JP2021031356A - Method for manufacturing silicon single crystal - Google Patents

Method for manufacturing silicon single crystal Download PDF

Info

Publication number
JP2021031356A
JP2021031356A JP2019155738A JP2019155738A JP2021031356A JP 2021031356 A JP2021031356 A JP 2021031356A JP 2019155738 A JP2019155738 A JP 2019155738A JP 2019155738 A JP2019155738 A JP 2019155738A JP 2021031356 A JP2021031356 A JP 2021031356A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
magnetic field
silicon melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019155738A
Other languages
Japanese (ja)
Other versions
JP7249913B2 (en
Inventor
吉亮 安部
Yoshiaki Abe
吉亮 安部
尚 松村
Takashi Matsumura
尚 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalWafers Japan Co Ltd
Original Assignee
GlobalWafers Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalWafers Japan Co Ltd filed Critical GlobalWafers Japan Co Ltd
Priority to JP2019155738A priority Critical patent/JP7249913B2/en
Priority to TW109128497A priority patent/TWI730878B/en
Priority to DE102020210833.1A priority patent/DE102020210833A1/en
Publication of JP2021031356A publication Critical patent/JP2021031356A/en
Application granted granted Critical
Publication of JP7249913B2 publication Critical patent/JP7249913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a method for manufacturing a silicon single crystal, capable of reducing oxygen concentration in a crystal growth axial direction, achieving a uniformity of the oxygen concentration and achieving the uniformity of oxygen concentration on a substrate surface vertical to the crystal growth axis.SOLUTION: In the method for manufacturing a silicon single crystal, capable of growing the silicon single crystal while applying a magnetic field in a horizontal direction when pulling the silicon single crystal from a silicon melt in a quartz glass crucible, a center of the magnetic field in the horizontal direction is positioned in the silicon melt under a free surface in the central part of the silicon single crystal; an intensity of the magnetic field is at least 2000 gauss while pulling the silicon single crystal; a flow of the silicon melt flowing to the quartz crucible side wall from the silicon single crystal side exists on the surface of the silicon melt; and a flow rate of the silicon melt flowing to the quartz glass crucible side wall from the silicon single crystal side is 0.16 m/s or less.SELECTED DRAWING: None

Description

本発明はシリコン単結晶の製造方法に関し、特に、酸素濃度の低減、結晶成長軸方向の酸素濃度の均一性の向上、更には結晶成長軸と垂直な基板面内の酸素濃度の均一性の向上を図ることができるシリコン単結晶の製造方法に関する。 The present invention relates to a method for producing a silicon single crystal, in particular, reducing the oxygen concentration, improving the uniformity of the oxygen concentration in the direction of the crystal growth axis, and further improving the uniformity of the oxygen concentration in the substrate plane perpendicular to the crystal growth axis. The present invention relates to a method for producing a silicon single crystal capable of achieving the above.

従来のCZ法によるシリコン基板の酸素濃度は、ゲッタリング効果を狙って、比較的高濃度(≧1.0×1018 atoms/cm)のものが主流であったが、近年CMOS(Complementary Metal Oxide Semiconductor)イメージセンサー等では白キズ低減のため低酸素基板(<1.0×1018 atoms/cm)が求められている。
シリコン基板はシリコン単結晶から製造されるが、このシリコン単結晶の製造方法としては、石英ガラスルツボ内のシリコン融液から単結晶を成長させつつ、シリコン単結晶を引上げるチョクラルスキー法(CZ法)が広く用いられている。
The oxygen concentration of the silicon substrate by the conventional CZ method has been relatively high (≧ 1.0 × 10 18 atoms / cm 3 ) for the purpose of gettering effect, but in recent years CMOS (Complementary Metal) has been the mainstream. Oxide Semiconductor) Image sensors and the like are required to have a low oxygen substrate (<1.0 × 10 18 atoms / cm 3) in order to reduce white scratches.
The silicon substrate is manufactured from a silicon single crystal, and the method for manufacturing this silicon single crystal is the Czochralski method (CZ) in which the silicon single crystal is pulled up while growing the single crystal from the silicon melt in the quartz glass crucible. Law) is widely used.

