WO2016157896A1 - Hot-rolled steel sheet and method for producing same - Google Patents

Hot-rolled steel sheet and method for producing same Download PDF

Info

Publication number
WO2016157896A1
WO2016157896A1 PCT/JP2016/001834 JP2016001834W WO2016157896A1 WO 2016157896 A1 WO2016157896 A1 WO 2016157896A1 JP 2016001834 W JP2016001834 W JP 2016001834W WO 2016157896 A1 WO2016157896 A1 WO 2016157896A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
hot
lath
phase
Prior art date
Application number
PCT/JP2016/001834
Other languages
French (fr)
Japanese (ja)
Inventor
田中 孝明
太郎 木津
俊介 豊田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP16771783.4A priority Critical patent/EP3279353B1/en
Priority to CN201680020526.3A priority patent/CN107429362B/en
Priority to MX2017012493A priority patent/MX2017012493A/en
Priority to US15/561,436 priority patent/US20180119240A1/en
Priority to JP2016549181A priority patent/JP6075517B1/en
Priority to KR1020177029834A priority patent/KR101989262B1/en
Publication of WO2016157896A1 publication Critical patent/WO2016157896A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Definitions

  • the present invention has a high tensile strength (TS) of 780 MPa or more, excellent stretch flangeability and punching, suitable for structural steel materials such as automobile parts and other transportation machinery and construction steel materials. Further, the present invention relates to a hot-rolled steel sheet having excellent properties and also excellent in production stability and a method for producing the same.
  • TS tensile strength
  • Patent Document 1 discloses that a steel sheet structure is a ferrite single-phase structure having a low dislocation density and excellent workability, and further, fine carbides are dispersed and precipitated in ferrite to strengthen precipitation, thereby hot rolling.
  • a steel sheet having improved strength while maintaining stretch flangeability of the steel sheet is disclosed.
  • the normal burring process is performed using a steel sheet punched into a predetermined shape.
  • the punching clearance usually changes due to die temperature rise or die wear due to continuous pressing. May occur.
  • Patent Document 2 discloses that Fe-type carbides having a bainite phase exceeding 92% by volume and an average interval of bainite laths of 0.60 ⁇ m or less and precipitated in grains among all Fe-type carbides.
  • a high-strength hot-rolled steel sheet with improved mass production punchability by making the number ratio of 10% or more is disclosed.
  • JP 2012-26034 A Japanese Unexamined Patent Publication No. 2014-205888
  • the steel sheet described in Patent Document 1 achieves both high strength and excellent stretch flangeability.
  • the steel sheet structure is substantially a ferrite single phase, there is almost no inclusion that becomes a starting point of voids when the steel sheet is punched.
  • the punched end surface may be roughened.
  • the steel sheet described in Patent Document 2 has a steel sheet structure mainly composed of a predetermined bainite by controlling hot rolling conditions, thereby obtaining excellent punchability.
  • a bainite structure is characterized in that mechanical properties such as tensile strength tend to fluctuate with respect to fluctuations in the coiling temperature.
  • the present invention has been developed in view of the above situation, has a tensile strength (TS): high strength of 780 MPa or more, has excellent stretch flangeability and punchability, and further has manufacturing stability.
  • An object of the present invention is to provide a hot-rolled steel sheet that is excellent in combination with its advantageous production method.
  • the present inventors diligently studied a method for increasing the strength of a steel sheet while maintaining workability, particularly stretch flangeability, and having excellent punchability and suppressing variations in mechanical properties with respect to variations in manufacturing conditions. As described above, in order to improve the stretch flangeability of the steel sheet, it is effective to make the strength in the metal structure uniform. As such a method, a method of increasing strength by solid solution strengthening or precipitation strengthening as a ferrite single phase structure, or a method of increasing strength by strengthening structure as a bainite single phase structure can be considered.
  • a steel sheet having a bainite single-phase structure has excellent stretch flangeability.
  • a steel sheet having a bainite single-phase structure has a large number of Fe-based carbides in the bainite structure, which serves as a starting point for voids at the time of punching, and thus has excellent punchability.
  • the mechanical properties such as strength greatly vary depending on the transformation temperature in the bainite structure, there is a concern that the variation in mechanical properties with respect to variations in hot rolling conditions such as the coiling temperature will increase.
  • the present inventors considered to reduce the influence of fluctuations in hot rolling conditions by adding a tempering treatment to a structure mainly composed of bainite and martensite.
  • a tempering treatment to a bainite or martensite structure
  • variations in mechanical properties due to changes in hot rolling conditions are greatly reduced, but at the same time the steel sheet strength is greatly reduced.
  • the steel sheet since the form of the Fe-based carbide in the tempered bainite or tempered martensite phase varies depending on the annealing conditions, the steel sheet does not necessarily have excellent punchability depending on the annealing conditions.
  • the present inventors suppressed the reduction of the steel sheet strength as described above when adding a tempering treatment to the structure mainly composed of bainite and further martensite, and excellent stretch flangeability and punchability.
  • MC type carbides such as TiC are dispersed and precipitated inside the lath and within the lath boundary, which suppresses coarsening of the lath during annealing and further disappearance of the lath due to recovery, and maintains high steel sheet strength even after annealing. I found out that I can do it.
  • MC type carbide is TiC, NbC, VC, (Ti where the atomic ratio of M element (M element includes Ti, Nb, V, Mo, etc.) and C is approximately 1: 1. , Mo) C and other carbides.
  • M element does not have to be a single type, and may be a composite carbide containing a plurality of metal elements.
  • N-containing carbonitrides and composite carbonitrides may be used.
  • the present inventors have further studied earnestly, by appropriately controlling the thermal history when cooling from the highest heating temperature to room temperature in the annealing process, the remaining structure other than the tempered martensite phase and the tempered bainite phase, In particular, the inventors have found that the formation of martensite phase, coarse pearlite phase and retained austenite phase is suppressed, and that, in addition to high strength and excellent punchability, it can also have excellent stretch flangeability.
  • the present invention was completed after further studies based on the above findings.
  • the gist configuration of the present invention is as follows. 1. % By mass C: 0.03% or more and 0.20% or less, Si: 0.4% or less, Mn: 0.5% to 2.0%, P: 0.03% or less, S: 0.03% or less, Al: 0.1% or less, N: 0.01% or less and Ti: 0.03% or more and 0.15% or less, with the balance consisting of Fe and inevitable impurities,
  • the total area ratio of the tempered bainite phase and the tempered martensite phase is 70% or more, and the total area ratio of the coarse pearlite phase, the martensite phase and the retained austenite phase is 10% or less,
  • the tempered bainite phase and the tempered martensite phase have lath having an average width of 1.0 ⁇ m or less as a substructure, and among Fe-based carbides precipitated in the lath and at the lath boundary, the proportion of those having an aspect ratio of 5 or less 80% or more, and MC type carbide having an average particle size of 20 nm
  • V 0.01% to 0.3%
  • Mo 0.01% to 0.3%
  • the hot-rolled steel sheet according to 1 or 2 comprising:
  • composition further, by mass%, one or more of REM, Zr, As, Cu, Ni, Sn, Pb, Ta, W, Cr, Sb, Mg, Ca, Co, Se, Zn and Cs
  • REM halogen-containing compound
  • the steel material having the composition according to any one of 1 to 4 above is heated to an austenite single phase region, subjected to hot rolling consisting of rough rolling and finish rolling, and after the finish rolling is finished, A hot rolling process for cooling and winding, After the hot rolling step, pickling the steel sheet, and then having a continuous annealing step for continuous annealing,
  • the finish rolling temperature is 850 ° C. or more and 1000 ° C. or less
  • the average cooling rate to 500 ° C. is 30 ° C./s or more
  • the winding temperature is 500 ° C. or less
  • the maximum heating temperature of the steel sheet is 700 ° C.
  • the time when the steel plate temperature when heating the steel plate to the maximum heating temperature is 600 ° C. or more and 700 ° C. or less is 20 seconds or more and 1000 seconds or less, The time when the steel sheet temperature is over 700 ° C. is set to 200 seconds or less, The average cooling rate up to 530 ° C when cooling the steel sheet from the maximum heating temperature is 8 ° C / s or more and 25 ° C / s or less, and after the cooling is stopped, the holding time in the temperature range of 470 ° C or more and 530 ° C or less is set.
  • tensile strength (TS) high strength of 780 MPa or more, excellent stretch flangeability, suitable for structural steel materials such as automobile machinery and other transportation machinery parts and construction steel materials.
  • FIG. 2 is a schematic diagram showing an example of a structure in which a tempered bainite phase and a tempered martensite phase have lath as a substructure, and Fe-based carbides are precipitated and lath MC-type carbides are dispersed and precipitated in the lath inside and lath boundaries.
  • C 0.03% to 0.20% C improves the strength of the steel and promotes the formation of bainite and martensite during hot rolling. Therefore, in the present invention, the C content needs to be 0.03% or more. On the other hand, when the C content exceeds 0.20%, the carbon equivalent becomes excessively large and the weldability of the steel sheet is deteriorated. Therefore, the C content is set to 0.03% or more and 0.20% or less. Preferably, it is 0.04% or more and 0.18% or less, more preferably more than 0.05% and 0.15% or less.
  • Si 0.4% or less Si is usually positively contained in a high-strength steel sheet as an effective element for improving the steel sheet strength without reducing ductility (elongation). However, if the Si content exceeds 0.4%, an oxide is formed on the surface of the steel sheet during heat treatment, which causes deterioration of plating adhesion. Therefore, the Si content is 0.4% or less. Preferably it is 0.3% or less, More preferably, it is 0.2% or less. Note that Si may be added to an impurity level, or may be O%.
  • Mn 0.5% or more and 2.0% or less
  • Mn is an element that contributes to increasing the strength of steel by solid solution.
  • Mn is an element that promotes the formation of bainite and martensite during hot rolling by improving hardenability. In order to obtain such an effect, the Mn content needs to be 0.5% or more.
  • the Mn content is 0.5% or more and 2.0% or less.
  • they are 0.8% or more and 1.8% or less, More preferably, they are 1.0% or more and 1.7% or less.
  • P 0.03% or less
  • P is a harmful element that segregates at grain boundaries to reduce elongation, induces cracking during processing, and further degrades impact resistance. Therefore, the P content is 0.03% or less. However, excessive P removal leads to an increase in refining time and cost, so the P content is preferably 0.002% or more.
  • S 0.03% or less S is present in steel as MnS or TiS, and promotes the generation of voids during the punching of hot-rolled steel sheets. Moreover, since S becomes a starting point of generation of voids during processing, it reduces stretch flangeability. Therefore, it is preferable to reduce the S content as much as possible, and the content is 0.03% or less. Preferably it is 0.01% or less. However, since excessive desulfurization leads to an increase in refining time and cost, the S content is preferably 0.0002% or more.
  • Al 0.1% or less
  • Al is an element that acts as a deoxidizer. In order to obtain such an effect, it is preferable to contain 0.01% or more of Al. However, if Al exceeds 0.1%, it remains as an Al oxide in the steel sheet, and the Al oxide tends to aggregate and become coarse and deteriorate stretch flangeability. Therefore, the Al content is 0.1% or less.
  • N 0.01% or less N is present as coarse TiN in the steel, and promotes the generation of coarse voids during the punching of hot-rolled steel sheets. Moreover, since N becomes a starting point of generation of coarse voids during processing, it reduces stretch flangeability. For this reason, it is preferable to reduce N content as much as possible, and set it as 0.01% or less. Preferably it is 0.006% or less. However, excessive N removal leads to an increase in refining time and cost, so the N content is preferably 0.0005% or more.
  • Ti 0.03% or more and 0.15% or less
  • Ti is an indispensable element for increasing the strength of a steel sheet by forming MC-type carbides and suppressing lath coarsening in the annealing process.
  • MC type carbide increases the strength of the steel sheet by precipitation strengthening.
  • the Ti content is set to 0.03% or more and 0.15% or less.
  • they are 0.04% or more and 0.14% or less, More preferably, they are 0.05% or more and 0.13% or less.
  • V 0.01% or more and 0.3% or less
  • Nb 0.01% or more and 0.1% or less
  • Mo 0.01 as necessary for the purpose of further increasing the strength. % Or more and 0.3% or less can be contained.
  • V 0.01% or more and 0.3% or less
  • V forms MC-type carbides and, like Ti, contributes to increasing the strength of the steel sheet by suppressing coarsening of the lath and precipitation strengthening in the annealing process.
  • the V content is preferably 0.01% or more and 0.3% or less.
  • V may form MC-type carbides alone, or may form composite carbides with Ti, Nb, and Mo. These carbide compositions have no influence on the effects of the invention.
  • Nb 0.01% or more and 0.1% or less Nb forms MC-type carbides and, like Ti, contributes to increasing the strength of the steel sheet by suppressing lath coarsening and precipitation strengthening in the annealing process.
  • Nb it is necessary to contain 0.01% or more of Nb.
  • the Nb content is preferably 0.01% or more and 0.1% or less.
  • Nb may form MC-type carbides alone, or may form composite carbides with Ti, V, and Mo. These carbide compositions have no influence on the effects of the invention.
  • Mo 0.01% or more and 0.3% or less Mo forms MC-type composite carbide by compound addition with Ti, and, like Ti, increases the strength of the steel sheet by suppressing lath coarsening and precipitation strengthening in the annealing process. Contribute. In order to obtain such an effect, it is necessary to contain 0.01% or more of Mo. On the other hand, if the Mo content exceeds 0.3%, the central segregation becomes prominent and causes punching deterioration. Therefore, the Mo content is preferably 0.01% or more and 0.3% or less. Mo may form a composite carbide with Nb or V, but these carbide compositions do not affect the effects of the invention.
  • the hot-rolled steel sheet of the present invention may contain B: 0.0002% to 0.010% as necessary for the purpose of improving the hardenability during hot rolling.
  • B 0.0002% or more and 0.010% or less
  • B is an element that segregates at austenite grain boundaries and suppresses the formation and growth of ferrite to improve hardenability and promote the formation of bainite and martensite.
  • the B content is preferably 0.0002% or more.
  • the B content exceeds 0.010%, a hard iron boride is formed, which causes stretch flangeability deterioration. Therefore, when it contains B, it is preferable to make the content into 0.0002% or more and 0.010% or less. Further, it is more preferably 0.0002% or more and 0.0050% or less, and further preferably 0.0004% or more and 0.0030% or less.
  • the hot-rolled steel sheet of the present invention further includes REM, Zr, As, Cu, Ni, Sn, Pb, Ta, W, Cr, Sb, Mg, Ca, Co, Se, Zn, and the above composition.
  • One or more of Cs may be contained in a total of 1.0% or less.
  • Components other than the above are Fe and inevitable impurities.
  • Total area ratio of tempered bainite phase and tempered martensite phase 70% or more
  • the hot-rolled steel sheet of the present invention has a structure mainly composed of tempered bainite and tempered martensite, which has both high strength and excellent punchability.
  • tempered bainite phase and the tempered martensite phase are less than 70%, a hot rolled steel sheet having desired high strength and punchability cannot be obtained.
  • the reason why the tempered bainite phase and the tempered martensite fraction are not individually defined is that the tempered bainite and tempered martensite after annealing have a structure that cannot be distinguished.
  • the total area ratio of the tempered bainite phase and the tempered martensite phase is 70% or more. Preferably it is 75% or more, more preferably 80% or more. Further, the total area ratio of the tempered bainite phase and the tempered martensite phase may be 100%.
  • the hot-rolled steel sheet of the present invention has a structure mainly composed of tempered bainite and tempered martensite.
  • the remaining structure other than martensite include Fe carbide, coarse pearlite, fine pearlite, pseudo pearlite, bainite, martensite, and retained austenite.
  • these structures especially when coarse pearlite, martensite, and retained austenite are present in the metal structure, stretch flangeability is significantly deteriorated. Therefore, the sum of the area ratios of the coarse pearlite phase, martensite phase and residual austenite phase is set to 10% or less.
  • coarse pearlite has a lamella spacing of 0.2 ⁇ m or more
  • fine pearlite has a lamella spacing of less than 0.2 ⁇ m
  • pseudo pearlite does not clearly observe a pearlite lamella.
  • the lamella spacing can be obtained by observing the structure with a scanning electron microscope.
  • examples of the remaining structure other than the tempered bainite phase, the tempered martensite phase, the coarse pearlite phase, the martensite phase, and the retained austenite phase include a ferrite phase, a pseudo pearlite phase, and a fine pearlite phase. Such a remaining structure is acceptable if the total area ratio is 30% or less.
  • FIG. 1 is a schematic diagram showing an example of a structure in which a tempered bainite phase and a tempered martensite phase have lath as a substructure, and Fe-based carbides precipitate and MC-type carbides disperse and precipitate in the lath inside and lath boundaries. The figure is shown.
  • the average width of the laths that the tempered bainite phase and the tempered martensite phase have as a substructure is 1.0 ⁇ m or less.
  • it is 0.8 micrometer or less, More preferably, it is 0.6 micrometer or less.
  • the lower limit is not particularly limited, but is usually about 0.1 ⁇ m.
  • Fe-based carbides deposited in the lath and lath boundary are the origin of voids during punching This contributes to improved punchability.
  • an Fe-based carbide having an aspect ratio of 5 or less has a large effect, and an excellent punchability can be exhibited by setting the ratio to 80% or more. Therefore, the proportion of Fe-based carbides precipitated in the lath and at the lath boundary is set to 80% or more with an aspect ratio of 5 or less. Preferably it is 85% or more.
  • the upper limit is not particularly limited and may be 100%.
  • the Fe-based carbide is ⁇ carbide (cementite) or ⁇ carbide.
  • the alloy element may be dissolved in the carbide.
  • the aspect ratio is the ratio of the length of the major axis to the minor axis of the Fe-based carbide precipitated in the lath and at the lath boundary.
  • MC type carbide dispersed and precipitated in the lath and lath boundary 20 nm or less
  • MC type carbide finely dispersed and precipitated in the lath and lath boundary has a pinning effect during annealing of the steel sheet.
  • the average particle diameter of MC type carbide exceeds 20 nm, the number of MC type carbide particles contributing to pinning is insufficient, the pinning effect is insufficient, and the steel sheet strength is reduced.
  • the average particle diameter of MC type carbides dispersed and precipitated in the lath and lath boundaries of the tempered bainite phase and the tempered martensite phase is set to 20 nm or less. Preferably it is 15 nm or less.
  • the lower limit is not particularly limited, but is usually about 1 nm.
  • the proportion of MC type carbide having a particle size exceeding 50 nm is preferably 10% or less.
  • the average dislocation density is in the following range.
  • Average dislocation density 1.0 ⁇ 10 14 m ⁇ 2 or more and 5.0 ⁇ 10 15 m ⁇ 2 or less
  • the steel sheet having a bainite and martensite structure is tempered to vary the variation in hot rolling conditions. Is reduced.
  • the average dislocation density of the steel sheet after annealing exceeds 5.0 ⁇ 10 15 m ⁇ 2 , the tempering of the steel sheet is insufficient, and the influence of fluctuations in hot rolling conditions cannot be sufficiently mitigated.
  • the average dislocation density is usually 1.0 ⁇ 10 14 m ⁇ 2 or more.
  • the average dislocation density is 1.0 ⁇ 10 14 m ⁇ 2 or more and 5.0 ⁇ 10 15 m ⁇ 2 or less.
  • it is 1.0 ⁇ 10 14 m ⁇ 2 or more and 2.0 ⁇ 10 15 m ⁇ 2 or less.
  • the method for producing a hot-rolled steel sheet of the present invention was obtained after heating the steel material having the above-described composition to the austenite single-phase region, subjecting it to hot rolling consisting of rough rolling and finish rolling, and finishing the finish rolling.
  • a hot rolling process for cooling and winding the steel sheet After the hot rolling step, pickling the steel sheet, and then having a continuous annealing step for continuous annealing,
  • the finish rolling temperature is 850 ° C. or more and 1000 ° C. or less
  • the average cooling rate to 500 ° C. is 30 ° C./s or more
  • the winding temperature is 500 ° C.
  • the maximum heating temperature of the steel sheet is 700 ° C. or more (A 3 points + A 1 point) / 2 or less
  • the time when the steel plate temperature when heating the steel plate to the maximum heating temperature is 600 ° C. or more and 700 ° C. or less is 20 seconds or more and 1000 seconds or less
  • the time when the steel sheet temperature is over 700 ° C. is set to 200 seconds or less
  • the melting method of a steel raw material is not specifically limited, Well-known melting methods, such as a converter and an electric furnace, are employable. Moreover, after melting, it is preferable to use a continuous casting method to form a slab (steel material) from the viewpoint of productivity and the like, but as a slab by a known casting method such as an ingot-bundling rolling method or a thin slab continuous casting method. Also good.
  • the steel material obtained as described above is subjected to hot rolling consisting of rough rolling and finish rolling, and the steel material is heated in the austenite single phase region prior to rough rolling. If the steel material before rough rolling is not heated in the austenite single-phase region, remelting of Ti carbide, etc. present in the steel material will not proceed, and MC type carbide will precipitate finely during annealing after hot rolling. I will not. Therefore, prior to rough rolling, the steel material is heated to an austenite single phase region, preferably 1150 ° C. or higher.
  • the upper limit of the heating temperature is not particularly specified, but when the heating temperature becomes higher than necessary, the yield decreases due to oxidation of the slab surface, so the heating temperature is usually 1350 ° C. or lower.
  • the steel material is not heated or directly heated after being heated for a short time. You may roll.
  • Finish rolling temperature 850 ° C. or more and 1000 ° C. or less
  • the temperature on the finish rolling delivery side needs to be 850 ° C. or higher, preferably 880 ° C. or higher.
  • the finish rolling temperature exceeds 1000 ° C., the surface properties of the steel sheet deteriorate.
  • the upper limit of finish rolling temperature shall be 1000 degrees C or less. Preferably it is 970 degrees C or less.
  • Each temperature such as the coiling temperature including the above finish rolling temperature is the temperature of the steel sheet surface.
  • cooling rate to 500 ° C 30 ° C / s or more
  • the cooling rate to 500 ° C. after finishing rolling needs to be 30 ° C./s or more.
  • it is 50 ° C./s or more.
  • the upper limit of the cooling rate is not particularly limited, but is usually about 300 ° C./s.
  • Winding temperature 500 ° C. or less Optimization of the winding temperature is important for controlling the steel sheet structure after hot rolling.
  • the coiling temperature exceeds 500 ° C., the lath width of the bainite becomes large, so that the lath width of the tempered bainite after annealing cannot be set to a predetermined value.
  • the lower limit of the coiling temperature is not particularly limited, but if the coiling temperature is excessively lowered, the cooling cost is only unnecessarily expensive.
  • the winding temperature is preferably 0 ° C. or higher. More preferably, it is 200 ° C. or higher.
  • the hot rolled steel sheet is pickled and subjected to a continuous annealing step for continuous annealing.
  • Maximum heating temperature of steel sheet 700 ° C or higher (A 3 points + A 1 point) / 2 or lower Optimization of the maximum heating temperature of steel sheets in the continuous annealing process is sufficient for the effects of manufacturing conditions fluctuations during hot rolling due to annealing It is important to reduce and achieve the desired high strength. If the maximum heating temperature of the steel sheet is less than 700 ° C, it is difficult to control the dislocation density in bainite and martensite within an appropriate range. For this reason, the influence of fluctuations in manufacturing conditions during hot rolling is sufficiently reduced.
  • the heating temperature of the steel sheet is less than 700 ° C, the aspect ratio of Fe-based carbides inside and between the laths tends to be large, and the proportion of Fe-based carbides with an aspect ratio of 5 or less should be in the desired range Is difficult.
  • the maximum heating temperature of the steel sheet exceeds (A 3 points + A 1 point) / 2, the MC type carbides become prominently coarsened, so that the lath coarsening in bainite and martensite can be sufficiently suppressed. Disappear. Further, by promoting austenitization, the bainite and martensite fractions are lowered, and the desired tempered bainite and tempered martensite fractions cannot be obtained.
  • the maximum heating temperature of the steel sheet in the continuous annealing process is 700 ° C. or more (A 3 points + A 1 point) / 2 or less.
  • the temperature is preferably 700 ° C. or higher and ⁇ (A 3 points + A 1 point) / 2 ⁇ ⁇ 10 ° C. or lower.
  • the points A 1 and A 3 can be calculated by the following formula.
  • a 1 point 751-26.6 x [% C] + 17.6 x [% Si]-11.6 x [% Mn] + 22.5 x [% Mo] + 233 ⁇ [% Nb] ⁇ 39.7 ⁇ [% V] ⁇ 57 ⁇ [% Ti] ⁇ 895 ⁇ [% B] ⁇ 169 ⁇ [% Al]
  • a 3 points 937-476.5 x [% C] + 56 x [% Si]-19.7 x [% Mn] + 38.1 x [% Mo] + 124.8 ⁇ [% V] + 136.3 ⁇ [% Ti] ⁇ 19 ⁇ [% Nb] + 3315 ⁇ [% B]
  • [% X] means the content of X element in steel (mass%).
  • Time when the steel plate temperature is 600 ° C or higher and 700 ° C or lower when the steel plate is heated to the maximum heating temperature 20 seconds or more and 1000 seconds or less It is desirable to appropriately control the heating heat history when heating the steel plate to the maximum heating temperature This is important for imparting high strength and excellent punchability to the steel sheet.
  • the pinning effect by MC type carbide is used to suppress the coarsening of the lath. In order to exhibit this pinning effect, it is necessary to sufficiently disperse MC type carbides in bainite and martensite before the lath starts coarsening. According to the study by the present inventors, precipitation of MC type carbide begins to occur remarkably at 600 ° C. or higher.
  • the coarsening and disappearance of lath occurs remarkably when the temperature exceeds 700 ° C. Therefore, the coarsening and disappearance of the lath can be suppressed by maintaining the steel plate temperature in the temperature range of 600 ° C. or more and 700 ° C. or less for a certain period of time and sufficiently depositing the MC type carbide.
  • the holding time in this temperature range is insufficient, since the coarsening of the lath is started before the MC type carbide is sufficiently precipitated, the pinning effect is not sufficiently exhibited and the lath becomes coarse. .
  • the holding time in the temperature range of 600 ° C. or more and 700 ° C. or less exceeds 1000 seconds, the Fe-based carbides precipitated inside and between the laths re-dissolve, and the prior austenite grain boundaries and packet grain boundaries In other words, there is no Fe-based carbide in the lath and between the laths, which moves to the block grain boundaries and effectively contributes to the improvement of punchability. Therefore, in order to obtain a steel sheet having excellent punchability, the holding time in the temperature range where the steel sheet temperature is 600 ° C. or higher and 700 ° C. or lower needs to be 1000 seconds or shorter. Preferably it is 800 seconds or less, more preferably 500 seconds or less.
  • the steel plate temperature here is the temperature of the steel plate surface.
  • Time when the steel plate temperature exceeds 700 ° C .: 200 seconds or less In the temperature range where the steel plate temperature exceeds 700 ° C., lath coarsening occurs remarkably. As described above, in the present invention, the movement of the lath boundary is suppressed and the coarsening of the lath is suppressed by the pinning effect by the MC type carbide finely dispersed and precipitated. And thereby, the steel plate strength is maintained. However, if the holding time in this temperature range becomes excessively long, the coarsening of the lath cannot be suppressed. For this reason, from the viewpoint of preventing the coarsening of the lath, the holding time in the temperature range where the steel plate temperature exceeds 700 ° C. is set to 200 seconds or less.
  • Preferably it is 180 seconds or less, more preferably 150 seconds or less.
  • the time when the steel plate temperature is higher than 700 ° C. is less than 10 seconds, the ductility of the steel plate is somewhat inferior, and therefore it is preferable to set it to 10 seconds or more.
  • Average cooling rate up to 530 ° C when cooling the steel plate from the maximum heating temperature 8 ° C / s or more and 25 ° C / s or less.
  • Controlling is important for obtaining excellent stretch flangeability.
  • the average cooling rate up to 530 ° C. is lower than 8 ° C./s, pearlite transformation cannot be suppressed during cooling, and coarse pearlite is produced in a predetermined amount or more. For this reason, stretch flangeability falls.
  • the average cooling rate is excessively high, it is difficult to maintain for a predetermined time in a temperature range of 470 ° C. to 530 ° C., which will be described later. Therefore, the average cooling rate up to 530 ° C. when cooling the steel plate from the maximum heating temperature is 25 ° C./s or less.
  • Holding time in the temperature range of 470 ° C or higher and 530 ° C or lower 10 seconds or longer
  • the steel plate is controlled and cooled as described above, and then held in the temperature range of 470 ° C or higher and 530 ° C or lower for a certain period of time. It is important to obtain excellent stretch flangeability.
  • the holding temperature after the cooling is stopped exceeds 530 ° C., coarse pearlite is generated, so that stretch flangeability is deteriorated.
  • the holding temperature after stopping cooling is lower than 470 ° C., the transformation from austenite to bainite is delayed.
  • C concentrates in the untransformed austenite region and stabilizes the austenite, so the transformation is not completed. Then, in the subsequent cooling, untransformed austenite is transformed into martensite or remains in the steel sheet structure as retained austenite, so that stretch flangeability is lowered. Further, when the steel plate is held for 10 seconds or more in the temperature range of 470 ° C. or more and 530 ° C. or less, the transformation of most austenite to bainite is completed, and then the martensite fraction generated when cooled is determined to be a predetermined value. Can be reduced to a range. Accordingly, after the controlled cooling is stopped, the holding time in the temperature range from 470 ° C. to 530 ° C.
  • the subsequent cooling conditions are not particularly limited, and may be cooled to room temperature by any cooling method.
  • the total holding time in the temperature range of 600 ° C to 700 ° C is 1000 seconds or less.
  • the steel plate may be immersed in a zinc pot to be a hot dip galvanized steel plate, or may be further heat-treated to obtain an alloyed hot dip galvanized steel plate. .
  • aluminum or aluminum alloy can be plated for hot dipping.
  • temper rolling may be applied to the steel sheet continuously in the annealing line or using another line according to a conventional method.
  • the hot-rolled steel sheet produced as described above may be separately subjected to electrogalvanizing treatment or hot dip galvanizing.
  • the hot-rolled steel sheet of the present invention is suitable as a steel sheet for automobile undercarriage, and is suitable for press forming performed at normal room temperature, and has excellent heat treatment characteristics.
  • the hot-rolled steel sheet produced as described above is also suitable as a warm-formed material steel sheet that is immediately press-formed after heating the steel sheet before pressing from 400 ° C to 700 ° C.
  • the molten steel having the composition shown in Table 1 was melted and continuously cast by a generally known method to obtain a slab (steel material) having a thickness of 300 mm. These slabs are heated to the temperatures shown in Table 2, roughly rolled, and finish rolling is completed at the temperatures shown in Table 2. After finishing rolling, the slabs are cooled at the average cooling rate shown in Table 2, and the windings shown in Table 2 are used. The coil was wound at the coiling temperature to obtain a hot rolled steel sheet having a thickness of 3.2 mm. Furthermore, these hot-rolled steel sheets were pickled by a generally known technique and annealed under the conditions shown in Table 2 in a continuous annealing line. Moreover, about some steel plates, the hot dip galvanization process and also the alloying process were performed in the continuous annealing line, and it was set as the hot dip galvanized steel plate and the galvannealed steel plate.
  • Test specimens were collected from the hot-rolled steel sheets thus obtained, and subjected to structure observation, measurement of average dislocation density, tensile test, hole expansion test, punching test, and production stability evaluation. The evaluation results are shown in Table 3.
  • the test method was as follows.
  • the area ratio of the sum of the martensite phase and the retained austenite phase was determined without particularly distinguishing between the martensite phase and the retained austenite phase.
  • the thin film produced from the hot-rolled steel sheet is observed with a transmission electron microscope, and the lath width of tempered bainite and tempered martensite is measured.
  • the average particle size of the MC type carbides precipitated inside the lath and at the lath boundary was determined.
  • transmission electron micrographs of 120 mm x 80 mm in size taken at 10 fields of view at a magnification of 30000 times were measured for three or more consecutive laths.
  • Draw 5 straight lines at an interval of 10mm perpendicular to the long axis measure the length of each line segment that intersects the lath boundary, and calculate the average length of the obtained line segments as the average lath width. It was.
  • the proportion of Fe-based carbides deposited inside the lath and at the lath boundary with an aspect ratio of 5 or less is a minimum of 100 in the total of 5 fields deposited inside the lath and at the lath boundary using photographs taken at a magnification of 165000 times.
  • the ratio of those having an aspect ratio of 5 or less was determined.
  • the average particle size of MC type carbide was measured using a photograph taken at a magnification of 300,000 times, and the diameter of MC type carbides such as TiC of at least 100 total in 5 fields was measured.
  • the diameter d def was obtained.
  • the lower limit of the measured particle diameter is 2 nm.
  • the measurement chart uses an X-ray diffractometer to measure the diffraction intensity of the (110), (211), and (220) planes of 1 / 4-thick ⁇ -iron using CoK ⁇ rays. Then, the half width of the peak value of the reflection intensity of each crystal plane is obtained, and the local strain ⁇ ′ applied to the steel sheet is determined by the following equations (1) and (2).
  • Hole expansion ratio ⁇ (%) ⁇ (d ⁇ d 0 ) / d 0 ⁇ ⁇ 100
  • TS tensile strength
  • hole expansion rate
  • JIS No. 5 tensile test piece JIS Z 2001
  • C direction perpendicular direction
  • TS perpendicular direction
  • perpendicular direction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention has a prescribed component composition and is fashioned into a structure in which: the total surface area of a tempered bainite phase and a tempered martensite phase is 70% or greater; the total surface area of a coarse pearlite phase, a martensite phase, and a residual austenite phase is 10% or less; the tempered bainite phase and the tempered martensite phase have lath averaging 1.0 μm or less in width as a subsidiary structure; the proportion of material having an aspect ratio of 5 or less in Fe carbide precipitated inside the lath and at the lath boundaries is 80% or greater; and MC-type carbide having an average particle diameter of 20 nm or less is dispersed and precipitated inside the lath and at the lath boundaries. Furthermore, the average dislocation density is 1.0 × 1014m-2 to 5.0 × 1015m-2, inclusive.

