度で加熱することで還元反応を促す。一方、熱間圧延工程と焼鈍工程との間に、冷間圧延工程を追加するケースでは、前記冷延鋼板を400℃以上900℃以下の温度で加熱することで還元反応を促す。具体的には、H−N混合ガス中で鋼板を加熱し、以下の(1)〜(3)に示す反応で鋼板表面の非常に薄い酸化皮膜の還元を行い、表面を活性化する。
(1)Fe十4H→3Fe十4H
(2)FeO十H→Fe十H
(3)Fe+3H→2Fe+3H
このような還元反応により、鋼板表面が清浄化・活性化され、めっき密着性が向上される。なお、図1では、還元加熱エリア30において、鋼帯1が685℃まで加熱されている様子が示されている。
In the reduction heating area 30, in the case where the cold rolling step is not added between the hot rolling step and the annealing step, the reduction reaction is promoted by heating the hot-rolled steel sheet at a temperature of 400 ° C. or higher and 750 ° C. or lower. .. On the other hand, in the case where the cold rolling step is added between the hot rolling step and the annealing step, the reduction reaction is promoted by heating the cold-rolled steel sheet at a temperature of 400 ° C. or higher and 900 ° C. or lower. Specifically, by heating the steel sheet in H 2 -N 2 gas mixture performs reduction of very thin oxide film of the following (1) reaction at the steel sheet surface shown in - (3), to activate the surface ..
(1) Fe 3 0 4 tens 4H 2 → 3Fe tens 4H 2 0
(2) FeO 10H 2 → Fe10 H 20
(3) Fe 2 O 3 + 3H 2 → 2 Fe + 3H 2 O
By such a reduction reaction, the surface of the steel sheet is cleaned and activated, and the plating adhesion is improved. Note that FIG. 1 shows how the steel strip 1 is heated to 685 ° C. in the reduction heating area 30.

均熱エリア40では、熱間圧延工程と焼鈍工程との間に、冷間圧延工程を追加しないケースでは、処理後の前記熱延鋼板が580℃以上750℃以下の温度になるように10秒以上均熱する。一方、熱間圧延工程と焼鈍工程との間に、冷間圧延工程を追加するケースでは、処理後の前記冷延鋼板が650℃以上900℃の温度になるように10秒以上均熱する。 In the soaking area 40, in the case where the cold rolling step is not added between the hot rolling step and the annealing step, the temperature of the hot-rolled steel sheet after the treatment is 580 ° C. or higher and 750 ° C. or lower for 10 seconds. The heat is equalized. On the other hand, in the case where the cold rolling step is added between the hot rolling step and the annealing step, the heat is equalized for 10 seconds or more so that the cold-rolled steel sheet after the treatment has a temperature of 650 ° C. or higher and 900 ° C. or higher.

冷却エリア50では、熱間圧延工程と焼鈍工程との間に、冷間圧延工程を追加しないケースでは、処理後の前記熱延鋼板を5℃/秒以上の平均冷却速度で500℃以下の温度まで冷却する。一方、熱間圧延工程と焼鈍工程との間に、冷間圧延工程を追加するケースでは、処理後の前記冷延鋼板を5℃/秒以上の平均冷却速度で500℃以下の温度まで冷却する。なお、図1では、冷却エリア50において、鋼帯1が420℃まで冷却されている様子が示されている。 In the cooling area 50, in the case where the cold rolling process is not added between the hot rolling process and the annealing process, the processed hot-rolled steel sheet is heated at an average cooling rate of 5 ° C./sec or more and 500 ° C. or less. Cool to. On the other hand, in the case where the cold rolling step is added between the hot rolling step and the annealing step, the processed cold-rolled steel sheet is cooled to a temperature of 500 ° C. or lower at an average cooling rate of 5 ° C./sec or more. .. Note that FIG. 1 shows how the steel strip 1 is cooled to 420 ° C. in the cooling area 50.

溶融めっき工程では、ポット60が用いられ、熱間圧延工程と焼鈍工程との間に、冷間圧延工程を追加しないケースでは、焼鈍工程で焼鈍を行った熱延鋼板に対して溶融Zn−Al−Mg系めっきが施される。一方、熱間圧延工程と焼鈍工程との間に、冷間圧延工程を追加するケースでは、前記焼鈍工程で焼鈍を行った冷延鋼板に対して溶融Zn−Al−Mg系めっきが施される。なお、図1では、溶融めっき工程の際に鋼帯1が410℃まで冷却されている様子が示されている。 In the hot-dip plating step, the pot 60 is used, and in the case where the cold rolling step is not added between the hot rolling step and the annealing step, the molten Zn-Al is applied to the hot-rolled steel sheet annealed in the annealing step. -Mg-based plating is applied. On the other hand, in the case where a cold rolling step is added between the hot rolling step and the annealing step, molten Zn-Al-Mg-based plating is applied to the cold-rolled steel sheet that has been annealed in the annealing step. .. Note that FIG. 1 shows how the steel strip 1 is cooled to 410 ° C. during the hot-dip galvanizing step.