このシリコン単結晶の製造方法において、シリコン単結晶の酸素濃度を調整する方法としては、特許文献1,2,3に示すように対流を制御する磁場印加法、特許文献4に示すように不活性ガスの流量や炉内圧の制御、また石英ガラスルツボの回転制御や特許文献5に示すようにシリコン単結晶の回転を制御する方法が知られている。 In this method for producing a silicon single crystal, as a method for adjusting the oxygen concentration of the silicon single crystal, a magnetic field application method for controlling convection as shown in Patent Documents 1, 2 and 3 and an inert method as shown in Patent Document 4 are used. There are known methods for controlling the flow rate of gas and the pressure inside the furnace, controlling the rotation of a quartz glass crucible, and controlling the rotation of a silicon single crystal as shown in Patent Document 5.

特公昭58−50953号公報Special Publication No. 58-50953 特開2000−264784号公報Japanese Unexamined Patent Publication No. 2000-264784 特開平4−31386号公報Japanese Unexamined Patent Publication No. 4-31386 特開平9−142990号公報Japanese Unexamined Patent Publication No. 9-142990 特開2005−145724号公報Japanese Unexamined Patent Publication No. 2005-145724

ところで、前記シリコン単結晶の酸素濃度を調整する方法を用いても、シリコン単結晶の直胴部の後半部分(引上げ後半部分)において、酸素濃度が高くなり、結晶成長軸方向の酸素濃度の均一性を図ることができないという課題があった。 By the way, even if the method of adjusting the oxygen concentration of the silicon single crystal is used, the oxygen concentration becomes high in the latter half of the straight body portion (the latter half of the pulling portion) of the silicon single crystal, and the oxygen concentration in the crystal growth axis direction becomes uniform. There was a problem that it was not possible to measure sex.

具体的に説明すると、シリコン単結晶の酸素濃度は、シリコン融液が石英ガラスルツボの石英成分と反応し、石英ガラスルツボの側壁を溶解し、酸素がシリコン融液に取り込まれる。そのため、シリコン融液に取り込まれた酸素が拡散あるいは放出される前に、このシリコン融液がシリコン単結晶に取り込まれると、シリコン単結晶の酸素濃度が上昇する。
したがって、シリコン単結晶に取り込まれる前に、シリコン融液に取り込まれた酸素が拡散、あるいは放出されるように、シリコン融液内の流れ(対流)を制御する必要がある。
Specifically, the oxygen concentration of the silicon single crystal is such that the silicon melt reacts with the quartz component of the quartz glass crucible, dissolves the side wall of the quartz glass crucible, and oxygen is taken into the silicon melt. Therefore, if the silicon melt is incorporated into the silicon single crystal before the oxygen incorporated in the silicon melt is diffused or released, the oxygen concentration of the silicon single crystal increases.
Therefore, it is necessary to control the flow (convection) in the silicon melt so that the oxygen incorporated in the silicon melt is diffused or released before being incorporated into the silicon single crystal.

このシリコン融液内の流れの制御は、石英ガラスルツボ内のシリコン融液量が多い状態では、前記したシリコン単結晶の酸素濃度を調整する方法を用いて、シリコン融液内の流れ(対流)を制御できる。
しかしながら、石英ガラスルツボ内のシリコン融液量が少ない状態(シリコン単結晶の直胴部の後半部分(引上げ後半部分))では、シリコン融液内の流れを制御できず、シリコン単結晶の直胴部の後半部分(引上げ後半部分)において酸素濃度が高くなり、シリコン単結晶の結晶成長軸方向の酸素濃度の均一性を図ることができないという課題があった。
The flow in the silicon melt is controlled by using the method for adjusting the oxygen concentration of the silicon single crystal described above when the amount of the silicon melt in the quartz glass crucible is large (convection). Can be controlled.
However, when the amount of silicon melt in the quartz glass pot is small (the latter half of the straight body of the silicon single crystal (the latter half of pulling up)), the flow in the silicon melt cannot be controlled, and the straight body of the silicon single crystal. There is a problem that the oxygen concentration becomes high in the latter half portion (the latter half portion of pulling up), and it is not possible to achieve uniformity of the oxygen concentration in the crystal growth axis direction of the silicon single crystal.

