JP2021052361A - 画像読取装置及びその製造方法 - Google Patents

画像読取装置及びその製造方法 Download PDF

Info

Publication number
JP2021052361A
JP2021052361A JP2019175812A JP2019175812A JP2021052361A JP 2021052361 A JP2021052361 A JP 2021052361A JP 2019175812 A JP2019175812 A JP 2019175812A JP 2019175812 A JP2019175812 A JP 2019175812A JP 2021052361 A JP2021052361 A JP 2021052361A
Authority
JP
Japan
Prior art keywords
scanning direction
main scanning
array
slit portion
lens body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019175812A
Other languages
English (en)
Other versions
JP7211316B2 (ja
Inventor
有本 浩延
Hironobu Arimoto
浩延 有本
山縣 浩作
Kosaku Yamagata
浩作 山縣
由展 雨森
Yoshinobu Amemori
由展 雨森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019175812A priority Critical patent/JP7211316B2/ja
Publication of JP2021052361A publication Critical patent/JP2021052361A/ja
Application granted granted Critical
Publication of JP7211316B2 publication Critical patent/JP7211316B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】レンズ体の基本的な特性を変えることを必須とせずとも、被写界深度を拡大(被写界深度を改善)することが容易な画像読取装置及びその方法を得ること。【解決手段】レンズ体アレイとスリット部とを対向させ、スリット部の主走査方向の長さが調節して、スリット部における筒部材の配列周期と、主走査方向においてレンズ体アレイにおけるレンズ体の配列周期とを一致させている。画像読取装置は、レンズ体が主走査方向に沿ってアレイ状に配列されたレンズ体アレイと、レンズ体が収束した光をそれぞれ受光するセンサ素子が主走査方向に沿ってアレイ状に配列されたセンサ素子アレイと、レンズ体アレイとセンサ素子アレイとの間に配置され、主走査方向に配列された複数の筒部材を有するスリット部とを有し、筒部材は、レンズ体が収束した光が通過するものである。【選択図】 図1

