JPH08209290A - High tensile strength steel for welding excellent in low temperature toughness - Google Patents

High tensile strength steel for welding excellent in low temperature toughness

Info

Publication number
JPH08209290A
JPH08209290A JP1830795A JP1830795A JPH08209290A JP H08209290 A JPH08209290 A JP H08209290A JP 1830795 A JP1830795 A JP 1830795A JP 1830795 A JP1830795 A JP 1830795A JP H08209290 A JPH08209290 A JP H08209290A
Authority
JP
Japan
Prior art keywords
steel
low temperature
temperature toughness
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1830795A
Other languages
Japanese (ja)
Other versions
JP3244986B2 (en
Inventor
Hiroshi Tamehiro
博 為広
Hitoshi Asahi
均 朝日
Takuya Hara
卓也 原
Yoshio Terada
好男 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP01830795A priority Critical patent/JP3244986B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to CN96190123A priority patent/CN1146784A/en
Priority to PCT/JP1996/000155 priority patent/WO1996023083A1/en
Priority to AU44964/96A priority patent/AU680590B2/en
Priority to RU96119965A priority patent/RU2136775C1/en
Priority to CA002186476A priority patent/CA2186476C/en
Priority to DE69608179T priority patent/DE69608179T2/en
Priority to US08/714,098 priority patent/US5798004A/en
Priority to KR1019960705330A priority patent/KR100206151B1/en
Priority to EP96901129A priority patent/EP0753596B1/en
Publication of JPH08209290A publication Critical patent/JPH08209290A/en
Priority to NO964034A priority patent/NO964034L/en
Application granted granted Critical
Publication of JP3244986B2 publication Critical patent/JP3244986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To produce a ultrahigh tensile strength steel for welding excellent in the balance of strength and low temp. toughness, easily capable of applying field welding and excellent in low temp. toughness by specifying the microstructure of a steel having a specified compsn. contg. Ni, Mo, Nb, Ti or the like. CONSTITUTION: The compsn, of a steel is constituted of the one contg., by weight, 0.05 to 0.10% C, <=0.6% Si, 1.8 to 2.5% Mn, <=0.015% P, <=0.003% S, 0.1 to 1.0% Ni, 0.35 to 0.60% Mo, 0.01 to 0.10% Nb, 0.005 to 0.030% Ti, <=0.06% Al and 0.001 to 0.006% N, furthermore contg., at need, prescribed amounts of V, Cu, Cr and Ca, and the balance iron with inevitable impurities, and in which the value of P shown by the formula lies in the range of 1.9 to 2.8. Moreover, the microstructure of the steel is formed of the one contg. >=60mol.% tempered martensite with <=10μm grain size transformed from unrecrystallized austenite, and in which the total of the tempered martensite fractional rate and tempered bainite fractional rate is regulated to >=90%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、950MPa以上の引
張強さ(TS)を有する低温靭性・溶接性の優れた超高
張力鋼に関するもので、天然ガス・原油輸送用ラインパ
イプをはじめ、各種圧力容器、産業機械などの溶接用鋼
材として広く使用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high strength steel having a tensile strength (TS) of 950 MPa or more and excellent low temperature toughness and weldability, including line pipes for transporting natural gas and crude oil. It can be widely used as a welding steel material for pressure vessels and industrial machinery.

【0002】[0002]

【従来の技術】近年、原油・天然ガスを長距離輸送する
パイプラインに使用するラインパイプは、(1)高圧化
による輸送効率の向上や(2)ラインパイプの外径・重
量の低減による現地施工能率の向上のため、ますます高
張力化する傾向にある。これまでに米国石油協会(AP
I)規格でX80(降伏強さ551MPa以上、引張強
さ620MPa以上)までのラインパイプが実用化され
ているが、さらに高強度のラインパイプに対するニーズ
が強くなってきた。
2. Description of the Related Art In recent years, line pipes used for long-distance pipelines of crude oil and natural gas are (1) improved in transportation efficiency by increasing pressure and (2) locally reduced in outer diameter and weight of the line pipe. There is a tendency for tensile strength to become higher and higher in order to improve construction efficiency. To date, the American Petroleum Institute (AP
I) Standard line pipes up to X80 (yield strength 551 MPa or more, tensile strength 620 MPa or more) have been put into practical use, but there is a growing need for line pipes with even higher strength.

【0003】現在、超高強度ラインパイプ製造法の研究
は、従来のX80ラインパイプの製造技術(たとえばN
KK技報 No.138(1992), pp24-31、およびThe 7th Offs
horeMechanics and Arctic Engineering(1988), Volume
V, pp179-185)を基本に検討されているが、これではせ
いぜい、X100(降伏強さ689MPa以上、引張強
さ760MPa以上)ラインパイプの製造が限界と考え
られる。
At present, research on a method for manufacturing an ultra-high-strength line pipe is conducted by a conventional X80 line pipe manufacturing technique (for example, N
KK Technical Report No.138 (1992), pp24-31, and The 7th Offs
horeMechanics and Arctic Engineering (1988), Volume
V, pp179-185), but it is considered that the production of X100 (yield strength 689 MPa or more, tensile strength 760 MPa or more) line pipe is the limit at most.

【0004】パイプラインの超高強度化は強度・低温靭
性バランスをはじめとして、溶接熱影響部(HAZ)靭
性、現地溶接性、継手軟化など多くの問題を抱えてお
り、これらを克服した画期的な超高張力ラインパイプ
(X100超)の早期開発が要望されている。
The ultra-high-strength pipeline has many problems such as the balance between strength and low temperature toughness, weld heat affected zone (HAZ) toughness, on-site weldability, and softening of joints. There is a demand for early development of a typical ultra-high tension line pipe (X100 or more).