この課題を解決するために、特許文献3では、引上げるにつれて(石英ガラス内に収容されているシリコン融液量が減少するにつれて)、磁場強度を3000ガウスから、2000ガウス、1000ガウス、500ガウスと低下させることが提案されている。
しかしながら、磁場強度を3000ガウス、2000ガウス、1000ガウス、500ガウスと低下させ、磁場を低磁場にすると、結晶成長軸と垂直な基板面内の酸素濃度のばらつきが大きくなり、基板面内の酸素濃度の均一性が阻害されるという技術的課題があった。
In order to solve this problem, in Patent Document 3, the magnetic field strength is increased from 3000 gauss to 2000 gauss, 1000 gauss, and 500 gauss as it is pulled up (as the amount of silicon melt contained in the quartz glass decreases). It has been proposed to reduce it.
However, when the magnetic field strength is reduced to 3000 gauss, 2000 gauss, 1000 gauss, and 500 gauss and the magnetic field is lowered, the variation in the oxygen concentration in the substrate surface perpendicular to the crystal growth axis becomes large, and the oxygen in the substrate surface becomes large. There was a technical problem that the uniformity of concentration was hindered.

本発明者らは、かかる課題を解決するために、酸素濃度を低減と、結晶成長軸と垂直な基板面内の酸素濃度の均一性と、結晶成長軸方向の酸素濃度の均一性を図ることを鋭意、研究した。
この研究に際し、本発明者らは、シリコン融液表面の流れについて着目し、シリコン単結晶側から石英ガラスルツボ側壁側に流れるシリコン融液の流速が特定の流速以下である場合に、酸素濃度の低減を図ることができ、しかも結晶成長軸方向の酸素濃度の均一性を図ることができることを知見し、本発明を完成した。
In order to solve this problem, the present inventors aim to reduce the oxygen concentration, make the oxygen concentration in the substrate plane perpendicular to the crystal growth axis uniform, and make the oxygen concentration in the crystal growth axis direction uniform. Diligently studied.
In this study, the present inventors focused on the flow of the surface of the silicon melt, and when the flow velocity of the silicon melt flowing from the silicon single crystal side to the side wall side of the quartz glass crucible was equal to or less than a specific flow velocity, the oxygen concentration was increased. It was found that the reduction can be achieved and the uniformity of the oxygen concentration in the crystal growth axis direction can be achieved, and the present invention has been completed.

本発明は、酸素濃度の低減と結晶成長軸方向の酸素濃度の均一性を図ると共に、結晶成長軸と垂直な基板面内の酸素濃度の均一性を図ることができるシリコン単結晶の製造方法を提供することを目的とする。 The present invention provides a method for producing a silicon single crystal, which can reduce the oxygen concentration, achieve the uniformity of the oxygen concentration in the crystal growth axis direction, and achieve the uniformity of the oxygen concentration in the substrate plane perpendicular to the crystal growth axis. The purpose is to provide.

上記目的を達成するためになされたシリコン単結晶の製造方法は、石英ガラスルツボ内のシリコン融液からシリコン単結晶を引上げるに際して、水平方向の磁場を印加しながらシリコン単結晶を成長させるシリコン単結晶の製造方法において、シリコン融液表面に、前記シリコン単結晶側から石英ルツボ側壁に流れるシリコン融液の流れが存在し、前記シリコン単結晶側から石英ガラスルツボ側壁に流れるシリコン融液の流速が0.16m/s以下であることを特徴としている。 The method for producing a silicon single crystal to achieve the above object is to grow a silicon single crystal while applying a horizontal magnetic field when pulling the silicon single crystal from a silicon melt in a quartz glass crucible. In the crystal manufacturing method, there is a flow of the silicon melt flowing from the silicon single crystal side to the silica crucible side wall on the surface of the silicon melt, and the flow velocity of the silicon melt flowing from the silicon single crystal side to the quartz glass crucible side wall is high. It is characterized by being 0.16 m / s or less.

本発明では、シリコン単結晶の引上げ中は、前記シリコン単結晶側から石英ガラスルツボ側壁に流れるシリコン融液の流速を0.16m/s以下とすることにより、シリコン単結晶の酸素濃度を低減することができ、結晶成長軸方向の酸素濃度の均一性、結晶成長軸と垂直な基板面内の酸素濃度の均一性を図ることができる。 In the present invention, the oxygen concentration of the silicon single crystal is reduced by setting the flow velocity of the silicon melt flowing from the silicon single crystal side to the side wall of the quartz glass rut to 0.16 m / s or less during the pulling up of the silicon single crystal. Therefore, the uniformity of the oxygen concentration in the direction of the crystal growth axis and the uniformity of the oxygen concentration in the substrate plane perpendicular to the crystal growth axis can be achieved.