Description

この発明は、読取対象物(被照射体)からの透過光や反射光を、アレイ状に配置されたレンズ体アレイで収束し、センサ素子アレイで読み取らせる画像読取装置及びその製造方法に関するものである。
画像読取装置(画像読取用ラインイメージセンサ及びそれを用いた画像入力機器)は、読み取り対象物(被照射体)に光を照射し、読み取り対象物からの透過光や反射光をアレイ状に配置されたロッドレンズでライン状に配置した光センサアレイで読み取らせることで読み取り対象物上の画像、文字、パターンなどを電子情報化する複写機やスキャナなどの画像読み取り機器に使用されるものである。
紙媒体などに印刷形成された画像、文字、パターンなどの情報を電子化するときに用いられる複写機、スキャナなどの機器において用いられるラインイメージセンサは、ロッド状のレンズを読取り幅に応じてアレイ状に配列されたロッドレンズアレイを用い、ライン光源で照明された読み取り対象物の情報を含む反射、透過光を、レンズアレイを中心として反対側に配置された光センサアレイ上へ結像することで読み取りを行う構成となっている。
ここで用いられるロッドレンズは、ガラスなどの無機素材や樹脂などで形成され、所定の開口角、共役長で正立等倍光学系となるように、その半径方向に屈折率を分布させて形成されている。このようなロッドレンズをアレイ状に配置することで、切れ目のないライン状の画像を得ることが可能となっている。
このような読み取りデバイスの光学系(ラインイメージセンサ)は、固定焦点ではあるがレンズの共役長(焦点間の距離)を短くできる。この特徴により従来の画像を縮小して小さなセンサ面に結像させる光学系よりもコンパクトな画像入力系を形成できるためファクシミリなどの入力部以外にも近年ドキュメントスキャナや複写機のADF(Automatic Document Feeder)に内蔵した裏面読み取り用のラインイメージセンサとして使用されている。その他、商業用印刷ラインでの印刷検査やフィルム検査などの製造ラインでの使用にも用途が広がって来ている。
読み取りデバイスの光学系(ラインイメージセンサ)は、用途が広がるにつれて、イメージセンサ製品の小型化に寄与してきた共役長が短いことを 原因とした焦点位置と読み取り対象物の位置関係に対する許容度(被写界深度)の低さ(被写界深度の浅さ、小ささ)が課題として大きくなってきている。特に、画像検査用途の紙もしくはフィルム印刷のインライン検査の場合、読み取り対象物が200m/分以上の高速で搬送される場合もあり、読み取り対象物がバタツキことによる読み取り画像の解像度変化がラインイメージセンサ使用の際の大きな問題となる。このような背景で、ラインイメージセンサでの被写界深度の拡大について様々な検討が行われてきた。
従来の画像読取装置には、読取対象物に光を照射し、読取対象物からの透過光や反射光をアレイ状に配置されたロッドレンズで収束し、ライン状に配置した光センサアレイで読み取るものがある(例えば、特許文献1参照)。このような画像読取装置は、前述のように、読取対象物上の画像、文字、パターンなどを電子情報化する複写機やスキャナ等の画像読取機器に使用される。なお、特許文献1ではレンズアレイに外付けで遮光部材を個々のレンズ単位で配置することで単一レンズから出射する光の光路を制限することにより被写界深度を改善することを提案している。
画像読取装置のレンズ体アレイには、正立等倍光学系のロッドレンズアレイやマイクロレンズアレイなどが挙げられる。このようなレンズ体アレイは、紙媒体などに印刷形成された画像、文字、パターンなどの情報を電子化するときに用いられる複写機、スキャナ等の機器に用いられる。特許文献1には、画像読取装置(ラインイメージセンサ)が、ロッド状のレンズを読取り幅に応じてアレイ状に配列されたロッドレンズアレイを用い、ライン光源で照明された読み取り対象物の情報を含む反射、透過光を、レンズアレイを中心として反対側に配置された光センサアレイ上へ結像することで読み取りを行うものが開示されている。
また、特許文献1に開示されているロッドレンズアレイは、ガラスなどの無機素材や樹脂等で形成され、所定の開口角、共役長で正立等倍系となるようにその半径方向に屈折率を分布して形成されており、このロッドレンズをアレイ状に配置することで切れ目のないライン状の画像を得ることが可能となっている。
さらに、ロッドレンズアレイは、ファクシミリなどの入力部以外にも、近年ドキュメントスキャナや複写機のADF(Automatic Document Feeder)に内蔵した裏面読み取り用のラインイメージセンサとして使用される他、商業用印刷ラインでの印刷検査やフィルム検査などの製造ラインでの使用にも用途が広がってきている。これは、ロッドレンズは、固定焦点ではあるがレンズの共役長(焦点間の距離)を短くできることより、従来の画像を縮小して小さなセンサ面に結像させる光学系よりもコンパクトな画像入力系を形成できるためである。
このように仕様用途が広がるにつれて、イメージセンサ製品の小型化に寄与してきた共役長が短いことを改善して、さらに仕様用途を広げる試みが検討されてきた。仕様用途をさらに広げるためには、焦点位置と読み取り対象物の位置関係に対する許容度(被写界深度)の低さ(被写界深度の浅さ、小ささ)を改善する必要がある。特に、画像検査用途の紙、又は、フィルム印刷のインライン検査の場合、読取対象物が200m/分以上の高速で搬送される場合もあり、これによって対象物がばたつき、読取画像の解像度変化が生じることに対して、改善する必要がある。
このような背景で、ラインイメージセンサでの被写界深度の拡大について様々な検討が行われてきた。例えば、レンズ素子体のレンズ素子間に、重なり制限部材を形成し、複数のレンズ素子による像の重なりを制限することで、各レンズ素子の結像径を制御して被写界深度を拡大(被写界深度を改善)するものがある(例えば、特許文献1参照)。
また、ロッドレンズの周辺部分を不透過、光吸収層とすることによりロッドレンズ間で画像が重なることによる解像度低下を避け、ロッドレンズアレイにおける被写界深度特性をロッドレンズ単体の被写界深度特性に近づけることで、ロッドレンズアレイとしての全体で被写界深度を拡大(被写界深度を改善)するものがある(例えば、特許文献2参照)。
特許文献2では、ロッドレンズの周辺部分を不透過、光吸収層とすることによりロッドレンズ間で画像が重なることによる解像度低下を避けている。これによって、特許文献2は、ロッドレンズアレイにおける被写界深度特性をロッドレンズ単体の被写界深度特性に近づけることで、ロッドレンズアレイ全体での被写界深度特性改善を図っている。
さらに、ロッドレンズの周辺部分を不透過、光吸収層とすることでロッドレンズを配列する際に、レンズ間にギャップを設けることで、ロッドレンズアレイの特性均一性を確保し、特許文献2に開示された構成にて発生するレンズ間での光量、解像度バラツキを改善し、さらに被写界深度を拡大(被写界深度を改善)するものがある(例えば、特許文献3参照)。
詳しくは、特許文献3ではロッドレンズの周辺部分を不透過、光吸収層とすることでロッドレンズを配列する際にレンズ間にギャップを設ける。このギャップでロッドレンズアレイの特性均一性を確保することで、特許文献2の構成時に発生するレンズ間での光量、解像度バラツキを改善し、さらに、被写界深度を改善することが図ることできる。
レンズ素子体のレンズ素子間の重なり制限部材ではなく、迷光を抑制するために、遮光壁を設けた画像読取装置もある(例えば、特許文献4参照)。遮光壁のレンズプレート平面方向の形状には、例えば、矩形状、六角形状(ハニカム形状)、円形状、レンズ以外を全て遮光壁とした形状がある。
特開平6−342131号公報 特開2000−35519号公報 WO2013/146873 特開2005−37891号公報
特許文献2で示されるようなロッドレンズ単体での改善では、特許文献3に課題として示されているように読み取り対象媒体の深度方向位置変化に対して解像度、明るさの均一性確保が難しい。また、長尺のラインセンサを形成した場合、環境特に温度変動による熱膨張差によりレンズとセンサアレイの相対位置が変化することにより明るさの分布が変化、事前に行われるシェーディング補正に関わらず照度、感度のムラが画像品質を低下させるという課題もある。
また、レンズの独立性を担保するためにはレンズとして機能する部分の領域を小さくせざるを得ず、画像形成に寄与する光量が低下し画像が暗くなる、もしくは必要以上に明るい照明を準備する必要があり、より高速な読み取り系を構成することが難しい。特許文献3で示される技術では、特許文献2での媒体位置変化に伴う解像度、明るさの均一性は確保できるが、特許文献2と比較して更にレンズとして機能する部分の領域を小さくせざるを得ず、画像形成に寄与する光量が低下し画像が暗くなる、若しくは必要以上に明るい照明を準備する必要があり、より高速な読み取り系を構成することが難しい。