Description

熱延鋼板およびその製造方法Hot-rolled steel sheet and manufacturing method thereof
 本発明は、自動車を初めとする輸送機械類の部品、建築用鋼材などの構造用鋼材に適した、引張強さ(TS):780MPa以上の高強度を有し、優れた伸びフランジ性と打抜き性を兼備し、さらには製造安定性にも優れる熱延鋼板およびその製造方法に関する。 The present invention has a high tensile strength (TS) of 780 MPa or more, excellent stretch flangeability and punching, suitable for structural steel materials such as automobile parts and other transportation machinery and construction steel materials. Further, the present invention relates to a hot-rolled steel sheet having excellent properties and also excellent in production stability and a method for producing the same.
 地球環境保全の観点からCO2排出量を削減すべく、自動車車体の強度を維持しつつその軽量化を図り、自動車の燃費を改善することが、自動車業界においては常に重要な課題とされている。自動車車体の強度を維持しつつ車体の軽量化を図るうえでは、自動車部品用素材となる鋼板の高強度化により、鋼板を薄肉化することが有効である。例えば、肉厚の鋼板を使用することの多い自動車の足回り部品では、高強度化による薄肉化によって、大幅な軽量化が期待できる。 In order to reduce CO 2 emissions from the viewpoint of global environmental conservation, maintaining the strength of the car body while reducing its weight and improving the fuel efficiency of the car has always been an important issue in the automobile industry. . In order to reduce the weight of the vehicle body while maintaining the strength of the automobile body, it is effective to reduce the thickness of the steel sheet by increasing the strength of the steel sheet used as a material for automobile parts. For example, in an automobile undercarriage part that often uses a thick steel plate, a significant reduction in weight can be expected by reducing the thickness by increasing the strength.
 一般に、ロアアームなどの自動車足回り部品は、バーリング加工によって成形されるため、優れた伸びフランジ性を有する鋼板が要求される。強度と加工性を兼ね備えた熱延鋼板に関しては、数多くの研究開発が為され、各種技術が提案されている。例えば、金属組織を実質的にフェライト単相とし、フェライト相の粒内に微細炭化物を析出させることにより、高い引張強度と優れた伸びフランジ性を両立できることが知られている。 Generally, automobile underbody parts such as a lower arm are formed by burring, so that a steel plate having excellent stretch flangeability is required. Many researches and developments have been made on hot-rolled steel sheets that have both strength and workability, and various technologies have been proposed. For example, it is known that both a high tensile strength and excellent stretch flangeability can be achieved by making the metal structure substantially a ferrite single phase and precipitating fine carbides in the grains of the ferrite phase.
 このような技術として、特許文献1には、鋼板組織を転位密度が低い加工性に優れたフェライト単相組織とし、さらに、フェライト中に微細炭化物を分散析出させて析出強化することにより、熱延鋼板の伸びフランジ性を維持したまま、強度を向上させた鋼板が開示されている。 As such a technique, Patent Document 1 discloses that a steel sheet structure is a ferrite single-phase structure having a low dislocation density and excellent workability, and further, fine carbides are dispersed and precipitated in ferrite to strengthen precipitation, thereby hot rolling. A steel sheet having improved strength while maintaining stretch flangeability of the steel sheet is disclosed.
 一方で、通常バーリング加工は所定の形状に打ち抜かれた鋼板を用いて行われる。実際の部品量産製造時には、連続プレスによる金型の温度上昇や金型の摩耗により部品打抜きのクリアランスが変化することが常であり、クリアランス変動があった場合に打抜き端面に割れ、欠け等の不具合が生じる場合がある。このような理由によって、打抜き条件の変動に対して常に優れた打抜き性を有する鋼板が求められている。 On the other hand, the normal burring process is performed using a steel sheet punched into a predetermined shape. During actual mass production of parts, the punching clearance usually changes due to die temperature rise or die wear due to continuous pressing. May occur. For these reasons, there is a demand for a steel sheet that always has excellent punchability against fluctuations in punching conditions.
 このような鋼板として、例えば特許文献2には、ベイナイト相を体積率で92%超とし、かつベイナイトラスの平均間隔0.60μm以下とし、かつ全Fe系炭化物のうち粒内に析出したFe系炭化物の個数比率を10%以上とすることにより、量産打抜き性を向上させた高強度熱延鋼板が開示されている。 As such a steel sheet, for example, Patent Document 2 discloses that Fe-type carbides having a bainite phase exceeding 92% by volume and an average interval of bainite laths of 0.60 μm or less and precipitated in grains among all Fe-type carbides. A high-strength hot-rolled steel sheet with improved mass production punchability by making the number ratio of 10% or more is disclosed.
特開2012-26034号公報JP 2012-26034 A 特開2014-205888号公報Japanese Unexamined Patent Publication No. 2014-205888
 特許文献1に記載された鋼板では、高強度と優れた伸びフランジ性が両立される。しかし、鋼板組織を実質的にフェライト単相としたために鋼板の打抜き時に、ボイドの起点となる介在物がほとんど存在しない。このため、特許文献1に記載された鋼板では、クリアランスや板押さえ等の条件が変動した際に、打抜き端面に荒れが生じるおそれがある。 The steel sheet described in Patent Document 1 achieves both high strength and excellent stretch flangeability. However, since the steel sheet structure is substantially a ferrite single phase, there is almost no inclusion that becomes a starting point of voids when the steel sheet is punched. For this reason, in the steel plate described in Patent Document 1, when the conditions such as the clearance and the plate pressing change, the punched end surface may be roughened.
 また、特許文献2に記載された鋼板では、熱間圧延条件を制御することにより所定のベイナイトを主体とする鋼板組織とし、これにより優れた打抜き性を得ている。しかしながら、かようなベイナイト組織は巻取温度の変動に対して引張強さなどの機械特性が変動しやすい特徴がある。一般に、熱間圧延後の冷却においてコイルの全長全幅にわたって鋼板温度を均一とすることは容易ではない。このため、特許文献2に記載された鋼板では、鋼板の機械特性のばらつきが大きくなって、製造安定性が低下するおそれがある。 Further, the steel sheet described in Patent Document 2 has a steel sheet structure mainly composed of a predetermined bainite by controlling hot rolling conditions, thereby obtaining excellent punchability. However, such a bainite structure is characterized in that mechanical properties such as tensile strength tend to fluctuate with respect to fluctuations in the coiling temperature. In general, it is not easy to make the steel plate temperature uniform over the entire length of the coil in cooling after hot rolling. For this reason, in the steel plate described in Patent Document 2, the variation in mechanical properties of the steel plate becomes large, and the production stability may be lowered.
 本発明は、上記の現状に鑑み開発されたものであって、引張強さ(TS):780MPa以上の高強度を有し、優れた伸びフランジ性と打抜き性を兼備し、さらには製造安定性にも優れる熱延鋼板を、その有利な製造方法とともに提供することを目的とする。 The present invention has been developed in view of the above situation, has a tensile strength (TS): high strength of 780 MPa or more, has excellent stretch flangeability and punchability, and further has manufacturing stability. An object of the present invention is to provide a hot-rolled steel sheet that is excellent in combination with its advantageous production method.
 本発明者らは、加工性、特には伸びフランジ性を維持しつつ鋼板を高強度化し、さらには打抜き性に優れ、かつ製造条件の変動に対する機械特性のばらつきを抑制できる方法について鋭意検討した。
 前述したように、鋼板の伸びフランジ性を向上させるためには、金属組織内の強度を均一化することが有効である。このような手法としては、フェライト単相組織として固溶強化や析出強化によって高強度化する手法や、ベイナイト単相組織として組織強化によって高強度化する手法が考えられる。しかしながら、フェライト単相組織の鋼板では、鋼板を打抜くにあたり、ボイドの起点となる介在物がほとんど存在しないために、クリアランスや板押さえ等の条件が変動した際に打抜き端面に荒れが生じるおそれがある。
The present inventors diligently studied a method for increasing the strength of a steel sheet while maintaining workability, particularly stretch flangeability, and having excellent punchability and suppressing variations in mechanical properties with respect to variations in manufacturing conditions.
As described above, in order to improve the stretch flangeability of the steel sheet, it is effective to make the strength in the metal structure uniform. As such a method, a method of increasing strength by solid solution strengthening or precipitation strengthening as a ferrite single phase structure, or a method of increasing strength by strengthening structure as a bainite single phase structure can be considered. However, in steel sheets with a ferrite single-phase structure, there is almost no inclusion that becomes the starting point of voids when punching the steel sheet, and therefore there is a risk that the punched end face will be rough when conditions such as clearance and sheet pressing change. is there.
 一方で、ベイナイト単相組織の鋼板は、優れた伸びフランジ性を有する。また、ベイナイト単相組織の鋼板は、ベイナイト組織中に多数のFe系炭化物が存在し、これが打抜き時にボイドの起点となるために、優れた打抜き性も兼備する。しかしながら、ベイナイト組織は変態温度によって強度等の機械特性が大きく変動するため、巻取温度等の熱間圧延条件の変動に対する機械特性のばらつきが大きくなることが懸念される。 On the other hand, a steel sheet having a bainite single-phase structure has excellent stretch flangeability. In addition, a steel sheet having a bainite single-phase structure has a large number of Fe-based carbides in the bainite structure, which serves as a starting point for voids at the time of punching, and thus has excellent punchability. However, since the mechanical properties such as strength greatly vary depending on the transformation temperature in the bainite structure, there is a concern that the variation in mechanical properties with respect to variations in hot rolling conditions such as the coiling temperature will increase.
 そこで、本発明者らは、ベイナイト、さらにはマルテンサイトを主体とした組織に焼戻し処理を加えることで熱間圧延条件の変動の影響を緩和することを考えた。
 一般に、ベイナイトまたはマルテンサイト組織に焼戻し処理を加えることによって、熱間圧延条件が変化することによる機械特性のばらつきは大幅に低減するが、同時に鋼板強度が大幅に低下してしまう。また、焼戻しベイナイトあるいは焼戻しマルテンサイト相中のFe系炭化物の形態は焼鈍条件によって変化するため、焼鈍条件によっては必ずしも打抜き性に優れた鋼板とはならない。
Therefore, the present inventors considered to reduce the influence of fluctuations in hot rolling conditions by adding a tempering treatment to a structure mainly composed of bainite and martensite.
In general, by applying a tempering treatment to a bainite or martensite structure, variations in mechanical properties due to changes in hot rolling conditions are greatly reduced, but at the same time the steel sheet strength is greatly reduced. Moreover, since the form of the Fe-based carbide in the tempered bainite or tempered martensite phase varies depending on the annealing conditions, the steel sheet does not necessarily have excellent punchability depending on the annealing conditions.
 このため、本発明者らは、ベイナイト、さらにはマルテンサイトを主体とした組織に焼戻し処理を加えるにあたり、上記したような鋼板強度の低下を抑制し、かつ優れた伸びフランジ成形性と打抜き性とを兼備させる手法について鋭意検討を重ねた。
 その結果、ラス内部およびラス境界にTiCなどのMC型炭化物を分散析出させることにより、焼鈍時におけるラスの粗大化、さらには回復によるラスの消滅が抑制され、焼鈍後においても高い鋼板強度を維持できることを知見した。加えて、ラス内部およびラス境界に析出しているFe系炭化物のうち、アスペクト比が5以下のものの割合を一定以上確保することで、優れた打抜き性が得られることを知見した。
 そして、発明者らはさらに検討を重ね、特にTiを0.03%以上添加し、焼鈍工程における熱履歴を適正化することにより、安定的に鋼板組織を前記の組織とすることが出来ることを知見するに至った。
 なお、MC型炭化物とは、M元素(M元素としては、TiやNb、V、Moなどが挙げられる。)とCの原子比が概ね1:1となる、TiCやNbC、VC、(Ti,Mo)Cなどの炭化物である。ここで、M元素は一種類である必要はなく、複数の金属元素が含まれた複合炭化物でもよい。また、Nを含有した炭窒化物および複合炭窒化物でもよい。
For this reason, the present inventors suppressed the reduction of the steel sheet strength as described above when adding a tempering treatment to the structure mainly composed of bainite and further martensite, and excellent stretch flangeability and punchability. We studied earnestly about the method of combining the two.
As a result, MC type carbides such as TiC are dispersed and precipitated inside the lath and within the lath boundary, which suppresses coarsening of the lath during annealing and further disappearance of the lath due to recovery, and maintains high steel sheet strength even after annealing. I found out that I can do it. In addition, it has been found that excellent punchability can be obtained by ensuring a certain ratio of Fe-based carbides precipitated in the lath and at the lath boundary with an aspect ratio of 5 or less.
Further, the inventors have further studied, in particular, adding 0.03% or more of Ti, and knowing that the steel sheet structure can be stably made the above structure by optimizing the thermal history in the annealing process. It came to.
In addition, MC type carbide is TiC, NbC, VC, (Ti where the atomic ratio of M element (M element includes Ti, Nb, V, Mo, etc.) and C is approximately 1: 1. , Mo) C and other carbides. Here, the M element does not have to be a single type, and may be a composite carbide containing a plurality of metal elements. Also, N-containing carbonitrides and composite carbonitrides may be used.
 また、本発明者らは、さらに鋭意検討を重ね、焼鈍工程における最高加熱温度から室温まで冷却する際の熱履歴を適切に制御することで、焼戻しマルテンサイト相および焼戻しベイナイト相以外の残部組織、特にマルテンサイト相、粗大パーライト相および残留オーステナイト相の生成が抑制され、これにより、高強度と優れた打抜き性に加え、優れた伸びフランジ性をも兼備できることを知見するに至った。
 本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
In addition, the present inventors have further studied earnestly, by appropriately controlling the thermal history when cooling from the highest heating temperature to room temperature in the annealing process, the remaining structure other than the tempered martensite phase and the tempered bainite phase, In particular, the inventors have found that the formation of martensite phase, coarse pearlite phase and retained austenite phase is suppressed, and that, in addition to high strength and excellent punchability, it can also have excellent stretch flangeability.
The present invention was completed after further studies based on the above findings.
 すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
 C:0.03%以上0.20%以下、  Si:0.4%以下、
 Mn:0.5%以上2.0%以下、   P:0.03%以下、
 S:0.03%以下、       Al:0.1%以下、
 N:0.01%以下および     Ti:0.03%以上0.15%以下
を含有し、残部がFeおよび不可避的不純物からなる組成と、
 焼戻しベイナイト相および焼戻しマルテンサイト相の面積率の総和が70%以上で、かつ粗大パーライト相、マルテンサイト相および残留オーステナイト相の面積率の総和が10%以下であり、
 前記焼戻しベイナイト相および焼戻しマルテンサイト相が、下部組織として平均幅が1.0μm以下のラスを有し、該ラス内部およびラス境界に析出したFe系炭化物のうち、アスペクト比が5以下のものの割合が80%以上であり、かつ該ラス内部およびラス境界に平均粒子径が20nm以下のMC型炭化物が分散析出した、組織とを有し、
 平均転位密度が1.0×1014m-2以上5.0×1015m-2以下である、熱延鋼板。
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.03% or more and 0.20% or less, Si: 0.4% or less,
Mn: 0.5% to 2.0%, P: 0.03% or less,
S: 0.03% or less, Al: 0.1% or less,
N: 0.01% or less and Ti: 0.03% or more and 0.15% or less, with the balance consisting of Fe and inevitable impurities,
The total area ratio of the tempered bainite phase and the tempered martensite phase is 70% or more, and the total area ratio of the coarse pearlite phase, the martensite phase and the retained austenite phase is 10% or less,
The tempered bainite phase and the tempered martensite phase have lath having an average width of 1.0 μm or less as a substructure, and among Fe-based carbides precipitated in the lath and at the lath boundary, the proportion of those having an aspect ratio of 5 or less 80% or more, and MC type carbide having an average particle size of 20 nm or less dispersed and precipitated inside the lath and at the lath boundary,
A hot-rolled steel sheet having an average dislocation density of 1.0 × 10 14 m −2 or more and 5.0 × 10 15 m −2 or less.
2.前記組成として、さらに質量%で、
 V:0.01%以上0.3%以下、
 Nb:0.01%以上0.1%以下および
 Mo:0.01%以上0.3%以下
のうちの少なくとも一種または二種以上を含有する、前記1に記載の熱延鋼板。
2. As the composition, further in mass%,
V: 0.01% to 0.3%,
2. The hot rolled steel sheet according to 1 above, containing at least one or more of Nb: 0.01% to 0.1% and Mo: 0.01% to 0.3%.
3.前記組成として、さらに質量%で、
 B:0.0002%以上0.010%以下、
を含有する、前記1または2に記載の熱延鋼板。
3. As the composition, further in mass%,
B: 0.0002% to 0.010%,
The hot-rolled steel sheet according to 1 or 2, comprising:
4.前記組成として、さらに質量%で、REM、Zr、As、Cu、Ni、Sn、Pb、Ta、W、Cr、Sb、Mg、Ca、Co、Se、ZnおよびCsのうちの一種または二種以上を合計で1.0%以下含有する、前記1~3のいずれか一項に記載の熱延鋼板。 4). As the composition, further, by mass%, one or more of REM, Zr, As, Cu, Ni, Sn, Pb, Ta, W, Cr, Sb, Mg, Ca, Co, Se, Zn and Cs The hot-rolled steel sheet according to any one of 1 to 3 above, containing 1.0% or less in total.