【0005】[0005]

【発明が解決しょうとする課題】本発明は、強度と低温
靭性のバランスが優れ、かつ現地溶接が容易な引張強さ
950MPa以上(API規格X100超)超高張力溶
接用鋼を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides an ultrahigh-strength welding steel having an excellent balance of strength and low-temperature toughness and having a tensile strength of 950 MPa or more (API standard X100 or more) that facilitates on-site welding. is there.

【0006】[0006]

【課題を解決するための手段】本発明者らは、引張強さ
が950MPa以上で、かつ低温靭性・現地溶接性の優
れた超高張力鋼材を得るための鋼材の化学成分(組成)
とそのミクロ組織について鋭意研究を行い、新しい超高
張力溶接用鋼を発明するに至った。
[Means for Solving the Problems] The inventors of the present invention have a chemical composition (composition) of a steel material for obtaining an ultra-high strength steel material having a tensile strength of 950 MPa or more and excellent low temperature toughness and field weldability.
And their microstructure, they have invented a new ultra-high-strength welding steel.

【0007】すなわち本発明の要旨は、重量%で、C
:0.05〜0.10%、 Si:0.6%以
下、Mn:1.8〜2.5%、 P :0.0
15%以下、S :0.003%以下、 N
i:0.1〜1.0%、Mo:0.35〜0.60%、
Nb:0.01〜0.10%、Ti:0.005
〜0.030%、 Al:0.06%以下、N :0.
001〜0.006%を含有し、必要に応じて、さらに
V :0.01〜0.10%、 Cu:0.1〜
0.7%、Cr:0.1〜0.8%、 Ca:
0.001〜0.006%の1種または2種以上を含有
し、残部が鉄および不可避的不純物からなり、かつP=
2.7C+0.4Si+Mn+0.8Cr+0.45
(Ni+Cu)+Mo+V−1が1.9≦P≦2.8を
満足する鋼成分を有し、さらにそのミクロ組織が平均オ
ーステナイト粒径が10μm以下の未再結晶オーステナ
イトから変態した60%以上の焼戻しマルテンサイトを
含有し、かつ焼戻しマルテンサイト分率と焼戻しベイナ
イト分率との和が90%以上であることを特徴とする低
温靭性に優れた溶接性高張力鋼である。
That is, the gist of the present invention is, in% by weight, C
: 0.05-0.10%, Si: 0.6% or less, Mn: 1.8-2.5%, P: 0.0
15% or less, S: 0.003% or less, N
i: 0.1 to 1.0%, Mo: 0.35 to 0.60%,
Nb: 0.01 to 0.10%, Ti: 0.005
~ 0.030%, Al: 0.06% or less, N: 0.
001 to 0.006%, and if necessary, V: 0.01 to 0.10%, Cu: 0.1 to
0.7%, Cr: 0.1 to 0.8%, Ca:
It contains 0.001 to 0.006% of one or more kinds, and the balance is iron and inevitable impurities, and P =
2.7C + 0.4Si + Mn + 0.8Cr + 0.45
(Ni + Cu) + Mo + V-1 has a steel composition satisfying 1.9 ≦ P ≦ 2.8, and its microstructure is tempered by 60% or more transformed from unrecrystallized austenite having an average austenite grain size of 10 μm or less. A weldable high-strength steel excellent in low-temperature toughness, characterized by containing martensite and having a sum of a tempered martensite fraction and a tempered bainite fraction of 90% or more.

【0008】本発明の特徴は、(1) Ni−Nb−Mo−
微量Tiを複合添加した低炭素・高Mn系(1.8%以
上)であること、(2) そのミクロ組織が平均オーステナ
イト粒径10μm以下の未再結晶オーステナイトから変
態した微細な焼戻しマルテンサイトおよびベイナイトか
らなること、である。
The features of the present invention are (1) Ni-Nb-Mo-
A low carbon / high Mn system (1.8% or more) in which a small amount of Ti is added in combination, (2) A fine tempered martensite transformed from unrecrystallized austenite whose microstructure has an average austenite grain size of 10 μm or less, and It consists of bainite.

【0009】従来より、低炭素−高Mn−Nb−Mo鋼
は微細なアシキュラーフェライト組織を有するラインパ
イプ用鋼としてよく知られているが、その引張強さの上
限はせいぜい750MPaが限界であった。本基本成分
系で微細な焼戻しマルテンサイト・ベイナイト混合組織
を有する超高張力鋼はまったく存在しない。これはNb
−Mo鋼の焼戻しマルテンサイト・ベイナイト混合組織
では、950MPa以上の引張強さは到底不可能である
ばかりか、低温靭性や現地溶接性も不十分と考えられて
いたためである。
Conventionally, low carbon-high Mn-Nb-Mo steel is well known as a steel for line pipes having a fine acicular ferrite structure, but the upper limit of its tensile strength is at most 750 MPa. It was There is no ultrahigh-strength steel having a fine tempered martensite / bainite mixed structure in this basic component system. This is Nb
This is because, in the tempered martensite / bainite mixed structure of -Mo steel, not only tensile strength of 950 MPa or more is impossible but also low temperature toughness and field weldability are considered to be insufficient.

【0010】まず本発明鋼のミクロ組織について説明す
る。引張強さ950MPa以上の超高強度を達成するた
めには、鋼材のミクロ組織を一定量以上の焼戻しマルテ
ンサイトとする必要があり、その分率は60%以上でな
ければならない。焼き戻しマルテンサイト分率が60%
以下であると、十分な強度が得られないだけでなく、良
好な低温靭性を確保することが困難となる(強度、低温
靭性上、もっとも望ましい焼戻しマルテンサイト分率は
70〜90%である)。しかし、たとえ焼戻しマルテン
サイト分率が60%以上であっても、残りの組織が不適
切であると目的とする強度・低温靭性は達成できない。
このため焼き戻しマルテンサイト分率と焼戻しベイナイ
ト分率の和を90%以上とした。
First, the microstructure of the steel of the present invention will be described. In order to achieve an ultrahigh strength of 950 MPa or more in tensile strength, it is necessary to make the microstructure of the steel material a certain amount or more of tempered martensite, and the fraction thereof must be 60% or more. 60% tempered martensite fraction
When it is below, not only sufficient strength cannot be obtained, but also it becomes difficult to secure good low temperature toughness (in terms of strength and low temperature toughness, the most desirable tempered martensite fraction is 70 to 90%). . However, even if the tempered martensite fraction is 60% or more, the desired strength and low temperature toughness cannot be achieved if the remaining structure is inappropriate.
Therefore, the sum of the tempered martensite fraction and the tempered bainite fraction is set to 90% or more.