上記の例は、レンズの基本的な特性を変化させる必要があるため、様々な動作距離(レンズ端から読み取り媒体までの距離)へ対応することが難しい。さらに、特許文献1で示される技術ではレンズアレイは汎用製品を使用可能であるが遮光部材としてあらかじめ理想レンズピッチに合わせたピッチを持つ遮光部材を準備し、レンズから出射される光路の制限を行うことで被写界深度の改善を試みている。
しかし、特許文献1で示される技術は、個々の遮光部が一つの部材で形成、もしくは組み合わされて構成されることを想定し、遮光部材とレンズアレイと組み合わせることで、光学系を構成するため個々のロッドレンズの太さばらつきや配列ピッチのばらつきなど実際の0.3から1.0mmのレンズ径のレンズアレイにある寸法変動に合わせ遮光部材を所定位置に精度良く配置することが困難であるという課題がある。
また、特許文献4に開示されているような部材をレンズ素子体のレンズ素子(レンズ体)間の重なり制限部材(スリット部)として使用する場合のスリット部とレンズ体との位置合わせが難しいという課題もあった。
この発明は、上記のような課題を解消するためになされたもので、レンズ体の基本的な特性を変えること必須とせずとも、被写界深度を拡大(被写界深度を改善)することが容易な画像読取装置及びその製造方法に関するものである。
この発明に係る画像読取装置は、レンズ体が主走査方向に沿ってアレイ状に配列されたレンズ体アレイと、前記レンズ体が収束した光をそれぞれ受光するセンサ素子が前記主走査方向に沿ってアレイ状に配列されたセンサ素子アレイと、前記レンズ体アレイと前記センサ素子アレイとの間に配置され、前記主走査方向に配列された複数の筒部材を有するスリット部とを備え、前記スリット部は、前記主走査方向の長さが調節されて前記筒部材の配列周期が、前記主走査方向において前記レンズ体アレイにおける前記レンズ体の配列周期と一致し、前記筒部材は、前記レンズ体が収束した光が通過することを特徴とするものである。
この発明に係る画像読取装置の製造方法は、レンズ体が主走査方向に沿ってアレイ状に配列されたレンズ体アレイと、前記レンズ体が収束した光をそれぞれ受光するセンサ素子が前記主走査方向に沿ってアレイ状に配列されたセンサ素子アレイと、前記レンズ体アレイと前記センサ素子アレイとの間に配置され、前記主走査方向に配列された複数の筒部材を有するスリット部とを有し、前記筒部材は、前記レンズ体が収束した光が通過する画像読取装置の製造方法であって、前記レンズ体アレイと前記スリット部とを対向させる対向ステップと、前記スリット部の前記主走査方向の長さが調節して、前記スリット部における前記筒部材の配列周期と、前記主走査方向において前記レンズ体アレイにおける前記レンズ体の配列周期とを一致させる調整ステップとを備えたことを特徴とするものである。
以上のように、この発明によれば、スリット部が、筒部材の配列周期が主走査方向の長さが調節して設定されているので、被写界深度を拡大(被写界深度を改善)することができる画像読取装置及びその製造方法を得ることができる。
この発明の実施の形態1及び2に係る画像読取装置の構成図である。 画像読取装置の画像の重なりを示す図である。 画像読取装置の画像の重なりを示す図である。 この発明の実施の形態1及び2に係る画像読取装置の重なり防止部(光路制限用の部材)を説明する構成図である。 この発明の実施の形態1に係る画像読取装置のスリット部の平面図である。 この発明の実施の形態1に係る画像読取装置のスリット部の斜視図である。 この発明の実施の形態1に係る画像読取装置のレンズ体アレイ及びスリット部の斜視図である。 この発明の実施の形態1に係る画像読取装置の製造方法を示す工程図である。 この発明の実施の形態1に係る画像読取装置の製造方法を示す工程図である。 この発明の実施の形態1及び2に係る画像読取装置に対する比較対象例であるレンズ単体の特性を示す図である。 この発明の実施の形態1及び2に係る画像読取装置に対する比較対象例である複数レンズの特性を示す図である。 この発明の実施の形態1及び2に係る画像読取装置の特性とそれに対する比較対象例である複数レンズの特性とを示す図である。 この発明の実施の形態2に係る画像読取装置のスリット部の製造工程図である。 この発明の実施の形態2に係る画像読取装置のスリット部の平面図である。 この発明の実施の形態2に係る画像読取装置のスリット部の斜視図である。 この発明の実施の形態2に係る画像読取装置の製造方法を示す工程図である。 この発明の実施の形態2に係る画像読取装置の製造方法を示す工程図である。 この発明の実施の形態2に係る画像読取装置のレンズ体アレイ及びスリット部の斜視図である。
実施の形態1.
以下、この発明の実施の形態1について図1から図12を用いて説明する。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。図1(a)は画像読取装置の副走査方向(搬送方向)に沿った面の断面図である。図1(b)は画像読取装置の部分斜視図である。図3(a)は画像読取装置の画像の重なりを示す図のうち、レンズ体(ロッドレンズ)単体の図である。図3(b)は画像読取装置の画像の重なりを示す図のうち、レンズ体アレイ(ロッドレンズアレイ)の図である。
図1から図9において、レンズ体アレイ1は、レンズ体2が画像読取装置の主走査方向に沿ってアレイ状に配列されたものである。主走査方向と副走査方向(搬送方向)とは交差しており、好ましくは、直交している。主走査方向と副走査方向(搬送方向)とは、焦点深度方向(被写界深度方向)と直交している。本願では、レンズ体アレイ1(レンズ体2)の光軸方向は、主走査方向と副走査方向(搬送方向)と、それぞれ直交している場合を例示している。なお、本願では、レンズ体2がロッドレンズ2である場合、つまり、レンズ体アレイ1がロッドレンズアレイ1である場合を例示するが、レンズ体アレイ1は、マイクロレンズアレイ1などでもよい。本願では、主走査方向に延在して対向する二枚の保持板2Pに複数のロッドレンズ2が保持されて、ロッドレンズアレイ1が形成されているものを図示している。
図1から図9において、レンズ体2は、正立等倍光学系のものが好適である。センサ素子アレイ3は、レンズ体2が収束した光をそれぞれ受光するセンサ素子4(センサIC4)が主走査方向に沿ってアレイ状に配列されたものである。スリット部5は、レンズ体アレイ1とセンサ素子アレイ3との間に配置され、レンズ体2同士の像の重なりを防ぐものである。スリット部5のスリット部分が、レンズ体2の光軸ごとに配置されたものを図示している。スリット部5は、光路制限用の部材である重なり防止部5(遮光部材5、出射光制限部材5)といえる。
図1から図9において、読取対象物9(被照射体9、Object9)は、文書、紙幣、有価証券等を含むシート状のものや、基板、ウェブ(織物、生地などの、画像、文字、パターンなどの電子情報化する対象が主に表面に存在するものである。読取対象物9は、副走査方向(搬送方向)へ搬送されるものである。光源10は、読取対象物9へ光を照射するものである。また、レンズ体アレイ1(レンズ体2)は、読取対象物9からの反射光又は透過光を収束するものである。本願では、光源10がLEDアレイで、光源10から照射された光由来の読取対象物9からの反射光を収束する場合を例示している。センサ基板11は、センサ素子アレイ3(センサ素子4)が形成された基板である。筐体12は、レンズ体アレイ1(レンズ体2)、センサ基板11(センサ素子アレイ3(センサ素子4))、スリット部5、光源10を保持又は収納する画像読取装置の筐体である。光源10やセンサ基板11は、画像読取装置(筐体12)の外部にあってもよい。読取対象物9の副走査方向(搬送方向)への搬送は、読取対象物9自体を搬送させてもよいし、画像読取装置(筐体12)の方を搬送させてもよい。
つまり、実施の形態1に係る画像読取装置は、ロッドレンズアレイ1を中心としてロッドレンズアレイ1の読取中心上の読取対象物9を照明する光源10とロッドレンズアレイ1で結像された媒体像を電気信号へと変換するセンサ素子アレイ3を持ったラインイメージセンサであるといえる。また、実施の形態1に係る画像読取装置は、レンズ体2が主走査方向に沿ってアレイ状に配列されたレンズ体アレイ1と、レンズ体2が収束した光をそれぞれ受光するセンサ素子4が主走査方向に沿ってアレイ状に配列されたセンサ素子アレイ3と、レンズ体アレイ1とセンサ素子アレイ3との間に配置され、主走査方向に配列された複数の筒部材6を有するスリット部5とを備えているといえる。
詳しくは、実施の形態1に係る画像読取装置のスリット部5は、主走査方向の長さが調節されて筒部材6の配列周期が、主走査方向においてレンズ体アレイ1におけるレンズ体2の配列周期と一致している。さらに筒部材6は、レンズ体2が収束した光が通過するものである。好ましくは、筒部材6は、六角形状の筒であり、スリット部5は、主走査方向と交差する副走査方向において筒部材6と連続する六角形状の筒構造を有し、ハニカム構造7(ハニカムリング7)であればよい。実施の形態2で説明するが、筒部材6は、楕円形状の筒8(楕円筒構造8)でもよい。このような、スリット部5(ハニカム構造7又は楕円筒構造8を含む筒部材6)は、例えば、可撓性のある材料で構成すると、主走査方向から圧縮したり、引張したりすることができる。ここで、実施の形態1に係る画像読取装置(ラインイメージセンサ)おけるスリット部5の必要性と、スリット部5の基本的な機能を詳細に説明する。