5.前記1~4のいずれか一項に記載の熱延鋼板であって、その表面にめっき層を有する、熱延鋼板。 5. The hot-rolled steel sheet according to any one of 1 to 4, which has a plating layer on the surface thereof.
6.前記1~4のいずれか一項に記載の組成を有する鋼素材を、オーステナイト単相域に加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、得られた鋼板を冷却し、巻き取る熱間圧延工程と、
 前記熱間圧延工程後、前記鋼板を酸洗し、その後連続焼鈍する連続焼鈍工程とを有し、
 前記熱間圧延工程では、仕上げ圧延温度を850℃以上1000℃以下、前記仕上げ圧延終了後、500℃までの平均冷却速度を30℃/s以上、巻取温度を500℃以下とし、
 前記連続焼鈍工程では、
 前記鋼板の最高加熱温度を700℃以上(A3点+A1点)/2以下とし、
 前記鋼板を前記最高加熱温度まで加熱する際の鋼板温度が600℃以上700℃以下である時間を20秒以上1000秒以下とし、
 鋼板温度が700℃超である時間を200秒以下とし、
 前記鋼板を最高加熱温度から冷却する際の530℃までの平均冷却速度を8℃/s以上25℃/s以下とし、該冷却停止後、470℃以上530℃以下の温度域での保持時間を10秒以上とする、熱延鋼板の製造方法。
6). The steel material having the composition according to any one of 1 to 4 above is heated to an austenite single phase region, subjected to hot rolling consisting of rough rolling and finish rolling, and after the finish rolling is finished, A hot rolling process for cooling and winding,
After the hot rolling step, pickling the steel sheet, and then having a continuous annealing step for continuous annealing,
In the hot rolling step, the finish rolling temperature is 850 ° C. or more and 1000 ° C. or less, after the finish rolling is finished, the average cooling rate to 500 ° C. is 30 ° C./s or more, and the winding temperature is 500 ° C. or less,
In the continuous annealing step,
The maximum heating temperature of the steel sheet is 700 ° C. or more (A 3 points + A 1 point) / 2 or less,
The time when the steel plate temperature when heating the steel plate to the maximum heating temperature is 600 ° C. or more and 700 ° C. or less is 20 seconds or more and 1000 seconds or less,
The time when the steel sheet temperature is over 700 ° C. is set to 200 seconds or less,
The average cooling rate up to 530 ° C when cooling the steel sheet from the maximum heating temperature is 8 ° C / s or more and 25 ° C / s or less, and after the cooling is stopped, the holding time in the temperature range of 470 ° C or more and 530 ° C or less is set. A method for producing a hot-rolled steel sheet for 10 seconds or more.
7.前記連続焼鈍工程後に、めっき処理を施す工程をさらにそなえる、前記6に記載の熱延鋼板の製造方法。 7). The method for producing a hot-rolled steel sheet according to 6, further comprising a step of performing a plating treatment after the continuous annealing step.
 本発明によれば、自動車をはじめとする輸送機械類の部品、建築用鋼材などの構造用鋼材に適した、引張強さ(TS):780MPa以上の高強度を有し、優れた伸びフランジ性と打抜き性を兼備し、かつ製造条件の変動に対する機械特性のばらつきを抑制した熱延鋼板が得られる。これにより、熱延鋼板の更なる用途展開が可能となり、産業上格段の効果を奏する。 According to the present invention, tensile strength (TS): high strength of 780 MPa or more, excellent stretch flangeability, suitable for structural steel materials such as automobile machinery and other transportation machinery parts and construction steel materials. Thus, a hot-rolled steel sheet that has both punchability and suppresses variations in mechanical properties with respect to fluctuations in manufacturing conditions can be obtained. Thereby, the further use expansion | deployment of a hot-rolled steel plate is attained, and there exists a remarkable effect on industry.
焼戻しベイナイト相および焼戻しマルテンサイト相が下部組織としてラスを有し、このラス内部およびラス境界に、Fe系炭化物が析出するとともに、MC型炭化物が分散析出した組織の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a structure in which a tempered bainite phase and a tempered martensite phase have lath as a substructure, and Fe-based carbides are precipitated and lath MC-type carbides are dispersed and precipitated in the lath inside and lath boundaries.
 以下、本発明を具体的に説明する。
 まず、本発明の熱延鋼板における成分組成について説明する。なお、成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
Hereinafter, the present invention will be specifically described.
First, the component composition in the hot-rolled steel sheet of the present invention will be described. The unit of element content in the component composition is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.
C:0.03%以上0.20%以下
 Cは、鋼の強度を向上させ、熱間圧延時にベイナイトおよびマルテンサイトの生成を促進する。そのため、本発明では、C含有量を0.03%以上とする必要がある。一方、C含有量が0.20%を超えると、炭素当量が過剰に大きくなり鋼板の溶接性を劣化させる。したがって、C含有量を0.03%以上0.20%以下とする。好ましくは、0.04%以上0.18%以下であり、より好ましくは0.05%超0.15%以下である。
C: 0.03% to 0.20% C improves the strength of the steel and promotes the formation of bainite and martensite during hot rolling. Therefore, in the present invention, the C content needs to be 0.03% or more. On the other hand, when the C content exceeds 0.20%, the carbon equivalent becomes excessively large and the weldability of the steel sheet is deteriorated. Therefore, the C content is set to 0.03% or more and 0.20% or less. Preferably, it is 0.04% or more and 0.18% or less, more preferably more than 0.05% and 0.15% or less.
Si:0.4%以下
 Siは、延性(伸び)低下をもたらすことなく鋼板強度を向上させる有効な元素として、通常、高強度鋼板に積極的に含有される。しかしながら、Si含有量が0.4%を超えると、熱処理時に鋼板表面に酸化物を形成し、めっき密着性の悪化の原因となる。したがって、Si含有量を0.4%以下とする。好ましくは0.3%以下、より好ましくは0.2%以下である。なお、Siは不純物レベルまで添加量を削減してもよく、O%であってもよい。
Si: 0.4% or less Si is usually positively contained in a high-strength steel sheet as an effective element for improving the steel sheet strength without reducing ductility (elongation). However, if the Si content exceeds 0.4%, an oxide is formed on the surface of the steel sheet during heat treatment, which causes deterioration of plating adhesion. Therefore, the Si content is 0.4% or less. Preferably it is 0.3% or less, More preferably, it is 0.2% or less. Note that Si may be added to an impurity level, or may be O%.
Mn:0.5%以上2.0%以下
 Mnは、固溶して鋼の強度増加に寄与する元素である。また、Mnは、焼入れ性の向上により熱間圧延時にベイナイトおよびマルテンサイトの生成を促進する元素である。このような効果を得るためには、Mn含有量を0.5%以上とする必要がある。一方、Mn含有量が2.0%を超えると、オーステナイトが過度に安定となり鋼板中にマルテンサイトや残留オーステナイトを過度に含む組織となる。そのため、伸びフランジ性が劣化する。したがって、Mn含有量を0.5%以上2.0%以下とする。なお、好ましくは0.8%以上1.8%以下、より好ましくは1.0%以上1.7%以下である。
Mn: 0.5% or more and 2.0% or less Mn is an element that contributes to increasing the strength of steel by solid solution. Mn is an element that promotes the formation of bainite and martensite during hot rolling by improving hardenability. In order to obtain such an effect, the Mn content needs to be 0.5% or more. On the other hand, if the Mn content exceeds 2.0%, the austenite becomes excessively stable, and the steel sheet has a structure that excessively contains martensite and residual austenite. Therefore, stretch flangeability deteriorates. Therefore, the Mn content is 0.5% or more and 2.0% or less. In addition, Preferably they are 0.8% or more and 1.8% or less, More preferably, they are 1.0% or more and 1.7% or less.
P:0.03%以下
 Pは、粒界に偏析して伸びを低下させ、加工時に割れを誘発し、さらには耐衝撃性を劣化させる有害な元素である。したがって、P含有量を0.03%以下とする。ただし、過度の脱Pは精錬時間の増加やコストの上昇を招くため、P含有量を0.002%以上とすることが好ましい。
P: 0.03% or less P is a harmful element that segregates at grain boundaries to reduce elongation, induces cracking during processing, and further degrades impact resistance. Therefore, the P content is 0.03% or less. However, excessive P removal leads to an increase in refining time and cost, so the P content is preferably 0.002% or more.
S:0.03%以下
 Sは、鋼中にMnSやTiSとして存在して熱延鋼板の打抜き加工時にボイドの発生を助長する。また、Sは、加工中にもボイドの発生の起点となるため、伸びフランジ性を低下させる。そのため、S含有量を極力低減することが好ましく、0.03%以下とする。好ましくは0.01%以下である。ただし、過度の脱Sは精錬時間の増加やコストの上昇を招くため、S含有量は0.0002%以上とすることが好ましい。
S: 0.03% or less S is present in steel as MnS or TiS, and promotes the generation of voids during the punching of hot-rolled steel sheets. Moreover, since S becomes a starting point of generation of voids during processing, it reduces stretch flangeability. Therefore, it is preferable to reduce the S content as much as possible, and the content is 0.03% or less. Preferably it is 0.01% or less. However, since excessive desulfurization leads to an increase in refining time and cost, the S content is preferably 0.0002% or more.
Al:0.1%以下
 Alは、脱酸材として作用する元素である。このような効果を得るためにはAlを0.01%以上含有させることが望ましい。しかしながら、Alが0.1%を超えると、鋼板中にAl酸化物として残存し、Al酸化物が凝集して粗大化し易くなり、伸びフランジ性を劣化させる。したがって、Al含有量を0.1%以下とする。
Al: 0.1% or less Al is an element that acts as a deoxidizer. In order to obtain such an effect, it is preferable to contain 0.01% or more of Al. However, if Al exceeds 0.1%, it remains as an Al oxide in the steel sheet, and the Al oxide tends to aggregate and become coarse and deteriorate stretch flangeability. Therefore, the Al content is 0.1% or less.
N:0.01%以下
 Nは、鋼中に粗大なTiNとして存在し、熱延鋼板の打抜き加工時に粗大なボイドの発生を助長する。また、Nは、加工中にも粗大なボイドの発生の起点となるため、伸びフランジ性を低下させる。このため、N含有量を極力低減することが好ましく、0.01%以下とする。好ましくは0.006%以下である。ただし、過度の脱Nは精錬時間の増加やコストの上昇を招くため、N含有量は0.0005%以上とすることが好ましい。
N: 0.01% or less N is present as coarse TiN in the steel, and promotes the generation of coarse voids during the punching of hot-rolled steel sheets. Moreover, since N becomes a starting point of generation of coarse voids during processing, it reduces stretch flangeability. For this reason, it is preferable to reduce N content as much as possible, and set it as 0.01% or less. Preferably it is 0.006% or less. However, excessive N removal leads to an increase in refining time and cost, so the N content is preferably 0.0005% or more.
Ti:0.03%以上0.15%以下
 Tiは、MC型炭化物を形成して焼鈍工程におけるラス粗大化抑制を図り、鋼板を高強度化するうえで必要不可欠な元素である。また、MC型炭化物は析出強化により、鋼板の強度を高める。ここで、Ti含有量が0.03%未満であると、これらの効果を十分に得ることが出来ない。このため、ラスの粗大化および析出量低下により鋼板強度が低下し、所望の鋼板強度(引張強さ:780MPa以上)を得ることが困難となる。一方、Ti含有量が0.15%を超えると、中央偏析が顕著となり打抜き性劣化の原因となる。したがって、Ti含有量を0.03%以上0.15%以下とする。好ましくは0.04%以上0.14%以下、さらに好ましくは0.05%以上0.13%以下である。
Ti: 0.03% or more and 0.15% or less Ti is an indispensable element for increasing the strength of a steel sheet by forming MC-type carbides and suppressing lath coarsening in the annealing process. Moreover, MC type carbide increases the strength of the steel sheet by precipitation strengthening. Here, when the Ti content is less than 0.03%, these effects cannot be sufficiently obtained. For this reason, the strength of the steel sheet decreases due to the coarsening of the lath and the decrease in the amount of precipitation, making it difficult to obtain the desired steel sheet strength (tensile strength: 780 MPa or more). On the other hand, if the Ti content exceeds 0.15%, the central segregation becomes prominent and causes punching deterioration. Therefore, the Ti content is set to 0.03% or more and 0.15% or less. Preferably they are 0.04% or more and 0.14% or less, More preferably, they are 0.05% or more and 0.13% or less.
 以上、基本成分について説明したが、本発明の熱延鋼板では、さらなる高強度化を目的として、必要に応じてV:0.01%以上0.3%以下、Nb:0.01%以上0.1%以下およびMo:0.01%以上0.3%以下のうちの少なくとも一種または二種以上を含有することができる。 The basic components have been described above. In the hot-rolled steel sheet of the present invention, V: 0.01% or more and 0.3% or less, Nb: 0.01% or more and 0.1% or less, and Mo: 0.01 as necessary for the purpose of further increasing the strength. % Or more and 0.3% or less can be contained.
V:0.01%以上0.3%以下
 Vは、MC型炭化物を形成して、Ti同様に、焼鈍工程におけるラス粗大化抑制および析出強化により、鋼板の高強度化に寄与する。このような効果を得るためには、Vを0.01%以上含有する必要がある。一方、V含有量が0.3%を超えると、中央偏析が顕著となり打抜き性劣化の原因となる。したがって、V含有量を0.01%以上0.3%以下とすることが好ましい。なお、より好ましくは0.01%以上0.2%以下であり、さらに好ましくは0.01%以上0.15%以下である。なお、Vは、単独でMC型炭化物を形成する場合もあれば、TiやNb、Moとの複合炭化物を形成する場合もある。これらの炭化物組成は、発明の効果になんら影響をおよぼすものではない。
V: 0.01% or more and 0.3% or less V forms MC-type carbides and, like Ti, contributes to increasing the strength of the steel sheet by suppressing coarsening of the lath and precipitation strengthening in the annealing process. In order to acquire such an effect, it is necessary to contain V 0.01% or more. On the other hand, when the V content exceeds 0.3%, the central segregation becomes prominent and causes punching deterioration. Therefore, the V content is preferably 0.01% or more and 0.3% or less. In addition, More preferably, it is 0.01% or more and 0.2% or less, More preferably, it is 0.01% or more and 0.15% or less. Note that V may form MC-type carbides alone, or may form composite carbides with Ti, Nb, and Mo. These carbide compositions have no influence on the effects of the invention.
Nb:0.01%以上0.1%以下
 Nbは、MC型炭化物を形成して、Ti同様に、焼鈍工程におけるラス粗大化抑制および析出強化により、鋼板の高強度化に寄与する。このような効果を得るためには、Nbを0.01%以上含有する必要がある。一方、Nbを0.1%を超えて過剰に添加しても熱間圧延時に加熱炉で固溶しないために効果が飽和し、いたずらに合金コストを高くする原因となる。したがって、Nb含有量を0.01%以上0.1%以下とすることが好ましい。なお、より好ましくは0.01%以上0.08%以下であり、さらに好ましくは0.01%以上0.06%以下である。なお、Nbは、単独でMC型炭化物を形成する場合もあれば、TiやV、Moとの複合炭化物を形成する場合もある。これらの炭化物組成は、発明の効果になんら影響をおよぼすものではない。
Nb: 0.01% or more and 0.1% or less Nb forms MC-type carbides and, like Ti, contributes to increasing the strength of the steel sheet by suppressing lath coarsening and precipitation strengthening in the annealing process. In order to obtain such an effect, it is necessary to contain 0.01% or more of Nb. On the other hand, even if Nb is added excessively in excess of 0.1%, the effect is saturated because it does not form a solid solution in the heating furnace at the time of hot rolling, and this causes unnecessarily high alloy costs. Therefore, the Nb content is preferably 0.01% or more and 0.1% or less. In addition, More preferably, it is 0.01% or more and 0.08% or less, More preferably, it is 0.01% or more and 0.06% or less. Nb may form MC-type carbides alone, or may form composite carbides with Ti, V, and Mo. These carbide compositions have no influence on the effects of the invention.
Mo:0.01%以上0.3%以下
 Moは、Tiと複合添加することによりMC型複合炭化物を形成して、Tiと同様に、焼鈍工程におけるラス粗大化抑制および析出強化により、鋼板の高強度化に寄与する。このような効果を得るためには、Moを0.01%以上含有する必要がある。一方、Mo含有量が0.3%を超えると、中央偏析が顕著となり打抜き性劣化の原因となる。したがって、Mo含有量を0.01%以上0.3%以下とすることが好ましい。なお、Moは、NbやVとの複合炭化物を形成する場合もあるが、これらの炭化物組成は、発明の効果になんら影響をおよぼすものではない。
Mo: 0.01% or more and 0.3% or less Mo forms MC-type composite carbide by compound addition with Ti, and, like Ti, increases the strength of the steel sheet by suppressing lath coarsening and precipitation strengthening in the annealing process. Contribute. In order to obtain such an effect, it is necessary to contain 0.01% or more of Mo. On the other hand, if the Mo content exceeds 0.3%, the central segregation becomes prominent and causes punching deterioration. Therefore, the Mo content is preferably 0.01% or more and 0.3% or less. Mo may form a composite carbide with Nb or V, but these carbide compositions do not affect the effects of the invention.
 また、本発明の熱延鋼板では、熱間圧延時における焼入れ性の向上を目的として、必要に応じてB:0.0002%以上0.010%以下を含有することができる。 Further, the hot-rolled steel sheet of the present invention may contain B: 0.0002% to 0.010% as necessary for the purpose of improving the hardenability during hot rolling.
B:0.0002%以上0.010%以下
 Bは、オーステナイト粒界に偏析し、フェライトの生成・成長を抑制することで焼入れ性を向上させ、ベイナイトおよびマルテンサイトの生成を促進する元素である。これらの効果を得るためには、B含有量を0.0002%以上とすることが好ましい。但し、B含有量が0.010%を超えると、硬質な鉄ホウ化物を形成し伸びフランジ性劣化の原因となる。したがって、Bを含有する場合には、その含有量を0.0002%以上0.010%以下とすることが好ましい。また、0.0002%以上0.0050%以下とすることがより好ましく、0.0004%以上0.0030%以下とすることがさらに好ましい。