シリコン融液表面のシリコン融液の流れとして、例えば、シリコン単結晶側から石英ガラスルツボ側壁側に流れ、その後、石英ガラスルツボ側壁に接して(沿って)下方に流れ、石英ガラスルツボ底面から上昇する流れがある。 As a flow of the silicon melt on the surface of the silicon melt, for example, it flows from the silicon single crystal side to the side wall side of the quartz glass crucible, then flows downward in contact with (along) the side wall of the quartz glass crucible, and rises from the bottom surface of the quartz glass crucible. There is a flow to do.

このシリコン融液が石英ガラスルツボ側壁に接して流れる際、融点におけるシリコンは化学的に活性であるため、シリコン融液は石英ガラスの石英成分と反応し、石英ガラスルツボの側壁を溶解し、O(酸素)を取り込む。
そして、このシリコン融液から酸素が放出、拡散される前に、シリコン単結晶に取り込まれると、シリコン単結晶の酸素濃度が増大する。
即ち、シリコン単結晶側から石英ガラスルツボ側壁側の流れが速くなると、石英ガラスルツボ底面から上昇する流れも速くなり、シリコン融液から酸素が放出、拡散される前に、シリコン単結晶に取り込まれる度合いが大きくなる。
When this silicon melt flows in contact with the side wall of the quartz glass rut, silicon at the melting point is chemically active, so the silicon melt reacts with the quartz component of the quartz glass to dissolve the side wall of the quartz glass rut, and O Take in (oxygen).
Then, if oxygen is incorporated into the silicon single crystal before the oxygen is released and diffused from the silicon melt, the oxygen concentration of the silicon single crystal increases.
That is, when the flow from the silicon single crystal side to the side wall side of the quartz glass crucible becomes faster, the flow rising from the bottom surface of the quartz glass crucible also becomes faster, and oxygen is taken into the silicon single crystal before being released and diffused from the silicon melt. The degree increases.

特に、シリコン単結晶側から石英ガラスルツボの側壁側に流れる、シリコン融液の流速が0.16m/sを超える場合には、石英ガラスルツボ底面から上昇するシリコン融液の流れも速くなり、シリコン融液から酸素が放出、拡散される前に、シリコン単結晶に取り込まれる虞があり、好ましくない。 In particular, when the flow velocity of the silicon melt flowing from the silicon single crystal side to the side wall side of the quartz glass rutsubo exceeds 0.16 m / s, the flow of the silicon melt rising from the bottom surface of the quartz glass rutsubo becomes faster, and silicon Before oxygen is released and diffused from the melt, it may be incorporated into the silicon single crystal, which is not preferable.

ここで、前記水平方向の磁場の中心が融液表面から下方60mmの範囲内のシリコン融液中に位置し、シリコン単結晶の引上げ中は、磁場強度が少なくとも2000ガウスであることが望ましい。 Here, it is desirable that the center of the magnetic field in the horizontal direction is located in the silicon melt within a range of 60 mm below the surface of the melt, and the magnetic field strength is at least 2000 gauss during the pulling of the silicon single crystal.

前記磁場強度が2000ガウス未満の場合には、シリコン融液の流れの制御が困難となる。特に、磁場を低磁場にすると、結晶成長軸と垂直な基板面内の酸素濃度のばらつきが大きくなり、基板面内の酸素濃度の均一性を図ることができず、好ましくない。
尚、磁場強度が4000ガウスを超える場合には、シリコン単結晶側から石英ガラスルツボ側壁に流れるシリコン融液の流速が0.16m/s以上となり、酸素濃度が高い融液が結晶へ到達してしまうため、好ましくない。したがって、磁場強度は2000ガウス〜4000ガウスが好ましい。
また、磁場中心の位置は、融液表面から下方に60mmの範囲内が好ましく、さらに好ましくは融液表面から下方に20mmの範囲内である。
If the magnetic field strength is less than 2000 gauss, it becomes difficult to control the flow of the silicon melt. In particular, when the magnetic field is set to a low magnetic field, the variation in oxygen concentration in the substrate surface perpendicular to the crystal growth axis becomes large, and the oxygen concentration in the substrate surface cannot be made uniform, which is not preferable.
When the magnetic field strength exceeds 4000 gauss, the flow velocity of the silicon melt flowing from the silicon single crystal side to the side wall of the quartz glass crucible becomes 0.16 m / s or more, and the melt having a high oxygen concentration reaches the crystal. It is not preferable because it ends up. Therefore, the magnetic field strength is preferably 2000 gauss to 4000 gauss.
The position of the center of the magnetic field is preferably within a range of 60 mm downward from the surface of the melt, and more preferably within a range of 20 mm downward from the surface of the melt.