まず、スリット部5の必要性を詳細に説明する。ロッドレンズアレイ1を使用したラインイメージセンサの改善すべき点は、発明が解決しようとする課題で説明したように、被写界深度の確保である。結像工学系(レンズ)によって結像される全体の画像は、単体のロッドレンズ2だけで形成されるのではない。図2及び図3に示すように、複数のロッドレンズ2の画像が重なりあって、全体の画像が形成される。
被写界深度低下の主要因は、図2及び図3に示すように、レンズ単体性能よりもレンズをアレイ化したことで、重なり度mで規定される数の隣接する個々のレンズで形成される像が正規の位置に重畳されないことである。重なり度mは、共役点で一つのロッドレンズ2が画像転写する領域径を、ロッドレンズ2の径で除した値の、1/2の値である。正規の位置に重畳されないことが像のボケとなる。なお、隣り合うロッドレンズ2による画像の重複度を示すパラメータを重なり度mで表し、注目するロッドレンズ2の光軸中心からレンズ片側方向に画像重複するレンズ数を示す。
ロッドレンズ2をアレイ上にすることで共役点では、図1に示すように1本のロッドレンズ画像を結像するエリアは重なり度に示す通りレンズ中心から片側レンズm本分のエリアとなる。これは1点の像を形成するのに2×m本のロッドレンズ2を経由した光が使われていることになり、共役点での解像度を担保するには全てのレンズ特性が同じでレンズ配置に誤差がなく同一点に画像が結像されることが必要となる。しかし、現実的にはロッドレンズ2それぞれには光学特性に差があり、組立誤差も存在することからロッドレンズ2で転写される画像はわずかに位置ずれを含み、共役点での解像度もロッドレンズ2単体の時よりも光学特性が低下する。
また、図3(a)の左方に示すように、読取対象物9とセンサ素子アレイ3との位置関係が、共に共役点にある場合、ロッドレンズ2は正立等倍の像を形成する。しかし、図3(a)の右方に示すように、読取対象物9の位置が共役点(この場合は、焦点位置(Focus面))から離れる(遠ざかる)と、センサ素子アレイ3上では画像が縮小されることになる。この場合、個々のロッドレンズ2の画像が、センサ素子アレイ3上で縮小されることになり、ロッドレンズアレイ1として、センサ素子アレイ3上に結像される像は、個々のロッドレンズ2で少しずつずれることになる。そのため、図3(b)の右方に示すように、図3(b)の左方に示す場合と比較して、ボケ量が大きくなり解像度が低下する。
このように、読取対象物9の位置が共役点(焦点位置)から遠ざかることで解像度が低下することによって生じる被写界深度の低下は、ロッドレンズ2単体の性能が主要因ではない。主要因は、ロッドレンズ2をロッドレンズアレイ1としたことで、前述の重なり度mで規定される隣接するロッドレンズ2の特性差や組立誤差による光軸ずれ、読取対象物9が焦点位置からずれることによる画像の拡大縮小により個々のロッドレンズ2で形成される像がセンサ素子アレイ3上の正規の位置で重畳されず、位置ずれを持って結像されることにより、像のボケとなることに起因している。よって、図4に示すように、スリット部5を用いて被写界深度の低下を避ける必要がある。
次に、図5から図9を用いて、実施の形態1に係る画像読取装置のスリット部5の基本的な機能を詳細に説明する。図5及び図6に簡略的に表示しているロッドレンズ2として、日本板硝子製のSLA(商品名)SLA9A−1列品「開口角 9°、共役長 約80mm、レンズ径Φ=約1.0mm」を使用した。図5は、スリット部5をロッドレンズ2(ロッドレンズアレイ1)側から見た平面図である。図5のPitchは、スリット部5(筒部材6)の配列周期(ピッチ)を示している。詳しくは、ハニカム構造7(六角形状の筒構造筒部材6)の配列周期(ピッチ)である。図6は、スリット部5の斜視図であり、一点鎖線が主走査方向を示している。図7は、ロッドレンズアレイ1及びスリット部5の斜視図であり、一点鎖線が主走査方向を示している。
さらに、図5に示す一点鎖線は、六角形状の筒構造筒部材6の中心を通り、副走査方向と平行なものである。詳しくは、ハニカム構造7(六角形状の筒構造筒部材6)の配列周期(ピッチ)が、隣り合う筒部材6の中心を通る軸の間を基本周期(ピッチ)としていることを示す一点鎖線である。図5のnは、少なくともロッドレンズアレイ1におけるロッドレンズ2の数以上の正の整数である。図7は、図6に示すスリット部5にロッドレンズアレイ1を対向させた状態といえる。但し、後述する対向ステップではなく、少なくとも調整ステップを終えた後の状態を示している。図8及び図9については、実施の形態1に係る画像読取装置の製造方法の説明において言及する。
なお、実施の形態1に係る画像読取装置の全体構成は、図1(a)(b)に示すように、ロッドレンズアレイ1を中心としてロッドレンズアレイ1の読取り中心上の読み取り媒体を照明するLEDアレイ(光源10)と読取対象物9の原稿面で反射された光をロッドレンズアレイ1により結像した媒体像を電気信号へと変換するセンサ素子アレイ3を持ったラインイメージセンサ(画像読取装置)である。図5から図9では、図1に示すスリット部5が三列のハニカム構造7(ハニカムリング7)であり、筒部材6が六角形状の筒構造であるものを示している。
このラインイメージセンサにおいて、ロッドレンズアレイ1のセンサ側光出射面にレンズアレイ配列方向、すなわち主走査方向に配置、対向面がロッドレンズアレイ1の主走査方向に対して垂直になるようにハニカムリング7を実装、固定した。このハニカムリング7(スリット部5)は、表面を梨地処理した上で黒色化(無反射)処理した0.05mm厚みのアルミシートを必要遮光壁枚数分、所定位置に糊付け、貼り付けを行うことにより形成した一辺が3mmのハニカム(正六角リング)を10mm厚みで切り出したものを使用した。つまり、筒部材6は、筒の内部が梨地状で黒色の面に加工されているといえる。この黒色の面は、黒色ベルベット状面であるともいえる。黒ベルベット状面は、黒色かつ梨地状の面を含むものである。
ここで、実施の形態1に係る画像読取装置の製造方法を説明する。前述のとおり、画像読取装置は、レンズ体アレイ1と、センサ素子アレイ3と、レンズ体アレイ1とセンサ素子アレイ3との間に配置され、主走査方向に配列された複数の筒部材6を有するスリット部5とを備えている。画像読取装置の製造方法は、筒部材6が、レンズ体2が収束した光が通過するようにするものである。詳しくは、画像読取装置の製造方法は、レンズ体アレイ1とスリット部5とを対向させる対向ステップと、スリット部5の主走査方向の長さが調節して、スリット部5における筒部材6の配列周期(ピッチ)と、主走査方向においてレンズ体アレイ1におけるレンズ体2の配列周期(ピッチ)とを一致させる調整ステップとを備えている。レンズ体アレイ1(レンズ体2)の配列周期(ピッチ)は、隣り合うレンズ体2の中心を通る軸の間を基本周期(ピッチ)としている。スリット部5(筒部材6)の配列周期(ピッチ)は、隣り合う筒部材6の中心を通る軸の間を基本周期(ピッチ)としている。
調整ステップは、主走査方向から圧縮(縮小)したり、引張したりすること、又は、それらの両方を行うことで、スリット部5の主走査方向の長さを調節するものである。本願では、図8の工程図で示しているように、調整ステップが、主走査方向から圧力を加えてスリット部5を変形(縮小)させて、スリット部5の主走査方向の長さが調節する場合を例示する。すなわち、ハニカムリング7(スリット部5)のハニカムの1つ(筒部材6)の0.1mmの厚みを持つ壁面位置を所定ロッドレンズ配列間に合わせて固定、順次隣接するロッドレンズ2とハニカム遮光壁13の位置が合うようにハニカム(ハニカムリング7)を圧縮しながら位置調整、固定することでロッドレンズアレイ1とハニカム(筒部材6)の遮光壁13が1対1で所定位置になるようにする。ハニカム遮光壁13(遮光壁13)は、筒部材6の内壁面を意味する。スリット部5は、主走査方向から圧縮されて変形し、主走査方向の長さが短くなったものであるといえる。このような調整ステップは、可撓性のあるスリット部5の主走査方向の長さが調節するものであるともいえる。図9の工程図で示しているものは、調整ステップを終えた状態のロッドレンズアレイ1とハニカム(筒部材6)を示している。図7は、その状態の斜視図に相当する。