以上で説明した溶融Zn−Al−Mg系めっき鋼板の製造方法では、焼鈍炉100の還元加熱エリア30、均熱エリア40および冷却エリア50の水素濃度を2体積%以上20体積%未満とした炉内で焼鈍することにより、鋼板中への水素侵入を低減し、めっき後の鋼板中の拡散性水素濃度を低減する。また、鋼板中の拡散性水素濃度の低減により、めっき材の加工性が向上する。さらに、以上の方法によれば、焼鈍工程および溶融めっき工程における水素ガスの使用量の低減によるコスト削減も可能になる。 In the method for producing a molten Zn-Al-Mg-based plated steel sheet described above, a furnace in which the hydrogen concentrations in the reducing heating area 30, the soaking area 40 and the cooling area 50 of the annealing furnace 100 are 2% by volume or more and less than 20% by volume. By annealing inside, hydrogen intrusion into the steel sheet is reduced, and the diffusible hydrogen concentration in the steel sheet after plating is reduced. Further, the workability of the plating material is improved by reducing the concentration of diffusible hydrogen in the steel sheet. Further, according to the above method, it is possible to reduce the cost by reducing the amount of hydrogen gas used in the annealing step and the hot dip galvanizing step.

以上、本発明の実施の一形態に係る溶融Zn−Al−Mg系めっき鋼板の製造方法について纏めると以下の2つのケースとなる。 As described above, the manufacturing method of the molten Zn-Al-Mg-based plated steel sheet according to the embodiment of the present invention can be summarized in the following two cases.

(ケース1)
(1)前記化学組成の基材鋼板を、仕上げ圧延が終了するときの前記基材鋼板の温度が800℃以上950℃以下となるように熱間圧延した後、前記基材鋼板の温度が650℃以下の温度となるように巻き取る熱間圧延工程と、
(2)前記熱間圧延工程で得られた熱延鋼板に対して、水素濃度を2体積%以上20体積%未満とした炉内で以下の(i)〜(iii)の処理を行う焼鈍工程と、
(3)前記焼鈍工程で焼鈍を行った熱延鋼板に対して溶融Zn−Al−Mg系めっきを施す溶融めっき工程とを含む。
(Case 1)
(1) The base steel sheet having the chemical composition is hot-rolled so that the temperature of the base steel sheet at the end of finish rolling is 800 ° C. or higher and 950 ° C. or lower, and then the temperature of the base steel sheet is 650. A hot rolling process that winds up to a temperature below ° C,
(2) An annealing step of performing the following treatments (i) to (iii) in a furnace having a hydrogen concentration of 2% by volume or more and less than 20% by volume on the hot-rolled steel sheet obtained in the hot rolling step. When,
(3) The hot-dip galvanizing step of performing hot-dip Zn-Al-Mg-based plating on the hot-rolled steel sheet annealed in the annealing step is included.

(i)前記熱延鋼板が400℃以上750℃以下の温度となるように加熱することで還元反応を促し、
(ii)前記(i)の処理後の前記熱延鋼板が580℃以上750℃以下の温度になるように10秒以上均熱し、
(iii)前記(ii)の処理後の前記熱延鋼板を5℃/秒以上の平均冷却速度で500℃以下の温度まで冷却する。
(I) The reduction reaction is promoted by heating the hot-rolled steel sheet to a temperature of 400 ° C. or higher and 750 ° C. or lower.
(Ii) The hot-rolled steel sheet after the treatment of (i) is soaked for 10 seconds or more so that the temperature becomes 580 ° C. or higher and 750 ° C. or lower.
(Iii) The hot-rolled steel sheet after the treatment of (ii) is cooled to a temperature of 500 ° C. or lower at an average cooling rate of 5 ° C./sec or more.

(ケース2)
(1)前記化学組成の基材鋼板を、仕上げ圧延が終了するときの前記基材鋼板の温度が800℃以上950℃以下となるように熱間圧延した後、前記基材鋼板の温度が600℃以下となるように巻き取る熱間圧延工程と、
(2)前記熱間圧延工程で得られた熱延鋼板を、酸洗し、冷間圧延する冷間圧延工程と、
(3)前記冷間圧延工程で得られた冷延鋼板に対して、水素濃度を2体積%以上20体積%未満とした炉内で以下の(i)〜(iii)の処理を行う焼鈍工程と、
(4)前記焼鈍工程で焼鈍を行った冷延鋼板に対して溶融Zn−Al−Mg系めっきを施す溶融めっき工程とを含む。
(Case 2)
(1) The base steel sheet having the chemical composition is hot-rolled so that the temperature of the base steel sheet at the end of finish rolling is 800 ° C. or higher and 950 ° C. or lower, and then the temperature of the base steel sheet is 600. Hot rolling process that winds up to ℃ or less,
(2) A cold rolling step in which the hot-rolled steel sheet obtained in the hot rolling step is pickled and cold-rolled.
(3) An annealing step of performing the following treatments (i) to (iii) in a furnace having a hydrogen concentration of 2% by volume or more and less than 20% by volume on the cold-rolled steel sheet obtained in the cold rolling step. When,
(4) Includes a hot-dip galvanizing step of performing hot-dip Zn-Al-Mg-based plating on a cold-rolled steel sheet that has been annealed in the annealing step.