【0011】しかし、ミクロ組織の種類を上述のように
限定しても、必ずしも良好な低温靭性は得られない。優
れた低温靭性を得るためには、γ−α変態前のオーステ
ナイト組織(旧オーステナイト組織)を最適化し、鋼材
の最終組織を効果的に微細化する必要がある。このため
旧オーステナイト組織を未再結晶オーステナイトとし、
かつその平均粒径(dγ)を10μm以下に限定した。
これにより、従来低温靭性が悪いと考えられていたNb
−Mo鋼の焼き戻しマルテンサイトとベイナイトとの混
合組織においても極めて優れた強度・低温靭性バランス
が得られることを見いだした。
However, even if the types of microstructures are limited as described above, good low temperature toughness cannot always be obtained. In order to obtain excellent low temperature toughness, it is necessary to optimize the austenite structure before γ-α transformation (former austenite structure) and effectively refine the final structure of the steel material. Therefore, the old austenite structure is unrecrystallized austenite,
And the average particle diameter (dγ) is limited to 10 μm or less.
As a result, Nb, which was conventionally considered to have poor low temperature toughness,
It has been found that an extremely excellent balance between strength and low temperature toughness can be obtained even in a mixed structure of tempered martensite and bainite of -Mo steel.

【0012】未再結晶オーステナイト粒径の微細化はN
b−Mo系の本発明鋼の低温靭性改善にとくに有効であ
る。目的とする低温靭性(たとえばVノッチシャルピー
衝撃試験の遷移温度で−80℃以下)を得るには、平均
粒径を10μm以下としなければならない。ここで見掛
けの平均オーステナイト粒径は図1のように定義し、オ
ーステナイト粒径の測定では、オーステナイト粒界と同
様の作用をもつ変形帯や双晶境界も含めた。具体的に
は、鋼板長さ方向に引いた直線の全長を、該直線上に存
在するオーステナイト粒界との交点の数で除し、dγを
求めた。このようにして求めたオーステナイト平均粒径
は低温靭性(シャルピー衝撃試験の遷移温度)と極めて
良い相関があることを見つけた。
The refinement of the unrecrystallized austenite grain size is N
It is particularly effective for improving the low temperature toughness of the b-Mo steel of the present invention. In order to obtain the desired low temperature toughness (for example, −80 ° C. or lower at the transition temperature of the V-notch Charpy impact test), the average grain size must be 10 μm or less. Here, the apparent average austenite grain size is defined as shown in FIG. 1, and in the measurement of the austenite grain size, a deformation zone and a twin boundary having the same action as the austenite grain boundary are also included. Specifically, the total length of a straight line drawn in the lengthwise direction of the steel sheet was divided by the number of intersections with austenite grain boundaries existing on the straight line to obtain dγ. It was found that the austenite average grain size thus obtained has a very good correlation with the low temperature toughness (transition temperature of Charpy impact test).

【0013】さらに鋼材の化学成分(高Mn−Nb−高
Mo添加)、ミクロ組織(オーステナイトの未再結晶
化)の形態を上述のように厳密に制御することにより、
シャルピー衝撃試験などの破面にセパレーションが発生
し、破面遷移温度はより一層向上することも明らかにな
った。セパレーションはシャルピー衝撃試験などの破面
に発生する板面に平行な層状剥離現象で脆性亀裂先端で
の3軸応力度を低下させ、脆性亀裂伝播停止特性を改善
すると考えられている。
Further, by strictly controlling the chemical composition (high Mn-Nb-high Mo addition) and microstructure (unrecrystallized austenite) of the steel material as described above,
It was also clarified that separation occurred on the fracture surface in the Charpy impact test and the transition temperature of the fracture surface was further improved. Separation is believed to reduce the triaxial stress level at the brittle crack tip by a delamination phenomenon parallel to the plate surface that occurs on the fracture surface such as in the Charpy impact test, and improve the brittle crack propagation stopping property.

【0014】しかしながら、上述のように、鋼材のミク
ロ組織を厳密に制御しても目的とする特性を有する鋼材
は得られない。このためにはミクロ組織と同時に化学成
分を限定する必要がある。以下に成分元素の限定理由に
ついて説明する。
However, as described above, even if the microstructure of the steel material is strictly controlled, a steel material having the desired characteristics cannot be obtained. For this purpose, it is necessary to limit the chemical composition as well as the microstructure. The reasons for limiting the constituent elements will be described below.

【0015】C量は0.05〜0.10%に限定する。
Cは鋼の強度向上に極めて有効な元素であり、焼戻しマ
ルテンサイト・ベイナイト混合組織において目的とする
強度を得るためには、最低0.05%は必要である。ま
たこの量はNb、V添加による析出硬化、結晶粒の微細
化効果の発現や溶接部強度の確保のための最小量でもあ
る。しかしC量が多すぎると母材、HAZの低温靭性や
現地溶接性の著しい劣化を招くので、その上限を0.1
0%とした。
The C content is limited to 0.05 to 0.10%.
C is an extremely effective element for improving the strength of steel, and at least 0.05% is necessary to obtain the target strength in the tempered martensite / bainite mixed structure. Further, this amount is also the minimum amount for precipitation hardening by the addition of Nb and V, manifestation of the effect of refining the crystal grains, and ensuring the weld strength. However, if the amount of C is too large, the low temperature toughness of the base metal and HAZ and the field weldability will be significantly deteriorated.
It was set to 0%.