このように加工することでハニカム(筒部材6)を用いた遮光壁13は副走査方向(レンズ体2、センサ素子4の方向に垂直な方向)おいても、筒部材6を、つまり、ハニカムリング7(スリット部5)を圧縮することでハニカムリング7の他の壁面をレンズの出射光の到達範囲から遠ざけることができ、構造物での反射影響を排除することができる。なお、調整ステップは、ハニカムリング7(正六角形状の筒部材6)を有するスリット部5であって、一辺の長さが、レンズ体2の径の二倍以上のスリット部5を変形させるものであることが好ましい。
さらに詳しくは、対向ステップが、レンズ体アレイ1とスリット部5との主走査方向におけるそれぞれ一方の端部をそれぞれ固定してするものが好ましい。そして、調整ステップは、スリット部5の主走査方向における他方の端部の側から圧力を加えてスリット部を変形させることが好ましい。また、実施の形態1に係る画像読取装置の製造方法は、固定ステップをさらに備えているともいえる。固定ステップは、調整ステップによって調整した、スリット部5における筒部材6の配列周期を固定するものである。スリット部5(筒部材6)がハニカムリング7の場合は、固定ステップが、主走査方向と交差する副走査方向において筒部材6と連続する筒構造の部分を固定するものであるといえる。
ここで、図8及び図9の工程図を使って調整ステップ(調整ステップ及び固定ステップ)の好適な例を説明する。図8及び図9において、位置決め用ピン7Pは、スリット部5(ハニカム構造7)の位置決めを行うためのピンである。樹脂7Rは、位置決め用ピン7Pを固定する樹脂である。例えば、樹脂7Rは、紫外線硬化樹脂などの使用が考えられる。なお、樹脂7Rに固定された位置決め用ピン7Pは、固定用ピン7Pともいえる。まず、図7に示すように、スリット部5(ハニカム構造7)を位置決め用ピン7Pで仮に固定して、位置決めを行う。そして、主走査方向における一方の端部でロッドレンズアレイ2とスリット部5(ハニカム構造7)とを位置合わせする。具体的には、図8に示すように、主走査方向における一方の端部のロッドレンズ2の外周と、主走査方向における一方の端部の筒部材6の壁面(遮光壁13)とを一致させる。次に、主走査方向における一方の端部側にある位置決め用ピン7Pを樹脂7Rで固定(少なくとも仮の固定を)する。ここまでを対向ステップとしてよい。
スリット部5(ハニカム構造7)を、主走査方向における一方の端部側にある位置決め用ピン7Pを樹脂7Rで固定(少なくとも仮の固定を)した後に、調整ステップとして、スリット部5(ハニカム構造7)の主走査方向における他方の端部の側から圧力を加えてスリット部5(ハニカム構造7)を変形(縮小)させる。図9に示すように、筒部材6(ハニカム構造7)の配列周期(ピッチ)が、ロッドレンズ2(ロッドレンズアレイ1)の配列周期(ピッチ)と一致まで圧力を加える。その後、筒部材6(ハニカム構造7)の配列周期(ピッチ)とロッドレンズ2(ロッドレンズアレイ1)の配列周期(ピッチ)とが一致した状態で、残りの位置決め用ピン7Pを樹脂7Rで固定する。位置決め用ピン7Pを樹脂7Rで仮の固定をしていた場合は、残りの位置決め用ピン7Pと同じく固定する。なお、図9は、スリット部5(ハニカム構造7)が、主走査方向から圧縮されて変形し、副走査方向の長さが長くなったものを示している。換言すると、筒部材6が、主走査方向の径に対して、副走査方向の径の方が長いものを示しているといえる。
図8では、スリット部5(ハニカム構造7)のため、副走査方向において筒部材6と連続する筒構造の部分を、仮に位置決め用ピン7Pで固定している(主走査方向における一方の端部側以外)。なお、図9では、同じく、スリット部5(ハニカム構造7)のため、副走査方向において筒部材6と連続する筒構造の部分を固定している。図8及び図9では、副走査方向において、筒部材6と連続する二列の筒構造の部分に、位置決め用ピン7P(固定用ピン7P)を六つ形成している。列ごとには、主走査方向における一方の端部、主走査方向における他方の端部、これらの間の計三ヶ所に位置決め用ピン7P(固定用ピン7P)を形成している。
実施の形態1に係る画像読取装置及びその製造方法において、位置決め用ピン7P(固定用ピン7P)の数は、図8及び図9に示す六つに限るものではないが、調整ステップにおいて、スリット部5(ハニカム構造7)の主走査方向における他方の端部の側から圧力を加えてスリット部5(ハニカム構造7)を変形させるために、主走査方向における一方の端部を固定(少なくとも仮の固定)しておくことが望ましい。これは、ロッドレンズアレイ1(ロッドレンズ2)とスリット部5(ハニカム構造7)との位置合わせの面でも望ましい。
前述のように、ロッドレンズアレイ1を使用したラインイメージセンサにおける長い被写界深度の確保は重要である。ここで、図10、図11、図12を用いて、実施の形態1に係る画像読取装置は、長い被写界深度を確保できていることを説明する。
図10は、スリット部5及びロッドレンズアレイ1(ロッドレンズ2)に対する比較対象例であるレンズ単体の特性を示す図である。図11は、スリット部5及びロッドレンズアレイ1(ロッドレンズ2)に対する比較対象例である複数レンズの特性を示す図である。図12は、スリット部5及びロッドレンズアレイ1(ロッドレンズ2)の特性とそれに対する比較対象例である複数レンズの特性とを示す図である。詳しくは、図12は画像読取装置の被写界深度特性を示したものであり、解像度5.681lp/mm(line pairs/mm)に対する値である。
図10、図11、図12において、縦軸は、レンズのMTF(Modulation Transfer Function)である。横軸は、ΔL(mm)は、被写界深度(Depth of Field; DOF)である。図10及び図11に特性を示している、比較対象例であるレンズ(ロッドレンズ)は、前述の日本板硝子製のSLA(商品名)SLA9A−1列品「開口角 9°、共役長 約80mm、レンズ径Φ=約1.0mm」である。図10はレンズ単体の特性である。図11は複数のレンズの特性である。図12において、R、G、Bは、それぞれ赤色の波長の光、緑色の波長の光、赤色の波長の光、緑色の波長の光を示している。図12において、破線は比較対象例であるレンズの特性(前述のR、G、Bごとに示す特性)、実線はスリット部5及びロッドレンズアレイ1(ロッドレンズ2)の特性(前述のR、G、Bごとに示す特性)である。
一般的に、比較対象例であるレンズのような正立等倍光学系のレンズによって結像される画像は、図10に示すようにレンズ単体では良好な被写界深度、解像度特性を持つものが形成されるのではない。すなわち、前述の図3(b)に示すように複数のロッドレンズによる画像が重なりあって形成されるものである。前述のように、図2及び図3に示すように、被写界深度の低下の主要因はレンズ単体性能よりもレンズをアレイ化したことで重なり度(m)で規定される数の隣接レンズの特性差や組立誤差による光軸ずれ等により個々レンズで形成される像が正規の位置に重畳されず像のボケとなることに起因する。
このような要因から、レンズを透過し形成される画像は複数のレンズからの画像が重複したものであるため、読取対象物9(Object9)が共役点からずれた場合に、拡大、縮小された個々の画像を重ねあわせたものとなり、個々のレンズからの画像結像位置がずれ、一層解像度が低下することになる。この状態が共役点から読取対象物9(Object9)が、ずれた場合に急激に解像度が低下し、被写界深度を悪化させる要因となっており、図11の点線及び図12の破線で示すように焦点位置から読取対象物9(Object9)が外れると、急速に解像度が低下、すなわち被写界深度が浅くなる。
一方、実施の形態1に係る画像読取装置の構成における被写界深度は、図12に実線でしたしたものである。図12において、R、G、Bを破線で示す比較対象例であるロッドレンズの被写界深度に対して、R、G、Bを実線で示すスリット部5及びロッドレンズアレイ1(ロッドレンズ2)は、ピークでの解像度は若干低下している。しかし、実施の形態1に係る画像読取装置は、図12の実線から読取対象物9(Object9)の位置変動に対しては大きく改善していることが判り、被写界深度として約3倍の領域を得ることができる。
実施の形態1に係る画像読取装置の構成は、並行する対向面を持ち、対向面を除く部分で曲げが可能な面をもつ他の正多角形リング柱でもスリット部5が実現可能であり、同様の効果が期待できる。また、スリット部5を形成する材料は、アルミシートなどが考えられるが、銅などの金属シートでもよい。さらに、スリット部5は、樹脂シート、紙などで表面を無反射処理でき、ハニカムなどの正多角形リング柱の形状維持できる厚み00.5から0.1mmのシートであれば、同様の効果が得られる。スリット部5に使用するシートの厚みが薄いほど、出射される光の制限領域が減ることで、光学系としての明るさの低下を軽減可能となる。
さらに、好適な実施の形態1に係る画像読取装置(ラインイメージセンサ)の構成は、出射光制限部材5において出射光制限に必要な高さを持ち、ロッドレンズアレイ1のロッドレンズ配列方向に垂直な対向面を持つ、表面を無反射処理した断面が多角柱のリングを1列に配列したものである。出射光制限部材5における多角リングの形状が正六角形のハニカム構造7を含んでいる。さらに、出射光制限部材5における正六角形のハニカム構造7において、ハニカムの一辺の長さがロッドレンズアレイ1を構成するロッドレンズ2の直径の2倍以上が好適である。