(i)前記冷延鋼板が400℃以上900℃以下の温度となるように加熱することで還元反応を促し、
(ii)前記(i)の処理後の前記冷延鋼板が650℃以上900℃以下の温度になるように10秒以上均熱し、
(iii)前記(ii)の処理後の前記冷延鋼板を5℃/秒以上の平均冷却速度で500℃以下の温度まで冷却する。
(I) The reduction reaction is promoted by heating the cold-rolled steel sheet to a temperature of 400 ° C. or higher and 900 ° C. or lower.
(Ii) The cold-rolled steel sheet after the treatment of (i) is soaked for 10 seconds or more so that the temperature becomes 650 ° C. or higher and 900 ° C. or lower.
(Iii) The cold-rolled steel sheet after the treatment of (ii) is cooled to a temperature of 500 ° C. or lower at an average cooling rate of 5 ° C./sec or more.

〔実施例〕
次に、図3に基づき、実施例および比較例の溶融めっき鋼板に関し、熱延条件、冷延条件、溶融めっき焼鈍条件、溶融めっき鋼板の特性、鋼板中の拡散性水素濃度、およびめっき品質を比較した結果を示す。
〔Example〕
Next, based on FIG. 3, regarding the hot-dip galvanized steel sheets of Examples and Comparative Examples, the hot-dip condition, the cold-dip condition, the hot-dip galvanizing condition, the characteristics of the hot-dip galvanized steel sheet, the diffusible hydrogen concentration in the steel sheet, and the plating quality The result of comparison is shown.

図2に示す化学組成の基材鋼板を1250℃に加熱した後、熱間圧延して、熱延めっき原板用または冷延めっき原板用の熱延鋼板とした。熱延条件は、熱延めっき原板用では仕上圧延を行うときの鋼板の温度を880℃とし、巻き取りを行う際の鋼板を温度600℃とし、板厚を3.2mmとした。一方、冷延めっき原板用では仕上圧延を行うときの鋼板の温度を880℃とし、巻き取りを行う際の鋼板の温度を460℃とし、板厚を2mmとした。熱延めっき原板用の熱延鋼板は、酸洗を施してそのまま熱延めっき原板とした。冷延めっき原板用の熱延鋼板は、酸洗を施したのち、図3中に示す冷間圧延率(冷延率)で冷間圧延を施し、冷延めっき原板とした。各めっき原板を用いて、連続溶融めっきラインにて図3に示す条件で熱処理を行い、溶融Zn−Al−Mg系めっき鋼板(Zn−Al−Mg)を製造した。 The base steel sheet having the chemical composition shown in FIG. 2 was heated to 1250 ° C. and then hot-rolled to obtain a hot-rolled steel sheet for a hot-rolled base plate or a cold-rolled base steel plate. As for the hot-rolling conditions, the temperature of the steel sheet at the time of finish rolling was set to 880 ° C., the temperature of the steel sheet at the time of winding was set to 600 ° C., and the plate thickness was set to 3.2 mm for the hot-rolled plating original plate. On the other hand, for the cold-rolled original plate, the temperature of the steel sheet during finish rolling was set to 880 ° C, the temperature of the steel sheet when winding was set to 460 ° C, and the plate thickness was set to 2 mm. The hot-rolled steel sheet for the hot-rolled plating base plate was pickled and used as it was as the hot-rolled plating base plate. The hot-rolled steel sheet for the cold-rolled plating base plate was pickled and then cold-rolled at the cold rolling ratio (cold rolling ratio) shown in FIG. 3 to obtain a cold-rolled base plate. Using each of the original plating plates, heat treatment was performed on a continuous hot-dip galvanizing line under the conditions shown in FIG. 3 to produce a hot-dip Zn-Al-Mg-based plated steel sheet (Zn-Al-Mg).

ここで、ポット60のめっき浴の組成は、質量%で、Al:6.0%、Mg:3.0%、Si:0.01%、Ti:0.002%、B:0.0005%、Fe:0.1%、残部Znとした。めっき付着量は、鋼板片面当たりのめっき層厚さが15μmとなるように調整した。また、一部の鋼板を用いて合金化溶融亜鉛めっき鋼板(GA)を製造した。合金化温度は550℃で製造した。 Here, the composition of the plating bath of the pot 60 is, in mass%, Al: 6.0%, Mg: 3.0%, Si: 0.01%, Ti: 0.002%, B: 0.0005%. , Fe: 0.1%, and the balance was Zn. The amount of plating adhered was adjusted so that the thickness of the plating layer per one side of the steel sheet was 15 μm. In addition, alloyed hot-dip galvanized steel sheets (GA) were manufactured using some of the steel sheets. The alloying temperature was 550 ° C.

図3の溶融めっき鋼板の特性の項目の「TS/MPa」は、JIS Z2241に従った試験片の引張強さを示し、「T.El/%」は、JIS Z2241に従った試験片の全伸びを示す。また、金属組成「BF」は、ベイニティックフェライト相からなる組織を示し、金属組成「F+M」は、フェライト相とマルテンサイト相との混合組織を示す。 “TS / MPa” in the characteristic item of the hot-dip galvanized steel sheet in FIG. 3 indicates the tensile strength of the test piece according to JIS Z2241, and “TEl /%” indicates the total tensile strength of the test piece according to JIS Z2241. Shows growth. Further, the metal composition "BF" shows a structure composed of a bainitic ferrite phase, and the metal composition "F + M" shows a mixed structure of a ferrite phase and a martensite phase.