【0016】Siは脱酸や強度向上のため添加する元素
であるが、多く添加するとHAZ靭性、現地溶接性を著
しく劣化させるので、上限を0.6%とした。鋼の脱酸
はTiあるいはAlでも十分可能であり、Siは必ずし
も添加する必要はない。
Si is an element added for deoxidation and strength improvement, but if added in a large amount, HAZ toughness and field weldability are significantly deteriorated, so the upper limit was made 0.6%. Deoxidation of steel is sufficiently possible with Ti or Al, and Si is not necessarily added.

【0017】Mnは本発明鋼のミクロ組織を微細なマル
テンサイト・ベイナイト混合組織とし、優れた強度・低
温靭性バランスを確保する上で不可欠な元素であり、そ
の下限は1.8%である。しかしMn量が多すぎると鋼
の焼入性が増加してHAZ靭性、現地溶接性を劣化させ
るだけでなく、連続鋳造鋼片の中心偏析を助長し、母材
の低温靭性をも劣化させるので上限を2.5%とした。
(望ましいMn量は1.9〜2.1%である)。
Mn is an element essential for ensuring a fine martensite / bainite mixed structure in the microstructure of the steel of the present invention and ensuring an excellent balance of strength and low temperature toughness, and its lower limit is 1.8%. However, if the Mn content is too large, not only the hardenability of the steel increases and the HAZ toughness and field weldability deteriorate, but also the center segregation of the continuously cast steel slab is promoted and the low temperature toughness of the base metal also deteriorates. The upper limit was 2.5%.
(A desirable Mn amount is 1.9 to 2.1%).

【0018】Niを添加する目的は低炭素の本発明鋼の
強度を低温靭性や現地溶接性を劣化させることなく向上
させるためである。Ni添加はMnやCr、Mo添加に
比較して圧延組織(とくにスラブの中心偏析帯)中に低
温靭性に有害な硬化組織を形成することが少ないばかり
か、微量のNi添加がHAZ靭性の改善にも有効である
ことが判明した(HAZ靭性上、とくに有効なNi添加
量は0.3%以上である)。しかし添加量が多すぎる
と、経済性だけではなく、HAZ靭性や現地溶接性を劣
化させるので、その上限を1.0%とした。またNi添
加は連続鋳造時、熱間圧延時におけるCuクラックの防
止にも有効である。この場合、NiはCu量の1/3以
上添加する必要がある。
The purpose of adding Ni is to improve the strength of the low carbon steel of the present invention without deteriorating the low temperature toughness and field weldability. Compared to Mn, Cr, and Mo additions, Ni addition does not often form a hardened structure harmful to low temperature toughness in the rolling structure (especially the central segregation zone of the slab), and addition of a small amount of Ni improves HAZ toughness. It has been found that it is also effective (a particularly effective Ni addition amount is 0.3% or more in terms of HAZ toughness). However, if the addition amount is too large, not only the economical efficiency but also the HAZ toughness and the field weldability are deteriorated, so the upper limit was made 1.0%. Further, addition of Ni is also effective in preventing Cu cracks during continuous casting and hot rolling. In this case, it is necessary to add Ni to 1/3 or more of the Cu amount.

【0019】Moを添加する理由は鋼の焼入性を向上さ
せ、目的とするマルテンサイト・ベイナイト混合組織を
得るためである。またMoはNbと共存して制御圧延時
にオーステナイトの再結晶を強力に抑制し、オーステナ
イト組織の微細化にも効果がある。このような効果を得
るために、Moは最低0.35%必要である。しかし過
剰なMo添加はHAZ靭性、現地溶接性を劣化させるの
で、その上限を0.6%とした。
The reason for adding Mo is to improve the hardenability of steel and to obtain the desired martensite / bainite mixed structure. Further, Mo coexists with Nb to strongly suppress recrystallization of austenite during controlled rolling, and is also effective for refining the austenite structure. In order to obtain such an effect, Mo must be at least 0.35%. However, excessive addition of Mo deteriorates HAZ toughness and field weldability, so the upper limit was made 0.6%.

【0020】また本発明鋼では、必須の元素としてN
b:0.01〜0.10%、Ti:0.005〜0.0
30%を含有する。NbはMoと共存して制御圧延時に
オーステナイトの再結晶を抑制して結晶粒を微細化する
だけでなく、析出硬化や焼入性増大にも寄与し、鋼を強
靭化する作用を有する。しかし、Nb添加量が多すぎる
と、HAZ靭性や現地溶接性に悪影響をもたらすので、
その上限を0.10%とした。
In the steel of the present invention, N is an essential element.
b: 0.01 to 0.10%, Ti: 0.005 to 0.0
Contains 30%. Nb coexists with Mo and not only suppresses recrystallization of austenite during controlled rolling to make crystal grains fine, but also contributes to precipitation hardening and increase in hardenability and has an action of strengthening steel. However, if the amount of Nb added is too large, it adversely affects HAZ toughness and field weldability.
The upper limit was 0.10%.

【0021】一方、Ti添加は微細なTiNを形成し、
スラブ再加熱時および溶接HAZのオーステナイト粒の
粗大化を抑制してミクロ組織を微細化し、母材およびH
AZの低温靭性を改善する。またAl量が少ないとき
(たとえば0.005%以下)、Tiは酸化物を形成
し、HAZにおいて粒内フェライト生成核として作用
し、HAZ組織を微細化する効果も有する。このような
Ti添加効果を発現させるには、最低0.005%のT
i添加が必要である。しかしTi量が多すぎると、Ti
Nの粗大化やTiCによる析出硬化が生じ、低温靭性を
劣化させるので、その上限を0.03%に限定した。
On the other hand, addition of Ti forms fine TiN,
When the slab is reheated and the austenite grains of the welded HAZ are suppressed from coarsening, the microstructure is refined, and the base metal and H
Improves low temperature toughness of AZ. Further, when the amount of Al is small (for example, 0.005% or less), Ti forms an oxide and acts as an intragranular ferrite formation nucleus in HAZ, and also has the effect of refining the HAZ structure. In order to develop such Ti addition effect, at least 0.005% T
i addition is required. However, if the amount of Ti is too large, Ti
Since coarsening of N and precipitation hardening due to TiC occur and the low temperature toughness deteriorates, the upper limit was limited to 0.03%.