実施の形態1に係る画像読取装置(ラインイメージセンサ)の製造方法の好適な構成は、出射光制限部材5において、ロッドレンズアレイ1への組み付けが、遮光壁13の1つを基準としてロッドレンズ2と位置合わせを行う。次に、遮光部材5を圧縮しながら個々のロッドレンズ2と遮光壁13の位置合わせ、固定を行うことでロッドレンズアレイ1の個々のロッドレンズ2と遮光壁13との位置合わせを行うものである。
実施の形態1に係る画像読取装置(ラインイメージセンサ)の好適な構成は、所定径のロッドレンズ2を1列もしくは複数列読み取り長さ以上に配列したロッドレンズアレイ1を中心として、ロッドレンズアレイ1の読み取り中心上の読取対象物9を照明する光源10(例えば、ライン状LEDアレイ)とロッドレンズアレイ1で結像された媒体像を電気信号へと変換する所定ピッチで光電変換素子(センサ素子4)を配列したセンサ素子アレイ3で構成される。さらに、ロッドレンズアレイ1の光電変換素子(センサ素子4)側にロッドレンズ2から出る光の光路制限を行う出射光制限部材5を備え、出射光制限部材5における遮光壁13と遮光壁13と一体化された接続構造を持ち、遮光壁接続部が変形することで遮光壁13間のピッチを調整可能な構造を持つことを特徴とする。
実施の形態2.
以下、この発明の実施の形態2について図1から図4、図10から図18を用いて説明する。図中、同一符号は、同一又は相当部分を示しそれらについての詳細な説明は省略する。また、図1から図4を用いた説明、及び、図10から図12を用いた説明は、スリット部5の違い以外は実施の形態1と共通のため省略する。図13(a)は、後述する板材8P(シート8P)を示す図である。図13(b)は、板材8P(シート8P)から形成した楕円形状の筒8(楕円筒構造8)を示す図である。
実施の形態1に係る画像読取装置及びその製造方法において、好ましくは、筒部材6は、六角形状の筒であり、スリット部5は、ハニカム構造7(ハニカムリング7)であればよいと説明した。実施の形態2に係る画像読取装置及びその製造方法は、筒部材6が、楕円形状の筒8(楕円筒構造8)である場合を例示する。よって、スリット部5は、主走査方向に配列された複数の楕円形状の筒8(楕円筒構造8)を有するリング柱列14(リング柱アレイ14)となる。
図13から図18において、リング柱列14(リング柱アレイ14)は、スリット部5(実施の形態1においてはハニカム構造7)である。図13において、板材8P(シート8P)は、リング柱列14(リング柱アレイ14)に加工される前の板材(シート)である。板材8P(シート8P)は、実施の形態1のスリット部5(ハニカム構造7)と同様に、アルミや銅などの金属シート、樹脂シート、紙など形状維持できる厚み00.5から0.1mmのシートであればよい。遮光壁13は、楕円筒構造8(筒部材6)の内壁面を意味する。なお、筒部材6は、円形状の筒8(円筒構造8、リング柱8)でもよい。
筒部材が、円形状の筒8(円筒構造8、リング柱8)の場合、スリット部5は、主走査方向に配列された複数の円形状の筒8(円筒構造8、リング柱8)を有するリング柱列14(リング柱アレイ14)となる。これらは、主走査方向における長さを調整する前の段階も含んでいる。つまり、最終的に完成した実施の形態2に係る画像読取装置における筒部材6(スリット部5)の形状においてもいえる。
つまり、実施の形態2に係る画像読取装置は、出射光制限部材5において出射光制限に必要な高さを持ちロッドレンズアレイ1を構成するロッドレンズ2の直径の3倍以上の直径を持つリング柱8をロッドレンズ2の直径の1倍以上の幅で一列に接着、連結したものの主走査方向の長さを調整したものである。
実施の形態2に係る画像読取装置に係る製造方法において、まず実施の形態2に係る画像読取装置に使用するロッドレンズ2のレンズ径の3倍以上で所定高さを持つリング柱8を準備する。準備とはスリット部5の製造工程図である図7に示すように、糊代部分に相当する箇所が重なるように、板材8P(シート8P)を丸めて糊代部分を固定して楕円形状の筒8(楕円筒構造8)を形成する。楕円形状の筒8(楕円筒構造8)であるリング柱8の中心対象部分レンズ径以上の幅で糊付け、リング柱8を一列に張り付けることで、図14及び図15に示す主走査方向に配列されたリング柱アレイ14を準備する。
このリング柱アレイ14とロッドレンズアレイ1との組み立ては、実施の形態1における遮光壁13と同様にリング柱8同士を貼り合わせた部分を遮光壁13とし、遮光壁13の中央とレンズ中心が合うように遮光壁13をレンズ配列間に位置合わせを行い固定する。これが、レンズ体アレイ1とスリット部5とを対向させる対向ステップに相当する。リング柱8を使用するシート(板材8P、シート8P)は、実施の形態1における筒部材6と同様に梨地処理の上、黒色化(無反射)処理を行ったものを使用する。
次に、調整ステップは、図16に示すように、円形状の筒部材6を有するスリット部5であって、直径の長さが、ロッドレンズ2の径の三倍以上のスリット部5を変形させるものである。詳しくは、リング柱アレイ14を圧縮しながら遮光壁13それぞれを所定のロッドレンズ2間に位置合わせすることでロッドレンズアレイ1とリング柱8の遮光壁13が1対1で所定位置になるようにする(図17、図18)。また、実施の形態2に係る画像読取装置の製造方法においても、固定ステップをさらに備えていてもよい。固定ステップは、調整ステップによって調整した、スリット部5(リング柱アレイ14)における筒部材6(リング柱8)の配列周期を固定するものである。図示は省略するが、スリット部5(筒部材6)が副走査方向に複数列並んだリング柱アレイ14の場合は、固定ステップが、主走査方向と交差する副走査方向において筒部材6と連続する筒構造の部分を固定するものであるといえる。
実施の形態2に係る画像読取装置の構成における被写界深度は、実施の形態1に係る画像読取装置の構成における被写界深度と同様な特性を得ることができる。リング柱8の遮光壁13部分以外からの反射光影響を低減するにはリング柱径を大きくすることでロッドレンズ2の出射範囲から壁面を遠ざけることで調整可能である。
実施の形態1及び2に係る画像読取装置及びその製造方法においては、遮光壁13として所定高さを持ち、並行に対面する面を持ち、並行に対向する遮光壁13を少なくとも1組以上持ち4面以上の遮光壁13で形成される断面が多角形をした多角柱を少なくとも2つ以上1列に連結した連結したものを遮光部材5とし、若しくは、ロッドレンズ2径の少なくとも3倍の直径を持ち、少なくともロッドレンズ2径幅で互いを接着した内面を無反射処理したリング柱8を少なくとも2つ以上1列に連結した連結したものを遮光部材5としている。
よって、多角柱群、若しくはリング群の遮光壁13を、ロッドレンズ2間の接続部と位置合わせしながら圧縮、固定することでロッドレンズアレイ1上に遮光部材5を配置している。この配置によってロッドレンズ2間の画像重畳で発生する干渉を低減、光量低下を抑制しながら被写界深度の改善を行うと共に遮光壁を連結している部材が伸展、収縮する。このことにより、ロッドレンズアレイ1の寸法変化に対して遮光壁13のレンズに対する位置が維持され、レンズアレイ2の変化に対して安定な特性を維持することができる。
実施の形態1及び2に係る画像読取装置及びその製造方法は、標準的なロッドレンズアレイであっても、被写界深度の改善を図ることが可能となり、さらに使用環境条件の変化に対しても特性を維持することが可能で安定な特性を持ち良好な被写界深度改善が可能である。つまり、実施の形態1及び2に係る画像読取装置のレンズ構成を用いたセンサシステムでは、画像撮像を行う際に想定される温度、湿度変化などによるレンズアレイの熱膨張、収縮による寸法変化に対して別部品として遮光部材を構成しているため遮光部材とロッドレンズの位置関係を常に一定に維持することが容易である。さらに、実施の形態1及び2に係る画像読取装置においては、レンズアレイの個々レンズの位置と遮光部材の位置が変動しにくいので、多重画像や画像濃淡が発生し、著しく画像品質を低下させることを防ぐことが容易である。
1・・レンズ体アレイ(ロッドレンズアレイ)、2・・レンズ体(ロッドレンズ)、
2P・・保持板、3・・センサ素子アレイ、4・・センサ素子(センサIC)、
5・・スリット部(重なり防止部、遮光部材、出射光制限部材)、6・・筒部材、
7・・ハニカム構造(ハニカムリング)、7P・・位置決め用ピン(固定用ピン)、
7R・・樹脂、8・・楕円筒構造(リング柱、円筒構造)、8P・・板材、
9・・読取対象物(被照射体、Object)、10・・光源、11・・センサ基板、
12・・筐体、13・・ハニカム遮光壁(遮光壁)、
14・・リング柱列(リング柱アレイ)。