また、前記水平方向の磁場の中心が、シリコン単結晶中心部の下方に位置し、固化率0.4以下のシリコン単結晶の直胴部の引上げ中は、磁場強度は少なくとも3000ガウスであり、固化率0.4を越えて固化率0.6まで、前記磁場強度を徐々に下げ、固化率0.6以降、磁場強度を2000ガウスとすることが望ましい。 Further, the center of the magnetic field in the horizontal direction is located below the center of the silicon single crystal, and the magnetic field strength is at least 3000 gauss while pulling up the straight body portion of the silicon single crystal having a solidification rate of 0.4 or less. It is desirable to gradually reduce the magnetic field strength from the solidification rate of 0.4 to a solidification rate of 0.6, and to set the magnetic field strength to 2000 gauss after the solidification rate of 0.6.

固化率0.4以下のシリコン単結晶の直胴部の引上げ中は、磁場強度は少なくとも3000ガウスであるため、シリコン融液内の流れを制御でき、酸素濃度の低減、シリコン単結晶の結晶成長軸方向の酸素濃度の均一性を図ることができ、また結晶成長軸と垂直な基板面内の酸素濃度のばらつきを抑制でき、基板面内の酸素濃度の均一性を図ることができる。 Since the magnetic field strength is at least 3000 gauss during pulling up the straight body of the silicon single crystal with a solidification rate of 0.4 or less, the flow in the silicon melt can be controlled, the oxygen concentration is reduced, and the silicon single crystal crystal growth. The uniformity of the oxygen concentration in the axial direction can be achieved, the variation in the oxygen concentration in the substrate surface perpendicular to the crystal growth axis can be suppressed, and the uniformity of the oxygen concentration in the substrate surface can be achieved.

固化率0.4を越えて固化率0.6まで前記磁場強度を徐々に下げ、特に、固化率0.6以降、磁場強度を2000ガウスとする。
そのため、酸素濃度の低減、シリコン単結晶の結晶成長軸方向の酸素濃度の均一性を図ることができるほか、結晶成長軸と垂直な基板面内の酸素濃度のばらつきを抑制でき、基板面内の酸素濃度の均一性をより図ることができる。
The magnetic field strength is gradually reduced from the solidification rate of 0.4 to a solidification rate of 0.6, and in particular, the magnetic field strength is set to 2000 gauss after the solidification rate of 0.6.
Therefore, the oxygen concentration can be reduced, the oxygen concentration in the crystal growth axis direction of the silicon single crystal can be made uniform, and the variation in the oxygen concentration in the substrate plane perpendicular to the crystal growth axis can be suppressed, and the oxygen concentration in the substrate plane can be suppressed. The uniformity of oxygen concentration can be further improved.

また、シリコン単結晶の半径[mm]÷ルツボ半径[mm]×シリコン単結晶回転数[rpm]×磁場強度[Gauss]÷(シリコン融液の表面から遮蔽板の下端までの距離)[mm]から算出した値が、190以下であることが望ましい。
このシリコン単結晶の半径÷ルツボ半径×シリコン単結晶回転数×磁場強度÷(シリコン融液の表面から遮蔽板の下端までの距離)から算出した値が190以下の場合は、シリコン単結晶側からルツボ側壁に流れるシリコン融液の流れの流速が0.16m/s以下とすることができる。
その結果、上記したように、シリコン単結晶の酸素濃度を低減することができ、結晶成長軸方向の酸素濃度の均一性、結晶成長軸と垂直な基板面内の酸素濃度の均一性を図ることができる。
In addition, the radius of the silicon single crystal [mm] ÷ radius of the rut [mm] × the rotation speed of the silicon single crystal [rpm] × the magnetic field strength [Gauss] ÷ (distance from the surface of the silicon melt to the lower end of the shielding plate) [mm] It is desirable that the value calculated from is 190 or less.
If the value calculated from the radius of the silicon single crystal ÷ crucible radius × silicon single crystal rotation speed × magnetic field strength ÷ (distance from the surface of the silicon melt to the lower end of the shielding plate) is 190 or less, from the silicon single crystal side. The flow velocity of the silicon melt flowing on the side wall of the crucible can be 0.16 m / s or less.
As a result, as described above, the oxygen concentration of the silicon single crystal can be reduced, and the oxygen concentration in the crystal growth axis direction and the oxygen concentration in the substrate plane perpendicular to the crystal growth axis can be achieved. Can be done.