ここで、鋼板中の拡散水素濃度を比較すると、実施例の鋼種では、0.14〜0.19(wtppm)と、比較例の0.27〜0.42(wtppm)よりも低減されていることが分かる。以上により、実施例の溶融Zn−Al−Mg系めっき鋼板によれば、水素脆化が低減されていることが分かった。 Here, when the diffusion hydrogen concentration in the steel sheet is compared, it is 0.14 to 0.19 (wtppm) in the steel type of the example, which is lower than 0.27 to 0.42 (wtppm) of the comparative example. You can see that. From the above, it was found that hydrogen embrittlement was reduced according to the molten Zn-Al-Mg-based plated steel sheet of the example.

なお、比較例の鋼種No.11〜15は、合金化溶融亜鉛めっき鋼板の実施例であるが、鋼板中の拡散水素濃度が0.12〜0.19(wtppm)と、比較的低い。これは、合金化溶融亜鉛めっき鋼板のめっき被覆層は、Zn−Al−Mg系被覆層と比較して、鋼板中の水素が離脱し易いことを示している。 In addition, the steel type No. of the comparative example. 11 to 15 are examples of alloyed hot-dip galvanized steel sheets, but the diffusion hydrogen concentration in the steel sheets is relatively low at 0.12 to 0.19 (wtppm). This indicates that the plating coating layer of the alloyed hot-dip galvanized steel sheet is more likely to release hydrogen in the steel sheet than the Zn-Al-Mg-based coating layer.

〔まとめ〕
本発明の態様1に係る溶融Zn−Al−Mg系めっき鋼板の製造方法は、質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.10〜2.50%、P:0.005〜0.050%、B:0.0005〜0.010%、Ti:0.01〜0.20%、Al:0.01〜0.10%、残部がFeおよび不可避的不純物である鋼組成の基材鋼板を、仕上げ圧延が終了するときの前記基材鋼板の温度が800℃以上950℃以下となるように熱間圧延した後、前記基材鋼板の温度が650℃以下となるように巻き取る熱間圧延工程と、前記熱間圧延工程で得られた熱延鋼板に対して、水素濃度を2体積%以上20体積%未満とした炉内で以下の(i)〜(iii)の処理を行う焼鈍工程と、前記焼鈍工程で焼鈍を行った熱延鋼板に対して溶融Zn−Al−Mg系めっきを施す溶融めっき工程とを含む方法である;
(i)前記熱延鋼板が400℃以上750℃以下の温度になるように加熱することで還元反応を促し、
(ii)前記(i)の処理後の前記熱延鋼板が580℃以上750℃以下の温度になるように10秒以上均熱し、
(iii)前記(ii)の処理後の前記熱延鋼板を、5℃/秒以上の平均冷却速度で500℃以下の温度になるまで冷却する。
[Summary]
The method for producing a molten Zn-Al-Mg-based plated steel sheet according to aspect 1 of the present invention is, in terms of mass%, C: 0.01 to 0.20%, Si: 0.01 to 0.50%, Mn: 0. .10 to 2.50%, P: 0.005 to 0.050%, B: 0.0005 to 0.010%, Ti: 0.01 to 0.20%, Al: 0.01 to 0.10. %, The base steel sheet having a steel composition in which the balance is Fe and unavoidable impurities is hot-rolled so that the temperature of the base steel sheet at the end of finish rolling is 800 ° C. or higher and 950 ° C. or lower, and then the above. The hydrogen concentration was set to 2% by volume or more and less than 20% by volume with respect to the hot-rolling step of winding the base steel sheet so that the temperature of the base steel sheet was 650 ° C. or lower and the hot-rolled steel sheet obtained in the hot-rolling step. It includes an annealing step of performing the following treatments (i) to (iii) in the furnace and a hot-dip plating step of applying molten Zn-Al-Mg-based plating to the hot-rolled steel sheet annealed in the annealing step. Is the method;
(I) The reduction reaction is promoted by heating the hot-rolled steel sheet to a temperature of 400 ° C. or higher and 750 ° C. or lower.
(Ii) The hot-rolled steel sheet after the treatment of (i) is soaked for 10 seconds or more so that the temperature becomes 580 ° C. or higher and 750 ° C. or lower.
(Iii) The hot-rolled steel sheet after the treatment of (ii) is cooled to a temperature of 500 ° C. or lower at an average cooling rate of 5 ° C./sec or more.

前記方法によれば、焼鈍工程にて、水素濃度を2体積%以上20体積%未満とした炉内で前記(i)〜(iii)の処理を実行する。このため、溶融Zn−Al−Mg系めっき鋼板の基材鋼板中の拡散性水素濃度を低減させることができ、水素脆化を低減することができる。前記方法によれば、溶融Zn−Al−Mg系めっき鋼板を製造することができる。このため、優れた耐食性および加工性を保持することができる。 According to the method, in the annealing step, the treatments (i) to (iii) are carried out in a furnace having a hydrogen concentration of 2% by volume or more and less than 20% by volume. Therefore, the concentration of diffusible hydrogen in the base steel sheet of the molten Zn-Al-Mg-based plated steel sheet can be reduced, and hydrogen embrittlement can be reduced. According to the above method, a molten Zn-Al-Mg-based plated steel sheet can be produced. Therefore, excellent corrosion resistance and workability can be maintained.