Claims (16)

  1. レンズ体が主走査方向に沿ってアレイ状に配列されたレンズ体アレイと、前記レンズ体が収束した光をそれぞれ受光するセンサ素子が前記主走査方向に沿ってアレイ状に配列されたセンサ素子アレイと、前記レンズ体アレイと前記センサ素子アレイとの間に配置され、前記主走査方向に配列された複数の筒部材を有するスリット部とを備え、
    前記スリット部は、前記主走査方向の長さが調節されて前記筒部材の配列周期が、前記主走査方向において前記レンズ体アレイにおける前記レンズ体の配列周期と一致し、
    前記筒部材は、前記レンズ体が収束した光が通過することを特徴とする画像読取装置。
  2. 前記スリット部は、可撓性のある材料から構成させていることを特徴とする請求項1に記載の画像読取装置。
  3. 前記筒部材は、六角形状の筒であり、前記スリット部は、前記主走査方向と交差する副走査方向において前記筒部材と連続する六角形状の筒構造を有し、ハニカム構造であることを特徴とする請求項1又は請求項2に記載の画像読取装置。
  4. 前記筒部材は、楕円形状の筒であることを特徴とする請求項1又は請求項2に記載の画像読取装置。
  5. 前記筒部材は、前記主走査方向の径に対して、前記主走査方向と交差する副走査方向の径の方が長いことを特徴とする請求項1から請求項4のいずれか1項に記載の画像読取装置。
  6. 前記スリット部は、前記主走査方向から圧縮されて変形し、前記主走査方向の長さが短くなったものであることを特徴とする請求項1から請求項5のいずれか1項に記載の画像読取装置。
  7. 前記スリット部は、前記主走査方向から圧縮されて変形し、前記主走査方向と交差する副走査方向の長さが長くなったものであることを特徴とする請求項1から請求項6のいずれか1項に記載の画像読取装置。
  8. 前記筒部材は、筒の内部が梨地状で黒色に加工されていることを特徴とする請求項1から請求項7のいずれか1項に記載の画像読取装置。
  9. レンズ体が主走査方向に沿ってアレイ状に配列されたレンズ体アレイと、前記レンズ体が収束した光をそれぞれ受光するセンサ素子が前記主走査方向に沿ってアレイ状に配列されたセンサ素子アレイと、前記レンズ体アレイと前記センサ素子アレイとの間に配置され、前記主走査方向に配列された複数の筒部材を有するスリット部とを有し、前記筒部材は、前記レンズ体が収束した光が通過する画像読取装置の製造方法であって、
    前記レンズ体アレイと前記スリット部とを対向させる対向ステップと、前記スリット部の前記主走査方向の長さが調節して、前記スリット部における前記筒部材の配列周期と、前記主走査方向において前記レンズ体アレイにおける前記レンズ体の配列周期とを一致させる調整ステップとを備えたことを特徴とする画像読取装置の製造方法。
  10. 前記調整ステップは、前記主走査方向から圧力を加えて前記スリット部を変形させて、前記スリット部の前記主走査方向の長さが調節することを特徴とする請求項9に記載の画像読取装置の製造方法。
  11. 前記調整ステップは、正六角形状の前記筒部材を有する前記スリット部であって、一辺の長さが、前記レンズ体の径の二倍以上の前記スリット部を変形させるものであることを特徴とする請求項10に記載の画像読取装置の製造方法。
  12. 前記調整ステップは、円形状の前記筒部材を有する前記スリット部であって、直径の長さが、前記レンズ体の径の三倍以上の前記スリット部を変形させるものであることを特徴とする請求項10に記載の画像読取装置の製造方法。
  13. 前記対向ステップは、前記レンズ体アレイと前記スリット部との前記主走査方向におけるそれぞれ一方の端部をそれぞれ固定し、
    前記調整ステップは、前記スリット部の前記主走査方向における他方の端部の側から圧力を加えて前記スリット部を変形させることを特徴とする請求項10から請求項12のいずれか1項に記載の画像読取装置の製造方法。
  14. 前記調整ステップは、可撓性のある前記スリット部の前記主走査方向の長さが調節するものであることを特徴とする請求項9から請求項13のいずれか1項に記載の画像読取装置の製造方法。
  15. 固定ステップをさらに備え、前記固定ステップは、前記調整ステップによって調整した、前記スリット部における前記筒部材の配列周期を固定するものであることを特徴とする請求項9から請求項14のいずれか1項に記載の画像読取装置の製造方法。
  16. 前記固定ステップは、前記主走査方向と交差する副走査方向において前記筒部材と連続する筒構造の部分を固定するものである請求項15に記載の画像読取装置の製造方法。
JP2019175812A 2019-09-26 2019-09-26 画像読取装置及びその製造方法 Active JP7211316B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019175812A JP7211316B2 (ja) 2019-09-26 2019-09-26 画像読取装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019175812A JP7211316B2 (ja) 2019-09-26 2019-09-26 画像読取装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2021052361A true JP2021052361A (ja) 2021-04-01
JP7211316B2 JP7211316B2 (ja) 2023-01-24