【0022】Alは通常脱酸剤として鋼に含まれる元素
で組織の微細化にも効果を有する。しかしAl量が0.
06%を超えるとAl系非金属介在物が増加して鋼の清
浄度を害するので、上限を0.06%とした。脱酸はT
iあるいはSiでも可能であり、Alは必ずしも添加す
る必要はない。
Al is an element usually contained in steel as a deoxidizing agent and has an effect of refining the structure. However, the amount of Al is 0.
If it exceeds 06%, Al-based nonmetallic inclusions increase and impair the cleanliness of the steel, so the upper limit was made 0.06%. Deoxidation is T
It is also possible to use i or Si, and it is not always necessary to add Al.

【0023】NはTiNを形成しスラブ再加熱時および
溶接HAZのオーステナイト粒の粗大化を抑制して母
材、HAZの低温靭性を向上させる。このために必要な
最小量は0.001%である。しかしN量が多すぎると
スラブ表面疵や固溶NによるHAZ靭性の劣化の原因と
なるので、その上限は0.006%に抑える必要があ
る。
N forms TiN and suppresses coarsening of austenite grains in the slab during reheating and in the welded HAZ and improves the low temperature toughness of the base metal and HAZ. The minimum amount required for this is 0.001%. However, if the amount of N is too large, it may cause a flaw in the slab surface or deterioration of the HAZ toughness due to solid solution N, so the upper limit must be suppressed to 0.006%.

【0024】さらに本発明では、不純元素であるP,S
量をそれぞれ0.015%以下、0.003%以下とす
る。この主たる理由は母材およびHAZの低温靭性をよ
り一層向上させるためである。P量の低減は連続鋳造ス
ラブの中心偏析を軽減するとともに、粒界破壊を防止し
て低温靭性を向上させる。またS量の低減は熱間圧延で
延伸化したMnSを低減して延性、靭性を向上させる効
果がある。
Furthermore, in the present invention, P and S which are impure elements are used.
The amounts are 0.015% or less and 0.003% or less, respectively. The main reason for this is to further improve the low temperature toughness of the base material and HAZ. Reduction of the amount of P reduces the center segregation of the continuously cast slab, prevents grain boundary fracture, and improves the low temperature toughness. Further, the reduction of the amount of S has an effect of reducing MnS drawn by hot rolling to improve ductility and toughness.

【0025】次にV,Cu,CrおよびCaを添加する
目的について説明する。基本となる成分にさらにこれら
の元素を添加する主たる目的は本発明鋼の優れた特徴を
損なうことなく、強度・低温靭性などの特性の一層の向
上や製造可能な鋼材サイズの拡大をはかるためである。
したがって、その添加量は自ら制限されるべき性質のも
のである。
Next, the purpose of adding V, Cu, Cr and Ca will be described. The main purpose of adding these elements to the basic composition is to further improve the properties such as strength and low temperature toughness and to expand the size of the manufacturable steel material without impairing the excellent characteristics of the steel of the present invention. is there.
Therefore, the amount added is of a nature that should be limited by itself.

【0026】VはほぼNbと同様の効果を有するが、そ
の効果はNbに比較して弱い。しかし超高強度鋼におけ
るV添加の効果は大きく、NbとVの複合添加は本発明
鋼の優れた特徴をさらに顕著なものとする。(本発明鋼
では、0.03〜0.08%V添加がとくに望まし
い)。その上限はHAZ靭性、現地溶接性の点から0.
10%まで許容できる。
V has almost the same effect as Nb, but its effect is weaker than that of Nb. However, the effect of V addition in ultra-high strength steel is great, and the combined addition of Nb and V makes the excellent characteristics of the steel of the present invention more remarkable. (In the steel of the present invention, addition of 0.03 to 0.08% V is particularly desirable). The upper limit is 0. 0 from the viewpoint of HAZ toughness and field weldability.
Up to 10% is acceptable.

【0027】CuはNiとほぼ同様な効果を持つととも
に、耐食性、耐水素誘起割れ特性の向上にも効果があ
る。またCu析出硬化によって強度を大幅に増加させ
る。しかし過剰に添加すると析出硬化により母材、HA
Zの靭性低下や熱間圧延時にCuクラックが生じるの
で、その上限を0.7%とした。
Cu has almost the same effect as Ni, and also has an effect of improving the corrosion resistance and hydrogen-induced cracking resistance. Also, the strength is significantly increased by Cu precipitation hardening. However, if added excessively, the base metal and HA will be precipitated and hardened.
Since the toughness of Z decreases and Cu cracks occur during hot rolling, the upper limit was made 0.7%.

【0028】Crは母材、溶接部の強度を増加させる
が、多すぎるとHAZ靭性や現地溶接性を著しく劣化さ
せる。このためCr量の上限は0.6%である。V,C
u,Cr量の下限0.01%、0.1%、0.1%はそ
れぞれの元素添加による材質上の効果が顕著になる最小
量である。
[0028] Cr increases the strength of the base material and the welded portion, but if it is too much, it significantly deteriorates the HAZ toughness and field weldability. Therefore, the upper limit of the amount of Cr is 0.6%. V, C
The lower limits of 0.01%, 0.1%, and 0.1% of the amounts of u and Cr are the minimum amounts in which the effect on the material due to the addition of the respective elements becomes remarkable.