また、上記目的を達成するためになされたシリコン単結晶の製造方法は、石英ガラスルツボ内のシリコン融液からシリコン単結晶を引上げるに際して、水平方向の磁場を印加しながらシリコン単結晶を成長させるシリコン単結晶の製造方法において、シリコン単結晶を引上げ工程中、シリコン単結晶の半径[mm]÷ルツボ半径[mm]×シリコン単結晶回転数[rpm]×磁場強度[Gauss]÷(シリコン融液の表面から遮蔽板の下端までの距離)[mm]から算出した値が、190以下となるように、シリコン単結晶の半径、ルツボ半径、シリコン単結晶回転数、磁場強度、シリコン融液の表面から遮蔽板の下端までの距離が調整され、シリコン単結晶が引上げられることを特徴としている。 In addition, the method for producing a silicon single crystal made to achieve the above object is to grow the silicon single crystal while applying a horizontal magnetic field when pulling the silicon single crystal from the silicon melt in the quartz glass rubbing pot. In the method for producing a silicon single crystal, during the pulling process of the silicon single crystal, the radius of the silicon single crystal [mm] ÷ radius of the rut [mm] × the number of rotations of the silicon single crystal [rpm] × the magnetic field strength [Gauss] ÷ (silicon melt) Distance from the surface of the shield plate to the lower end of the shielding plate) [mm] so that the value calculated from [mm] is 190 or less, the radius of the silicon single crystal, the radius of the rut, the number of rotations of the silicon single crystal, the magnetic field strength, and the surface of the silicon melt. The feature is that the distance from the to the lower end of the shielding plate is adjusted and the silicon single crystal is pulled up.

シリコン単結晶の半径[mm]÷ルツボ半径[mm]×シリコン単結晶回転数[rpm]×磁場強度[Gauss]÷(シリコン融液の表面から遮蔽板の下端までの距離)[mm]から算出した値が、190以下とすることにより、シリコン単結晶の引上げ中は、前記シリコン単結晶側から石英ガラスルツボ側壁に流れるシリコン融液の流速を0.16m/s以下とすることができ、シリコン単結晶の酸素濃度を低減することができ、結晶成長軸方向の酸素濃度の均一性、結晶成長軸と垂直な基板面内の酸素濃度の均一性を図ることができる。 Calculated from the radius of the silicon single crystal [mm] ÷ radius of the rut [mm] x the number of rotations of the silicon single crystal [rpm] x magnetic field strength [Gauss] ÷ (distance from the surface of the silicon melt to the lower end of the shielding plate) [mm] By setting the value to 190 or less, the flow velocity of the silicon melt flowing from the silicon single crystal side to the side wall of the quartz glass rut can be set to 0.16 m / s or less while the silicon single crystal is being pulled up. The oxygen concentration of a single crystal can be reduced, and the uniformity of the oxygen concentration in the direction of the crystal growth axis and the uniformity of the oxygen concentration in the substrate plane perpendicular to the crystal growth axis can be achieved.

また、シリコン融液の流速を測定するまでもなく、シリコン単結晶の半径÷ルツボ半径×シリコン単結晶回転数×磁場強度÷(シリコン融液の表面から遮蔽板の下端までの距離)から算出した値によって、シリコン単結晶側からルツボ側壁に流れるシリコン融液の流れの流速が0.16m/s以下となるかを判断することができる。 In addition, it was calculated from the radius of the silicon single crystal ÷ radius of the crucible × the number of rotations of the silicon single crystal × the magnetic field strength ÷ (distance from the surface of the silicon melt to the lower end of the shielding plate) without measuring the flow velocity of the silicon melt. From the value, it can be determined whether the flow velocity of the silicon melt flowing from the silicon single crystal side to the crucible side wall is 0.16 m / s or less.

本発明によれば、酸素濃度の低減と、結晶成長軸方向の酸素濃度の均一性を図ると共に、結晶成長軸と垂直な基板面内の酸素濃度の均一性を図ることができるシリコン単結晶の製造方法を得ることができる。 According to the present invention, it is possible to reduce the oxygen concentration, achieve the uniformity of the oxygen concentration in the crystal growth axis direction, and achieve the uniformity of the oxygen concentration in the substrate plane perpendicular to the crystal growth axis. A manufacturing method can be obtained.