本発明の態様2に係る溶融Zn−Al−Mg系めっき鋼板の製造方法は、質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.10〜2.50%、P:0.005〜0.050%、B:0.0005〜0.010%、Ti:0.01〜0.20%、Al:0.01〜0.10%、残部がFeおよび不可避的不純物である鋼組成の基材鋼板を、仕上げ圧延が終了するときの前記基材鋼板の温度が800℃以上950℃以下となるように熱間圧延した後、前記基材鋼板の温度が600℃以下の温度となるように巻き取る熱間圧延工程と、前記熱間圧延工程で得られた熱延鋼板を、酸洗し、冷間圧延する冷間圧延工程と、前記冷間圧延工程で得られた冷延鋼板に対して、水素濃度を2体積%以上20体積%未満とした炉内で以下の(i)〜(iii)の処理を行う焼鈍工程と、前記焼鈍工程で焼鈍を行った冷延鋼板に対して溶融Zn−Al−Mg系めっきを施す溶融めっき工程とを含む方法である;
(i)前記冷延鋼板が400℃以上900℃以下の温度になるように加熱することで還元反応を促し、
(ii)前記(i)の処理後の前記冷延鋼板が650℃以上900℃以下の温度になるように10秒以上均熱し、
(iii)前記(ii)の処理後の前記冷延鋼板を5℃/秒以上の平均冷却速度で500℃以下の温度まで冷却する。前記方法によれば、前記態様1と同様の効果を得ることができる。
The method for producing a molten Zn-Al-Mg-based plated steel sheet according to aspect 2 of the present invention is, in terms of mass%, C: 0.01 to 0.20%, Si: 0.01 to 0.50%, Mn: 0. .10 to 2.50%, P: 0.005 to 0.050%, B: 0.0005 to 0.010%, Ti: 0.01 to 0.20%, Al: 0.01 to 0.10. %, The base steel sheet having a steel composition in which the balance is Fe and unavoidable impurities is hot-rolled so that the temperature of the base steel sheet at the end of finish rolling is 800 ° C. or higher and 950 ° C. or lower, and then the above. A hot rolling step of winding the base steel sheet so that the temperature of the base steel sheet becomes 600 ° C. or lower, and a cold rolling step of pickling and cold rolling the hot-rolled steel sheet obtained in the hot rolling step. The baking step of performing the following treatments (i) to (iii) in a furnace having a hydrogen concentration of 2% by volume or more and less than 20% by volume with respect to the cold-rolled steel sheet obtained in the cold rolling step. This method includes a hot-dip plating step of performing hot-dip Zn-Al-Mg-based plating on a cold-rolled steel sheet that has been annealed in the baking step;
(I) The reduction reaction is promoted by heating the cold-rolled steel sheet to a temperature of 400 ° C. or higher and 900 ° C. or lower.
(Ii) The cold-rolled steel sheet after the treatment of (i) is heated for 10 seconds or more so that the temperature becomes 650 ° C. or higher and 900 ° C. or lower.
(Iii) The cold-rolled steel sheet after the treatment of (ii) is cooled to a temperature of 500 ° C. or lower at an average cooling rate of 5 ° C./sec or more. According to the method, the same effect as that of the first aspect can be obtained.

本発明の態様3に係る溶融Zn−Al−Mg系めっき鋼板の製造方法は、前記態様1または2において、前記基材鋼板は、さらに質量%で、Nb:0〜0.10%、Mo:0〜0.50%、Cr:0〜0.50%の1種または2種以上を含有しても良い。前記方法によれば、溶融Zn−Al−Mg系めっき鋼板の強度をより向上させることができる。 In the method for producing a molten Zn-Al-Mg-based plated steel sheet according to the third aspect of the present invention, in the first or second aspect, the base steel sheet is further mass%, Nb: 0 to 0.10%, Mo: It may contain 1 type or 2 or more types of 0 to 0.50% and Cr: 0 to 0.50%. According to the above method, the strength of the molten Zn-Al-Mg-based plated steel sheet can be further improved.

本発明の態様4に係る溶融Zn−Al−Mg系めっき鋼板は、質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.10〜2.50%、P:0.005〜0.050%、B:0.0005〜0.010%、Ti:0.01〜0.20%、Al:0.01〜0.10%、残部がFeおよび不可避的不純物である鋼組成の基材鋼板の表面に、質量%で、Al:1.0〜22.0%、Mg:1.3〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:2.0%以下、残部がZnおよび不可避的不純物であるZn−Al−Mg系被覆層を有し、前記基材鋼板中の拡散性水素濃度が0.25ppm以下である。前記構成によれば、優れた耐食性および加工性を保持しつつ、水素脆化を低減することができる溶融Zn−Al−Mg系めっき鋼板を実現することができる。 The molten Zn-Al-Mg-based galvanized steel sheet according to the fourth aspect of the present invention has a mass% of C: 0.01 to 0.20%, Si: 0.01 to 0.50%, and Mn: 0.1 to 10. 2.50%, P: 0.005 to 0.050%, B: 0.0005 to 0.010%, Ti: 0.01 to 0.20%, Al: 0.01 to 0.10%, balance On the surface of the base steel sheet having a steel composition in which Fe and unavoidable impurities are present, in mass%, Al: 1.0 to 22.0%, Mg: 1.3 to 10.0%, Si: 0 to 2. 0%, Ti: 0 to 0.10%, B: 0 to 0.05%, Fe: 2.0% or less, the balance has Zn and a Zn-Al-Mg-based coating layer which is an unavoidable impurity. The diffusible hydrogen concentration in the base steel sheet is 0.25 ppm or less. According to the above configuration, it is possible to realize a molten Zn-Al-Mg-based plated steel sheet capable of reducing hydrogen embrittlement while maintaining excellent corrosion resistance and workability.