B: 0.0002% or more and 0.010% or less B is an element that segregates at austenite grain boundaries and suppresses the formation and growth of ferrite to improve hardenability and promote the formation of bainite and martensite. In order to obtain these effects, the B content is preferably 0.0002% or more. However, if the B content exceeds 0.010%, a hard iron boride is formed, which causes stretch flangeability deterioration. Therefore, when it contains B, it is preferable to make the content into 0.0002% or more and 0.010% or less. Further, it is more preferably 0.0002% or more and 0.0050% or less, and further preferably 0.0004% or more and 0.0030% or less.
 さらに、本発明の熱延鋼板は、上記した組成に加えてさらに、REM、Zr、As、Cu、Ni、Sn、Pb、Ta、W、Cr、Sb、Mg、Ca、Co、Se、ZnおよびCsのうちの一種または二種以上を合計で1.0%以下含有してもよい。
 なお、上記以外の成分は、Feおよび不可避不純物である。
Furthermore, the hot-rolled steel sheet of the present invention further includes REM, Zr, As, Cu, Ni, Sn, Pb, Ta, W, Cr, Sb, Mg, Ca, Co, Se, Zn, and the above composition. One or more of Cs may be contained in a total of 1.0% or less.
Components other than the above are Fe and inevitable impurities.
 次に、本発明の熱延鋼板における組織の限定理由について説明する。
焼戻しベイナイト相および焼戻しマルテンサイト相の面積率の総和:70%以上
 本発明の熱延鋼板では、高強度と優れた打抜き性を兼備する焼戻しベイナイトおよび焼戻しマルテンサイトを主体とした組織とする。ここで、焼戻しベイナイト相と焼戻しマルテンサイト相の面積率の総和が70%未満であると、所望の高強度と打抜き性を兼備した熱延鋼板が得られない。なお、焼戻しベイナイト相および焼戻しマルテンサイトの分率を個別に定義しないのは、焼鈍後の焼戻しベイナイトおよび焼戻しマルテンサイトは区別できない組織となるためである。また、このことは熱間圧延時の製造条件が変動した際にも焼鈍後の機械特性のばらつきを抑えることが出来る大きな要因である。したがって、焼戻しベイナイト相および焼戻しマルテンサイト相の面積率の総和は、70%以上とする。好ましくは75%以上、より好ましくは80%以上である。また、焼戻しベイナイト相と焼戻しマルテンサイト相の面積率の総和は100%であってもよい。
Next, the reason for limiting the structure in the hot-rolled steel sheet of the present invention will be described.
Total area ratio of tempered bainite phase and tempered martensite phase: 70% or more The hot-rolled steel sheet of the present invention has a structure mainly composed of tempered bainite and tempered martensite, which has both high strength and excellent punchability. Here, when the sum of the area ratios of the tempered bainite phase and the tempered martensite phase is less than 70%, a hot rolled steel sheet having desired high strength and punchability cannot be obtained. The reason why the tempered bainite phase and the tempered martensite fraction are not individually defined is that the tempered bainite and tempered martensite after annealing have a structure that cannot be distinguished. This is also a major factor that can suppress variations in mechanical properties after annealing even when the manufacturing conditions during hot rolling vary. Accordingly, the total area ratio of the tempered bainite phase and the tempered martensite phase is 70% or more. Preferably it is 75% or more, more preferably 80% or more. Further, the total area ratio of the tempered bainite phase and the tempered martensite phase may be 100%.
粗大パーライト相、マルテンサイト相および残留オーステナイト相の面積率の総和:10%以下
 上記したように、本発明の熱延鋼板では、焼戻しベイナイトおよび焼戻しマルテンサイトを主体とした組織となり、焼戻しベイナイトおよび焼戻しマルテンサイト以外の残部組織としては、Fe系炭化物、粗大パーライト、微細パーライト、疑似パーライト、ベイナイト、マルテンサイト、残留オーステナイト等があげられる。これらの組織のうち、特に粗大パーライト、マルテンサイトおよび残留オーステナイトが金属組織中に存在する場合、伸びフランジ性が顕著に劣化する。したがって、粗大パーライト相、マルテンサイト相および残留オーステナイト相の面積率の総和は10%以下とする。なお、好ましくは8%以下、より好ましくは5%以下である。また、0%であってもよい。
 ここで、粗大パーライトとはラメラ間隔が0.2μm以上のもの、微細パーライトとはラメラ間隔が0.2μm未満のもの、疑似パーライトとはパーライトラメラが明瞭に観察されないものとする。なお、ラメラ間隔は、走査型電子顕微鏡による組織観察により求めることができる。
Total area ratio of coarse pearlite phase, martensite phase and residual austenite phase: 10% or less As described above, the hot-rolled steel sheet of the present invention has a structure mainly composed of tempered bainite and tempered martensite. Examples of the remaining structure other than martensite include Fe carbide, coarse pearlite, fine pearlite, pseudo pearlite, bainite, martensite, and retained austenite. Among these structures, especially when coarse pearlite, martensite, and retained austenite are present in the metal structure, stretch flangeability is significantly deteriorated. Therefore, the sum of the area ratios of the coarse pearlite phase, martensite phase and residual austenite phase is set to 10% or less. In addition, Preferably it is 8% or less, More preferably, it is 5% or less. Further, it may be 0%.
Here, it is assumed that coarse pearlite has a lamella spacing of 0.2 μm or more, fine pearlite has a lamella spacing of less than 0.2 μm, and pseudo pearlite does not clearly observe a pearlite lamella. The lamella spacing can be obtained by observing the structure with a scanning electron microscope.
 また、焼戻しベイナイト相、焼戻しマルテンサイト相、粗大パーライト相、マルテンサイト相および残留オーステナイト相以外の残部組織としては、例えばフェライト相や疑似パーライト相、微細パーライト相が挙げられる。なお、かような残部組織は、合計の面積率で30%以下であれば許容できる。 Further, examples of the remaining structure other than the tempered bainite phase, the tempered martensite phase, the coarse pearlite phase, the martensite phase, and the retained austenite phase include a ferrite phase, a pseudo pearlite phase, and a fine pearlite phase. Such a remaining structure is acceptable if the total area ratio is 30% or less.
焼戻しベイナイト相および焼戻しマルテンサイト相が下部組織として有するラスの平均幅:1.0μm以下
 焼戻しベイナイト相および焼戻しマルテンサイト相による高強度化のためには、これらの下部組織として、平均幅:1.0μm以下の微細なラスを有することが重要である。図1に、焼戻しベイナイト相および焼戻しマルテンサイト相が下部組織としてラスを有し、このラス内部およびラス境界に、Fe系炭化物が析出するとともに、MC型炭化物が分散析出した組織の一例を示す模式図を示す。ここで、ラスが回復により消失したり、ラスの平均幅が1.0μmを超える場合、所定の高強度を達成できなくなる。したがって、焼戻しベイナイト相および焼戻しマルテンサイト相が下部組織として有するラスの平均幅は、1.0μm以下とする。好ましくは0.8μm以下である、より好ましくは0.6μm以下である。また、下限については特に限定されるものではないが、通常、0.1μm程度である。
The average width of the lath that the tempered bainite phase and the tempered martensite phase have as a substructure: 1.0 μm or less In order to increase the strength by the tempered bainite phase and the tempered martensite phase, the average width of these substructures: 1.0 μm or less It is important to have a fine lath. FIG. 1 is a schematic diagram showing an example of a structure in which a tempered bainite phase and a tempered martensite phase have lath as a substructure, and Fe-based carbides precipitate and MC-type carbides disperse and precipitate in the lath inside and lath boundaries. The figure is shown. Here, when the lath disappears due to recovery or the average width of the lath exceeds 1.0 μm, a predetermined high strength cannot be achieved. Therefore, the average width of the laths that the tempered bainite phase and the tempered martensite phase have as a substructure is 1.0 μm or less. Preferably it is 0.8 micrometer or less, More preferably, it is 0.6 micrometer or less. The lower limit is not particularly limited, but is usually about 0.1 μm.
ラス内部およびラス境界に析出したFe系炭化物のうち、アスペクト比が5以下のものの割合:80%以上
 図1に示すようにラス内部およびラス境界に析出したFe系炭化物は、打抜き時にボイドの起点となることにより打抜き性の改善に寄与する。特に、アスペクト比が5以下のFe系炭化物はこの効果が大きく、その割合を80%以上とすることで優れた打抜き性を発現することができる。したがって、ラス内部およびラス境界に析出したFe系炭化物のうち、アスペクト比が5以下のものの割合を80%以上とする。好ましくは85%以上である。なお、上限については特に限定されるものではなく、100%であってもよい。
 ここで、Fe系炭化物とは、θ炭化物(セメンタイト)やε炭化物である。炭化物中に合金元素が固溶していてもよい。また、アスペクト比は、ラス内部およびラス境界に析出したFe系炭化物の長径と短径の長さの比とする。
Percentage of Fe-based carbides precipitated in the lath and lath boundary with an aspect ratio of 5 or less: 80% or more As shown in Fig. 1, Fe-based carbides deposited in the lath and lath boundary are the origin of voids during punching This contributes to improved punchability. In particular, an Fe-based carbide having an aspect ratio of 5 or less has a large effect, and an excellent punchability can be exhibited by setting the ratio to 80% or more. Therefore, the proportion of Fe-based carbides precipitated in the lath and at the lath boundary is set to 80% or more with an aspect ratio of 5 or less. Preferably it is 85% or more. The upper limit is not particularly limited and may be 100%.
Here, the Fe-based carbide is θ carbide (cementite) or ε carbide. The alloy element may be dissolved in the carbide. The aspect ratio is the ratio of the length of the major axis to the minor axis of the Fe-based carbide precipitated in the lath and at the lath boundary.
ラス内部およびラス境界に分散析出したMC型炭化物の平均粒子径:20nm以下
 図1に示すようにラス内部およびラス境界に微細に分散析出したMC型炭化物は、鋼板の焼鈍時に、ピン止め効果によりラスの粗大化を抑制し、さらには回復によるラスの消滅を抑制することで、高強度化に寄与する。しかしながら、MC型炭化物の平均粒子径が20nmを超える場合、ピン止めに寄与するMC型炭化物の粒子数が不足してピン止め効果が不十分となり、鋼板強度が低下する。一方で、MC型炭化物の平均粒子径が20nm以下である場合、十分な数のMC型炭化物がピン止め効果を発揮し、鋼板強度の低下を抑制する。したがって、焼戻しベイナイト相および焼戻しマルテンサイト相のラス内部およびラス境界に分散析出するMC型炭化物の平均粒子径は、20nm以下とする。好ましくは15nm以下である。下限については特に限定されるものではないが、通常1nm程度である。ただし、粒子径が50nmを超えるMC型炭化物の割合は10%以下とすることが好ましい。
MC type carbide dispersed and precipitated in the lath and lath boundary: 20 nm or less As shown in Fig. 1, MC type carbide finely dispersed and precipitated in the lath and lath boundary has a pinning effect during annealing of the steel sheet. By suppressing the coarsening of the lath and further suppressing the disappearance of the lath due to the recovery, it contributes to an increase in strength. However, when the average particle diameter of MC type carbide exceeds 20 nm, the number of MC type carbide particles contributing to pinning is insufficient, the pinning effect is insufficient, and the steel sheet strength is reduced. On the other hand, when the average particle size of the MC type carbide is 20 nm or less, a sufficient number of MC type carbides exhibit a pinning effect and suppress a decrease in steel sheet strength. Therefore, the average particle diameter of MC type carbides dispersed and precipitated in the lath and lath boundaries of the tempered bainite phase and the tempered martensite phase is set to 20 nm or less. Preferably it is 15 nm or less. The lower limit is not particularly limited, but is usually about 1 nm. However, the proportion of MC type carbide having a particle size exceeding 50 nm is preferably 10% or less.
 また、本発明の熱延鋼板では、平均転位密度を以下の範囲とすることが重要である。
平均転位密度:1.0×1014m-2以上5.0×1015m-2以下
 本発明の熱延鋼板では、ベイナイトおよびマルテンサイト組織を有する鋼板を焼戻すことによって、熱間圧延条件の変動に対するばらつきを低減している。ここに、焼鈍後の鋼板の平均転位密度が5.0×1015m-2を超える場合、鋼板の焼戻しが不十分であり熱間圧延条件の変動の影響を十分に緩和することができない。一方で、十分に焼戻された場合においても、通常、平均転位密度は1.0×1014m-2以上である。したがって、平均転位密度は1.0×1014m-2以上5.0×1015m-2以下とする。好ましくは1.0×1014m-2以上2.0×1015m-2以下である。
In the hot rolled steel sheet of the present invention, it is important that the average dislocation density is in the following range.
Average dislocation density: 1.0 × 10 14 m −2 or more and 5.0 × 10 15 m −2 or less In the hot-rolled steel sheet of the present invention, the steel sheet having a bainite and martensite structure is tempered to vary the variation in hot rolling conditions. Is reduced. Here, when the average dislocation density of the steel sheet after annealing exceeds 5.0 × 10 15 m −2 , the tempering of the steel sheet is insufficient, and the influence of fluctuations in hot rolling conditions cannot be sufficiently mitigated. On the other hand, even when fully tempered, the average dislocation density is usually 1.0 × 10 14 m −2 or more. Therefore, the average dislocation density is 1.0 × 10 14 m −2 or more and 5.0 × 10 15 m −2 or less. Preferably, it is 1.0 × 10 14 m −2 or more and 2.0 × 10 15 m −2 or less.
 次に、本発明の熱延鋼板の製造方法について説明する。
 本発明の熱延鋼板の製造方法は、上記した成分組成を有する鋼素材を、オーステナイト単相域に加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、得られた鋼板を冷却し、巻き取る熱間圧延工程と、
 前記熱間圧延工程後、前記鋼板を酸洗し、その後連続焼鈍する連続焼鈍工程とを有し、
 前記熱間圧延工程では、仕上げ圧延温度を850℃以上1000℃以下、前記仕上げ圧延終了後、500℃までの平均冷却速度を30℃/s以上、巻取温度を500℃以下とし、
 前記連続焼鈍工程では、
 前記鋼板の最高加熱温度を700℃以上(A3点+A1点)/2以下とし、
 前記鋼板を前記最高加熱温度まで加熱する際の鋼板温度が600℃以上700℃以下である時間を20秒以上1000秒以下とし、
 鋼板温度が700℃超である時間を200秒以下とし、
 前記鋼板を最高加熱温度から冷却する際の530℃までの平均冷却速度を8℃/s以上25℃/s以下とし、該冷却停止後、470℃以上530℃以下の温度域での保持時間を10秒以上とするものである。また、前記連続焼鈍工程後に、めっき処理を施す工程をさらにそなえてもよい。
Next, the manufacturing method of the hot rolled steel sheet of the present invention will be described.
The method for producing a hot-rolled steel sheet of the present invention was obtained after heating the steel material having the above-described composition to the austenite single-phase region, subjecting it to hot rolling consisting of rough rolling and finish rolling, and finishing the finish rolling. A hot rolling process for cooling and winding the steel sheet;
After the hot rolling step, pickling the steel sheet, and then having a continuous annealing step for continuous annealing,
In the hot rolling step, the finish rolling temperature is 850 ° C. or more and 1000 ° C. or less, after the finish rolling is finished, the average cooling rate to 500 ° C. is 30 ° C./s or more, and the winding temperature is 500 ° C. or less,
In the continuous annealing step,
The maximum heating temperature of the steel sheet is 700 ° C. or more (A 3 points + A 1 point) / 2 or less,
The time when the steel plate temperature when heating the steel plate to the maximum heating temperature is 600 ° C. or more and 700 ° C. or less is 20 seconds or more and 1000 seconds or less,
The time when the steel sheet temperature is over 700 ° C. is set to 200 seconds or less,
The average cooling rate up to 530 ° C when cooling the steel sheet from the maximum heating temperature is 8 ° C / s or more and 25 ° C / s or less, and after the cooling is stopped, the holding time in the temperature range of 470 ° C or more and 530 ° C or less is set. 10 seconds or more. Moreover, you may further provide the process of giving a plating process after the said continuous annealing process.
 なお、鋼素材の溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、溶製後、生産性等の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましいが、造塊-分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしても良い。 In addition, the melting method of a steel raw material is not specifically limited, Well-known melting methods, such as a converter and an electric furnace, are employable. Moreover, after melting, it is preferable to use a continuous casting method to form a slab (steel material) from the viewpoint of productivity and the like, but as a slab by a known casting method such as an ingot-bundling rolling method or a thin slab continuous casting method. Also good.
 また、上記の如く得られた鋼素材に、粗圧延および仕上げ圧延からなる熱間圧延を施すが、粗圧延に先立ち、鋼素材をオーステナイト単相域で加熱する。粗圧延前の鋼素材がオーステナイト単相域で加熱されていないと、鋼素材中に存在するTi炭化物等の再溶解が進行せず、熱間圧延後の焼鈍においてMC型炭化物の微細析出が行われない。したがって、粗圧延に先立ち、鋼素材をオーステナイト単相域、好ましくは1150℃以上に加熱する。加熱温度の上限については特に規定は無いが、加熱温度が必要以上に高くなると、スラブ表面の酸化による歩留まり低下が顕著となるため、通常、加熱温度は1350℃以下である。なお、鋼素材に熱間圧延を施すに際し、鋳造後の鋼素材(スラブ)がオーステナイト単相域の温度となっている場合には、鋼素材を加熱することなく、或いは短時間加熱後、直送圧延してもよい。 Further, the steel material obtained as described above is subjected to hot rolling consisting of rough rolling and finish rolling, and the steel material is heated in the austenite single phase region prior to rough rolling. If the steel material before rough rolling is not heated in the austenite single-phase region, remelting of Ti carbide, etc. present in the steel material will not proceed, and MC type carbide will precipitate finely during annealing after hot rolling. I will not. Therefore, prior to rough rolling, the steel material is heated to an austenite single phase region, preferably 1150 ° C. or higher. The upper limit of the heating temperature is not particularly specified, but when the heating temperature becomes higher than necessary, the yield decreases due to oxidation of the slab surface, so the heating temperature is usually 1350 ° C. or lower. In addition, when hot rolling the steel material, if the steel material (slab) after casting has a temperature in the austenite single-phase region, the steel material is not heated or directly heated after being heated for a short time. You may roll.
