JP2018131669A - BLACK SURFACE-COATED HIGH-STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BENDING PROCESSABILITY AND METHOD FOR MANUFACTURING THE SAME - Google Patents

BLACK SURFACE-COATED HIGH-STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BENDING PROCESSABILITY AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2018131669A
JP2018131669A JP2017027637A JP2017027637A JP2018131669A JP 2018131669 A JP2018131669 A JP 2018131669A JP 2017027637 A JP2017027637 A JP 2017027637A JP 2017027637 A JP2017027637 A JP 2017027637A JP 2018131669 A JP2018131669 A JP 2018131669A
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
molten
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017027637A
Other languages
Japanese (ja)
Other versions
JP6816550B2 (en
Inventor
藤原 進
Susumu Fujiwara
進 藤原
真也 植杉
Shinya Uesugi
真也 植杉
智治 重富
Tomoharu Shigetomi
智治 重富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2017027637A priority Critical patent/JP6816550B2/en
Publication of JP2018131669A publication Critical patent/JP2018131669A/en
Application granted granted Critical
Publication of JP6816550B2 publication Critical patent/JP6816550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molten Zn-Al-Mg-based plated steel sheet that has higher tensile strength than the conventional molten Zn-Al-Mg-based plated steel sheet and realizes an improvement in both strength and bending processability at the same time while suppressing an excessive increase in manufacturing cost and to provide a method for manufacturing the plated steel sheet.SOLUTION: There is provided a black surface-coated high-strength molten Zn-Al-Mg-based plated steel sheet excellent in bending processability with a tensile strength of 780 to 1,100 MPa, which is a plated steel sheet having a molten Zn-Al-Mg-based coating layer on the surface of a steel sheet stock having a predetermined chemical composition; comprises as the main phase a single phase composed of either of a bainitic ferrite phase and a ferrite phase each having a dislocation density of 1.8×10/mto 5.7×10/mor a phase including the bainitic ferrite phase and the ferrite phase, has an area ratio of a hard second phase and cementite of 3% or less, has a carbide including Ti with an average particle diameter of 20 nm or less dispersed and precipitated and has a diffusible hydrogen concentration of 0.30 ppm or less; and has a black oxide of Zn distributed in a molten Zn-Al-Mg-based coating layer having a specific composition and has a lightness Lof the coating layer surface of 60 or less. There is also provided a method for manufacturing the black surface-coated high-strength molten Zn-Al-Mg-based plated steel sheet.SELECTED DRAWING: None

Description

本発明は、高耐食性が要求される用途で、かつ、主に曲げ加工が施されて使用される部材や鋼管の素材に適した、引張強度780MPa以上の曲げ加工性に優れた黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板に関するものである。   The present invention is an application where high corrosion resistance is required, and is suitable for a member that is mainly subjected to bending work and a material for a steel pipe, and has a high black surface coating with excellent bending workability with a tensile strength of 780 MPa or more. The present invention relates to a high strength Zn—Al—Mg based plated steel sheet.

近年、環境問題に対する関心が一層高まっており、自動車用部材をはじめとして、種々の加工品において、高強度−薄肉化による軽量化が求められている。また、プレス加工、伸びフランジ加工など、様々な変形様式の加工が施される場合には、素材鋼板には、強度に加えて延性や高い穴広げ性等が要求される。そのため、高価な合金元素の添加に加え複雑な熱処理を組み合わせて、金属組織を緻密に制御した発明が多くなされている。これらの発明ではさらに、長寿命化や後めっき等の省略の点から高強度防錆鋼板が必要とされている場合も多い。   In recent years, interest in environmental problems has further increased, and various processed products such as automobile members have been required to be lightened by high strength-thinning. In addition, when various deformation modes such as press working and stretch flange processing are performed, the material steel plate is required to have ductility, high hole expansibility, etc. in addition to strength. Therefore, many inventions have been made in which the metal structure is precisely controlled by combining complicated heat treatment in addition to the addition of expensive alloy elements. Further, in these inventions, a high-strength rust-proof steel sheet is often required from the standpoint of extending the life and post-plating.

特許文献1〜3には、曲げ加工性に優れる高強度冷延鋼板、めっき鋼板およびその製造方法が開示されている。しかしながら、いずれも変態強化で高強度化を図るとともに残留オーステナイトを活用して高強度化と加工性の両立を図ったもので、Si、Mn等の高価な合金元素を多量に添加する必要があるため、製造コストが高くなる。また、変態強化では、硬質相と軟質相の大きな強度差に起因して、安定的に良好な曲げ性を確保するのは非常に困難である。特許文献4には、マルテンサイトや残留オーステナイトを利用せず、フェライト組織をベースに微細析出物および転位強化を活用した高比例源かつ曲げ加工性に優れる冷延鋼板を開示している。しかしながら、C含有量が高く曲げ加工性のレベルは、必ずしも十分ではないことがわかった。   Patent Documents 1 to 3 disclose a high-strength cold-rolled steel sheet, a plated steel sheet, and a manufacturing method thereof that are excellent in bending workability. However, both are strengthened by transformation strengthening and use of retained austenite to achieve both high strength and workability. It is necessary to add a large amount of expensive alloy elements such as Si and Mn. Therefore, the manufacturing cost becomes high. Further, in transformation strengthening, it is very difficult to ensure stable and good bendability due to a large difference in strength between the hard phase and the soft phase. Patent Document 4 discloses a cold-rolled steel sheet that does not use martensite or retained austenite, is a high-proportional source that uses fine precipitates and dislocation strengthening based on a ferrite structure, and is excellent in bending workability. However, it has been found that the C content is high and the level of bending workability is not always sufficient.

一方、本発明者らは、マルテンサイトや残留オーステナイトを用いずにフェライトまたはベイナイト組織をベースとしてTi等の微細析出物を用いて析出強化するとともに、粗大な硬質第2相やセメンタイトの析出を抑制することで高強度化と局部延性の指標となる穴広げ性を向上させた熱延めっき鋼板を特許文献5に開示している。しかし、特許文献5では非常に良好な曲げ加工性が得られるものの、必ずしも十分な強度が得られない。   On the other hand, the present inventors strengthened precipitation using fine precipitates such as Ti based on ferrite or bainite structure without using martensite or retained austenite, and suppressed precipitation of coarse hard second phase and cementite. By doing so, Patent Document 5 discloses a hot-rolled plated steel sheet that has improved hole expandability, which is an indicator of high strength and local ductility. However, although very good bending workability is obtained in Patent Document 5, sufficient strength is not always obtained.

更に、この種のめっき鋼板では、めっき原板に高張力鋼を使用した場合、めっきラインで不可避的に鋼中に侵入する水素に起因して、いわゆる水素脆化を起こしやすく、用途によっては問題となる。一般的な溶融Zn系めっきラインでは、めっき原板である基材鋼板は、めっき浴の直前で、水素ガスを含む還元性雰囲気中での加熱処理を受ける。この加熱雰囲気中の水素が基材鋼板中に侵入し、水素脆化の原因となる。また、めっき前に行われる電解脱脂等の湿式工程でも水素の侵入が考えられ、めっき鋼板の水素脆化の要因となり得る。   Furthermore, with this type of plated steel sheet, when high-strength steel is used as the plating base plate, so-called hydrogen embrittlement is likely to occur due to hydrogen inevitably entering the steel in the plating line, which may be a problem depending on the application. Become. In a general hot-dip Zn plating line, a base steel plate that is a plating original plate is subjected to heat treatment in a reducing atmosphere containing hydrogen gas immediately before the plating bath. Hydrogen in this heated atmosphere enters the base steel plate and causes hydrogen embrittlement. In addition, intrusion of hydrogen is conceivable even in a wet process such as electrolytic degreasing performed before plating, which may cause hydrogen embrittlement of the plated steel sheet.

溶融Zn−Al−Mg系めっき鋼板の水素脆化は、通常、980MPa級以上の高張力鋼をめっき原板に使用したときに問題となりやすいとされる。ところが780MPa級、あるいは更に590MPa級といった比較的低強度レベルの高張力鋼を使用しても、非常に厳しい加工を施すと脆性的破壊が生じることがある。発明者らの詳細な調査によれば、この種の脆性的破壊も、めっきラインで侵入した水素に起因する事象であることがわかってきた。従って、溶融Zn−Al−Mg系めっきを施した高強度鋼板の加工に対する信頼性レベルを向上させるためには、当該鋼板の水素脆化を抑止する技術の確立が望まれる。   Hydrogen embrittlement of a hot-dip Zn—Al—Mg-based plated steel sheet is usually considered to be a problem when a high-tensile steel of 980 MPa class or higher is used as a plating original sheet. However, even if a high strength steel having a relatively low strength level such as 780 MPa class or 590 MPa class is used, brittle fracture may occur if extremely severe processing is performed. According to detailed investigations by the inventors, it has been found that this kind of brittle fracture is also an event caused by hydrogen entering the plating line. Therefore, in order to improve the reliability level with respect to the processing of the high-strength steel sheet subjected to hot-dip Zn—Al—Mg plating, it is desired to establish a technique for suppressing hydrogen embrittlement of the steel sheet.

鋼板の水素脆化対策の手法として、特許文献6には、鋼の化学組成および金属組織を適正化することにより、大気環境下の腐食反応で発生する水素が鋼板中に入ることを抑制する技術が開示されている。特許文献7には表面の孔食深さより深い位置におけるMnのミクロ偏析を低減させることにより、環境から侵入した水素に起因する水素脆化を抑制する技術が開示されている。これらの技術は鋼板を腐食環境で使用する際の水素侵入に対する対策であり、溶融めっきラインで既に侵入してしまった水素に対しては有効でない。   As a technique for countermeasures against hydrogen embrittlement of steel sheets, Patent Document 6 discloses a technique for suppressing the hydrogen generated by the corrosion reaction in the atmospheric environment from entering the steel sheets by optimizing the chemical composition and metal structure of the steel. Is disclosed. Patent Document 7 discloses a technique for suppressing hydrogen embrittlement caused by hydrogen entering from the environment by reducing microsegregation of Mn at a position deeper than the surface pitting depth. These techniques are measures against hydrogen intrusion when the steel sheet is used in a corrosive environment, and are not effective against hydrogen that has already infiltrated in the hot dipping line.

鋼材中に侵入した水素を、鋼材の外部へ放出させるための処理として、ベーキング処理が知られている。ベーキング処理は、水素が侵入した鋼材を200℃前後の温度で加熱することにより、鋼材中に侵入した水素を拡散させて鋼材表面から追い出す処理である。ただし、ベーキング処理では一般的に鋼材表面(めっき後の鋼材ではめっき層の表面)に酸化に起因する変色が生じやすい。水素を使用するような還元性雰囲気では鋼中の水素を除去することが困難であることから、ベーキング時の変色を完全に防止しようとすると真空炉での処理が必要となる。そのような処理はコスト増大を招くため、加工後の高強度部品に対する処理としては実用的な面もあるが、加工用素材としてのめっき鋼板に対しては採用し難い。とくに鋼板の場合は表面の変色むらが目立ちやすい。そのため、ベーキング処理によって意匠性に優れる鋼板素材を実現することは一般に容易でない。   Baking treatment is known as a treatment for releasing hydrogen that has entered the steel material to the outside of the steel material. The baking process is a process in which hydrogen that has intruded into hydrogen is heated at a temperature of about 200 ° C. to diffuse the hydrogen that has intruded into the steel and expelled from the surface of the steel. However, the baking treatment generally tends to cause discoloration due to oxidation on the surface of the steel material (the surface of the plating layer in the case of steel material after plating). In a reducing atmosphere using hydrogen, it is difficult to remove hydrogen in the steel. Therefore, to completely prevent discoloration during baking, treatment in a vacuum furnace is required. Since such a process causes an increase in cost, there is a practical aspect as a process for a high-strength part after processing, but it is difficult to adopt it for a plated steel sheet as a processing material. In particular, in the case of a steel plate, uneven surface discoloration is easily noticeable. For this reason, it is generally not easy to realize a steel sheet material having excellent design properties by baking treatment.