本発明の態様5に係る溶融Zn−Al−Mg系めっき鋼板は、前記態様4において、前記Zn−Al−Mg系被覆層にクラックが存在しないことが好ましい。前記構成によれば、溶融Zn−Al−Mg系めっき鋼板の加工性をより向上させることができる。 In the molten Zn-Al-Mg-based plated steel sheet according to the fifth aspect of the present invention, it is preferable that there are no cracks in the Zn-Al-Mg-based coating layer in the fourth aspect. According to the above configuration, the workability of the molten Zn-Al-Mg-based plated steel sheet can be further improved.

本発明の態様6に係る溶融Zn−Al−Mg系めっき鋼板は、前記態様4または5において、前記基材鋼板は、さらに質量%で、Nb:0〜0.10%、Mo:0〜0.50%、Cr:0〜0.50%の1種または2種以上を含有しても良い。前記構成によれば、溶融Zn−Al−Mg系めっき鋼板の強度をより向上させることができる。 In the molten Zn-Al-Mg-based plated steel sheet according to the sixth aspect of the present invention, in the fourth or fifth aspect, the base steel sheet is further mass%, Nb: 0 to 0.10%, Mo: 0 to 0. It may contain one or more of .50% and Cr: 0 to 0.50%. According to the above configuration, the strength of the molten Zn-Al-Mg-based plated steel sheet can be further improved.

〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
[Additional notes]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.

1 鋼帯(基材鋼板)
10 予熱エリア
20 直火エリア
30 還元加熱エリア
40 均熱エリア
50 冷却エリア
60 ポット
100 焼鈍炉
1 Steel strip (base steel plate)
10 Preheating area 20 Direct fire area 30 Reduction heating area 40 Soaking area 50 Cooling area 60 Pot 100 Annealing furnace

Claims (6)