 次に、熱間圧延工程における製造条件の限定理由について説明する。
仕上げ圧延温度:850℃以上1000℃以下
 仕上げ圧延温度が低くなると、圧延後の冷却においてフェライト変態が促進されるため、熱間圧延後に得られる熱延鋼板のベイナイトおよびマルテンサイト分率が低下する。その結果、焼鈍後に所定の焼戻しベイナイトおよび焼戻しマルテンサイト分率を得ることが出来なくなる。そのため、仕上げ圧延出側の温度は850℃以上とする必要があり、好ましくは880℃以上である。また、仕上げ圧延温度が1000℃を超える場合、鋼板の表面性状が劣化する。このため、仕上げ圧延温度の上限は1000℃以下とする。好ましくは970℃以下である。なお、上記の仕上げ圧延温度を含む、巻取温度などの各温度は、鋼板表面の温度である。
Next, the reason for limiting the manufacturing conditions in the hot rolling process will be described.
Finish rolling temperature: 850 ° C. or more and 1000 ° C. or less When the finish rolling temperature is lowered, ferrite transformation is promoted in cooling after rolling, so that the bainite and martensite fractions of the hot-rolled steel sheet obtained after hot rolling are lowered. As a result, the predetermined tempered bainite and tempered martensite fraction cannot be obtained after annealing. Therefore, the temperature on the finish rolling delivery side needs to be 850 ° C. or higher, preferably 880 ° C. or higher. Further, when the finish rolling temperature exceeds 1000 ° C., the surface properties of the steel sheet deteriorate. For this reason, the upper limit of finish rolling temperature shall be 1000 degrees C or less. Preferably it is 970 degrees C or less. Each temperature such as the coiling temperature including the above finish rolling temperature is the temperature of the steel sheet surface.
仕上げ圧延終了後、500℃までの冷却速度:30℃/s以上
 仕上げ圧延後に鋼板を冷却するにあたり、冷却速度が不十分な場合にはフェライトを十分に抑制することが出来ず、熱間圧延後に得られる熱延鋼板のベイナイトおよびマルテンサイト分率が低下する。その結果、焼鈍後に所定の焼戻しベイナイトおよび焼戻しマルテンサイト分率を得ることが出来なくなる。そのため、仕上げ圧延終了後、500℃までの冷却速度は、30℃/s以上とする必要がある。好ましくは50℃/s以上である。なお、冷却速度の上限については特に限定されるものではないが、通常300℃/s程度である。
After finishing rolling, cooling rate to 500 ° C: 30 ° C / s or more When cooling the steel plate after finishing rolling, if the cooling rate is insufficient, ferrite cannot be suppressed sufficiently, and after hot rolling The bainite and martensite fractions of the resulting hot-rolled steel sheet are reduced. As a result, the predetermined tempered bainite and tempered martensite fraction cannot be obtained after annealing. Therefore, the cooling rate to 500 ° C. after finishing rolling needs to be 30 ° C./s or more. Preferably, it is 50 ° C./s or more. The upper limit of the cooling rate is not particularly limited, but is usually about 300 ° C./s.
巻取温度:500℃以下
 巻取温度の適正化は、熱間圧延後の鋼板組織をコントロールするうえで重要である。巻取温度が500℃を超えると、ベイナイトのラス幅が大きくなるため、焼鈍後の焼戻しベイナイトのラス幅を所定の値とすることができない。一方で、巻取温度の下限は特に限定されるものではないが、巻取温度を過剰に低くした場合冷却コストがいたずらにかさむだけである。このため、巻取温度は0℃以上とすることが好ましい。より好ましくは200℃以上である。
Winding temperature: 500 ° C. or less Optimization of the winding temperature is important for controlling the steel sheet structure after hot rolling. When the coiling temperature exceeds 500 ° C., the lath width of the bainite becomes large, so that the lath width of the tempered bainite after annealing cannot be set to a predetermined value. On the other hand, the lower limit of the coiling temperature is not particularly limited, but if the coiling temperature is excessively lowered, the cooling cost is only unnecessarily expensive. For this reason, the winding temperature is preferably 0 ° C. or higher. More preferably, it is 200 ° C. or higher.
 上記した熱間圧延工程後、熱延鋼板を酸洗し、連続焼鈍する連続焼鈍工程を行う。以下、この連続焼鈍工程における製造条件の限定理由について説明する。
鋼板の最高加熱温度:700℃以上(A3点+A1点)/2以下
 連続焼鈍工程における鋼板の最高加熱温度の適正化は、焼鈍による熱間圧延時の製造条件変動の影響を十分に低減し、かつ所望の高強度を達成するうえで重要である。鋼板の最高加熱温度が700℃未満であると、ベイナイトおよびマルテンサイト中の転位密度を適正範囲にコントロールすることが困難であり、このために熱間圧延時の製造条件変動の影響を十分に低減できない。加えて、鋼板の加熱温度が700℃未満の場合では、ラス内部およびラス間のFe系炭化物のアスペクト比が大きくなり易く、アスペクト比が5以下のFe系炭化物の割合を所望の範囲とすることが困難である。一方、鋼板の最高加熱温度が(A3点+A1点)/2を超えると、MC型炭化物の粗大化が顕著に起こることからベイナイトおよびマルテンサイト中のラスの粗大化を十分に抑制できなくなる。また、オーステナイト化が促進されることにより、ベイナイトおよびマルテンサイト分率が低下し、所望の焼戻しベイナイトおよび焼戻しマルテンサイト分率とすることが出来なくなる。したがって、連続焼鈍工程における鋼板の最高加熱温度は700℃以上(A3点+A1点)/2以下とする。なお、好ましくは700℃以上{(A3点+A1点)/2}-10℃以下である。
 なお、A1点およびA3点は次式により算出することができる。
  A1点=751-26.6×[%C]+17.6×[%Si]-11.6×[%Mn]+22.5×[%Mo]+
      233×[%Nb]-39.7×[%V]-57×[%Ti]-895×[%B]-169×[%Al]
  A3点=937-476.5×[%C]+56×[%Si]-19.7×[%Mn]+38.1×[%Mo]+
       124.8×[%V]+136.3×[%Ti]-19×[%Nb]+3315×[%B]
  ここで、[%X]はX元素の鋼中含有量(質量%)を意味する。
After the hot rolling step described above, the hot rolled steel sheet is pickled and subjected to a continuous annealing step for continuous annealing. Hereinafter, the reason for limiting the manufacturing conditions in this continuous annealing process will be described.
Maximum heating temperature of steel sheet: 700 ° C or higher (A 3 points + A 1 point) / 2 or lower Optimization of the maximum heating temperature of steel sheets in the continuous annealing process is sufficient for the effects of manufacturing conditions fluctuations during hot rolling due to annealing It is important to reduce and achieve the desired high strength. If the maximum heating temperature of the steel sheet is less than 700 ° C, it is difficult to control the dislocation density in bainite and martensite within an appropriate range. For this reason, the influence of fluctuations in manufacturing conditions during hot rolling is sufficiently reduced. Can not. In addition, when the heating temperature of the steel sheet is less than 700 ° C, the aspect ratio of Fe-based carbides inside and between the laths tends to be large, and the proportion of Fe-based carbides with an aspect ratio of 5 or less should be in the desired range Is difficult. On the other hand, when the maximum heating temperature of the steel sheet exceeds (A 3 points + A 1 point) / 2, the MC type carbides become prominently coarsened, so that the lath coarsening in bainite and martensite can be sufficiently suppressed. Disappear. Further, by promoting austenitization, the bainite and martensite fractions are lowered, and the desired tempered bainite and tempered martensite fractions cannot be obtained. Therefore, the maximum heating temperature of the steel sheet in the continuous annealing process is 700 ° C. or more (A 3 points + A 1 point) / 2 or less. The temperature is preferably 700 ° C. or higher and {(A 3 points + A 1 point) / 2} −10 ° C. or lower.
The points A 1 and A 3 can be calculated by the following formula.
A 1 point = 751-26.6 x [% C] + 17.6 x [% Si]-11.6 x [% Mn] + 22.5 x [% Mo] +
233 × [% Nb] −39.7 × [% V] −57 × [% Ti] −895 × [% B] −169 × [% Al]
A 3 points = 937-476.5 x [% C] + 56 x [% Si]-19.7 x [% Mn] + 38.1 x [% Mo] +
124.8 × [% V] + 136.3 × [% Ti] −19 × [% Nb] + 3315 × [% B]
Here, [% X] means the content of X element in steel (mass%).
鋼板を最高加熱温度まで加熱する際の鋼板温度が600℃以上700℃以下である時間:20秒以上1000秒以下
 鋼板を最高加熱温度まで加熱するにあたり、加熱熱履歴を適切に制御することは所望の高強度と優れた打抜き性を鋼板に付与するうえで重要である。上述したように、ラスの粗大化を抑制するためにMC型炭化物によるピン止め効果を利用する。このピン止め効果を発揮させるためには、ラスが粗大化を開始する前に、MC型炭化物を十分にベイナイトおよびマルテンサイト中に分散させる必要がある。本発明者らの検討によると、MC型炭化物の析出は600℃以上で顕著に起こり始める。一方、ラスの粗大化および消滅は700℃を超えることで顕著に起こる。したがって、鋼板温度が600℃以上700℃以下の温度域で一定時間保持し、十分にMC型炭化物を析出させることによって、ラスの粗大化および消滅を抑制することが出来る。ここで、MC型炭化物を十分に析出させるためには、この温度域で20秒以上保持することが必要である。なお、この温度域での保持時間が不足した場合には、MC型炭化物が十分に析出する前にラスの粗大化が開始されるため、ピン止め効果が十分に発揮されずラスが粗大となる。好ましくは35秒以上、より好ましくは50秒以上である。
 一方、鋼板温度が600℃以上700℃以下の温度域での保持時間が1000秒を超えると、ラス内部およびラス間に析出したFe系炭化物が再固溶して旧オーステナイト粒界やパケット粒界、ブロック粒界等に移動してしまい、打抜き性の改善に効果的に寄与するラス内部およびラス間のFe系炭化物が存在しなくなる。したがって、優れた打抜き性を有する鋼板を得るためには鋼板温度が600℃以上700℃以下の温度域における保持時間を1000秒以下とする必要がある。好ましくは800秒以下、より好ましくは500秒以下である。なお、ここでいう鋼板温度とは、鋼板表面の温度である。
Time when the steel plate temperature is 600 ° C or higher and 700 ° C or lower when the steel plate is heated to the maximum heating temperature: 20 seconds or more and 1000 seconds or less It is desirable to appropriately control the heating heat history when heating the steel plate to the maximum heating temperature This is important for imparting high strength and excellent punchability to the steel sheet. As described above, the pinning effect by MC type carbide is used to suppress the coarsening of the lath. In order to exhibit this pinning effect, it is necessary to sufficiently disperse MC type carbides in bainite and martensite before the lath starts coarsening. According to the study by the present inventors, precipitation of MC type carbide begins to occur remarkably at 600 ° C. or higher. On the other hand, the coarsening and disappearance of lath occurs remarkably when the temperature exceeds 700 ° C. Therefore, the coarsening and disappearance of the lath can be suppressed by maintaining the steel plate temperature in the temperature range of 600 ° C. or more and 700 ° C. or less for a certain period of time and sufficiently depositing the MC type carbide. Here, in order to sufficiently precipitate the MC-type carbide, it is necessary to hold for 20 seconds or more in this temperature range. In addition, when the holding time in this temperature range is insufficient, since the coarsening of the lath is started before the MC type carbide is sufficiently precipitated, the pinning effect is not sufficiently exhibited and the lath becomes coarse. . Preferably it is 35 seconds or more, more preferably 50 seconds or more.
On the other hand, when the holding time in the temperature range of 600 ° C. or more and 700 ° C. or less exceeds 1000 seconds, the Fe-based carbides precipitated inside and between the laths re-dissolve, and the prior austenite grain boundaries and packet grain boundaries In other words, there is no Fe-based carbide in the lath and between the laths, which moves to the block grain boundaries and effectively contributes to the improvement of punchability. Therefore, in order to obtain a steel sheet having excellent punchability, the holding time in the temperature range where the steel sheet temperature is 600 ° C. or higher and 700 ° C. or lower needs to be 1000 seconds or shorter. Preferably it is 800 seconds or less, more preferably 500 seconds or less. In addition, the steel plate temperature here is the temperature of the steel plate surface.
鋼板温度が700℃超である時間:200秒以下
 鋼板温度が700℃超の温度域ではラスの粗大化が顕著に起こる。上述したように、本発明では、微細に分散析出させたMC型炭化物によるピン止め効果によってラス境界の移動を抑え、ラスの粗大化を抑止している。そして、これによって、鋼板強度を維持している。しかし、この温度域での保持時間が過度に長くなると、ラスの粗大化を抑止しきれなくなる。このため、ラスの粗大化を防止する観点から、鋼板温度が700℃超の温度域における保持時間は200秒以下とする。好ましくは180秒以下、より好ましくは150秒以下である。ただし、鋼板温度が700℃超である時間が10秒未満の場合、鋼板の延性がやや劣位となるため、10秒以上とすることが好ましい。
Time when the steel plate temperature exceeds 700 ° C .: 200 seconds or less In the temperature range where the steel plate temperature exceeds 700 ° C., lath coarsening occurs remarkably. As described above, in the present invention, the movement of the lath boundary is suppressed and the coarsening of the lath is suppressed by the pinning effect by the MC type carbide finely dispersed and precipitated. And thereby, the steel plate strength is maintained. However, if the holding time in this temperature range becomes excessively long, the coarsening of the lath cannot be suppressed. For this reason, from the viewpoint of preventing the coarsening of the lath, the holding time in the temperature range where the steel plate temperature exceeds 700 ° C. is set to 200 seconds or less. Preferably it is 180 seconds or less, more preferably 150 seconds or less. However, when the time when the steel plate temperature is higher than 700 ° C. is less than 10 seconds, the ductility of the steel plate is somewhat inferior, and therefore it is preferable to set it to 10 seconds or more.
鋼板を最高加熱温度から冷却する際の530℃までの平均冷却速度:8℃/s以上25℃/s以下
 連続焼鈍工程において鋼板を最高加熱温度まで加熱した後に冷却するにあたり、冷却速度を適切に制御することは、優れた伸びフランジ性を得るうえで重要である。特に、530℃までの平均冷却速度が8℃/sを下回った場合には、冷却途中においてパーライト変態を抑制することが出来ず、粗大なパーライトが所定量以上に生成する。このため、伸びフランジ性が低下する。一方、この平均冷却速度が過度に早い場合には、後述する470℃以上530℃以下の温度域で所定の時間保持することが困難となる。このため、鋼板を最高加熱温度から冷却する際の530℃までの平均冷却速度は25℃/s以下とする。
Average cooling rate up to 530 ° C when cooling the steel plate from the maximum heating temperature: 8 ° C / s or more and 25 ° C / s or less Appropriate cooling rate when cooling after heating the steel plate to the maximum heating temperature in the continuous annealing process Controlling is important for obtaining excellent stretch flangeability. In particular, when the average cooling rate up to 530 ° C. is lower than 8 ° C./s, pearlite transformation cannot be suppressed during cooling, and coarse pearlite is produced in a predetermined amount or more. For this reason, stretch flangeability falls. On the other hand, when the average cooling rate is excessively high, it is difficult to maintain for a predetermined time in a temperature range of 470 ° C. to 530 ° C., which will be described later. Therefore, the average cooling rate up to 530 ° C. when cooling the steel plate from the maximum heating temperature is 25 ° C./s or less.
470℃以上530℃以下の温度域での保持時間:10秒以上
 連続焼鈍工程において、鋼板を上記のように制御冷却した後、470℃以上530℃以下の温度域に一定の時間、鋼板を保持することは、優れた伸びフランジ性を得るうえで重要である。ここで、上記冷却停止後の保持温度が530℃を超えると、粗大パーライトが生成するために伸びフランジ性が低下する。一方で、冷却停止後の保持温度が470℃を下回ると、オーステナイトからベイナイトへの変態が遅延する。これにより、Cが未変態オーステナイト領域に濃化してオーステナイトを安定化させるので、変態が完了しない。そして、その後の冷却で、未変態オーステナイトはマルテンサイトに変態するか、残留オーステナイトとして鋼板組織に残存するため、伸びフランジ性が低下する。また、470℃以上530℃以下の温度域で10秒以上鋼板を保持した場合には、大部分のオーステナイトのベイナイトへの変態が完了し、その後冷却した際に生成するマルテンサイト分率を所定の範囲まで低減することができる。したがって、制御冷却停止後、470℃以上530℃以下の温度域での保持時間を10秒以上とする。好ましくは20秒以上、より好ましくは30秒以上である。また、保持時間の上限については特に限定されるものではないが、通常、300秒以下である。
 なお、この470℃以上530℃以下の温度域での保持により鋼板組織の制御は完了するため、その後の冷却条件は特に限定されず、任意の冷却方法により室温まで冷却すればよい。
Holding time in the temperature range of 470 ° C or higher and 530 ° C or lower: 10 seconds or longer In the continuous annealing process, the steel plate is controlled and cooled as described above, and then held in the temperature range of 470 ° C or higher and 530 ° C or lower for a certain period of time. It is important to obtain excellent stretch flangeability. Here, when the holding temperature after the cooling is stopped exceeds 530 ° C., coarse pearlite is generated, so that stretch flangeability is deteriorated. On the other hand, when the holding temperature after stopping cooling is lower than 470 ° C., the transformation from austenite to bainite is delayed. As a result, C concentrates in the untransformed austenite region and stabilizes the austenite, so the transformation is not completed. Then, in the subsequent cooling, untransformed austenite is transformed into martensite or remains in the steel sheet structure as retained austenite, so that stretch flangeability is lowered. Further, when the steel plate is held for 10 seconds or more in the temperature range of 470 ° C. or more and 530 ° C. or less, the transformation of most austenite to bainite is completed, and then the martensite fraction generated when cooled is determined to be a predetermined value. Can be reduced to a range. Accordingly, after the controlled cooling is stopped, the holding time in the temperature range from 470 ° C. to 530 ° C. is set to 10 seconds or more. Preferably it is 20 seconds or more, more preferably 30 seconds or more. The upper limit of the holding time is not particularly limited, but is usually 300 seconds or less.