一方、特許文献8には、溶融Zn−Al−Mg系めっき鋼板の後処理として、水蒸気雰囲気中で加熱することによりZnの黒色酸化物に起因する黒色皮膜を形成する技術が開示されている。しかし、高張力鋼をめっき原板に適用した例は示されていない。   On the other hand, Patent Document 8 discloses a technique of forming a black film resulting from a black oxide of Zn by heating in a steam atmosphere as a post-treatment of a molten Zn—Al—Mg-based steel sheet. However, an example in which high-strength steel is applied to a plating original sheet is not shown.

特開2009−270126号公報JP 2009-270126 A 特開2013−117042号公報JP 2013-117042 A 特開2015−193897号公報Japanese Patent Laying-Open No. 2015-193897 特開2015−147959号公報JP2015-147959A 国際公開第2015/093596号International Publication No. 2015/093596 特開平7−150241号公報Japanese Patent Laid-Open No. 7-150241 特開2012−172247号公報JP 2012-172247 A 特許第5097305号公報Japanese Patent No. 5097305

本発明は、上述の問題に鑑み、780MPa以上の引張強度を有し、製造コストの過大な上昇を抑制しつつ強度と曲げ加工性を同時に向上させた、耐食性に優れる黒色表面被覆溶融Zn−Al−Mg系めっき鋼板およびその製造方法を提供することを目的とする。   In view of the above-mentioned problems, the present invention has a tensile strength of 780 MPa or more, suppresses an excessive increase in manufacturing cost, and simultaneously improves strength and bending workability, and has excellent corrosion resistance. An object is to provide a Mg-based plated steel sheet and a method for producing the same.

本発明者らは、鋭意検討の結果、以下の構成を有するめっき鋼板が上記課題を解決できることを見出した。   As a result of intensive studies, the present inventors have found that a plated steel sheet having the following configuration can solve the above problems.

具体的に、本発明は、素材鋼板の表面にZn−Al−Mg系被覆層を有するめっき鋼板であって、素材鋼板が、質量%で、C:0.01〜0.08%、Si:0.8%以下、Mn:0.5〜1.8%、P:0.05%以下、S:0.005%以下、N:0.001〜0.005%、Ti:0.02〜0.2%、B:0.0005〜0.010%、Al:0.005〜0.1%以下を含有し、残部がFeおよび不可避的不純物からなり、転位密度が1.8×1014/m〜5.7×1014/m以上である、ベイニティックフェライト相もしくはフェライト相のいずれかの単相またはベイニティックフェライト相とフェライト相を含む相を主相とし、硬質第2相およびセメンタイトの面積率が3%以下であり、平均粒子径20nm以下のTiを含む炭化物が分散析出しており、かつ拡散性水素濃度が0.30ppm以下であり、該Zn−Al−Mg系被覆層が、質量%で、Al:1.0〜22.0%、Mg:1.3〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:2.0%以下、残部Znおよび不可避的不純物からなり、該Zn−Al−Mg系被覆層中にZnの黒色酸化物が分布し、かつ、その表面の明度Lが60以下である、引張強度が780〜1100MPaで、曲げ加工性に優れた黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板を提供する。 Specifically, the present invention is a plated steel plate having a Zn—Al—Mg-based coating layer on the surface of the material steel plate, and the material steel plate is in mass%, C: 0.01 to 0.08%, Si: 0.8% or less, Mn: 0.5 to 1.8%, P: 0.05% or less, S: 0.005% or less, N: 0.001 to 0.005%, Ti: 0.02 to 0.2%, B: 0.0005 to 0.010%, Al: 0.005 to 0.1% or less, with the balance being Fe and inevitable impurities, and a dislocation density of 1.8 × 10 14 it / m 2 ~5.7 × 10 14 / m 2 or more, phases and main phase comprising either single-phase or bainitic ferrite phase and the ferrite phase of bainitic ferrite phase or a ferrite phase, the hard second The area ratio of the two-phase and cementite is 3% or less, and the average particle diameter is 20 nm or less. And a diffusible hydrogen concentration of 0.30 ppm or less, and the Zn-Al-Mg-based coating layer is in mass%, Al: 1.0-22.0%, Mg : 1.3 to 10.0%, Si: 0 to 2.0%, Ti: 0 to 0.10%, B: 0 to 0.05%, Fe: 2.0% or less, remaining Zn and inevitable It consists of impurities, Zn black oxide is distributed in the Zn-Al-Mg-based coating layer, the surface brightness L * is 60 or less, the tensile strength is 780 to 1100 MPa, and bending workability is improved. An excellent black surface-coated high-strength molten Zn-Al-Mg-based plated steel sheet is provided.

さらにTとCの関係において、下記(1)式で表されるTi/C当量比が0.4〜1.5に制御されていることを条件とする。
Ti/C当量比=(Ti/48)/(C/12)・・・(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
Furthermore, in the relationship between T and C, the Ti / C equivalent ratio represented by the following formula (1) is controlled to be 0.4 to 1.5.
Ti / C equivalent ratio = (Ti / 48) / (C / 12) (1)
However, the content (mass%) of the element in the material steel plate is substituted for the element symbol in the formula (1).

上記素材鋼板が、さらに、質量%で、Nb:0.1%以下、V:0.1%以下の1種以上を含有してもよい。   The material steel plate may further contain one or more of Nb: 0.1% or less and V: 0.1% or less in mass%.

上記めっき鋼板は、Zn−Al−Mg系被覆層の表面上にさらに無機系皮膜又は有機系皮膜を有してもよい。   The plated steel sheet may further have an inorganic coating or an organic coating on the surface of the Zn—Al—Mg coating layer.

上記溶融Zn−Al−Mg系めっき鋼板の製造方法は、例えば、上記組成を有する素材鋼板を、熱間圧延、酸洗、冷間圧延、連続溶融めっきラインでの焼鈍、溶融Zn−Al−Mg系めっき及びベーキング処理を順次行うことを含む。   The method for producing the hot-dip Zn-Al-Mg-based plated steel sheet includes, for example, hot rolling, pickling, cold rolling, annealing in a continuous hot-dip plating line, hot-melt Zn-Al-Mg Including sequentially performing system plating and baking.

上記熱間圧延での巻取温度を500℃から650℃とする。上記冷間圧延での冷間圧延率を30%〜60%とする。
その後、素材鋼板は、連続溶融めっきラインで、焼鈍温度を550℃から750℃で加熱された後、溶融めっき浴に浸漬される。このときのめっき浴のめっきの組成は、質量%でAl:1.0〜22.0%、Mg:1.3〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:2.0%以下、残部がZnおよび不可避的不純物からなる。
The coiling temperature in the said hot rolling shall be 500 to 650 degreeC. The cold rolling rate in the cold rolling is set to 30% to 60%.
Thereafter, the raw steel plate is heated at an annealing temperature of 550 ° C. to 750 ° C. in a continuous hot dipping line, and then immersed in a hot dipping bath. In this case, the plating composition of the plating bath is, in mass%, Al: 1.0 to 22.0%, Mg: 1.3 to 10.0%, Si: 0 to 2.0%, Ti: 0 to 0 .10%, B: 0 to 0.05%, Fe: 2.0% or less, the balance being made of Zn and inevitable impurities.

上記ベーキング処理では、めっきされた素材鋼板を、水蒸気雰囲気中で70〜250℃に加熱保持して、めっき層表面を水蒸気に接触させることにより、該素材鋼板中の拡散性水素濃度を0.30ppm以下に低減する。   In the baking treatment, the plated material steel plate is heated and held at 70 to 250 ° C. in a water vapor atmosphere, and the surface of the plating layer is brought into contact with water vapor so that the diffusible hydrogen concentration in the material steel plate is 0.30 ppm. Reduce to:

本発明は、製造コストが抑えられ、十分な強度を有し、曲げ加工性に優れた溶融Zn−Al−Mg系めっき鋼板およびその製造方法を提供することができる。特に、本発明の溶融Zn−Al−Mg系めっき鋼板は、先端R:0.5mm、135°曲げが可能であり、優れた加工性を有する。   INDUSTRIAL APPLICABILITY The present invention can provide a hot-dip Zn—Al—Mg-based plated steel sheet having a low manufacturing cost, sufficient strength, and excellent bending workability, and a manufacturing method thereof. In particular, the hot-dip Zn—Al—Mg-based plated steel sheet of the present invention can be bent at a tip R of 0.5 mm and 135 ° and has excellent workability.

ボス溶接試験材の形状を説明する斜視図である。It is a perspective view explaining the shape of a boss welding test material. ボス溶接試験材を作製する手順を説明する断面図である。It is sectional drawing explaining the procedure which produces a boss | hub weld test material. 本発明の溶融Zn−Al−Mg系めっき鋼板の製造方法の溶融めっき工程の一例を示した図である。It is the figure which showed an example of the hot dipping process of the manufacturing method of the hot-dip Zn-Al-Mg type plated steel plate of this invention.

以下、本発明の成分、金属組織および製造方法について詳細に説明する。鋼組成及びめっき組成における「%」は特に断らない限り「質量%」を意味する。   Hereinafter, the components, metal structure and production method of the present invention will be described in detail. “%” In the steel composition and plating composition means “mass%” unless otherwise specified.

<C:0.01〜0.08%>
Cは、Tiを含む炭化物を形成し、ベイニティックフェライトまたはフェライト組織中に微細析出し、高強度化に有効な元素である。C含有量が0.01%未満では780MPa以上の強度を得るのが困難であり、0.08%を越えて添加すると析出物の粗大化やセメンタイトの形成により、曲げ加工性が低下する。また、好ましくは、0.01〜0.06%、さらに好ましくは0.01〜0.04%である。
<C: 0.01 to 0.08%>
C forms an carbide containing Ti, finely precipitates in bainitic ferrite or ferrite structure, and is an element effective for increasing the strength. If the C content is less than 0.01%, it is difficult to obtain a strength of 780 MPa or more, and if added over 0.08%, bending workability decreases due to coarse precipitates and formation of cementite. Moreover, Preferably it is 0.01 to 0.06%, More preferably, it is 0.01 to 0.04%.

<Si:0.8%以下>
Siは、固溶強化に有効な元素である。しかし、過剰に添加すると、溶融めっきラインでの加熱時に鋼板表面に酸化物を形成し、めっき性を阻害するとともに製造コストの上昇を招くので、添加量の上限を0.8%とする。また、好ましくは、0.4%以下、さらに好ましくは0.2%以下である。
<Si: 0.8% or less>
Si is an element effective for solid solution strengthening. However, if added excessively, an oxide is formed on the surface of the steel sheet during heating in the hot dipping line, impairing the plateability and increasing the manufacturing cost, so the upper limit of the addition amount is set to 0.8%. Moreover, Preferably it is 0.4% or less, More preferably, it is 0.2% or less.

<Mn:0.5〜1.8%>
Mnは、高強度化に有効な元素である。0.5%未満では780MPa以上の強度を得るのが難しく、1.8%を超えて添加すると、偏析が生じやすくなり、曲げ加工性が低下する。また、製造コストの上昇を招く。したがって、添加量の上限を1.8%とする。また、好ましくは、1.0〜1.7%、さらに好ましくは、1.0〜1.5%である。
<Mn: 0.5 to 1.8%>
Mn is an element effective for increasing the strength. If it is less than 0.5%, it is difficult to obtain a strength of 780 MPa or more. If it is added in excess of 1.8%, segregation tends to occur and bending workability is lowered. In addition, the manufacturing cost increases. Therefore, the upper limit of the addition amount is 1.8%. Moreover, Preferably it is 1.0 to 1.7%, More preferably, it is 1.0 to 1.5%.

<P:0.05%以下>
Pは固溶強化に有効な元素であるが、0.05%を超えて添加すると、偏析が生じやすくなり、曲げ加工性が低下する。したがって、添加量の上限を0.05%とする。また、好ましくは、0.03%以下、さらに好ましくは0.02%以下である。なお、Pの含有量は0を含まない。
<P: 0.05% or less>
P is an element effective for solid solution strengthening, but if added over 0.05%, segregation tends to occur and bending workability is lowered. Therefore, the upper limit of the addition amount is 0.05%. Moreover, Preferably it is 0.03% or less, More preferably, it is 0.02% or less. The P content does not include 0.