図1は、シリコン融液の流れを示した概略図である。FIG. 1 is a schematic view showing the flow of the silicon melt. 図2は、図1の状態から石英ガラスルツボ内のシリコン融液が減少した状態でのシリコン融液の流れを示す概略図である。FIG. 2 is a schematic view showing the flow of the silicon melt in the state where the silicon melt in the quartz glass crucible is reduced from the state of FIG. 図3は、シリコン融液の他の流れを示した概略図である。FIG. 3 is a schematic view showing another flow of the silicon melt. 磁場強度を1000ガウスにした場合のシリコン融液の流れを示した概略図であって、(a)平面図、(b)は断面図である。It is the schematic which showed the flow of the silicon melt when the magnetic field strength was 1000 gauss, (a) plan view, (b) is a sectional view. 磁場強度を2000ガウスにした場合のシリコン融液の流れを示した概略図であって、(a)平面図、(b)は断面図である。It is the schematic which showed the flow of the silicon melt when the magnetic field strength was 2000 gauss, (a) plan view, (b) is a sectional view. 磁場強度を3000ガウスにした場合のシリコン融液の流れを示した概略図であって、(a)平面図、(b)は断面図である。It is the schematic which showed the flow of the silicon melt when the magnetic field strength was 3000 gauss, (a) plan view, (b) is a sectional view. シリコン単結晶引上げ装置の概略構成図である。It is a schematic block diagram of a silicon single crystal pulling apparatus. 実験1〜4における磁場強度の変化を示す図である。It is a figure which shows the change of the magnetic field strength in Experiments 1 to 4. シリコン融液の表面の流れの方向、及び流速を示す図であって、(a)は実験1の固化率0.25(磁場強度3000ガウス)時点を示す図、(b)は実験1の固化率0.6(磁場強度3000ガウス)時点を示す図、(c)は実験2の固化率0.6(磁場強度2000ガウス)時点を示す図である。It is a figure which shows the flow direction and the flow velocity of the surface of a silicon melt, (a) is a figure which shows the solidification rate 0.25 (magnetic field strength 3000 gauss) time point of Experiment 1, and (b) is solidification of Experiment 1. The figure which shows the time point of rate 0.6 (magnetic field strength 3000 gauss), (c) is the figure which shows the time point of solidification rate 0.6 (magnetic field strength 2000 gauss) of Experiment 2. 実験1〜4における固化率と酸素濃度との関係を示す図である。It is a figure which shows the relationship between the solidification rate and oxygen concentration in Experiments 1 to 4. 実験1〜4における固化率と、シリコン単結晶の結晶成長軸方向の酸素濃度のばらつきの関係を示す図である。It is a figure which shows the relationship between the solidification rate in Experiments 1 to 4 and the variation of the oxygen concentration in the crystal growth axis direction of a silicon single crystal. 実験2における、磁場強度と、結晶成長軸と垂直な基板面内の酸素濃度のばらつきとの関係を示す図であって、(a)は測定ポイントを示す図、(b)は各測定ポイントにおける基板面内の酸素濃度のばらつきを示す図である。It is a figure which shows the relationship between the magnetic field strength and the variation of the oxygen concentration in the substrate plane perpendicular to the crystal growth axis in Experiment 2, (a) is the figure which shows the measurement point, (b) is the figure at each measurement point. It is a figure which shows the variation of the oxygen concentration in the substrate surface. 実験5,6における磁場強度の変化を示す図である。It is a figure which shows the change of the magnetic field strength in Experiments 5 and 6. 実験5,6における固化率と、シリコン単結晶の結晶成長軸方向の抵抗率のばらつきの関係を示す図である。It is a figure which shows the relationship between the solidification rate in Experiments 5 and 6 and the variation of the resistivity in the crystal growth axis direction of a silicon single crystal. 実験1,16〜20における磁場の中心の位置と酸素濃度の関係を示す図である。It is a figure which shows the relationship between the position of the center of a magnetic field, and the oxygen concentration in Experiments 1, 16-20.