【0029】Caは硫化物(MnS)の形態を制御し、
低温靭性を向上(シャルピー衝撃試験の吸収エネルギ−
の増加など)させる。とくに超高強度ラインパイプを主
用途とする本発明鋼では、不安定延性破壊の伝播防止の
ため高シャルピー吸収エネルギ−が要求されるので、S
量の低減とCa処理は重要である。しかしCa添加量が
0.001%以下では実用上効果がなく、また0.00
5%を超えて添加するとCaO−CaSが大量に生成し
て大型クラスター、大型介在物となり、鋼の清浄度を害
するだけでなく、現地溶接性にも悪影響をおよぼす。こ
のためCa添加量の上限を0.005%に制限した。な
お超高強度鋼は、S,O量をそれぞれ0.001%、
0.002%以下に低減し、かつESSP=(Ca)[
1−124(O)] /1.25(S)を0.5≦ESS
P≦10.0とすることがとくに有効である。なおES
SPとは、有効硫化物形態制御パラメーターの略であ
る。
Ca controls the morphology of sulfide (MnS),
Improved low temperature toughness (absorbed energy in Charpy impact test)
Increase). Particularly, in the steel of the present invention mainly used for ultra-high strength line pipe, high Charpy absorbed energy is required to prevent the propagation of unstable ductile fracture.
Reduction of the amount and Ca treatment are important. However, if the amount of Ca added is 0.001% or less, there is no practical effect, and
If added in excess of 5%, a large amount of CaO-CaS is formed to form large clusters and large inclusions, which not only impairs the cleanliness of the steel but also adversely affects on-site weldability. Therefore, the upper limit of the amount of Ca added is limited to 0.005%. Ultra high strength steel contains 0.001% of S and O,
Reduced to 0.002% or less and ESSP = (Ca) [
1-124 (O)] / 1.25 (S) 0.5 ≦ ESS
It is particularly effective to set P ≦ 10.0. ES
SP is an abbreviation for effective sulfide morphology control parameter.

【0030】以上の個々の添加元素の限定に加えて本発
明では、さらにP=2.7C+0.4Si+Mn+0.
8Cr+0.45(Ni+Cu)+Mo+V−1を1.
9≦P≦2.8に制限する。これはHAZ靭性、現地溶
接性を損なうことなく、目的とする強度・低温靭性バラ
ンスを達成するためである。P値の下限を1.9とした
のは950MPa以上の強度と優れた低温靭性を得るた
めである。また、P値の上限を2.8としたのは優れた
HAZ靭性、現地溶接性を維持するためである。
In the present invention, in addition to the above limitation of the individual additive elements, P = 2.7C + 0.4Si + Mn + 0.
8Cr + 0.45 (Ni + Cu) + Mo + V-1
It is limited to 9 ≦ P ≦ 2.8. This is to achieve the desired balance between strength and low temperature toughness without impairing HAZ toughness and field weldability. The lower limit of the P value is set to 1.9 in order to obtain strength of 950 MPa or more and excellent low temperature toughness. Moreover, the upper limit of the P value is set to 2.8 in order to maintain excellent HAZ toughness and field weldability.

【0031】[0031]

【実施例】次に本発明の実施例について述べる。実験室
溶解(50kg,120mm厚鋼塊)または転炉−連続鋳造
法(240mm厚)で種々の鋼成分の鋳片を製造した。こ
れらの鋳片を種々の条件で厚みが15〜28mmの鋼板に
圧延し、焼戻し処理(550℃〜620℃×20分空
冷)を行って諸機械的性質およびミクロ組織を調査し
た。
Next, an embodiment of the present invention will be described. Slabs of various steel compositions were produced by laboratory melting (50 kg, 120 mm thick steel ingot) or converter-continuous casting (240 mm thick). These slabs were rolled into steel plates having a thickness of 15 to 28 mm under various conditions and tempered (550 ° C. to 620 ° C. × 20 minutes air cooling) to investigate various mechanical properties and microstructures.

【0032】鋼板の機械的性質(降伏強さ:YS,引張
強さ:TS,シャルピー衝撃試験の−40℃での吸収エ
ネルギー:vE-40 と遷移温度:vTrs)は圧延と直角方向
で調査した。HAZ靭性(シャルピ−衝撃試験−20℃
での吸収エネルギ−:vE-20)は再現熱サイクル装置で
再現したHAZで評価した(最高加熱温度:1400
℃,800〜500℃の冷却時間[△t800-500 ]:2
5秒)。また現地溶接性はY−スリット溶接割れ試験
(JIS G3158)においてHAZの低温割れ防止
に必要な最低予熱温度で評価した(溶接方法:ガスメタ
ルアーク溶接,溶接棒:引張強さ100MPa,入熱:
0.5kJ/mm,溶着金属の水素量:3cc/100g)。
Mechanical properties of the steel sheet (yield strength: YS, tensile strength: TS, absorbed energy at -40 ° C. in Charpy impact test: vE -40 and transition temperature: vTrs) were investigated in the direction perpendicular to rolling. . HAZ toughness (Charpy impact test -20 ° C
The absorbed energy at: vE -20 was evaluated by the HAZ reproduced by the simulated thermal cycler (maximum heating temperature: 1400).
℃, 800-500 ℃ cooling time [△ t 800-500 ]: 2
5 seconds). The field weldability was evaluated in the Y-slit welding crack test (JIS G3158) by the minimum preheating temperature required to prevent low temperature cracking of HAZ (welding method: gas metal arc welding, welding rod: tensile strength 100 MPa, heat input:
0.5 kJ / mm, hydrogen content of deposited metal: 3 cc / 100 g).

【0033】実施例を表1および表2に示す。本発明に
従って製造した鋼板は優れた強度・低温靭性バランス、
HAZ靭性および現地溶接性を有する。これに対して比
較鋼は化学成分またはミクロ組織が不適切なため、いず
れかの特性が著しく劣る。
Examples are shown in Tables 1 and 2. The steel sheet produced according to the present invention has an excellent strength / low temperature toughness balance,
HAZ toughness and field weldability. On the other hand, the comparative steels have an inadequate chemical composition or microstructure, and either characteristic is significantly inferior.