<S:0.005%以下>
SはMnと硫化物を形成し曲げ加工性を始めとする局部延性を劣化させる。このため、Sは極力低減すべき元素であるが、0.005%までは許容できるので、含有量の上限を0.005%に限定する。また、好ましくは、0.003%以下、さらに好ましくは0.002%以下である。なお、Sは不可避不純物であり、その含有量は0を含まない。
<S: 0.005% or less>
S forms sulfide with Mn and degrades local ductility including bending workability. For this reason, although S is an element which should be reduced as much as possible, up to 0.005% is acceptable, so the upper limit of the content is limited to 0.005%. Moreover, Preferably it is 0.003% or less, More preferably, it is 0.002% or less. Note that S is an inevitable impurity, and its content does not include zero.

<N:0.001〜0.005%>
Nは、鋼中に固溶Nとして残存するとBNを生成し、耐溶融金属脆化割れ性に有効なB量の減少につながる。検討の結果、N含有量は0.005%以下に制限されるが、通常は0.001%程度のNが存在していても問題ない。N含有量の範囲は、好ましくは、0.001〜0.004%である。
<N: 0.001 to 0.005%>
When N remains as solid solution N in the steel, BN is generated, leading to a decrease in the amount of B effective for resistance to molten metal embrittlement cracking. As a result of the examination, the N content is limited to 0.005% or less, but normally there is no problem even if N of about 0.001% is present. The range of N content is preferably 0.001 to 0.004%.

<Ti:0.02〜0.2%>
TiはCと結合して、微細なTiの炭化物として析出し、高強度化とセメンタイトの析出抑制に有効な元素である。また、TiはNとの親和性が高く、鋼中のNをTiNとして固定するため、Tiを添加することは耐溶融金属脆化割れ性を高めるB量を確保する上で極めて有効である。これらの作用を十分得るためには0.02%以上の添加が必要である。一方、0.2%を超えて添加してもその効果は飽和するとともに、製造コストの上昇を招く。そのため、0.02から0.20%の範囲に限定する。Ti含有量は好ましくは、0.05〜0.20%、さらに好ましくは、0.08〜0.20%である。
<Ti: 0.02 to 0.2%>
Ti combines with C and precipitates as fine Ti carbide, and is an effective element for increasing the strength and suppressing the precipitation of cementite. Further, Ti has a high affinity with N and fixes N in the steel as TiN. Therefore, the addition of Ti is extremely effective in securing an amount of B that increases the resistance to molten metal embrittlement cracking. In order to obtain these effects sufficiently, addition of 0.02% or more is necessary. On the other hand, even if added over 0.2%, the effect is saturated and the manufacturing cost is increased. Therefore, it is limited to the range of 0.02 to 0.20%. The Ti content is preferably 0.05 to 0.20%, and more preferably 0.08 to 0.20%.

<B:0.0005〜0.010%>
Bは結晶粒界に偏析して原子間結合力を高め、溶融金属脆化割れの抑制に有効な元素である。また、Bは粒界に偏析して変態を抑制し、ベイニティックフェライト組織を通じた高強度化に有効な元素である。0.0005%未満ではこれらの効果が無く、0.01%を超えて添加してもその効果は飽和するとともに製造コストの上昇を招く。そのため、添加範囲を0.0005%から0.010%に限定する。
<B: 0.0005 to 0.010%>
B is an element that segregates at the grain boundaries to increase the interatomic bonding force and is effective in suppressing molten metal embrittlement cracking. B is an element that segregates at the grain boundary to suppress transformation and is effective for increasing the strength through the bainitic ferrite structure. If it is less than 0.0005%, these effects are not obtained, and even if added over 0.01%, the effects are saturated and the manufacturing cost is increased. Therefore, the addition range is limited to 0.0005% to 0.010%.

<Al:0.005〜0.1%以下>
Alは、製鋼時に脱酸材として添加される。その効果を得るためには、0.005%以上の添加が必要である。一方、0.1%を超えて添加してもその効果は飽和するとともにかえって製造コストの上昇を招く。
<Al: 0.005 to 0.1% or less>
Al is added as a deoxidizer during steelmaking. In order to obtain the effect, addition of 0.005% or more is necessary. On the other hand, even if added over 0.1%, the effect is saturated and, on the contrary, the manufacturing cost is increased.

<V:1.0%以下、Nb:0.1%以下の1種以上>
Nb、Vは加熱および熱延中のγ粒の粗大化を防止し、フェライト粒の微細化に有効である。また、Tiと同様にCを含む複合炭化物を形成し、強度上昇にも寄与する。このため必要に応じてこれらの元素の1種以上を含有することができる。
<One or more of V: 1.0% or less, Nb: 0.1% or less>
Nb and V prevent the coarsening of γ grains during heating and hot rolling, and are effective in making ferrite grains fine. Further, similarly to Ti, a composite carbide containing C is formed, which contributes to an increase in strength. For this reason, it can contain 1 or more types of these elements as needed.

<Ti/C当量比:0.4〜1.5>
Ti/C当量比は、曲げ加工性を向上させるのに重要な値である。Ti/C当量比は、(1)式によって定義される。
Ti/C当量比=(Ti/48)/(C/12)・・・(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
<Ti / C equivalent ratio: 0.4 to 1.5>
The Ti / C equivalent ratio is an important value for improving the bending workability. The Ti / C equivalent ratio is defined by the formula (1).
Ti / C equivalent ratio = (Ti / 48) / (C / 12) (1)
However, the content (mass%) of the element in the material steel plate is substituted for the element symbol in the formula (1).

Ti/C当量比が0.4未満では、硬質第2相やセメンタイト量が増加するため、曲げ加工性が低下する。一方、Ti/C当量比が1.5を超え手添加してもその効果が飽和するとともに、製造コストの上昇を招く。そのため、0.4〜1.5の範囲に限定する。   When the Ti / C equivalent ratio is less than 0.4, the amount of hard second phase and cementite increases, so that the bending workability decreases. On the other hand, even if the Ti / C equivalent ratio exceeds 1.5, the effect is saturated and the manufacturing cost is increased. Therefore, it limits to the range of 0.4-1.5.

<引張強度>
本発明では、建築用構造部材および自動車部品等に使用される高強度鋼板に関するものであり、780MPa以上の引張強度の鋼板を対象としている。しかしながら、引張強度が1100MPaを超えると135°曲げにて割れを生じる。したがって、引張強度の範囲は780〜1100MPaの範囲に規定する。
<Tensile strength>
The present invention relates to a high-strength steel plate used for structural members for construction and automobile parts, and is intended for a steel plate having a tensile strength of 780 MPa or more. However, if the tensile strength exceeds 1100 MPa, cracking occurs at 135 ° bending. Therefore, the range of tensile strength is specified in the range of 780 to 1100 MPa.

<金属組織>
本発明に関わる高強度溶融Zn−Al−Mg系めっき鋼板のミクロ組織は、転位密度が1.8×1014/m〜5.7×1014/mであるベイニティックフェライト相もしくはフェライト相のいずれかの単相またはベイニティックフェライト相とフェライト相を含む相を主相とするとともに、硬質第2相及びセメンタイトの面積率が3%以下であり、平均粒子径20nm以下のTiを含む炭化物が分散析出していることとしている。以下、これらについて説明する。
<Metallic structure>
The microstructure of the high-strength molten Zn—Al—Mg-based plated steel sheet according to the present invention has a bainitic ferrite phase having a dislocation density of 1.8 × 10 14 / m 2 to 5.7 × 10 14 / m 2 or A single phase of a ferrite phase or a phase including a bainitic ferrite phase and a ferrite phase is used as a main phase, and the area ratio of the hard second phase and cementite is 3% or less, and the average particle diameter is 20 nm or less. It is assumed that the carbide containing contains is dispersed and precipitated. Hereinafter, these will be described.

転位密度が1.8×1014/m〜5.7×1014/mであるベイニティックフェライト相もしくはフェライト相のいずれかの単相またはベイニティックフェライト相とフェライト相を含む相を主相とするとともに、硬質第2相及びセメンタイトの面積率が3%以下としたのは、780MPa以上の引張強度と良好な曲げ加工性を両立させるためである。 A bainitic ferrite phase having a dislocation density of 1.8 × 10 14 / m 2 to 5.7 × 10 14 / m 2 or a single phase of a ferrite phase, or a phase including a bainitic ferrite phase and a ferrite phase The reason why the area ratio of the hard second phase and cementite is 3% or less is to make the tensile strength of 780 MPa or more and good bending workability compatible.

即ち硬質第2相およびセメンタイトの面積率が3%以下のフェライト及び/又はベイナイト組織とすることで、先端R:0.5mmの135°曲げで割れを生じない良好な曲げ加工性が得られ、転位密度を1.8×1014/m〜5.7×1014/mとすることで、780MPa以上の引張強度を確保可能となる。セメンタイトは曲げ加工の際にフェライト相またはベイナイト相との界面で微笑亀裂を生じ易く、曲げ割れの起点となるため曲げ加工性が大きく低下する。面積率で3%までは許容できるため、上限を3%以下とした。
なお、「主相」とは、本発明の鋼板の金属組織において、硬質第2相およびセメンタイトを除いた残りの相を意味する。
That is, by setting the area ratio of the hard second phase and cementite to 3% or less of ferrite and / or bainite structure, good bending workability that does not cause cracking at 135 ° bending of the tip R: 0.5 mm is obtained, By setting the dislocation density to 1.8 × 10 14 / m 2 to 5.7 × 10 14 / m 2 , a tensile strength of 780 MPa or more can be secured. Cementite is liable to cause a smiling crack at the interface with the ferrite phase or bainite phase during bending, and the bending workability is greatly reduced because it becomes the starting point of bending cracking. Since an area ratio of up to 3% is acceptable, the upper limit was made 3% or less.
The “main phase” means the remaining phase excluding the hard second phase and cementite in the metal structure of the steel sheet of the present invention.

Tiを含む炭化物の平均粒径を20nm以下にしたのは、Tiを含む炭化物は熱間圧延時に析出し、その析出強化作用により強度が上昇する。また、曲げ加工性の向上には微細析出することが有効である。種々検討の結果、ベイニティックフェライト相及び/又はフェライト相中に分散している炭化物の平均粒子径が20nm以下であることが極めて有効で20nmを超えると良好な曲げ加工性が得られなくなる。なお、Tiを含む炭化物とは、Nb、V等の炭化物も含んでいる。   The reason why the average particle size of the carbide containing Ti is 20 nm or less is that the carbide containing Ti precipitates during hot rolling, and the strength increases due to the precipitation strengthening action. In addition, fine precipitation is effective for improving the bending workability. As a result of various studies, it is extremely effective that the average particle size of the carbide dispersed in the bainitic ferrite phase and / or the ferrite phase is 20 nm or less, and if it exceeds 20 nm, good bending workability cannot be obtained. The carbide containing Ti includes carbides such as Nb and V.

<Zn−Al−Mg系被覆層>
上記の化学組成を有する基材鋼板の表面には、Zn−Al−Mg系被覆層を有している必要がある。その被覆層は、溶融Zn−Al−Mg系めっきにより形成されためっき層中のZnの一部が黒色酸化物として分布する構造を有する。この黒色酸化物は後述のベーキング処理によって生成する。本明細書では、ベーキング処理によって生成した黒色酸化物を含んだ、溶融Zn−Al−Mg系めっき層に由来する被覆層を「Zn−Al−Mg系被覆層」と称する。
<Zn-Al-Mg-based coating layer>
It is necessary to have a Zn—Al—Mg coating layer on the surface of the base steel sheet having the above chemical composition. The coating layer has a structure in which a part of Zn in a plating layer formed by hot-dip Zn—Al—Mg plating is distributed as a black oxide. This black oxide is generated by a baking process described later. In this specification, a coating layer derived from a molten Zn—Al—Mg-based plating layer containing a black oxide generated by baking is referred to as a “Zn—Al—Mg-based coating layer”.