Since the control of the steel sheet structure is completed by holding in the temperature range of 470 ° C. or higher and 530 ° C. or lower, the subsequent cooling conditions are not particularly limited, and may be cooled to room temperature by any cooling method.
 また、470℃以上530℃以下の温度域での保持後、鋼板を700℃以下の温度に再加熱しても、600℃以上700℃以下の温度域での通算保持時間が1000秒以下であれば、所望の鋼板組織が得られ、なんら問題はない。
 例えば、470℃以上530℃以下の温度域での保持後に、鋼板を亜鉛ポットに浸漬して溶融亜鉛めっき鋼板としてもよいし、さらにその後加熱処理をすることにより合金化溶融亜鉛めっき鋼板としてもよい。また、溶融めっきには亜鉛の他に、アルミもしくはアルミ合金等をめっきすることもできる。
In addition, even if the steel sheet is reheated to a temperature of 700 ° C or lower after being held in the temperature range of 470 ° C to 530 ° C, the total holding time in the temperature range of 600 ° C to 700 ° C is 1000 seconds or less. In this case, a desired steel sheet structure can be obtained and there is no problem.
For example, after holding in a temperature range of 470 ° C. or more and 530 ° C. or less, the steel plate may be immersed in a zinc pot to be a hot dip galvanized steel plate, or may be further heat-treated to obtain an alloyed hot dip galvanized steel plate. . In addition to zinc, aluminum or aluminum alloy can be plated for hot dipping.
 また、上記連続焼鈍工程後に、鋼板に対して、常法にしたがい、焼鈍ライン内で連続的にまたは別ラインを利用して調質圧延を施してもよい。 Further, after the above-described continuous annealing step, temper rolling may be applied to the steel sheet continuously in the annealing line or using another line according to a conventional method.
 また、上記のようにして製造した熱延鋼板に対し、別途、電気亜鉛めっき処理を施してもよく、また溶融亜鉛めっきを施してもよい。本発明の熱延鋼板は、自動車足回り用鋼板として好適である他、通常の常温で行われるプレス成形に好適であり、優れた耐熱処理特性を有する。このため、上記のようにして製造した熱延鋼板は、プレス前の鋼板を400℃から700℃に加温した後、直ちにプレス成形する温間成形の素材鋼板としても、好適である。 Further, the hot-rolled steel sheet produced as described above may be separately subjected to electrogalvanizing treatment or hot dip galvanizing. The hot-rolled steel sheet of the present invention is suitable as a steel sheet for automobile undercarriage, and is suitable for press forming performed at normal room temperature, and has excellent heat treatment characteristics. For this reason, the hot-rolled steel sheet produced as described above is also suitable as a warm-formed material steel sheet that is immediately press-formed after heating the steel sheet before pressing from 400 ° C to 700 ° C.
 表1に示す組成の溶鋼を通常公知の手法により溶製、連続鋳造して肉厚300mmのスラブ(鋼素材)とした。これらのスラブを、表2に示す温度に加熱し、粗圧延し、表2に示す温度で仕上げ圧延を完了し、仕上げ圧延終了後、表2の平均冷却速度で冷却し、表2に示す巻取温度で巻き取り、板厚:3.2mmの熱延鋼板とした。さらにこれらの熱延鋼板に対し、通常公知の手法により酸洗を施し、連続焼鈍ラインで表2に示す条件で焼鈍処理を施した。また、一部の鋼板については連続焼鈍ライン内で溶融亜鉛めっき処理、さらには合金化処理を施し、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板とした。 The molten steel having the composition shown in Table 1 was melted and continuously cast by a generally known method to obtain a slab (steel material) having a thickness of 300 mm. These slabs are heated to the temperatures shown in Table 2, roughly rolled, and finish rolling is completed at the temperatures shown in Table 2. After finishing rolling, the slabs are cooled at the average cooling rate shown in Table 2, and the windings shown in Table 2 are used. The coil was wound at the coiling temperature to obtain a hot rolled steel sheet having a thickness of 3.2 mm. Furthermore, these hot-rolled steel sheets were pickled by a generally known technique and annealed under the conditions shown in Table 2 in a continuous annealing line. Moreover, about some steel plates, the hot dip galvanization process and also the alloying process were performed in the continuous annealing line, and it was set as the hot dip galvanized steel plate and the galvannealed steel plate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 かくして得られた熱延鋼板から試験片を採取し、組織観察、平均転位密度の測定、引張試験、穴拡げ試験、打抜き試験、製造安定性の評価を行った。評価結果を表3に示す。なお、試験方法は次の通りとした。 Test specimens were collected from the hot-rolled steel sheets thus obtained, and subjected to structure observation, measurement of average dislocation density, tensile test, hole expansion test, punching test, and production stability evaluation. The evaluation results are shown in Table 3. The test method was as follows.
(i)組織観察
 得られた熱延鋼板から試験片を採取し、試験片の圧延方向と平行な断面(L断面)を研磨し、ナイタールで腐食した後、走査型電子顕微鏡(倍率:1000、3000、5000倍)にて撮影した組織写真を用い、画像解析装置により焼戻しベイナイト相および焼戻しマルテンサイト相の面積率の総和、粗大パーライト相の面積率、マルテンサイト相および残留オーステナイト相(MA)の面積率の総和、ならびにこれら以外の相の面積率を求めた。なお、マルテンサイト相と残留オーステナイト相の区別を走査型電子顕微鏡写真で区別することは困難であるが、ここでは、粗大パーライト相、マルテンサイト相および残留オーステナイト相の面積率の総和が重要であるため、特にマルテンサイト相と残留オーステナイト相を区別せず、マルテンサイト相および残留オーステナイト相(MA)の総和の面積率を求めた。
(I) Microstructure observation A test piece was taken from the obtained hot-rolled steel sheet, a cross section (L cross section) parallel to the rolling direction of the test piece was polished and corroded with nital, and then a scanning electron microscope (magnification: 1000, 3000 and 5000 times), and using an image analyzer, the total area ratio of the tempered bainite phase and the tempered martensite phase, the area ratio of the coarse pearlite phase, the martensite phase and the residual austenite phase (MA) The sum of the area ratios and the area ratios of the other phases were determined. Although it is difficult to distinguish the martensite phase from the retained austenite phase with a scanning electron micrograph, the sum of the area ratios of the coarse pearlite phase, martensite phase and retained austenite phase is important here. Therefore, the area ratio of the sum of the martensite phase and the retained austenite phase (MA) was determined without particularly distinguishing between the martensite phase and the retained austenite phase.
 また、熱延鋼板から作製した薄膜を透過型電子顕微鏡によって観察し、焼戻しベイナイトおよび焼戻しマルテンサイトのラス幅を測定するとともに、ラス内部およびラス境界に析出したFe系炭化物のうちアスペクト比が5以下のものの割合、さらに、ラス内部およびラス境界に析出したMC型炭化物の平均粒子径を求めた。
 ここで、焼戻しベイナイトおよび焼戻しマルテンサイトのラス幅の測定には30000倍の倍率で10視野撮影した120mm×80mmの大きさの透過型電子顕微鏡写真について、3個以上連続して並んでいるラスの長軸に直角に10mmの間隔で5本直線を引き、該直線がラス境界と交差する線分の長さをそれぞれ測定し、得られた線分の長さの平均値を、ラスの平均幅とした。
 また、ラス内部およびラス境界に析出したFe系炭化物のうちアスペクト比が5以下のものの割合は、165000倍の倍率で撮影した写真を用い、ラス内部およびラス境界に析出した5視野合計で最低100個のFe系炭化物について長径と短径の長さを測定してアスペクト比を算出することにより、アスペクト比が5以下のものの割合を求めた。
 さらに、MC型炭化物の平均粒子径は、300000倍の倍率で撮影した写真を用い、5視野合計で最低100個のTiC等のMC型炭化物について、その直径を測定し、算術平均値(平均粒径ddef)として求めた。なお、測定した粒子径の下限は2nmである。
In addition, the thin film produced from the hot-rolled steel sheet is observed with a transmission electron microscope, and the lath width of tempered bainite and tempered martensite is measured. The average particle size of the MC type carbides precipitated inside the lath and at the lath boundary was determined.
Here, for the measurement of lath width of tempered bainite and tempered martensite, transmission electron micrographs of 120 mm x 80 mm in size taken at 10 fields of view at a magnification of 30000 times were measured for three or more consecutive laths. Draw 5 straight lines at an interval of 10mm perpendicular to the long axis, measure the length of each line segment that intersects the lath boundary, and calculate the average length of the obtained line segments as the average lath width. It was.
The proportion of Fe-based carbides deposited inside the lath and at the lath boundary with an aspect ratio of 5 or less is a minimum of 100 in the total of 5 fields deposited inside the lath and at the lath boundary using photographs taken at a magnification of 165000 times. By measuring the lengths of the major axis and minor axis for each Fe-based carbide and calculating the aspect ratio, the ratio of those having an aspect ratio of 5 or less was determined.
In addition, the average particle size of MC type carbide was measured using a photograph taken at a magnification of 300,000 times, and the diameter of MC type carbides such as TiC of at least 100 total in 5 fields was measured. The diameter d def ) was obtained. The lower limit of the measured particle diameter is 2 nm.
(ii)平均転位密度の測定
 得られた熱延鋼板から試験片を採取し、板厚1/4部の転移密度を測定し、板厚1/4部の転位密度が鋼板の平均的な転位密度を示していると考え、この測定値を平均転位密度とした。採取した試験片に対し、機械研削に加えて0.1mmのシュウ酸による研磨を施すことにより、板厚1/4部が表面に露出するよう試料調整した。ここで、シュウ酸による研磨を施したのは研削による加工層を取り除くためである。
 上記のようにして調整した試料について、X線回折装置によって鋼板の歪を測定した。測定にはX線回折装置を用い、CoKα線を用いて板厚1/4部のα鉄の(110)面、(211)面、及び(220)面の回折強度を測定し、その測定チャートから各結晶面の反射強度のピーク値の半価幅を求め、次式(1)及び(2)により、鋼板に付与された局所ひずみε’を決定する。
  βcosθ/λ=0.9/D+2ε’sinθ/λ・・・・・・(1)
 ここで、
 β:ピーク値の半価幅(ただし、式(2)により補正した値を用いる)
 θ:回折角
 λ:CoKα線の波長(0.1790nm)
 D:結晶子サイズ(転位セル、結晶粒の大きさ)
 ε’:局所ひずみ
  β2=βm 2-β0 ・・・・・・(2)
 ここで、
 βm:転位密度を測定する試料のピークの半価幅
 β0:ひずみのない試料のピークの半価幅
である。
 なお、sinθ/λに対してβcosθ/λをプロットし、その傾きと切片からε’とDとが求められる。求めた局所歪ε’から次式(3)により転位密度ρを決定する。
  ρ=14.4ε’2/b2・・・・・・(3)
 ここで、
 b:バーガースベクトル(0.248nm)
である。
(Ii) Measurement of average dislocation density Samples were taken from the obtained hot-rolled steel sheet, the transition density at 1/4 part thickness was measured, and the dislocation density at 1/4 part thickness was the average dislocation of the steel sheet. The measured value was regarded as the average dislocation density. The collected specimen was polished with 0.1 mm of oxalic acid in addition to mechanical grinding, so that the sample was adjusted so that a 1/4 part thickness was exposed on the surface. Here, the polishing with oxalic acid was performed in order to remove the processed layer by grinding.
About the sample adjusted as mentioned above, the distortion | strain of the steel plate was measured with the X-ray-diffraction apparatus. The measurement chart uses an X-ray diffractometer to measure the diffraction intensity of the (110), (211), and (220) planes of 1 / 4-thick α-iron using CoKα rays. Then, the half width of the peak value of the reflection intensity of each crystal plane is obtained, and the local strain ε ′ applied to the steel sheet is determined by the following equations (1) and (2).
βcosθ / λ = 0.9 / D + 2ε'sinθ / λ (1)
here,
β: Half width of peak value (however, the value corrected by equation (2) is used)
θ: diffraction angle λ: wavelength of CoKα ray (0.1790 nm)
D: Crystallite size (dislocation cell, crystal grain size)
ε ′: Local strain β 2 = β m 2 −β 0 2 (2)
here,
β m : half width of the peak of the sample whose dislocation density is measured β 0 : half width of the peak of the sample without strain.
Note that βcos θ / λ is plotted against sin θ / λ, and ε ′ and D are obtained from the slope and intercept. The dislocation density ρ is determined from the obtained local strain ε ′ by the following equation (3).
ρ = 14.4ε ' 2 / b 2 (3)
here,
b: Burgers vector (0.248nm)
It is.
(iii)引張試験
 得られた熱延鋼板から、圧延方向に対して直角方向(C方向)を引張方向とするJIS5号引張試験片(JIS Z 2001)を採取し、JIS Z 2241の規定に準拠した引張試験を行い、降伏強度(YS)、引張強さ(TS)、伸び(El)を測定した。
(Iii) Tensile test From the obtained hot-rolled steel sheet, a JIS No. 5 tensile test piece (JIS Z 2001) with the direction perpendicular to the rolling direction (C direction) as the tensile direction was collected and complied with the provisions of JIS Z 2241 The tensile test was performed, and the yield strength (YS), tensile strength (TS), and elongation (El) were measured.
(iv)穴拡げ試験
 得られた熱延鋼板から、試験片(大きさ:100mm×100mm)を採取し、試験片に初期直径d0:10mmφの穴を打抜き加工(クリアランス:試験片板厚の12.5%)で形成した。これら試験片を用いて、穴拡げ試験を実施した。すなわち、初期直径d0:10mmφの穴に打ち抜き時のポンチ側から頂角:60°の円錐ポンチを挿入し、該穴を押し広げ、亀裂が鋼板(試験片)を貫通したときの穴の径d(mm)を測定し、次式により穴拡げ率λ(%)を算出した。
   穴拡げ率λ(%)={(d-d0)/d0}×100
 なお、ここでは、引張強さ(TS)×{穴拡げ率(λ)}0.5が6200・MPa%0.5以上の場合を伸びフランジ性が良好と判断した。
(Iv) Hole expansion test A test piece (size: 100 mm x 100 mm) was taken from the obtained hot-rolled steel sheet, and a hole with an initial diameter d 0 : 10 mmφ was punched into the test piece (clearance: test piece thickness) 12.5%). Using these test pieces, a hole expansion test was performed. That is, a conical punch having an apex angle of 60 ° is inserted from a punch side at the time of punching into a hole having an initial diameter d 0 of 10 mmφ, the hole is expanded, and the diameter of the hole when a crack penetrates a steel plate (test piece). d (mm) was measured, and the hole expansion ratio λ (%) was calculated by the following formula.
Hole expansion ratio λ (%) = {(d−d 0 ) / d 0 } × 100
Here, when the tensile strength (TS) × {hole expansion rate (λ)} 0.5 is 6200 · MPa% 0.5 or more, it was determined that the stretch flangeability was good.
(v)打抜き試験
 得られた熱延鋼板から、試験片(大きさ:30mm×30mm)を採取し、試験片に直径d0:10mmφの穴を打抜き加工(クリアランス:試験片板厚の20%、30%)で形成した。打抜き後、ポンチ穴の全周にわたり、打抜き端面の破面状況をマイクロスコープ(倍率50倍)で観察し、割れ、欠け、脆性破面の有無を観察した。割れ、欠け、脆性破面の無いものを○(合格)とし、それ以外を×(不合格)として、打抜き性を評価した。
(V) Punching test A test piece (size: 30 mm x 30 mm) is taken from the obtained hot-rolled steel sheet, and a hole with a diameter d 0 : 10 mmφ is punched into the test piece (clearance: 20% of the test piece plate thickness) 30%). After punching, the fracture condition of the punched end face was observed with a microscope (50 times magnification) over the entire circumference of the punch hole, and the presence of cracks, chips and brittle fracture surfaces was observed. The punching property was evaluated by making a crack, a chip, and a brittle fracture surface not good (good), and other things not good (fail).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明例ではいずれも、引張強さ(TS):780MPa以上の高強度を有し、優れた伸びフランジ性と打抜き性を兼備する熱延鋼板が得られている。 From Table 3, in all the examples of the present invention, a hot-rolled steel sheet having a high tensile strength (TS): 780 MPa or more and having both excellent stretch flangeability and punchability is obtained.
 また、鋼板の機械特性のばらつきを評価するため、本発明例となる熱延鋼板の全長全幅から任意に、直角方向(C方向)を引張方向とするJIS 5号引張試験片(JIS Z 2001)を
100個採取し、JIS Z 2241の規定に準拠した引張試験を行い、引張強さ(TS)を測定し、それらの標準偏差σを求めた。その結果、本発明例ではいずれも、引張強さ(TS)の標準偏差は10MPa以内であった。
 このように、本発明例ではいずれも、引張強さ(TS)といった鋼板の機械特性のばらつきが小さく、製造安定性にも優れていると言える。
In addition, in order to evaluate the variation in mechanical properties of the steel sheet, JIS No. 5 tensile test piece (JIS Z 2001) with the perpendicular direction (C direction) as the tensile direction is arbitrarily selected from the full length of the hot rolled steel sheet as an example of the present invention. The
100 samples were collected, subjected to a tensile test in accordance with the provisions of JIS Z 2241, measured for tensile strength (TS), and their standard deviation σ was obtained. As a result, in all of the inventive examples, the standard deviation of the tensile strength (TS) was within 10 MPa.
As described above, it can be said that all of the examples of the present invention have small variations in the mechanical properties of the steel sheet such as tensile strength (TS) and are excellent in manufacturing stability.