【0034】鋼9はC量が多すぎるため、母材およびH
AZのシャルピー吸収エネルギーが低く、かつ溶接時の
予熱温度も高い。鋼10はNiが添加されていないた
め、母材およびHAZの低温靭性が劣る。鋼11はMn
添加量、P値が高すぎるため、母材およびHAZの低温
靭性が悪く、かつ溶接時の予熱温度も著しく高い。
Steel 9 contains too much C, so that the base metal and H
The Charpy absorbed energy of AZ is low and the preheating temperature during welding is high. Since Steel 10 does not contain Ni, the low temperature toughness of the base material and HAZ is poor. Steel 11 is Mn
Since the added amount and P value are too high, the low temperature toughness of the base metal and HAZ is poor, and the preheating temperature during welding is also extremely high.

【0035】鋼12はMo添加量が多すぎるため、溶接
時に予熱を要する。鋼13はNbが添加されていないた
め、強度不足で、かつオーステナイト粒径が大きく母材
の靭性が悪い。鋼14はS量が多すぎるため、母材およ
びHAZの吸収エネルギ−が低い。
Since the steel 12 contains too much Mo, it requires preheating during welding. Steel 13 does not have Nb added, and therefore has insufficient strength, has a large austenite grain size, and has poor toughness as the base material. Steel 14 has an excessive amount of S, so that the absorbed energy of the base metal and HAZ is low.

【0036】鋼15はMo添加量が少なすぎるため、目
標とする強度が達成できない。鋼16はオーステナイト
粒径が大きすぎるため、母材の低温靭性が劣る。鋼17
は焼戻しマルテンサイト分率が小さすぎるため、強度不
足で、かつ母材のシャルピー遷移温度が劣る。鋼18は
焼戻しマルテンサイトと焼戻しベイナイトの分率が小さ
すぎるため、強度不足である。鋼19はオーステナイト
粒径が大きく、かつ焼戻しマルテンサイト分率が小さす
ぎるため、強度および低温靭性が目標に達しない。
Steel 15 cannot achieve the target strength because the amount of Mo added is too small. Steel 16 has an austenite grain size that is too large, resulting in poor low temperature toughness of the base material. Steel 17
Since the tempered martensite fraction is too small, the strength is insufficient and the Charpy transition temperature of the base material is inferior. Steel 18 has insufficient strength because the fraction of tempered martensite and tempered bainite is too small. Steel 19 has a large austenite grain size and a too small tempered martensite fraction, so that the strength and low temperature toughness do not reach the targets.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】本発明により低温靭性、現地溶接性の優
れた超高強度ラインパイプ(引張強さ950MPa以
上、API規格X100超)用鋼が安定して大量に製造
できるようになった。その結果、パイプラインの安全性
が著しく向上するとともに、パイプラインの輸送効率、
施工能率の飛躍的な向上が可能となった。
Industrial Applicability According to the present invention, it has become possible to stably manufacture a large amount of steel for ultra high strength line pipes (tensile strength 950 MPa or more, API standard X100 or more) excellent in low temperature toughness and field weldability. As a result, the safety of the pipeline is significantly improved, and the transportation efficiency of the pipeline,
It has become possible to dramatically improve construction efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】平均オーステナイト粒径(dγ)の定義を示す
図。
FIG. 1 is a diagram showing the definition of an average austenite grain size (dγ).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺田 好男 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Terada 2-6-3 Otemachi, Chiyoda-ku, Tokyo Shin Nippon Steel Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.05〜0.10%、 Si:0.6%以下、 Mn:1.8〜2.5%、 P :0.015%以下、 S :0.003%以下、 Ni:0.1〜1.0%、 Mo:0.35〜0.60%、 Nb:0.01〜0.10%、 Ti:0.005〜0.030%、 Al:0.06%以下、 N :0.001〜0.006%を含有し、残部が鉄お
よび不可避的不純物からなり、下記の式で定義されるP
値が1.9〜2.8の範囲にあり、さらに鋼のミクロ組
織として平均オーステナイト粒径が10μm以下の未再
結晶オーステナイトから変態した焼戻しマルテンサイト
を体積分率で60%以上含有し、かつ焼戻しマルテンサ
イト分率と焼戻しベイナイト分率との和が90%以上で
あることを特徴とする低温靭性の優れた溶接性高張力
鋼。 P=2.7C+0.4Si+Mn+0.8Cr+0.4
5(Ni+Cu)+Mo+V−1
1. By weight%, C: 0.05 to 0.10%, Si: 0.6% or less, Mn: 1.8 to 2.5%, P: 0.015% or less, S: 0 0.003% or less, Ni: 0.1 to 1.0%, Mo: 0.35 to 0.60%, Nb: 0.01 to 0.10%, Ti: 0.005 to 0.030%, Al : 0.06% or less, N: 0.001 to 0.006%, the balance consisting of iron and unavoidable impurities, and P defined by the following formula
The value is in the range of 1.9 to 2.8, and further contains tempered martensite transformed from unrecrystallized austenite having an average austenite grain size of 10 μm or less as a microstructure of steel in a volume fraction of 60% or more, and A weldable high-strength steel with excellent low-temperature toughness, characterized in that the sum of the tempered martensite fraction and the tempered bainite fraction is 90% or more. P = 2.7C + 0.4Si + Mn + 0.8Cr + 0.4
5 (Ni + Cu) + Mo + V-1
【請求項2】 請求項1記載の成分に加えて、重量%
で、 V :0.01〜0.10%、 Cu:0.1〜0.7%、 Cr:0.1〜0.8%の1種または2種以上を含有す
ることを特徴とする請求項1記載の低温靭性の優れた溶
接性高張力鋼。
2. In addition to the components of claim 1, weight%
And V: 0.01 to 0.10%, Cu: 0.1 to 0.7%, Cr: 0.1 to 0.8%, and one or more of them are contained. A weldable high-strength steel excellent in low temperature toughness as set forth in Item 1.
【請求項3】 請求項1または2記載の成分に加えてさ
らに、重量%で、 Ca:0.001〜0.006%を含有することを特徴
とする請求項1または2記載の低温靭性の優れた溶接性
高張力鋼。
3. The low temperature toughness according to claim 1 or 2, further comprising Ca: 0.001 to 0.006% by weight in addition to the components according to claim 1 or 2. Excellent weldability high strength steel.
JP01830795A 1995-01-26 1995-02-06 Weldable high strength steel with excellent low temperature toughness Expired - Lifetime JP3244986B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP01830795A JP3244986B2 (en) 1995-02-06 1995-02-06 Weldable high strength steel with excellent low temperature toughness
KR1019960705330A KR100206151B1 (en) 1995-01-26 1996-01-26 Weldable high tensile steel excellent in low-temperatur toughness
AU44964/96A AU680590B2 (en) 1995-01-26 1996-01-26 Weldable high-tensile steel excellent in low-temperature toughness
RU96119965A RU2136775C1 (en) 1995-01-26 1996-01-26 High-strength weldable steel and its versions
CA002186476A CA2186476C (en) 1995-01-26 1996-01-26 Weldable high strength steel having excellent low temperature toughness
DE69608179T DE69608179T2 (en) 1995-01-26 1996-01-26 WELDABLE HIGH-STRENGTH STEEL WITH EXCELLENT DEPTH TEMPERATURE
CN96190123A CN1146784A (en) 1995-01-26 1996-01-26 Weldable high-tensile steel excellent in low-temp. toughness
PCT/JP1996/000155 WO1996023083A1 (en) 1995-01-26 1996-01-26 Weldable high-tensile steel excellent in low-temperature toughness
EP96901129A EP0753596B1 (en) 1995-01-26 1996-01-26 Weldable high-tensile steel excellent in low-temperature toughness
US08/714,098 US5798004A (en) 1995-01-26 1996-01-26 Weldable high strength steel having excellent low temperature toughness
NO964034A NO964034L (en) 1995-01-26 1996-09-25 Steel that can be welded and which has high tensile strength and excellent toughness at low temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01830795A JP3244986B2 (en) 1995-02-06 1995-02-06 Weldable high strength steel with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH08209290A true JPH08209290A (en) 1996-08-13
JP3244986B2 JP3244986B2 (en) 2002-01-07