この被覆層は、溶融Zn−Al−Mg系めっき層中に存在していたZn相の一部が酸化された構造を有しているが、その化学組成は、金属元素の組成比で見ると、元の溶融Zn−Al−Mg系めっき層の組成をほぼ維持している。元の溶融Zn−Al−Mg系めっき層自体は、従来、高防錆性のZn系めっき鋼板に利用されているものが適用できる。すなわち、Zn−Al−Mg系被覆層の化学組成は、金属元素の組成比が質量%で、Al:1.0〜22.0%、Mg:1.3〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:2.0%以下、残部Znおよび不可避的不純物と規定する。Znの一部が黒色酸化物に変化していても、上記組成範囲において優れた防錆効果が得られることが確認された。   This coating layer has a structure in which a part of the Zn phase existing in the molten Zn—Al—Mg-based plating layer is oxidized, but its chemical composition is determined by the composition ratio of metal elements. The composition of the original molten Zn—Al—Mg-based plating layer is substantially maintained. As the original molten Zn—Al—Mg-based plating layer itself, those conventionally used for highly corrosion-resistant Zn-based plated steel sheets can be applied. That is, the chemical composition of the Zn—Al—Mg-based coating layer is such that the composition ratio of metal elements is mass%, Al: 1.0 to 22.0%, Mg: 1.3 to 10.0%, Si: 0 -2.0%, Ti: 0-0.10%, B: 0-0.05%, Fe: 2.0% or less, the remainder Zn and inevitable impurities. It was confirmed that even if a part of Zn was changed to black oxide, an excellent rust prevention effect was obtained in the above composition range.

この防錆効果を長期にわたって十分に得るために、Zn−Al−Mg系被覆層の平均厚さは3μm以上であることが好ましい。また、通常、Zn−Al−Mg系被覆層の平均厚さは100μm以下の範囲とすればよい。過剰に厚く形成することは不経済であり、また被覆層自体の加工性低下にもつながる。ここで、当該被覆層の平均厚さは、板厚方向に平行な断面の観察によって求めることができる。   In order to sufficiently obtain this rust prevention effect over a long period of time, the average thickness of the Zn—Al—Mg-based coating layer is preferably 3 μm or more. Moreover, the average thickness of the Zn—Al—Mg-based coating layer may be in the range of 100 μm or less. Forming an excessively thick film is uneconomical and leads to a decrease in workability of the coating layer itself. Here, the average thickness of the coating layer can be obtained by observing a cross section parallel to the plate thickness direction.

Zn−Al−Mg系被覆層中のZnの黒色酸化物は、後述のベーキング処理時に、溶融Zn−Al−Mg系めっき層の表面が雰囲気ガスである水蒸気と接触することにより生成する。従って、Znの黒色酸化物はZn−Al−Mg系被覆層の上層部に比較的多く分布し、黒色調の表面外観を与える効果を呈する。種々検討の結果、Zn−Al−Mg系被覆層の表面の明度Lが60以下であるZnの黒色酸化物が形成されている場合に、ベーキング処理に伴う変色むらが目立ちにくい意匠性に優れた黒色外観を呈することがわかった。明度Lが40以下となるように調整すると、より深みのある黒色外観を呈する。Znの黒色酸化物に起因する黒色外観は、鋼中の拡散性水素濃度を0.30ppm以下に低減させるためのベーキング処理条件範囲内で実現できる。 The black oxide of Zn in the Zn—Al—Mg-based coating layer is generated when the surface of the molten Zn—Al—Mg-based plating layer comes into contact with water vapor, which is an atmospheric gas, during the baking process described later. Accordingly, the black oxide of Zn is distributed in a relatively large amount in the upper layer portion of the Zn—Al—Mg-based coating layer, and exhibits an effect of giving a black-like surface appearance. As a result of various studies, when a Zn black oxide having a surface lightness L * of the Zn-Al-Mg-based coating layer of 60 or less is formed, it is excellent in design that the discoloration unevenness associated with the baking treatment is less noticeable. It was found to have a black appearance. When the brightness L * is adjusted to be 40 or less, a deeper black appearance is exhibited. The black appearance due to the black oxide of Zn can be realized within the baking treatment condition range for reducing the diffusible hydrogen concentration in the steel to 0.30 ppm or less.

<基材鋼板中の拡散性水素濃度>
水素脆化の要因となる基材鋼板中の水素濃度は、拡散性水素濃度を測定することによって評価することができる。拡散性水素濃度は、大気圧イオン化質量分析装置で、常温から300℃まで5℃/minの昇温速度で加熱した際に放出される水素量を測定することによって求めることができる。測定試料としては、Zn−Al−Mg系被覆層を研磨紙により除去した基材鋼板のみからなる試料を使用することができる。
<Diffusion hydrogen concentration in base steel plate>
The hydrogen concentration in the base steel sheet that causes hydrogen embrittlement can be evaluated by measuring the diffusible hydrogen concentration. The diffusible hydrogen concentration can be determined by measuring the amount of hydrogen released when heated from room temperature to 300 ° C. at a heating rate of 5 ° C./min with an atmospheric pressure ionization mass spectrometer. As a measurement sample, a sample composed only of a base steel plate from which a Zn—Al—Mg coating layer is removed with abrasive paper can be used.

通常、上記組成範囲の高張力鋼をめっき原板に用いて連続溶融めっきラインで製造した溶融Zn−Al−Mg系めっき鋼板の場合、ベーキング処理前の基材鋼板中の拡散性水素濃度は0.35ppm以上となる。発明者らの検討によれば、基材鋼板中の拡散性水素濃度をベーキング処理によって0.30ppm以下に低減すると、980MPa級以上の高張力鋼を基材鋼板とする溶融Zn−Al−Mg系めっき鋼板で問題となりやすい水素脆化の現象のみならず、780MPa級あるいは590MPa級の比較的強度レベルの低い高張力鋼を基材鋼板とする溶融Zn−Al−Mg系めっき鋼板でも非常に厳しい加工を施した際に顕在化し得る水素脆化の現象が、顕著に抑制されることがわかった。従って、本発明では基材鋼板中の拡散性水素濃度を0.30ppm以下に規定する。0.20ppm以下であることがより好ましい。   Usually, in the case of a hot-dip Zn—Al—Mg-based plated steel sheet manufactured by a continuous hot dipping line using high-strength steel having the above composition range as a plating original sheet, the diffusible hydrogen concentration in the base steel sheet before baking is 0. It becomes 35 ppm or more. According to the study by the inventors, when the diffusible hydrogen concentration in the base steel sheet is reduced to 0.30 ppm or less by baking treatment, a molten Zn—Al—Mg system using a high-tensile steel of 980 MPa class or higher as the base steel sheet Not only the phenomenon of hydrogen embrittlement, which is likely to be a problem with plated steel sheets, but also extremely severe processing with hot-strength steels with a relatively low strength level of 780 MPa class or 590 MPa class as base steel sheets It has been found that the phenomenon of hydrogen embrittlement, which can be manifested when subjected to, is remarkably suppressed. Therefore, in the present invention, the diffusible hydrogen concentration in the base steel sheet is regulated to 0.30 ppm or less. More preferably, it is 0.20 ppm or less.

・製造方法
上記加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板は、例えば成分調整された鋼材(連続鋳造スラブなど)に、熱間圧延、酸洗、冷間圧延、連続溶融めっきラインでの焼鈍、溶融Zn−Al−Mg系めっき及びベーキング処理を順次行う工程により製造することができる。以下、その場合の製造条件を例示する。
・ Manufacturing method The high-strength hot-dip Zn-Al-Mg-based plated steel sheet with excellent workability is, for example, hot-rolled, pickled, cold-rolled, continuously hot-plated on steel materials (such as continuous cast slabs) with adjusted components. It can be manufactured by a process of sequentially performing annealing in a line, hot-dip Zn—Al—Mg-based plating and baking treatment. Hereinafter, the manufacturing conditions in that case will be exemplified.

上記の成分組成を満たす鋼スラブを1150〜1300℃の加熱温度で加熱し、850〜950℃の仕上温度で熱間圧延後、下記の巻取温度で巻き取る。以降、下記の巻取温度で熱延鋼帯を得る。さらに、この鋼帯を酸洗後、下記の条件で冷間圧延し、連続溶融めっきラインでめっき工程に付する。   A steel slab satisfying the above component composition is heated at a heating temperature of 1150 to 1300 ° C, hot-rolled at a finishing temperature of 850 to 950 ° C, and then wound up at the following winding temperature. Thereafter, a hot-rolled steel strip is obtained at the following winding temperature. Further, the steel strip is pickled, cold-rolled under the following conditions, and subjected to a plating process in a continuous hot dipping line.

<熱間圧延での巻取温度を500℃から650℃>
巻取温度が500℃未満では、Tiを含む炭化物の析出量が不十分となり強度が低下する。一方、巻取温度が650℃を超えるとTiを含む炭化物の粗大化が起こり、強度低下および曲げ加工性が低下する。
<The coiling temperature in hot rolling is 500 ° C. to 650 ° C.>
When the coiling temperature is less than 500 ° C., the amount of precipitation of carbide containing Ti becomes insufficient and the strength is lowered. On the other hand, when the coiling temperature exceeds 650 ° C., coarsening of the carbide containing Ti occurs, resulting in a decrease in strength and bending workability.

<冷間圧延率:30〜60%>
熱間圧延後は、連続酸洗ラインを通板して、表面のスケールを除去し、冷間圧延を施す。その際、冷間圧延の圧延率が30%未満では、連続溶融めっきラインでの焼鈍後の転位密度が1.8×1014/m未満となり、780MPa以上の引張強度が得られなくなる場合がある。一方、60%を越えると転位密度が5.7×1014/mを越えて延性の低下が大きくなり、曲げ加工性が劣化する場合がある。したがって、冷間圧延率は30%〜50%以下の範囲が好ましい。
<Cold rolling rate: 30-60%>
After hot rolling, a continuous pickling line is passed through to remove surface scale and cold rolling. At that time, when the rolling rate of cold rolling is less than 30%, the dislocation density after annealing in the continuous hot dipping line becomes less than 1.8 × 10 14 / m 2, and the tensile strength of 780 MPa or more may not be obtained. is there. On the other hand, when it exceeds 60%, the dislocation density exceeds 5.7 × 10 14 / m 2 , and the ductility decreases greatly, and the bending workability may deteriorate. Therefore, the cold rolling rate is preferably in the range of 30% to 50%.

<溶融めっき>
従来一般的な手法で溶融Zn−Al−Mg系めっき鋼板を製造ればよい。大量生産現場における連続溶融めっきラインを使用することができる。具体的には、溶融めっき直前に施される表面還元処理を兼ねた熱処理は、水素と窒素の混合ガス中で550〜750℃に加熱することによって行う。加熱温度が550℃未満では鋼板表面が十分に還元せずめっき性が低下する。一方、焼鈍温度が750℃を超えると再結晶を生じて転位密度が1.8×1014/m未満となり、強度低下を招く。すなわち、本発明は再結晶焼鈍以下の温度で焼鈍を施して、高い転位密度を維持することを特徴とするものであり、母材の金属組織は、熱延終了後時点の組織を基本としている。
<Hot plating>
What is necessary is just to manufacture a fusion | melting Zn-Al-Mg type plated steel plate by the conventional general method. Continuous hot dipping lines in mass production sites can be used. Specifically, the heat treatment that also serves as the surface reduction treatment performed immediately before the hot dipping is performed by heating to 550 to 750 ° C. in a mixed gas of hydrogen and nitrogen. If the heating temperature is less than 550 ° C., the surface of the steel sheet is not sufficiently reduced and the plateability is lowered. On the other hand, when the annealing temperature exceeds 750 ° C., recrystallization occurs and the dislocation density becomes less than 1.8 × 10 14 / m 2 , resulting in a decrease in strength. That is, the present invention is characterized in that annealing is performed at a temperature lower than recrystallization annealing to maintain a high dislocation density, and the metal structure of the base material is based on the structure at the end of hot rolling. .