Claims (7)

  1.  質量%で、
     C:0.03%以上0.20%以下、  Si:0.4%以下、
     Mn:0.5%以上2.0%以下、   P:0.03%以下、
     S:0.03%以下、       Al:0.1%以下、
     N:0.01%以下および     Ti:0.03%以上0.15%以下
    を含有し、残部がFeおよび不可避的不純物からなる組成と、
     焼戻しベイナイト相および焼戻しマルテンサイト相の面積率の総和が70%以上で、かつ粗大パーライト相、マルテンサイト相および残留オーステナイト相の面積率の総和が10%以下であり、
     前記焼戻しベイナイト相および焼戻しマルテンサイト相が、下部組織として平均幅が1.0μm以下のラスを有し、該ラス内部およびラス境界に析出したFe系炭化物のうち、アスペクト比が5以下のものの割合が80%以上であり、かつ該ラス内部およびラス境界に平均粒子径が20nm以下のMC型炭化物が分散析出した、組織とを有し、
     平均転位密度が1.0×1014m-2以上5.0×1015m-2以下である、熱延鋼板。
    % By mass
    C: 0.03% or more and 0.20% or less, Si: 0.4% or less,
    Mn: 0.5% to 2.0%, P: 0.03% or less,
    S: 0.03% or less, Al: 0.1% or less,
    N: 0.01% or less and Ti: 0.03% or more and 0.15% or less, with the balance consisting of Fe and inevitable impurities,
    The total area ratio of the tempered bainite phase and the tempered martensite phase is 70% or more, and the total area ratio of the coarse pearlite phase, the martensite phase and the retained austenite phase is 10% or less,
    The tempered bainite phase and the tempered martensite phase have lath having an average width of 1.0 μm or less as a substructure, and among Fe-based carbides precipitated in the lath and at the lath boundary, the proportion of those having an aspect ratio of 5 or less 80% or more, and MC type carbide having an average particle size of 20 nm or less dispersed and precipitated inside the lath and at the lath boundary,
    A hot-rolled steel sheet having an average dislocation density of 1.0 × 10 14 m −2 or more and 5.0 × 10 15 m −2 or less.
  2.  前記組成として、さらに質量%で、
     V:0.01%以上0.3%以下、
     Nb:0.01%以上0.1%以下および
     Mo:0.01%以上0.3%以下
    のうちの少なくとも一種または二種以上を含有する、請求項1に記載の熱延鋼板。
    As the composition, further in mass%,
    V: 0.01% to 0.3%,
    The hot-rolled steel sheet according to claim 1, comprising at least one or more of Nb: 0.01% to 0.1% and Mo: 0.01% to 0.3%.
  3.  前記組成として、さらに質量%で、
     B:0.0002%以上0.010%以下、
    を含有する、請求項1または2に記載の熱延鋼板。
    As the composition, further in mass%,
    B: 0.0002% to 0.010%,
    The hot-rolled steel sheet according to claim 1 or 2, comprising:
  4.  前記組成として、さらに質量%で、REM、Zr、As、Cu、Ni、Sn、Pb、Ta、W、Cr、Sb、Mg、Ca、Co、Se、ZnおよびCsのうちの一種または二種以上を合計で1.0%以下含有する、請求項1~3のいずれか一項に記載の熱延鋼板。 As the composition, further, by mass%, one or more of REM, Zr, As, Cu, Ni, Sn, Pb, Ta, W, Cr, Sb, Mg, Ca, Co, Se, Zn and Cs The hot rolled steel sheet according to any one of claims 1 to 3, which contains 1.0% or less in total.
  5.  請求項1~4のいずれか一項に記載の熱延鋼板であって、その表面にめっき層を有する、熱延鋼板。 The hot-rolled steel sheet according to any one of claims 1 to 4, which has a plating layer on the surface thereof.
  6.  請求項1~4のいずれか一項に記載の組成を有する鋼素材を、オーステナイト単相域に加熱し、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、得られた鋼板を冷却し、巻き取る熱間圧延工程と、
     前記熱間圧延工程後、前記鋼板を酸洗し、その後連続焼鈍する連続焼鈍工程とを有し、
     前記熱間圧延工程では、仕上げ圧延温度を850℃以上1000℃以下、前記仕上げ圧延終了後、500℃までの平均冷却速度を30℃/s以上、巻取温度を500℃以下とし、
     前記連続焼鈍工程では、
     前記鋼板の最高加熱温度を700℃以上(A3点+A1点)/2以下とし、
     前記鋼板を前記最高加熱温度まで加熱する際の鋼板温度が600℃以上700℃以下である時間を20秒以上1000秒以下とし、
     鋼板温度が700℃超である時間を200秒以下とし、
     前記鋼板を最高加熱温度から冷却する際の530℃までの平均冷却速度を8℃/s以上25℃/s以下とし、該冷却停止後、470℃以上530℃以下の温度域での保持時間を10秒以上とする、熱延鋼板の製造方法。
    A steel material obtained by heating the steel material having the composition according to any one of claims 1 to 4 to an austenite single phase region, subjecting the steel material to hot rolling consisting of rough rolling and finish rolling, and finishing the finish rolling. A hot rolling step of cooling and winding up,
    After the hot rolling step, pickling the steel sheet, and then having a continuous annealing step for continuous annealing,
    In the hot rolling step, the finish rolling temperature is 850 ° C. or more and 1000 ° C. or less, after the finish rolling is finished, the average cooling rate to 500 ° C. is 30 ° C./s or more, and the winding temperature is 500 ° C. or less,
    In the continuous annealing step,
    The maximum heating temperature of the steel sheet is 700 ° C. or more (A 3 points + A 1 point) / 2 or less,
    The time when the steel plate temperature when heating the steel plate to the maximum heating temperature is 600 ° C. or more and 700 ° C. or less is 20 seconds or more and 1000 seconds or less,
    The time when the steel sheet temperature is over 700 ° C. is set to 200 seconds or less,
    The average cooling rate up to 530 ° C when cooling the steel sheet from the maximum heating temperature is 8 ° C / s or more and 25 ° C / s or less, and after the cooling is stopped, the holding time in the temperature range of 470 ° C or more and 530 ° C or less is set. A method for producing a hot-rolled steel sheet for 10 seconds or more.
  7.  前記連続焼鈍工程後に、めっき処理を施す工程をさらにそなえる、請求項6に記載の熱延鋼板の製造方法。
     