質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.10〜2.50%、P:0.005〜0.050%、B:0.0005〜0.010%、Ti:0.01〜0.20%、Al:0.01〜0.10%、残部がFeおよび不可避的不純物である鋼組成の基材鋼板を、仕上げ圧延が終了するときの前記基材鋼板の温度が800℃以上950℃以下となるように熱間圧延した後、前記基材鋼板の温度が650℃以下となるように巻き取る熱間圧延工程と、
前記熱間圧延工程で得られた熱延鋼板に対して、水素濃度を2体積%以上20体積%未満とした炉内で以下の(i)〜(iii)の処理を行う焼鈍工程と、
前記焼鈍工程で焼鈍を行った熱延鋼板に対して溶融Zn−Al−Mg系めっきを施す溶融めっき工程とを含む、溶融Zn−Al−Mg系めっき鋼板の製造方法;
(i)前記熱延鋼板が400℃以上750℃以下の温度になるように加熱することで還元反応を促し、
(ii)前記(i)の処理後の前記熱延鋼板が580℃以上750℃以下の温度になるように10秒以上均熱し、
(iii)前記(ii)の処理後の前記熱延鋼板を、5℃/秒以上の平均冷却速度で500℃以下の温度になるまで冷却する。
By mass%, C: 0.01 to 0.20%, Si: 0.01 to 0.50%, Mn: 0.1 to 2.50%, P: 0.005 to 0.050%, B: Finish rolling of a base steel sheet having a steel composition of 0.0005 to 0.010%, Ti: 0.01 to 0.20%, Al: 0.01 to 0.10%, and the balance being Fe and unavoidable impurities. A hot rolling step of hot rolling so that the temperature of the base steel sheet at the end of the process is 800 ° C. or higher and 950 ° C. or lower, and then winding up the base steel sheet so that the temperature of the base steel sheet is 650 ° C. or lower.
The annealing step of performing the following treatments (i) to (iii) in a furnace having a hydrogen concentration of 2% by volume or more and less than 20% by volume with respect to the hot-rolled steel sheet obtained in the hot rolling step.
A method for producing a molten Zn-Al-Mg-based plated steel sheet, which comprises a hot-dip plating step of applying molten Zn-Al-Mg-based plating to a hot-rolled steel sheet that has been annealed in the annealing step;
(I) The reduction reaction is promoted by heating the hot-rolled steel sheet to a temperature of 400 ° C. or higher and 750 ° C. or lower.
(Ii) The hot-rolled steel sheet after the treatment of (i) is soaked for 10 seconds or more so that the temperature becomes 580 ° C. or higher and 750 ° C. or lower.
(Iii) The hot-rolled steel sheet after the treatment of (ii) is cooled to a temperature of 500 ° C. or lower at an average cooling rate of 5 ° C./sec or more.
質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.10〜2.50%、P:0.005〜0.050%、B:0.0005〜0.010%、Ti:0.01〜0.20%、Al:0.01〜0.10%、残部がFeおよび不可避的不純物である鋼組成の基材鋼板を、仕上げ圧延が終了するときの前記基材鋼板の温度が800℃以上950℃以下となるように熱間圧延した後、前記基材鋼板の温度が600℃以下の温度となるように巻き取る熱間圧延工程と、
前記熱間圧延工程で得られた熱延鋼板を、酸洗し、冷間圧延する冷間圧延工程と、
前記冷間圧延工程で得られた冷延鋼板に対して、水素濃度を2体積%以上20体積%未満とした炉内で以下の(i)〜(iii)の処理を行う焼鈍工程と、
前記焼鈍工程で焼鈍を行った冷延鋼板に対して溶融Zn−Al−Mg系めっきを施す溶融めっき工程とを含む、溶融Zn−Al−Mg系めっき鋼板の製造方法;
(i)前記冷延鋼板が400℃以上900℃以下の温度になるように加熱することで還元反応を促し、
(ii)前記(i)の処理後の前記冷延鋼板が650℃以上900℃以下の温度になるように10秒以上均熱し、
(iii)前記(ii)の処理後の前記冷延鋼板を5℃/秒以上の平均冷却速度で500℃以下の温度まで冷却する。
By mass%, C: 0.01 to 0.20%, Si: 0.01 to 0.50%, Mn: 0.1 to 2.50%, P: 0.005 to 0.050%, B: Finish rolling of a base steel sheet having a steel composition of 0.0005 to 0.010%, Ti: 0.01 to 0.20%, Al: 0.01 to 0.10%, and the balance being Fe and unavoidable impurities. Hot rolling step of hot rolling so that the temperature of the base steel sheet at the end of is 800 ° C. or higher and 950 ° C. or lower, and then winding so that the temperature of the base steel sheet is 600 ° C. or lower. When,
A cold rolling step of pickling and cold rolling the hot-rolled steel sheet obtained in the hot rolling step, and a cold rolling step.
The annealing step of performing the following treatments (i) to (iii) in a furnace having a hydrogen concentration of 2% by volume or more and less than 20% by volume with respect to the cold-rolled steel sheet obtained in the cold rolling step.
A method for producing a hot-dip Zn-Al-Mg-based plated steel sheet, which comprises a hot-dip plating step of applying hot-dip Zn-Al-Mg-based plating to a cold-rolled steel sheet that has been annealed in the annealing step;
(I) The reduction reaction is promoted by heating the cold-rolled steel sheet to a temperature of 400 ° C. or higher and 900 ° C. or lower.
(Ii) The cold-rolled steel sheet after the treatment of (i) is soaked for 10 seconds or more so that the temperature becomes 650 ° C. or higher and 900 ° C. or lower.
(Iii) The cold-rolled steel sheet after the treatment of (ii) is cooled to a temperature of 500 ° C. or lower at an average cooling rate of 5 ° C./sec or more.
前記基材鋼板は、さらに質量%で、Nb:0〜0.10%、Mo:0〜0.50%、Cr:0〜0.50%の1種または2種以上を含有する、請求項1または2に記載の溶融Zn−Al−Mg系めっき鋼板の製造方法。 The claim that the base steel sheet further contains one or more of Nb: 0 to 0.10%, Mo: 0 to 0.50%, and Cr: 0 to 0.50% in mass%. The method for producing a molten Zn-Al-Mg-based plated steel sheet according to 1 or 2. 質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.10〜2.50%、P:0.005〜0.050%、B:0.0005〜0.010%、Ti:0.01〜0.20%、Al:0.01〜0.10%、残部がFeおよび不可避的不純物である鋼組成の基材鋼板の表面に、
質量%で、Al:1.0〜22.0%、Mg:1.3〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:2.0%以下、残部がZnおよび不可避的不純物であるZn−Al−Mg系被覆層を有し、
前記基材鋼板中の拡散性水素濃度が0.25ppm以下である、溶融Zn−Al−Mg系めっき鋼板。
By mass%, C: 0.01 to 0.20%, Si: 0.01 to 0.50%, Mn: 0.1 to 2.50%, P: 0.005 to 0.050%, B: On the surface of a base steel sheet having a steel composition of 0.0005 to 0.010%, Ti: 0.01 to 0.20%, Al: 0.01 to 0.10%, and the balance being Fe and unavoidable impurities.
By mass%, Al: 1.0 to 22.0%, Mg: 1.3 to 10.0%, Si: 0 to 2.0%, Ti: 0 to 0.10%, B: 0 to 0. 05%, Fe: 2.0% or less, the balance has Zn and a Zn-Al-Mg-based coating layer which is an unavoidable impurity.
A molten Zn-Al-Mg-based galvanized steel sheet having a diffusible hydrogen concentration of 0.25 ppm or less in the base steel sheet.
前記Zn−Al−Mg系被覆層にクラックが存在しない、請求項4に記載の溶融Zn−Al−Mg系めっき鋼板。 The molten Zn-Al-Mg-based galvanized steel sheet according to claim 4, wherein there are no cracks in the Zn-Al-Mg-based coating layer. 前記基材鋼板は、さらに質量%で、Nb:0〜0.10%、Mo:0〜0.50%、Cr:0〜0.50%の1種または2種以上を含有する、請求項4または5に記載の溶融Zn−Al−Mg系めっき鋼板。 The claim that the base steel sheet further contains one or more of Nb: 0 to 0.10%, Mo: 0 to 0.50%, and Cr: 0 to 0.50% in mass%. The hot-dip Zn-Al-Mg-based galvanized steel sheet according to 4 or 5.
JP2019177668A 2019-09-27 2019-09-27 HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME Pending JP2021055136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019177668A JP2021055136A (en) 2019-09-27 2019-09-27 HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019177668A JP2021055136A (en) 2019-09-27 2019-09-27 HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME

Publications (1)