上記混合ガスに占める水素ガスの割合は25〜35体積%とすることが望ましい。材料温度が上記温度範囲にある時間は例えば20〜200秒の範囲で調整することが望ましい。このようにして水素と窒素の混合ガス中で基材鋼板を加熱すると、鋼中に水素が侵入する。その水素の鋼中濃度は、後述のベーキング処理によって大幅に低減することができる。基材鋼板の板厚は例えば0.8〜4.5mmである。この熱処理後は、大気に触れることなく、溶融めっき浴中へ浸漬させる。   The proportion of hydrogen gas in the mixed gas is preferably 25 to 35% by volume. The time during which the material temperature is in the above temperature range is desirably adjusted within a range of 20 to 200 seconds, for example. When the base steel sheet is heated in a mixed gas of hydrogen and nitrogen in this way, hydrogen enters the steel. The concentration of hydrogen in the steel can be greatly reduced by a baking process described later. The plate | board thickness of a base-material steel plate is 0.8-4.5 mm, for example. After this heat treatment, it is immersed in a hot dipping bath without exposure to the atmosphere.

本発明の溶融めっき方法の一例として、その概略を図3に示した。素材鋼板10は還元炉20で表面の酸化皮膜等が除去された後、スナウト30を経てめっき槽40に収容されている溶融めっき浴50に導入される。素材鋼板10は、溶融めっき浴50に浸漬されているシンクロール60を周回した後、溶融めっき浴から引き上げられる。   FIG. 3 shows an outline of an example of the hot dipping method of the present invention. The material steel plate 10 is introduced into the hot dipping bath 50 accommodated in the plating tank 40 through the snout 30 after the oxide film on the surface is removed in the reduction furnace 20. The material steel plate 10 is pulled up from the hot dipping bath after circling the sink roll 60 immersed in the hot dipping bath 50.

スナウト30は、還元炉20から送り出される素材鋼板10と大気との接触を防止する作用を呈し、素材鋼板10を取り囲む筒状で還元炉20と溶融めっき浴50との間に設けられている。そして、スナウト30の下端は、めっき浴50中に若干浸漬されている。スナウト30内には、還元性ガスが充満されている。   The snout 30 exhibits an effect of preventing contact between the material steel plate 10 delivered from the reduction furnace 20 and the atmosphere, and is provided between the reduction furnace 20 and the hot dipping bath 50 in a cylindrical shape surrounding the material steel plate 10. The lower end of the snout 30 is slightly immersed in the plating bath 50. The snout 30 is filled with reducing gas.

溶融めっき浴の組成は、質量%でAl:1.0〜22.0%、Mg:1.3〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:2.0%以下、残部がZnおよび不可避的不純物とする。得られるめっき鋼板のめっき層組成は、ほぼめっき浴組成を反映したものとなる。めっき浴から引き上げられた鋼板は、ガスワイピング法などでめっき付着量を調整した後、常法により冷却される。めっき付着量は片面当たりのめっき層平均厚さで3〜100μmとすることが好ましい。   The composition of the hot dipping bath is Al: 1.0 to 22.0%, Mg: 1.3 to 10.0%, Si: 0 to 2.0%, Ti: 0 to 0.10% by mass%, B: 0 to 0.05%, Fe: 2.0% or less, the balance being Zn and inevitable impurities. The plating layer composition of the obtained plated steel sheet substantially reflects the plating bath composition. The steel sheet pulled up from the plating bath is cooled by a conventional method after adjusting the plating adhesion amount by a gas wiping method or the like. The plating adhesion amount is preferably 3 to 100 μm in terms of the average thickness of the plating layer per side.

<ベーキング処理>
ベーキング処理は、鋼材中に侵入した水素を外部に放出させることによって、鋼中水素濃度を減少させるための加熱処理である。ここでは、水蒸気雰囲気中でベーキング処理を行う。具体的には、前記の溶融Zn−Al−Mg系めっき鋼板を、大気から遮蔽された空間内において、水蒸気雰囲気中で70〜250℃に加熱保持する。水蒸気雰囲気中における不純物ガス成分(水蒸気以外のガス成分)の含有量は5体積%以下とすることが望ましい。
<Baking treatment>
The baking treatment is a heat treatment for reducing the hydrogen concentration in the steel by releasing hydrogen that has entered the steel to the outside. Here, the baking process is performed in a steam atmosphere. Specifically, the molten Zn—Al—Mg plated steel sheet is heated and held at 70 to 250 ° C. in a water vapor atmosphere in a space shielded from the atmosphere. The content of impurity gas components (gas components other than water vapor) in the water vapor atmosphere is preferably 5% by volume or less.

溶融Zn−Al−Mg系めっき層を上記温度の水蒸気に接触させると、めっき層中のZnが優先的に酸化して黒色のZn酸化物が形成される。この黒変化を利用することによって、鋼板素材をベーキング処理する際に問題となる色むらが非常に目立ちにくくなり、意匠性の高い明度Lが60以下の黒色調の表面外観が得られる。水蒸気の分圧については、相対湿度(その温度における飽和水蒸気圧に対する、実際に雰囲気中に存在する水蒸気の分圧)が70〜100%となるように調整すればよい。相対湿度が70%を下回るとZnの黒色酸化物の生成速度が遅く、鋼中水素の放出が十分達成される時間では着色むらが生じやすい。 When the molten Zn—Al—Mg-based plating layer is brought into contact with water vapor at the above temperature, Zn in the plating layer is preferentially oxidized to form a black Zn oxide. By utilizing this black change, the color unevenness that becomes a problem when baking a steel sheet material becomes very inconspicuous, and a black-like surface appearance having a lightness L * of 60 or less with high designability is obtained. The partial pressure of water vapor may be adjusted so that the relative humidity (the partial pressure of water vapor actually present in the atmosphere with respect to the saturated water vapor pressure at that temperature) is 70 to 100%. When the relative humidity is less than 70%, the formation rate of the black oxide of Zn is slow, and uneven coloring tends to occur in the time when the release of hydrogen in the steel is sufficiently achieved.

ベーキング処理の温度は、鋼中に存在する拡散性水素の放出に大きく影響する。種々検討の結果、溶融Zn−Al−Mg系めっき鋼板を上記水蒸気雰囲気中に保持する温度が70℃未満であると、基材鋼板中の拡散性水素濃度を0.30ppm以下にまで安定して低減することが難しくなる。また、明度Lが60以下の黒色外観も得られにくくなる。従ってベーキング処理温度は70℃以上とする。100℃以上とすることがより好ましい。一方、ベーキング処理温度が250℃を超えると黒色酸化物の形成速度が速くなり、均一性の高い黒色調に制御することが困難となる。従って、ベーキング処理温度は250℃以下とする。210℃以下とすることがより好ましい。 The temperature of the baking process greatly affects the release of diffusible hydrogen present in the steel. As a result of various studies, when the temperature at which the molten Zn—Al—Mg based steel sheet is maintained in the water vapor atmosphere is less than 70 ° C., the diffusible hydrogen concentration in the base steel sheet is stably reduced to 0.30 ppm or less. It becomes difficult to reduce. In addition, it is difficult to obtain a black appearance having a lightness L * of 60 or less. Therefore, the baking temperature is 70 ° C. or higher. More preferably, the temperature is 100 ° C. or higher. On the other hand, when the baking temperature exceeds 250 ° C., the formation speed of the black oxide increases, and it becomes difficult to control the black tone with high uniformity. Therefore, the baking temperature is 250 ° C. or lower. More preferably, the temperature is 210 ° C. or lower.

ベーキング処理の時間、すなわち、溶融Zn−Al−Mg系めっき鋼板を70〜250℃の範囲内に設定した所定温度に保持する時間は、結果的に基材鋼板中の拡散性水素濃度を0.30ppm以下、あるいは0.20ppm以下といった目標レベルに低減可能な時間に設定する。溶融めっき条件、ベーキング処理の雰囲気ガス条件、ベーキング処理温度に応じて、予め予備実験を行うことにより、適正処理時間を定めればよい。通常、1〜50時間の範囲で良好な結果が得られる処理時間を設定することができる。2〜36時間の範囲とすることがより好ましい。なお、明度Lが40以下の深みのある黒色外観を得たい場合は、あまり短時間では黒色化が不十分となるので、比較的入念に処理時間を確保することが望ましい。 The time for the baking treatment, that is, the time for maintaining the molten Zn—Al—Mg-based plated steel sheet at a predetermined temperature set in the range of 70 to 250 ° C. results in the diffusible hydrogen concentration in the base steel sheet being 0.00. A time that can be reduced to a target level such as 30 ppm or less or 0.20 ppm or less is set. An appropriate processing time may be determined by conducting preliminary experiments in advance in accordance with the hot dip plating conditions, the atmospheric gas conditions of the baking process, and the baking process temperature. Usually, the processing time in which a favorable result is obtained in the range of 1 to 50 hours can be set. More preferably, it is in the range of 2 to 36 hours. In addition, when it is desired to obtain a deep black appearance having a lightness L * of 40 or less, blackening becomes insufficient in a very short time, so it is desirable to ensure a relatively careful processing time.

ベーキング処理は、大気から遮断された炉内で行う。密閉性の高い容器を炉体に用いることが望ましい。炉内に溶融Zn−Al−Mg系めっき鋼板を収容する際、めっき層表面が雰囲気ガスと接触するように配慮する。窒素置換や真空引きなどによって炉内の空気を排除し、その後、水蒸気を導入して、炉内雰囲気を水蒸気雰囲気とし、所定の温度まで昇温し、その温度で保持することによりベーキング処理を行う。ベーキング処理中も所定のガス組成が維持されるように炉内雰囲気を管理する。   The baking process is performed in a furnace cut off from the atmosphere. It is desirable to use a highly airtight container for the furnace body. When accommodating the molten Zn—Al—Mg-based plated steel sheet in the furnace, consideration is given so that the surface of the plating layer comes into contact with the atmospheric gas. Exclude air in the furnace by nitrogen replacement or evacuation, and then introduce water vapor to make the atmosphere in the furnace a water vapor atmosphere, raise the temperature to a predetermined temperature, and perform the baking process by holding at that temperature . The furnace atmosphere is managed so that a predetermined gas composition is maintained even during the baking process.

<無機系皮膜の形成>
上記のベーキング処理によって改質されたZn−Al−Mg系被覆層の表面上に、無機系皮膜を形成させることができる。無機系皮膜としては溶融Zn−Al−Mg系めっき鋼板に従来から適用されている公知のものが種々適用可能である。なかでも、バルブメタルの酸化物、バルブメタルの酸素酸塩、バルブメタルの水酸化物、バルブメタルのリン酸塩およびバルブメタルのフッ化物からなる群から選ばれる1種類または2種類以上の化合物(以下「バルブメタル化合物」ともいう)を含むものが好適な対象として挙げられる。バルブメタルとしては、Ti、Zr、Hf、V、Nb、Ta、W、Si、Alなどが例示できる。上記バルブメタル化合物は、これらのバルブメタルの1種以上を含有するものを適用することが望ましい。無機系皮膜は、公知の方法で形成させることができる。例えば、バルブメタル化合物などを含有する無機系塗料を、Zn−Al−Mg系被覆層の表面上にロールコート法、スピンコート法、スプレー法などで塗布する方法が採用できる。
<Formation of inorganic film>
An inorganic coating can be formed on the surface of the Zn—Al—Mg coating layer modified by the baking treatment. As the inorganic coating, various known coatings conventionally applied to hot-dip Zn—Al—Mg plated steel sheets can be applied. Among them, one or more compounds selected from the group consisting of valve metal oxides, valve metal oxyacid salts, valve metal hydroxides, valve metal phosphates and valve metal fluorides ( Those containing a “valve metal compound”) are also suitable objects. Examples of the valve metal include Ti, Zr, Hf, V, Nb, Ta, W, Si, and Al. It is desirable to apply the valve metal compound containing at least one of these valve metals. The inorganic film can be formed by a known method. For example, a method of applying an inorganic coating material containing a valve metal compound or the like on the surface of the Zn—Al—Mg coating layer by a roll coating method, a spin coating method, a spray method or the like can be employed.