Family

ID=11967966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01830795A Expired - Lifetime JP3244986B2 (en) 1995-01-26 1995-02-06 Weldable high strength steel with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP3244986B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045630A (en) * 1997-02-25 2000-04-04 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
JP2008297592A (en) * 2007-05-31 2008-12-11 Kobe Steel Ltd High-strength steel sheet having excellent elongation and excellent stretch flangeability and process for production of the same
US7601231B2 (en) 2002-05-27 2009-10-13 Nippon Steel Corporation High-strength steel pipe excellent in low temperature toughness and toughness at weld heat-affected zone
EP2799583A4 (en) * 2011-12-28 2016-04-06 Posco Abrasion resistant steel with excellent toughness and weldability
WO2016157896A1 (en) * 2015-04-01 2016-10-06 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045630A (en) * 1997-02-25 2000-04-04 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
US6183573B1 (en) 1997-02-25 2001-02-06 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
US7601231B2 (en) 2002-05-27 2009-10-13 Nippon Steel Corporation High-strength steel pipe excellent in low temperature toughness and toughness at weld heat-affected zone
JP2008297592A (en) * 2007-05-31 2008-12-11 Kobe Steel Ltd High-strength steel sheet having excellent elongation and excellent stretch flangeability and process for production of the same
EP2799583A4 (en) * 2011-12-28 2016-04-06 Posco Abrasion resistant steel with excellent toughness and weldability
US9708698B2 (en) 2011-12-28 2017-07-18 Posco Wear resistant steel having excellent toughness and weldability
WO2016157896A1 (en) * 2015-04-01 2016-10-06 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same
JP6075517B1 (en) * 2015-04-01 2017-02-08 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP3244986B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
KR100206151B1 (en) Weldable high tensile steel excellent in low-temperatur toughness
JP5439184B2 (en) Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same
US5755895A (en) High strength line pipe steel having low yield ratio and excellent in low temperature toughness
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
JP4268317B2 (en) Ultra-high-strength steel pipe excellent in low temperature toughness of welded portion and manufacturing method thereof
JP2003293089A (en) High strength steel sheet having excellent deformability, high strength steel pipe and production method thereof
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP3258207B2 (en) Ultra high strength steel with excellent low temperature toughness
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP3612115B2 (en) Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness
JP3262972B2 (en) Weldable high strength steel with low yield ratio and excellent low temperature toughness
JP4477707B2 (en) Ultra high strength steel pipe excellent in low temperature toughness and method for producing the same
JP2009127104A (en) Steel having excellent weld heat-affected zone toughness, and method for producing the same
JP3244986B2 (en) Weldable high strength steel with excellent low temperature toughness
JP3244981B2 (en) Weldable high-strength steel with excellent low-temperature toughness
JP2002146471A (en) Ultrahigh strength steel plate and ultrahigh strength steel pipe each having excellent toughness at low temperature and toughness in heat-affected zone, and their manufacturing method
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP3244987B2 (en) High strength linepipe steel with low yield ratio
RU2136776C1 (en) High-strength steel for main pipelines with low yield factor and high low-temperature ductility
JP3244985B2 (en) Weldable high strength steel with excellent low temperature toughness
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JPH08311548A (en) Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone
JPH08311550A (en) Production of steel sheet for ultrahigh strength steel pipe
KR102592580B1 (en) Hot-rolled steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term