Family

ID=75158176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019175812A Active JP7211316B2 (ja) 2019-09-26 2019-09-26 画像読取装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP7211316B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022260108A1 (ja) * 2021-06-09 2022-12-15
JP2024006772A (ja) * 2022-07-04 2024-01-17 日本板硝子株式会社 光学装置及びイメージセンサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342131A (ja) * 1992-11-04 1994-12-13 Canon Inc レンズアレイ及びそれを用いた密着型イメージセンサー
JP2001116905A (ja) * 1999-10-20 2001-04-27 Sharp Corp レンズアレイ光学装置および櫛歯状構造体の製造方法
JP2013088661A (ja) * 2011-10-19 2013-05-13 Toshiba Tec Corp レンズアレイ及びこれを用いた画像形成装置
JP2014182325A (ja) * 2013-03-21 2014-09-29 Seiko Epson Corp 結像光学装置、接触型イメージセンサーモジュールおよび画像読み取り装置
WO2019050644A1 (en) * 2017-09-05 2019-03-14 Waymo Llc LIDAR WITH COALIGNED TRANSMISSION AND RECEPTION PATHS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342131A (ja) * 1992-11-04 1994-12-13 Canon Inc レンズアレイ及びそれを用いた密着型イメージセンサー
JP2001116905A (ja) * 1999-10-20 2001-04-27 Sharp Corp レンズアレイ光学装置および櫛歯状構造体の製造方法
JP2013088661A (ja) * 2011-10-19 2013-05-13 Toshiba Tec Corp レンズアレイ及びこれを用いた画像形成装置
JP2014182325A (ja) * 2013-03-21 2014-09-29 Seiko Epson Corp 結像光学装置、接触型イメージセンサーモジュールおよび画像読み取り装置
WO2019050644A1 (en) * 2017-09-05 2019-03-14 Waymo Llc LIDAR WITH COALIGNED TRANSMISSION AND RECEPTION PATHS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022260108A1 (ja) * 2021-06-09 2022-12-15
JP7430823B2 (ja) 2021-06-09 2024-02-13 三菱電機株式会社 光学部材および画像読取装置
JP2024006772A (ja) * 2022-07-04 2024-01-17 日本板硝子株式会社 光学装置及びイメージセンサ

Also Published As

Publication number Publication date
JP7211316B2 (ja) 2023-01-24

Similar Documents

Publication Publication Date Title
JP7076634B2 (ja) 画像読取装置
JP5806103B2 (ja) 画像読取装置
EP1701138B1 (en) Photoelectric encoder
CN103718539B (zh) 图像传感器单元以及使用它的图像读取装置
JP4861354B2 (ja) 画像読取装置および画像形成装置
JP2012235538A (ja) 画像読取装置
US20090180156A1 (en) Image reading apparatus and image forming apparatus
JP2021052361A (ja) 画像読取装置及びその製造方法
JP6870395B2 (ja) 画像読取装置
JP4994753B2 (ja) レンズユニット及びそれを用いた画像読取装置
JP2012054910A (ja) 画像読取装置
US8749864B2 (en) Image reading optical system and image reading apparatus
JP5901471B2 (ja) 画像読取装置
JPH09304174A (ja) 照明非一様性補償付きフォトセンサ・アレイ
JP7350191B2 (ja) 画像読取装置
US7847984B2 (en) Line sensor and image information reading apparatus
JP6708045B2 (ja) 画像読取モジュール、画像読取装置および画像形成装置
US20090231641A1 (en) Image reading apparatus and method of controlling the same
JP6058091B2 (ja) 画像読取装置
JP2010206358A (ja) 画像読取装置
US8104256B2 (en) Imaging optical unit, inspection method for the same, and image reading apparatus
US6930807B1 (en) Color image reading apparatus
JP6701867B2 (ja) 画像読取光学系及び画像読取装置
JP7216240B1 (ja) 光学装置及びイメージセンサ
JP2006250672A (ja) 光電式エンコーダ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210902

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R151 Written notification of patent or utility model registration

Ref document number: 7211316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151