<有機系皮膜の形成>
上記のベーキング処理によって改質されたZn−Al−Mg系被覆層の表面上に、有機系皮膜を形成させることもできる。有機系樹脂皮膜も、溶融Zn−Al−Mg系めっき鋼板に従来から適用されている公知のものが種々適用可能である。例えば、ウレタン系樹脂、エポキシ系樹脂、オレフィン系樹脂、スチレン系樹脂、ポリエステル系樹脂、アクリル系樹脂、フッ素系樹脂、またはこれらの樹脂の組み合わせ、あるいはこれらの樹脂の共重合体または変性物などを含有する皮膜が挙げられる。有機系皮膜も、公知の方法で形成させることができる。例えば、上記の樹脂成分を含有する有機系塗料を、Zn−Al−Mg系被覆層の表面上にロールコート法、スピンコート法、スプレー法などで塗布する方法が採用できる。
<Formation of organic film>
An organic coating can also be formed on the surface of the Zn—Al—Mg coating layer modified by the baking process. Various known organic resin coatings conventionally applied to hot-dip Zn—Al—Mg-based plated steel sheets can also be applied. For example, urethane resins, epoxy resins, olefin resins, styrene resins, polyester resins, acrylic resins, fluorine resins, combinations of these resins, copolymers or modified products of these resins, etc. The film to contain is mentioned. The organic film can also be formed by a known method. For example, a method of applying the organic paint containing the resin component to the surface of the Zn—Al—Mg coating layer by a roll coating method, a spin coating method, a spray method, or the like can be employed.

表1に組成を示す各鋼を溶製し、そのスラブを1250℃に加熱した後、仕上げ圧延温度880℃、巻取温度520〜680℃で熱間圧延し、板厚2.6mmの熱延鋼帯を得た。各熱延鋼帯の巻取温度は表2、3中にそれぞれ示してある。   Each steel having the composition shown in Table 1 is melted and the slab is heated to 1250 ° C., then hot-rolled at a finish rolling temperature of 880 ° C. and a winding temperature of 520 to 680 ° C., and hot rolled to a thickness of 2.6 mm. A steel strip was obtained. The coiling temperature of each hot-rolled steel strip is shown in Tables 2 and 3, respectively.

Figure 2018131669
Figure 2018131669

熱延鋼帯を酸洗して30%および50%の冷延率で冷間圧延を施した後、連続溶融めっきラインにて、水素30体積%−窒素70体積%である混合ガス中500〜790℃で焼鈍行い、約420℃まで平均冷却速度5℃/secで冷却して素材鋼板(めっき原板)とし、その後、鋼板表面が大気に触れない状態のまま下記のめっき浴組成を有する溶融Zn−Al−Mg系めっき浴中に浸漬した後引き上げ、ガスワイピング法にてめっき付着量を片面あたり約90g/mに調整した溶融Zn−Al−Mg系めっき鋼板を得た。めっき浴温は約410℃であった。各鋼の冷延率、焼鈍温度も、表2、3に併せて示してある。 After pickling the hot-rolled steel strip and subjecting it to cold rolling at a cold rolling rate of 30% and 50%, in a continuous hot dipping line, hydrogen is 30% by volume-nitrogen is 70% by volume in a mixed gas of 500- Annealed at 790 ° C., cooled to about 420 ° C. at an average cooling rate of 5 ° C./sec to obtain a raw steel plate (plating original plate), and then the molten Zn having the following plating bath composition with the steel plate surface not exposed to the atmosphere -Dipped in an Al-Mg-based plating bath and then pulled up to obtain a molten Zn-Al-Mg-based plated steel sheet in which the amount of plating adhesion was adjusted to about 90 g / m 2 per side by a gas wiping method. The plating bath temperature was about 410 ° C. The cold rolling rate and annealing temperature of each steel are also shown in Tables 2 and 3.

各溶融Zn−Al−Mg系めっき鋼板について、ベーキング処理を施した。溶融Zn−Al−Mg系めっき鋼板を加熱炉内に入れ、めっき層表面が雰囲気ガスに接触するように置いた。その後、炉内を密閉し、真空ポンプにて真空引き後、ガス導入管から水蒸気を導入し、相対湿度が100%となるように炉内圧力をコントロールしながら炉内温度を所定のベーキング処理温度まで昇温し、その温度で所定時間の保持を行ったのち降温し、炉内を大気に開放した。ベーキング処理中の雰囲気ガスは、水蒸気100体積%、相対湿度100%とした(各例共通)。   Each molten Zn—Al—Mg-based plated steel sheet was baked. The molten Zn—Al—Mg-based plated steel sheet was placed in a heating furnace and placed so that the surface of the plating layer was in contact with the atmospheric gas. Then, the inside of the furnace is sealed, evacuated with a vacuum pump, steam is introduced from the gas introduction pipe, and the furnace temperature is controlled to a predetermined baking temperature while controlling the furnace pressure so that the relative humidity becomes 100%. The temperature was raised to 1, and kept at that temperature for a predetermined time, then the temperature was lowered, and the inside of the furnace was opened to the atmosphere. The atmosphere gas during the baking treatment was 100% by volume of water vapor and 100% of relative humidity (common to each example).

ベーキング処理後の鋼板からサンプルを採取し、引張試験、曲げ試験、耐用湯金属脆化試験、基材鋼板中の拡散性水素濃度、およびZn−Al−Mg系被覆層表面の明度Lの測定等など各種特性を調べ、表3に示した。比較のため、ベーキング処理前の各種特性調査結果を表2に示す。なお、ベーキング処理を施しても、素材のミクロ組織には変化は認められなかったため、表3へのミクロ組織の記載は省略した。 A sample was taken from the steel sheet after baking, and a tensile test, a bending test, a tolerant hot metal embrittlement test, a diffusible hydrogen concentration in the base steel sheet, and a lightness L * of the Zn-Al-Mg coating layer surface were measured. Various characteristics such as the above were examined and shown in Table 3. For comparison, Table 2 shows the results of various characteristic investigations before baking. In addition, since the change was not recognized in the microstructure of the raw material even if it baked, description of the microstructure in Table 3 was abbreviate | omitted.

〔めっき浴組成(質量%)〕
Al:6.0%、Mg:3.0%、Ti:0.002%、B:0.0005%、Si:0.01%、Fe:0.1%、Zn:残部
[Plating bath composition (mass%)]
Al: 6.0%, Mg: 3.0%, Ti: 0.002%, B: 0.0005%, Si: 0.01%, Fe: 0.1%, Zn: balance

〔Ti含有炭化物の平均粒子径〕
採取した溶融Zn−Al−Mg系めっき鋼板サンプルから作製した薄膜を透過型電子顕微鏡(TEM)により観察し、Ti含有炭化物が30個以上含まれる一定の領域内の当該炭化物の粒子径(長径)を測定し、その平均値をTi含有炭化物の平均粒子径とした。
[Average particle diameter of Ti-containing carbide]
The thin film produced from the collected molten Zn—Al—Mg based plated steel sheet sample is observed with a transmission electron microscope (TEM), and the particle diameter (major axis) of the carbide in a certain region containing 30 or more Ti-containing carbides. The average value was taken as the average particle size of the Ti-containing carbide.

〔転位密度〕
採取した溶融Zn−Al−Mg系めっき鋼板サンプルから切出した試料の表層部から板厚の1/4まで機械研磨後、化学研磨を施して加工歪を除去し、X線解析により転位密度を計算により求めた。X線回折には、Co管球のKα1線を用い、<110>、<211>、<220>の3つの回折ピークの半価幅から局所歪ηを求め、次式を用いて転位密度を計算した。
ρ=14.4×η2/b2
ここで、ρが転位密度でbはバーガースベクトル(0.25nm)である。なお、転位密度の計算は、Modified Williamson−Hall/Warren−Averbach法を用いた。計算した転位密度は表2に併記する。
[Dislocation density]
After mechanical polishing from the surface layer of the sample cut from the collected hot-dip Zn-Al-Mg plated steel plate sample to 1/4 of the plate thickness, chemical polishing is applied to remove the processing strain, and the dislocation density is calculated by X-ray analysis. Determined by For X-ray diffraction, the Kα1 line of the Co tube is used, the local strain η is obtained from the half-value widths of the three diffraction peaks <110>, <211>, and <220>, and the dislocation density is calculated using the following equation: Calculated.
ρ = 14.4 × η 2 / b 2
Here, ρ is the dislocation density and b is the Burgers vector (0.25 nm). The dislocation density was calculated using the Modified Williamson-Hall / Warren-Aberbach method. The calculated dislocation density is also shown in Table 2.

〔セメンタイトの面積率〕
硬質第2相およびセメンタイトの面積率は、採取した溶融Zn−Al−Mg系めっき鋼板サンプルから切出した試料を圧延方向断面に研磨し、ピクラール試薬にてエッチングしてSEM観察し、観察された組織から画像解析によって算出した。測定された硬質第2相及びセメンタイトの面積率を表2に併記する。
[Cementite area ratio]
The area ratio of the hard second phase and cementite was determined by polishing a sample cut from the collected molten Zn-Al-Mg-based plated steel sheet sample in the rolling direction, etching it with a Picral reagent, and observing it with an SEM. And calculated by image analysis. Table 2 shows the measured area ratio of the hard second phase and cementite.

〔引張特性〕
試験片の長手方向が素材鋼板の圧延方向に対し直角になるように採取したJIS5号試験片を用い、JISZ2241に準拠して引張強さTS、全伸びT.Elを求めた。
(Tensile properties)
Using a JIS No. 5 test piece taken so that the longitudinal direction of the test piece was perpendicular to the rolling direction of the material steel plate, the tensile strength TS and total elongation T.E1 were determined in accordance with JISZ2241.

〔曲げ加工性〕
溶融Zn−Al−Mg系めっき鋼板から圧延方向と直角方向に20×50mmのサンプルを採取し、これを135°曲げ試験に供した。即ち、採取したサンプルの長手方向の中央部で圧延方向が曲げの軸となるように先端R1.0mm、0.5mm、先端角度45°のV型パンチ、ダイスを用いて、20kNの押し付け力で曲げ加工を施し、曲げ加工部先端の外表面における割れの発生有無を○×で評価した。
[Bending workability]
A 20 × 50 mm sample was taken from the hot-dip Zn—Al—Mg-based plated steel sheet in the direction perpendicular to the rolling direction and subjected to a 135 ° bending test. That is, with a pressing force of 20 kN using a V-shaped punch and a die having a tip R of 1.0 mm, 0.5 mm, and a tip angle of 45 ° so that the rolling direction is the axis of bending at the center of the sample in the longitudinal direction. Bending was performed, and the presence / absence of cracks on the outer surface at the tip of the bent portion was evaluated by ○ ×.

〔溶融金属脆化割れ性の評価〕
溶融金属脆化特性は、次の手順により溶接試験を行って評価した。
溶融Zn−Al−Mg系めっき鋼板から100mm×75mmのサンプルを切り出し、これを溶融金属脆化に起因する最大割れ深さを評価するための試験片とした。溶接試験は、図1に示す外観のボス溶接材を作成する「ボス溶接」を行い、その溶接部断面を観察して割れの発生状況を調べた。すなわち、試験片3の板面中央部に直径20mm×長さ25mmの棒鋼(JISに規定されるSS400材)からなるボス(突起)1を垂直に立て、このボス1を試験片3にアーク溶接にて接合した。溶接ワイヤーはYGW12を用い、溶接開始点から溶接ビード6がボスの周囲を1周し、溶接始点を過ぎた後もさらに少し溶接を進めて溶接開始点を過ぎて溶接ビードの重なり部分8ができたところで溶接を終了とした。溶接条件は、190A,23V,溶接速度0.3m/min、シールドガス:Ar−20vol.%CO、シールドガス流量:20L/minとした。
[Evaluation of molten metal embrittlement cracking]
The molten metal embrittlement characteristics were evaluated by conducting a welding test according to the following procedure.
A sample of 100 mm × 75 mm was cut out from the molten Zn—Al—Mg-based plated steel sheet, and this was used as a test piece for evaluating the maximum crack depth due to molten metal embrittlement. In the welding test, “boss welding” was performed to create a boss weld material having the appearance shown in FIG. That is, a boss (projection) 1 made of a steel bar (SS400 material defined in JIS) having a diameter of 20 mm and a length of 25 mm is vertically set at the center of the plate surface of the test piece 3, and this boss 1 is arc welded to the test piece 3. It joined with. The welding wire is YGW12. The welding bead 6 goes around the boss from the welding start point around the boss, and after passing the welding start point, welding is further advanced to pass the welding start point and the weld bead overlap portion 8 is formed. At that point, welding was finished. The welding conditions were 190A, 23V, welding speed 0.3 m / min, shielding gas: Ar-20 vol. % CO 2 , shielding gas flow rate: 20 L / min.