    The method for producing a hot-rolled steel sheet according to claim 6, further comprising a step of performing a plating treatment after the continuous annealing step.
PCT/JP2016/001834 2015-04-01 2016-03-30 Hot-rolled steel sheet and method for producing same WO2016157896A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16771783.4A EP3279353B1 (en) 2015-04-01 2016-03-30 Hot-rolled steel sheet and method for producing same
CN201680020526.3A CN107429362B (en) 2015-04-01 2016-03-30 Hot-rolled steel sheet and method for producing same
MX2017012493A MX2017012493A (en) 2015-04-01 2016-03-30 Hot-rolled steel sheet and method for producing same.
US15/561,436 US20180119240A1 (en) 2015-04-01 2016-03-30 Hot rolled steel sheet and method of manufacturing same
JP2016549181A JP6075517B1 (en) 2015-04-01 2016-03-30 Hot-rolled steel sheet and manufacturing method thereof
KR1020177029834A KR101989262B1 (en) 2015-04-01 2016-03-30 Hot rolled steel sheet and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-075329 2015-04-01
JP2015075329 2015-04-01

Publications (1)

Publication Number Publication Date
WO2016157896A1 true WO2016157896A1 (en) 2016-10-06

Family

ID=57004085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001834 WO2016157896A1 (en) 2015-04-01 2016-03-30 Hot-rolled steel sheet and method for producing same

Country Status (7)

Country Link
US (1) US20180119240A1 (en)
EP (1) EP3279353B1 (en)
JP (1) JP6075517B1 (en)
KR (1) KR101989262B1 (en)
CN (1) CN107429362B (en)
MX (1) MX2017012493A (en)
WO (1) WO2016157896A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143318A1 (en) * 2017-02-06 2018-08-09 Jfeスチール株式会社 Molten zinc plating steel sheet and production method therefor
JP2018131669A (en) * 2017-02-17 2018-08-23 日新製鋼株式会社 BLACK SURFACE-COATED HIGH-STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BENDING PROCESSABILITY AND METHOD FOR MANUFACTURING THE SAME
JP2021505772A (en) * 2017-12-12 2021-02-18 ポスコPosco Heat treatment curable high carbon steel sheet and its manufacturing method
CN112673117A (en) * 2018-09-20 2021-04-16 安赛乐米塔尔公司 Hot rolled steel sheet having high hole expansibility and method for manufacturing the same
JPWO2021131876A1 (en) * 2019-12-23 2021-07-01
US11155906B2 (en) * 2016-11-11 2021-10-26 Posco Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor
JP2021172838A (en) * 2020-04-22 2021-11-01 Jfeスチール株式会社 High strength steel sheet and method for manufacturing the same
WO2023095870A1 (en) * 2021-11-26 2023-06-01 日本製鉄株式会社 Zinc-plated steel sheet
WO2023132254A1 (en) * 2022-01-07 2023-07-13 日本製鉄株式会社 Hot-rolled steel sheet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563592B (en) * 2016-08-30 2021-02-19 杰富意钢铁株式会社 Thin steel sheet and method for producing same
KR102031445B1 (en) * 2017-12-22 2019-10-11 주식회사 포스코 High strength steel sheet having excellent impact resistance property and method for manufacturing the same
US11713497B2 (en) * 2018-04-23 2023-08-01 Nippon Steel Corporation Steel member and method of manufacturing same
JP6928112B2 (en) 2018-07-31 2021-09-01 Jfeスチール株式会社 Thin steel plate
KR102075642B1 (en) * 2018-08-06 2020-02-10 주식회사 포스코 High strenghth hot-rolled plated steel sheet having excellent hole flangeability, and method of manufacturing the same
CN112840057B (en) * 2018-10-19 2022-08-30 日本制铁株式会社 Hot rolled steel plate
HUE053584T2 (en) * 2018-11-14 2021-07-28 Ssab Technology Ab Hot-rolled steel strip and manufacturing method
KR102643337B1 (en) * 2019-07-10 2024-03-08 닛폰세이테츠 가부시키가이샤 high strength steel plate
WO2021106368A1 (en) * 2019-11-27 2021-06-03 Jfeスチール株式会社 Steel sheet and method for producing same
CN112375891A (en) * 2020-10-20 2021-02-19 包头钢铁(集团)有限责任公司 Online tempering process for eliminating bainite steel rail tensile fracture brittleness platform
CN115354237B (en) * 2022-08-29 2023-11-14 东北大学 Hot-rolled ultrahigh-strength steel plate with tensile strength of 1000MPa and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209290A (en) * 1995-02-06 1996-08-13 Nippon Steel Corp High tensile strength steel for welding excellent in low temperature toughness
JP2002241903A (en) * 2001-02-13 2002-08-28 Sumitomo Metal Ind Ltd HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2003247045A (en) * 2001-10-03 2003-09-05 Kobe Steel Ltd Dual-phase steel sheet having excellent stretch flange formability and production method thereof
JP2008291363A (en) * 2007-04-27 2008-12-04 Nippon Steel Corp Ferritic heat resistant steel having excellent creep property in weld heat-affected zone, and heat resistant structure
JP2011246798A (en) * 2009-06-24 2011-12-08 Jfe Steel Corp High-strength seamless steel tube for oil well with excellent resistance to sulfide stress cracking, and method for producing the same
JP2012237069A (en) * 2012-07-13 2012-12-06 Jfe Steel Corp High-strength cold-rolled steel sheet with excellent manufacturing stability, and method of manufacturing the same
JP2013072101A (en) * 2011-09-27 2013-04-22 Jfe Steel Corp High-strength steel sheet, and method of producing the same
JP2013095996A (en) * 2011-11-04 2013-05-20 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent workability and method for producing the same
JP2014218692A (en) * 2013-05-07 2014-11-20 新日鐵住金株式会社 High yield ratio and high strength hot rolled steel and manufacturing method therefor
JP5679091B1 (en) * 2013-04-04 2015-03-04 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090731B2 (en) * 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
FR2830260B1 (en) * 2001-10-03 2007-02-23 Kobe Steel Ltd DOUBLE-PHASE STEEL SHEET WITH EXCELLENT EDGE FORMABILITY BY STRETCHING AND METHOD OF MANUFACTURING THE SAME
JP4956998B2 (en) * 2005-05-30 2012-06-20 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
CA2759256C (en) * 2009-05-27 2013-11-19 Nippon Steel Corporation High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
JP5609786B2 (en) 2010-06-25 2014-10-22 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5765080B2 (en) * 2010-06-25 2015-08-19 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP5126326B2 (en) * 2010-09-17 2013-01-23 Jfeスチール株式会社 High strength hot-rolled steel sheet with excellent fatigue resistance and method for producing the same
JP5724267B2 (en) * 2010-09-17 2015-05-27 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
WO2012053637A1 (en) * 2010-10-22 2012-04-26 新日本製鐵株式会社 Steel sheet and steel sheet production process
CA2850340C (en) * 2011-09-30 2016-10-18 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet excellent in bake hardenability, and manufacturing method thereof
EP2765212B1 (en) * 2011-10-04 2017-05-17 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
WO2013102988A1 (en) * 2012-01-06 2013-07-11 Jfeスチール株式会社 High strength hot-rolled steel sheet and method for producing same
JP5505574B1 (en) * 2012-08-15 2014-05-28 新日鐵住金株式会社 Steel sheet for hot pressing, manufacturing method thereof, and hot pressed steel sheet member
JP5637225B2 (en) * 2013-01-31 2014-12-10 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
JP5641087B2 (en) 2013-04-15 2014-12-17 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in mass production punchability and manufacturing method thereof
MX2015014436A (en) * 2013-04-15 2016-02-03 Jfe Steel Corp High-strength hot-rolled steel sheet and method for manufacturing same.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209290A (en) * 1995-02-06 1996-08-13 Nippon Steel Corp High tensile strength steel for welding excellent in low temperature toughness
JP2002241903A (en) * 2001-02-13 2002-08-28 Sumitomo Metal Ind Ltd HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2003247045A (en) * 2001-10-03 2003-09-05 Kobe Steel Ltd Dual-phase steel sheet having excellent stretch flange formability and production method thereof
JP2008291363A (en) * 2007-04-27 2008-12-04 Nippon Steel Corp Ferritic heat resistant steel having excellent creep property in weld heat-affected zone, and heat resistant structure
JP2011246798A (en) * 2009-06-24 2011-12-08 Jfe Steel Corp High-strength seamless steel tube for oil well with excellent resistance to sulfide stress cracking, and method for producing the same
JP2013072101A (en) * 2011-09-27 2013-04-22 Jfe Steel Corp High-strength steel sheet, and method of producing the same
JP2013095996A (en) * 2011-11-04 2013-05-20 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent workability and method for producing the same
JP2012237069A (en) * 2012-07-13 2012-12-06 Jfe Steel Corp High-strength cold-rolled steel sheet with excellent manufacturing stability, and method of manufacturing the same
JP5679091B1 (en) * 2013-04-04 2015-03-04 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP2014218692A (en) * 2013-05-07 2014-11-20 新日鐵住金株式会社 High yield ratio and high strength hot rolled steel and manufacturing method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155906B2 (en) * 2016-11-11 2021-10-26 Posco Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor
JP2018127644A (en) * 2017-02-06 2018-08-16 Jfeスチール株式会社 Hot-dip galvanized steel sheet and method for producing the same
WO2018143318A1 (en) * 2017-02-06 2018-08-09 Jfeスチール株式会社 Molten zinc plating steel sheet and production method therefor
US11208712B2 (en) 2017-02-06 2021-12-28 Jfe Steel Corporation Galvanized steel sheet and method for manufacturing the same
JP2018131669A (en) * 2017-02-17 2018-08-23 日新製鋼株式会社 BLACK SURFACE-COATED HIGH-STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BENDING PROCESSABILITY AND METHOD FOR MANUFACTURING THE SAME
JP2021505772A (en) * 2017-12-12 2021-02-18 ポスコPosco Heat treatment curable high carbon steel sheet and its manufacturing method
JP7018138B2 (en) 2017-12-12 2022-02-09 ポスコ Heat treatment curable high carbon steel sheet and its manufacturing method
CN112673117A (en) * 2018-09-20 2021-04-16 安赛乐米塔尔公司 Hot rolled steel sheet having high hole expansibility and method for manufacturing the same
JPWO2021131876A1 (en) * 2019-12-23 2021-07-01
JP7280537B2 (en) 2019-12-23 2023-05-24 日本製鉄株式会社 hot rolled steel
JP2021172838A (en) * 2020-04-22 2021-11-01 Jfeスチール株式会社 High strength steel sheet and method for manufacturing the same
JP7287334B2 (en) 2020-04-22 2023-06-06 Jfeスチール株式会社 High-strength steel plate and its manufacturing method
WO2023095870A1 (en) * 2021-11-26 2023-06-01 日本製鉄株式会社 Zinc-plated steel sheet
WO2023132254A1 (en) * 2022-01-07 2023-07-13 日本製鉄株式会社 Hot-rolled steel sheet

Also Published As

Publication number Publication date
CN107429362A (en) 2017-12-01
JP6075517B1 (en) 2017-02-08
US20180119240A1 (en) 2018-05-03
MX2017012493A (en) 2018-01-18
EP3279353B1 (en) 2019-03-27
EP3279353A1 (en) 2018-02-07
KR20170128555A (en) 2017-11-22
EP3279353A4 (en) 2018-02-07
JPWO2016157896A1 (en) 2017-04-27
KR101989262B1 (en) 2019-06-13
CN107429362B (en) 2020-06-23

Similar Documents

Publication Publication Date Title
JP6075517B1 (en) Hot-rolled steel sheet and manufacturing method thereof
CN108138277B (en) Material for high-strength steel sheet, and method for producing same
KR102159872B1 (en) High-strength steel sheet and its manufacturing method
KR101329928B1 (en) High-strength hot-dip galvanized steel plate of excellent workability and manufacturing method therefor
JP6458833B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
WO2016013144A1 (en) Method for producing high-strength hot dipped galvanized steel sheet
JP5321672B2 (en) High-tensile hot-rolled steel sheet with excellent material uniformity and manufacturing method thereof
CN111511945A (en) High-strength cold-rolled steel sheet and method for producing same
KR20100092503A (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
KR20140103339A (en) High-strength hot-rolled steel sheet and manufacturing method therefor
JP5884476B2 (en) High-tensile hot-rolled steel sheet excellent in bending workability and manufacturing method thereof
JP2010248565A (en) Ultrahigh-strength cold-rolled steel sheet superior in formability for extension flange, and method for manufacturing the same
US20200248280A1 (en) Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated steel sheet, method for producing steel sheet, and method for producing coated steel sheet
JP2015113504A (en) High strength hot-dip galvanized steel sheet excellent in processability and method for manufacturing the same
TW201326422A (en) High strength hot-rolled steel sheet and method for manufacturing the same
KR20120099517A (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
WO2016157258A1 (en) High-strength steel sheet and production method therefor
JP5641086B2 (en) High-strength hot-rolled steel sheet excellent in mass production punchability and manufacturing method thereof
JP5509909B2 (en) Manufacturing method of high strength hot-rolled steel sheet
WO2016157257A1 (en) High-strength steel sheet and production method therefor
JP6224704B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP7136335B2 (en) High-strength steel plate and its manufacturing method
JP6052503B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP5594438B2 (en) High tensile hot rolled galvanized steel sheet and method for producing the same
EP4079882A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016549181

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15561436

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/012493

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016771783

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177029834

Country of ref document: KR

Kind code of ref document: A