Publication Number Publication Date
JP2021055136A true JP2021055136A (en) 2021-04-08

Family

ID=75272297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019177668A Pending JP2021055136A (en) 2019-09-27 2019-09-27 HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME

Country Status (1)

Country Link
JP (1) JP2021055136A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145441A (en) * 2016-02-16 2017-08-24 日新製鋼株式会社 Black surface coated high strength steel sheet and manufacturing method therefor
JP2018131669A (en) * 2017-02-17 2018-08-23 日新製鋼株式会社 BLACK SURFACE-COATED HIGH-STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BENDING PROCESSABILITY AND METHOD FOR MANUFACTURING THE SAME
JP2018145507A (en) * 2017-03-08 2018-09-20 日新製鋼株式会社 BLACK SURFACE COATED HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR BUILDING COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND BUILDING COMPONENT USING THE SAME
JP2018145506A (en) * 2017-03-08 2018-09-20 日新製鋼株式会社 BLACK SURFACE COATED HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR AUTOMOBILE COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND AUTOMOBILE COMPONENT USING THE SAME
JP2018204065A (en) * 2017-06-01 2018-12-27 日新製鋼株式会社 HIGH STRENGTH Zn-Al-Mg BASED SURFACE COATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
JP2019031727A (en) * 2017-08-10 2019-02-28 日新製鋼株式会社 HIGH-STRENGTH Zn-Al-Mg-BASED SURFACE-COATED STEEL SHEET FOR AUTOMOBILE COMPONENTS AND AUTOMOBILE COMPONENTS USING THE SAME
JP2019031728A (en) * 2017-08-10 2019-02-28 日新製鋼株式会社 HIGH STRENGTH Zn-Al-Mg BASED SURFACE COATED STEEL SHEET FOR BUILDING COMPONENT AND BUILDING COMPONENT USING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145441A (en) * 2016-02-16 2017-08-24 日新製鋼株式会社 Black surface coated high strength steel sheet and manufacturing method therefor
JP2018131669A (en) * 2017-02-17 2018-08-23 日新製鋼株式会社 BLACK SURFACE-COATED HIGH-STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BENDING PROCESSABILITY AND METHOD FOR MANUFACTURING THE SAME
JP2018145507A (en) * 2017-03-08 2018-09-20 日新製鋼株式会社 BLACK SURFACE COATED HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR BUILDING COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND BUILDING COMPONENT USING THE SAME
JP2018145506A (en) * 2017-03-08 2018-09-20 日新製鋼株式会社 BLACK SURFACE COATED HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR AUTOMOBILE COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND AUTOMOBILE COMPONENT USING THE SAME
JP2018204065A (en) * 2017-06-01 2018-12-27 日新製鋼株式会社 HIGH STRENGTH Zn-Al-Mg BASED SURFACE COATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
JP2019031727A (en) * 2017-08-10 2019-02-28 日新製鋼株式会社 HIGH-STRENGTH Zn-Al-Mg-BASED SURFACE-COATED STEEL SHEET FOR AUTOMOBILE COMPONENTS AND AUTOMOBILE COMPONENTS USING THE SAME
JP2019031728A (en) * 2017-08-10 2019-02-28 日新製鋼株式会社 HIGH STRENGTH Zn-Al-Mg BASED SURFACE COATED STEEL SHEET FOR BUILDING COMPONENT AND BUILDING COMPONENT USING THE SAME

Similar Documents

Publication Publication Date Title
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
US11427880B2 (en) High-strength galvanized steel sheet and method for manufacturing same
JP6271067B1 (en) High-strength Zn-Al-Mg-based surface-coated steel sheet and method for producing the same
WO2013047820A1 (en) Hot-dip galvanized steel sheet and process for producing same
JP5708884B2 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP3956550B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent balance of strength and ductility
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
JP2007231373A (en) High-strength steel sheet having excellent hydrogen brittleness resistance in weld zone and its production method
KR101726090B1 (en) High strength galvanized steel sheet having excellent surface property and coating adhesion and method for manufacturing the same
KR101899688B1 (en) High strength hot-rolled steel sheet having excellent continuously producing property, high strength gavanized steel sheet having excellent surface property and plating adhesion and method for manufacturing thereof
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
JP2017145441A (en) Black surface coated high strength steel sheet and manufacturing method therefor
KR101482345B1 (en) High strength hot-rolled steel sheet, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet using the same and method for manufacturing thereof
WO2020136988A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP5552859B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2015115112A1 (en) Alloyed hot-dip galvanized steel sheet and method for producing same
JP2019031728A (en) HIGH STRENGTH Zn-Al-Mg BASED SURFACE COATED STEEL SHEET FOR BUILDING COMPONENT AND BUILDING COMPONENT USING THE SAME
JP3882679B2 (en) Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance
KR20190078437A (en) Zinc coated high manganese steel sheet with superior spot weldability and method for manufacturing same
JP2019031727A (en) HIGH-STRENGTH Zn-Al-Mg-BASED SURFACE-COATED STEEL SHEET FOR AUTOMOBILE COMPONENTS AND AUTOMOBILE COMPONENTS USING THE SAME
JP6962452B2 (en) High-strength alloyed hot-dip galvanized steel sheet and its manufacturing method
JP2021055136A (en) HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME
US20210310095A1 (en) High-strength steel sheet and method for manufacturing the same
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231114