なお、溶接に際しては、図2に示すように、あらかじめ試験片3を拘束板4と接合しておいたものを用いた。接合体は、まず120mm×95mm×板厚4mmの拘束板4(JISに規定されるSS400材)を用意し、この板面中央部に試験片3を置き、その後、試験片3の全周を拘束板4に溶接したものである。上記のボス溶接材の作製は、この接合体(試験片3と拘束板4)を水平な実験台5の上にクランプ2にて固定し、この状態でボス溶接を行ったものである。   In welding, as shown in FIG. 2, a test piece 3 previously joined to a restraint plate 4 was used. First, a constrained plate 4 (SS400 material stipulated in JIS) 120 mm × 95 mm × 4 mm thick is prepared, and the test piece 3 is placed at the center of the plate surface. It is welded to the restraint plate 4. The boss weld material is manufactured by fixing the joined body (the test piece 3 and the restraint plate 4) on the horizontal test bench 5 with the clamp 2, and performing boss welding in this state.

ボス溶接後、ボス1の中心軸を通り、かつ前記のビードの重なり合う部分8を通る切断面9で、ボス1/試験片3/拘束板4の接合体を切断し、その切断面9について顕微鏡観察を行い、試験片3に観察された割れの最大深さを測定し、これを最大母材割れ深さとした。この割れは溶融金属脆化割れに該当するものである。最大母材割れ深さが0.1mm以下を合格、0.1mmを超えるものを不合格として評価した。   After the boss welding, the boss 1 / test piece 3 / restraint plate 4 joined body is cut at a cut surface 9 passing through the central axis of the boss 1 and passing through the overlapping portion 8 of the beads. Observation was performed, the maximum depth of cracks observed in the test piece 3 was measured, and this was taken as the maximum base material crack depth. This crack corresponds to a molten metal embrittlement crack. A maximum base material crack depth of 0.1 mm or less was evaluated as acceptable, and a material exceeding 0.1 mm was evaluated as unacceptable.

〔拡散性水素濃度の測定〕
鋼板サンプル表層のZn−Al−Mg系被覆層を研磨紙で除去することによって、基材鋼板のみからなる試料を作製した。拡散性水素濃度の測定条件を以下に示す。
・試料加熱部:赤外線ゴールドイメージ炉(アルバック理工社製 RHL−E410P)
・分析計:APS−MS/大気圧イオン化質量分析装置(日本エイピーアイ社製 FLEX−MS400)
・分析試料:10mm×3mm寸法に切断したもの3枚を分析
・測定温度:常温〜300℃
・昇温速度:5℃/min
・測定雰囲気:Ar(1000mL/min)
(Measurement of diffusible hydrogen concentration)
By removing the Zn—Al—Mg coating layer on the surface layer of the steel plate sample with abrasive paper, a sample consisting only of the base steel plate was produced. The measurement conditions for the diffusible hydrogen concentration are shown below.
Sample heating unit: Infrared gold image furnace (RHL-E410P manufactured by ULVAC-RIKO)
Analyzer: APS-MS / atmospheric pressure ionization mass spectrometer (FLEX-MS400 manufactured by Japan API Corporation)
・ Analytical sample: Analyzed three pieces cut into 10 mm × 3 mm dimensions.
・ Raising rate: 5 ° C / min
Measurement atmosphere: Ar (1000 mL / min)

〔明度L値の測定〕
分光型色差計(有限会社東京電色製;TC−1800)を用いて、JIS K5600に準拠した分光反射測定法で明度L値を測定した。測定条件を以下に示す。
・光学条件:d/8°法(ダブルビーム光学系)
・視野:2度視野
・測定方法:反射光測定
・標準光:C
・表色系:CIELAB
・測定波長:380〜780nm
・測定波長間隔:5nm
・分光器:回折格子 1200/mm
・照明:ハロゲンランプ(電圧12V、電力50W、定格寿命2000時間)
・測定面積:7.25mmφ
・検出素子:光電子増倍管(R928;浜松ホトニクス株式会社)
・反射率:0−150%
・測定温度:23℃
・標準板:白色
[Measurement of lightness L * value]
Using a spectroscopic color difference meter (manufactured by Tokyo Denshoku Co., Ltd .; TC-1800), the lightness L * value was measured by a spectral reflection measurement method based on JIS K5600. The measurement conditions are shown below.
・ Optical conditions: d / 8 ° method (double beam optical system)
-Field of view: 2 degree field of view-Measuring method: Reflected light measurement-Standard light: C
-Color system: CIELAB
・ Measurement wavelength: 380 to 780 nm
・ Measurement wavelength interval: 5 nm
-Spectroscope: diffraction grating 1200 / mm
・ Lighting: Halogen lamp (voltage 12V, power 50W, rated life 2000 hours)
・ Measurement area: 7.25mmφ
-Detection element: Photomultiplier tube (R928; Hamamatsu Photonics Co., Ltd.)
-Reflectance: 0-150%
・ Measurement temperature: 23 ℃
・ Standard plate: White

Figure 2018131669
※ BF:ベイニティックフェライト F:フェライト P:パーライト
Figure 2018131669
* BF: Bainitic ferrite F: Ferrite P: Pearlite

Figure 2018131669
Figure 2018131669

表2において、No.1〜15は、転位密度が(1.8×1014/m〜5.7×1014/mで引張強度が780〜1100MPaであるとともに、先端曲げR1.0mmの135°曲げが可能な高強度溶融Zn−Al−Mg系めっき鋼板である。一方、表3において、本発明範囲であるNo.1〜15は、適正な条件でベーキング処理が施されていれば、素材鋼板中の拡散性水素濃度および表面の明度は低く良好な値となるため、先端R0.5mmの135°曲げ加工も可能な良好な曲げ加工性を有する。 In Table 2, no. Nos. 1 to 15 have a dislocation density of (1.8 × 10 14 / m 2 to 5.7 × 10 14 / m 2 , a tensile strength of 780 to 1100 MPa, and 135 ° bending with a tip bending R of 1.0 mm is possible. On the other hand, in Table 3, Nos. 1 to 15 which are the scope of the present invention in Table 3 indicate that if baking treatment is performed under appropriate conditions, Since the diffusible hydrogen concentration and the lightness of the surface are low and good values, it has good bending workability capable of 135 ° bending with a tip R of 0.5 mm.

1 ボス
2 クランプ
3 試験片
4 拘束板
5 実験台
6 溶接ビード
7 試験片全周溶接部の溶接ビード
8 溶接ビードの重なり部分
9 切断面
10 素材鋼板
20 還元炉
30 スナウト
40 めっき槽
50 溶融めっき浴
60 シンクロール
DESCRIPTION OF SYMBOLS 1 Boss 2 Clamp 3 Test piece 4 Restraint plate 5 Test bench 6 Weld bead 7 Weld bead 8 of welded part around the test piece 8 Weld bead overlap part 9 Cut surface 10 Material steel plate 20 Reduction furnace 30 Snout 40 Plating tank 50 Hot dipping bath 60 Syncroll

Claims (8)

素材鋼板の表面にZn−Al−Mg系被覆層を有するめっき鋼板であって、
素材鋼板が、質量%で、C:0.01〜0.08%、Si:0.8%以下、Mn:0.5〜1.8%、P:0.05%以下、S:0.005%以下、N:0.001〜0.005%、Ti:0.02〜0.2%、B:0.0005〜0.010%、Al:0.005〜0.1%以下を含有し、残部がFeおよび不可避的不純物からなり、下記(1)式で表されるTi/C当量比が0.4〜1.5であり、転位密度が1.8×1014/m〜5.7×1014/mである、ベイニティックフェライト相もしくはフェライト相のいずれかの単相またはベイニティックフェライト相とフェライト相を含む相を主相とし、硬質第2相およびセメンタイトの面積率が3%以下であり、平均粒子径20nm以下のTiを含む炭化物が分散析出しており、かつ拡散性水素濃度が0.30ppm以下であり、
該Zn−Al−Mg系被覆層が、質量%で、Al:1.0〜22.0%、Mg:1.3〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:2.0%以下、残部Znおよび不可避的不純物からなり、該Zn−Al−Mg系被覆層中にZnの黒色酸化物が分布し、かつ、その表面の明度Lが60以下である、
引張強度が780〜1100MPaで、曲げ加工性に優れた黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板。
Ti/C当量比=(Ti/48)/(C/12)・・・(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
A plated steel sheet having a Zn—Al—Mg coating layer on the surface of the material steel sheet,
The material steel plate is in mass%, C: 0.01 to 0.08%, Si: 0.8% or less, Mn: 0.5 to 1.8%, P: 0.05% or less, S: 0.00. 005% or less, N: 0.001 to 0.005%, Ti: 0.02 to 0.2%, B: 0.0005 to 0.010%, Al: 0.005 to 0.1% or less And the balance consists of Fe and inevitable impurities, the Ti / C equivalent ratio represented by the following formula (1) is 0.4 to 1.5, and the dislocation density is 1.8 × 10 14 / m 2 to 5.7 × 10 14 / m 2 , a single phase of either a bainitic ferrite phase or a ferrite phase or a phase including a bainitic ferrite phase and a ferrite phase, and a hard second phase and cementite A carbide containing Ti having an area ratio of 3% or less and an average particle diameter of 20 nm or less is dispersed and precipitated. And diffusible hydrogen concentration is equal to or less than 0.30 ppm,
The Zn—Al—Mg-based coating layer is mass%, Al: 1.0 to 22.0%, Mg: 1.3 to 10.0%, Si: 0 to 2.0%, Ti: 0 to 0.10%, B: 0 to 0.05%, Fe: 2.0% or less, remaining Zn and unavoidable impurities, and a black oxide of Zn is distributed in the Zn-Al-Mg coating layer. And the surface brightness L * is 60 or less,
A black surface-coated high-strength molten Zn—Al—Mg-based plated steel sheet having a tensile strength of 780 to 1100 MPa and excellent bending workability.
Ti / C equivalent ratio = (Ti / 48) / (C / 12) (1)
However, the content (mass%) of the element in the material steel plate is substituted for the element symbol in the formula (1).
素材鋼板が、さらに、質量%で、Nb:0.1%以下、V:0.1%以下の1種以上を含有する組成を有する請求項1に記載の、引張強度が780〜1100MPaの曲げ加工性に優れた黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板。   The bending material having a tensile strength of 780 to 1100 MPa according to claim 1, wherein the raw steel plate further has a composition containing at least one of Nb: 0.1% or less and V: 0.1% or less by mass%. Black surface coated high strength molten Zn-Al-Mg plated steel sheet with excellent workability. 前記Zn−Al−Mg系被覆層の表面上にさらに無機系皮膜を有する、請求項1または2に記載の引張強度が780〜1100MPaの曲げ加工性に優れた黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板。   The black surface-coated high-strength molten Zn-Al having excellent bending workability with a tensile strength of 780 to 1100 MPa according to claim 1 or 2, further comprising an inorganic coating on the surface of the Zn-Al-Mg-based coating layer. -Mg based plated steel sheet. 前記Zn−Al−Mg系被覆層の表面上にさらに有機系皮膜を有する請求項1または2に記載の引張強度が780〜1100MPaの曲げ加工性に優れた黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板。   The black surface-coated high-strength molten Zn-Al- having excellent bending workability with a tensile strength of 780 to 1100 MPa according to claim 1 or 2, further comprising an organic coating on the surface of the Zn-Al-Mg-based coating layer. Mg-based plated steel sheet. 素材鋼板を、熱間圧延、酸洗、冷間圧延、連続溶融めっきラインでの焼鈍、溶融Zn−Al−Mg系めっき及びベーキング処理を順次行う、引張強度が780〜1100MPaで曲げ加工性に優れた黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板の製造方法であって、
該素材鋼板が、質量で、C:0.01〜0.08%、Si:0.8%以下、Mn:0.5〜1.8%、P:0.05%以下、S:0.005%以下、N:0.001〜0.005%、Ti:0.02〜0.2%、B:0.0005〜0.010%、Al:0.005〜0.1%以下を含有し、残部がFeおよび不可避的不純物からなり、かつ、下記(1)式で表されるTi/C当量比が0.4から1.5であり、
該熱間圧延での巻取温度を500℃から650℃とし、該冷間圧延での冷間圧延率を30%〜60%とし、
該素材鋼板は、連続溶融めっきラインで、焼鈍温度を550℃から750℃で加熱された後、溶融めっき浴に浸漬され、
該溶融めっき浴のめっきの組成が、質量%でAl:1.0〜22.0%、Mg:1.3〜10.0%、Si:0〜2.0%、Ti:0〜0.10%、B:0〜0.05%、Fe:2.0%以下、残部がZnおよび不可避的不純物からなり、
該ベーキング処理では、めっきされた素材鋼板を、水蒸気雰囲気中で70〜250℃に加熱保持して、めっき層表面を水蒸気に接触させることにより、該素材鋼板中の拡散性水素濃度を0.30ppm以下に低減することを含む、
引張強度が780〜1100MPaで曲げ加工性に優れた黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板の製造方法。
Ti/C当量比=(Ti/48)/(C/12)・・・(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
The steel sheet is subjected to hot rolling, pickling, cold rolling, annealing in a continuous hot dipping line, hot-dip Zn-Al-Mg plating and baking treatment in order, with a tensile strength of 780-1100 MPa and excellent bending workability. A method for producing a black surface-coated high-strength molten Zn-Al-Mg-based steel sheet,
The material steel plate is, by mass, C: 0.01 to 0.08%, Si: 0.8% or less, Mn: 0.5 to 1.8%, P: 0.05% or less, S: 0.00. 005% or less, N: 0.001 to 0.005%, Ti: 0.02 to 0.2%, B: 0.0005 to 0.010%, Al: 0.005 to 0.1% or less And the balance is Fe and inevitable impurities, and the Ti / C equivalent ratio represented by the following formula (1) is 0.4 to 1.5,
The coiling temperature in the hot rolling is 500 ° C. to 650 ° C., the cold rolling rate in the cold rolling is 30% to 60%,
The raw steel sheet is heated at an annealing temperature of 550 ° C. to 750 ° C. in a continuous hot dipping line, and then immersed in a hot dipping bath.
The plating composition of the hot dipping bath is Al: 1.0-22.0%, Mg: 1.3-10.0%, Si: 0-2.0%, Ti: 0-0. 10%, B: 0 to 0.05%, Fe: 2.0% or less, the balance consists of Zn and inevitable impurities,
In the baking treatment, the plated material steel plate is heated and held at 70 to 250 ° C. in a water vapor atmosphere, and the surface of the plating layer is brought into contact with water vapor, so that the diffusible hydrogen concentration in the material steel plate is 0.30 ppm. Including reducing to:
A method for producing a black surface coated high-strength Zn-Al-Mg plated steel sheet having a tensile strength of 780 to 1100 MPa and excellent bending workability.
Ti / C equivalent ratio = (Ti / 48) / (C / 12) (1)
However, the content (mass%) of the element in the material steel plate is substituted for the element symbol in the formula (1).
素材鋼板が、さらに質量%で、Nb:0.1%以下、V:0.1%以下の1種以上を含有する、請求項5に記載の引張強度が780〜1100MPaで曲げ加工性に優れる黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板の製造方法。   The material steel plate further contains at least 1% of Nb: 0.1% or less and V: 0.1% or less in terms of mass%, and the tensile strength according to claim 5 is 780 to 1100 MPa, and the bending workability is excellent. A method for producing a black surface-coated high-strength molten Zn-Al-Mg-based plated steel sheet. 前記ベーキング工程において、基材鋼板中の拡散性水素濃度を0.20ppm以下に低減する、請求項5または6に記載の引張強度が780〜1100MPaで曲げ加工性に優れる黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板の製造方法。   In the baking step, the diffusible hydrogen concentration in the base steel sheet is reduced to 0.20 ppm or less, and the black surface-coated high-strength molten Zn having excellent bending workability at a tensile strength of 780 to 1100 MPa according to claim 5 or 6. -Manufacturing method of Al-Mg type plated steel sheet. 前記ベーキング処理工程に供するめっき鋼板の基材鋼板中の拡散性水素濃度が0.35ppm以上である請求項5または6に記載の引張強度が780〜1100MPaで曲げ加工性に優れる黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板の製造方法。   The diffusible hydrogen concentration in the base steel sheet of the plated steel sheet to be subjected to the baking treatment step is 0.35 ppm or more, and the black surface-coated high strength excellent in bending workability at a tensile strength of 780 to 1100 MPa according to claim 6. A method for producing a molten Zn-Al-Mg-based steel sheet.
JP2017027637A 2017-02-17 2017-02-17 Black surface-coated high-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method Active JP6816550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017027637A JP6816550B2 (en) 2017-02-17 2017-02-17 Black surface-coated high-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017027637A JP6816550B2 (en) 2017-02-17 2017-02-17 Black surface-coated high-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018131669A true JP2018131669A (en) 2018-08-23
JP6816550B2 JP6816550B2 (en) 2021-01-20

Family

ID=63247372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017027637A Active JP6816550B2 (en) 2017-02-17 2017-02-17 Black surface-coated high-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6816550B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536779A (en) * 2019-01-28 2019-03-29 东北大学 A kind of zinc-containing alloy plate for building and preparation method thereof
JP2021055136A (en) * 2019-09-27 2021-04-08 日本製鉄株式会社 HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME
CN114945690A (en) * 2020-01-08 2022-08-26 日本制铁株式会社 Steel sheet and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987739A (en) * 1995-09-26 1997-03-31 Suzuki Kinzoku Kogyo Kk Dehydrogenation heat treatment of continuous traveling type steel wire
JP2012012658A (en) * 2010-06-30 2012-01-19 Nippon Steel Corp Baked hardening hot-rolled steel sheet excellent in burring properties and method for manufacturing the same
JP2013072121A (en) * 2011-09-28 2013-04-22 Aoyama Seisakusho Co Ltd Dehydrogenation treatment method for plated component
JP2013241666A (en) * 2012-04-25 2013-12-05 Nisshin Steel Co Ltd Black-plated steel sheet
JP2014189812A (en) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd High strength plated steel sheet for weld structure member and manufacturing method therefor
WO2015093596A1 (en) * 2013-12-19 2015-06-25 日新製鋼株式会社 Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
JP2016160499A (en) * 2015-03-03 2016-09-05 日新製鋼株式会社 METHOD OF MANUFACTURING HOT-DIP Zn-Al-Mg-BASED PLATED STEEL SHEET HAVING EXCELLENT PLATED SURFACE APPEARANCE AND BURRING PROPERTY
WO2016157896A1 (en) * 2015-04-01 2016-10-06 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same
JP2017145441A (en) * 2016-02-16 2017-08-24 日新製鋼株式会社 Black surface coated high strength steel sheet and manufacturing method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987739A (en) * 1995-09-26 1997-03-31 Suzuki Kinzoku Kogyo Kk Dehydrogenation heat treatment of continuous traveling type steel wire
JP2012012658A (en) * 2010-06-30 2012-01-19 Nippon Steel Corp Baked hardening hot-rolled steel sheet excellent in burring properties and method for manufacturing the same
JP2013072121A (en) * 2011-09-28 2013-04-22 Aoyama Seisakusho Co Ltd Dehydrogenation treatment method for plated component
JP2013241666A (en) * 2012-04-25 2013-12-05 Nisshin Steel Co Ltd Black-plated steel sheet
JP2013241665A (en) * 2012-04-25 2013-12-05 Nisshin Steel Co Ltd Black-plated steel sheet
JP2014189812A (en) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd High strength plated steel sheet for weld structure member and manufacturing method therefor
WO2015093596A1 (en) * 2013-12-19 2015-06-25 日新製鋼株式会社 Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
JP2016160499A (en) * 2015-03-03 2016-09-05 日新製鋼株式会社 METHOD OF MANUFACTURING HOT-DIP Zn-Al-Mg-BASED PLATED STEEL SHEET HAVING EXCELLENT PLATED SURFACE APPEARANCE AND BURRING PROPERTY
WO2016157896A1 (en) * 2015-04-01 2016-10-06 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same
JP2017145441A (en) * 2016-02-16 2017-08-24 日新製鋼株式会社 Black surface coated high strength steel sheet and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536779A (en) * 2019-01-28 2019-03-29 东北大学 A kind of zinc-containing alloy plate for building and preparation method thereof
JP2021055136A (en) * 2019-09-27 2021-04-08 日本製鉄株式会社 HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME
CN114945690A (en) * 2020-01-08 2022-08-26 日本制铁株式会社 Steel sheet and method for producing same
CN114945690B (en) * 2020-01-08 2024-02-20 日本制铁株式会社 Steel sheet and method for producing same

Also Published As

Publication number Publication date
JP6816550B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6271067B1 (en) High-strength Zn-Al-Mg-based surface-coated steel sheet and method for producing the same
KR101707984B1 (en) HOT-DIP Al-Zn COATED STEEL SHEET
EP3719156B1 (en) High-strength galvanized steel sheet and method for manufacturing same
RU2710813C1 (en) Hot-stamped steel
JP4464720B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
AU2014367679B2 (en) Steel sheet hot-dip-coated with Zn-Al-Mg-based system having excellent workability and method for manufacturing same
WO2016072479A1 (en) Hot-dip galvanized steel sheet
TWI494442B (en) Alloyed molten galvanized steel sheet and manufacturing method thereof
WO2012070694A1 (en) Al-Zn-BASED HOT-DIP PLATED STEEL SHEET AND MANUFACTURING METHOD THEREOF
JP5630588B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2017145441A (en) Black surface coated high strength steel sheet and manufacturing method therefor
JP2008019465A (en) High-strength hot-dip galvanized steel sheet superior in adhesiveness of plating film, and manufacturing method therefor
JP6816550B2 (en) Black surface-coated high-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method
JP7425373B2 (en) steel plate
JP2019031727A (en) HIGH-STRENGTH Zn-Al-Mg-BASED SURFACE-COATED STEEL SHEET FOR AUTOMOBILE COMPONENTS AND AUTOMOBILE COMPONENTS USING THE SAME
JP2019031728A (en) HIGH STRENGTH Zn-Al-Mg BASED SURFACE COATED STEEL SHEET FOR BUILDING COMPONENT AND BUILDING COMPONENT USING THE SAME
WO2019189067A1 (en) High-strength alloyed hot-dip galvanized steel sheet and manufacturing method therefor
JP6801496B2 (en) High-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method
JP4926517B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent corrosion resistance after painting
JP2018145506A (en) BLACK SURFACE COATED HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR AUTOMOBILE COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND AUTOMOBILE COMPONENT USING THE SAME
JP2018145507A (en) BLACK SURFACE COATED HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR BUILDING COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND BUILDING COMPONENT USING THE SAME
JP2006077329A (en) High-strength galvannealed steel sheet
JP2018145500A (en) HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR AUTOMOBILE COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND AUTOMOBILE COMPONENT USING THE SAME
JP5092858B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2018145504A (en) HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR BUILDING COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND BUILDING COMPONENT USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R151 Written notification of patent or utility model registration

Ref document number: 6816550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151