本発明にかかるシリコン単結晶の製造方法では、石英ガラスルツボ内のシリコン融液からシリコン単結晶を引上げるに際して、水平方向の磁場を印加しながらシリコン単結晶を成長させるシリコン単結晶の製造方法において、シリコン融液表面に、前記シリコン単結晶側から石英ルツボ側壁に流れるシリコン融液の流れが存在し、前記シリコン単結晶側から石英ガラスルツボ側壁に流れるシリコン融液の流速が0.16m/s以下としている。
特に、シリコン単結晶の引上げ中における、シリコン単結晶側からルツボ側壁に流れるシリコン融液の流速を、0.16m/s以下とした点に特徴がある。
The method for producing a silicon single crystal according to the present invention is a method for producing a silicon single crystal in which a silicon single crystal is grown while applying a horizontal magnetic field when the silicon single crystal is pulled up from a silicon melt in a quartz glass crucible. On the surface of the silicon melt, there is a flow of the silicon melt flowing from the silicon single crystal side to the side wall of the quartz crucible, and the flow velocity of the silicon melt flowing from the silicon single crystal side to the side wall of the quartz glass crucible is 0.16 m / s. It is as follows.
In particular, it is characterized in that the flow velocity of the silicon melt flowing from the silicon single crystal side to the side wall of the crucible during pulling up of the silicon single crystal is 0.16 m / s or less.

石英ガラスルツボ内のシリコン融液は、磁場強度、磁場中心位置、不活性ガスの流量や炉内圧、石英ガラスルツボの回転、シリコン単結晶の回転等の影響を受け、石英ガラスルツボ内のシリコン融液の流れ(対流)に変化が生じる。 The silicon melt in the quartz glass crucible is affected by the magnetic field strength, the magnetic field center position, the flow rate and furnace pressure of the inert gas, the rotation of the quartz glass crucible, the rotation of the silicon single crystal, etc., and the silicon melt in the quartz glass crucible. Changes occur in the flow of liquid (convection).

図1は石英ガラスルツボ内のシリコン融液Mの流れの一例を示す図であって、この図に基づいて、シリコン単結晶側からルツボ側壁に流れるシリコン融液Mの流速を、0.16m/s以下とする理由について説明する。
尚、図1は、後に述べる実験1における固化率0.25引上げた状況下のシリコン融液の流れのシミュレーションの結果を示し、水平方向に3000ガウス印加し、水平方向の磁場の中心が、シリコン単結晶中心部における自由表面の下方20mmのシリコン融液中に位置した状態のシリコン融液の流れを示している。また、図中、Bは、磁束の方向が紙面奥側から紙面手前側に向いていることを示している。
FIG. 1 is a diagram showing an example of the flow of the silicon melt M in the quartz glass crucible, and based on this figure, the flow velocity of the silicon melt M flowing from the silicon single crystal side to the side wall of the crucible is 0.16 m /. The reason for setting the value to s or less will be described.
FIG. 1 shows the result of a simulation of the flow of the silicon melt under the condition that the solidification rate was increased by 0.25 in Experiment 1 described later. When 3000 gauss was applied in the horizontal direction, the center of the magnetic field in the horizontal direction was silicon. It shows the flow of the silicon melt located in the silicon melt 20 mm below the free surface in the center of the single crystal. Further, in the figure, B indicates that the direction of the magnetic flux is from the back side of the paper surface to the front side of the paper surface.

石英ガラスルツボ1内のシリコン融液Mは、種々の流れが存在する。
例えば、図1に矢印X1で示すように、シリコン融液には、石英ガラスルツボの側壁1aに接しながら(沿って)上方から下方に流れる流れがある。
そして、このシリコン融液が石英ガラスルルツボ側壁1aに接して(沿って)流れる際、融点におけるシリコンは化学的に活性であるため、シリコン融液Mは石英ガラスルツボ1の石英成分と反応し、石英ガラスルツボ1の側壁1aを溶解し、O(酸素)を取り込む。
The silicon melt M in the quartz glass crucible 1 has various flows.
For example, as shown by the arrow X1 in FIG. 1, the silicon melt has a flow that flows from above (along) in contact with the side wall 1a of the quartz glass crucible.
When this silicon melt flows in contact with (along) the side wall 1a of the quartz glass rulu pot, silicon at the melting point is chemically active, so that the silicon melt M reacts with the quartz component of the quartz glass rulu pot 1 to form quartz. The side wall 1a of the glass rut pot 1 is melted and O (oxygen) is taken in.

この酸素を含有するシリコン融液Mは、矢印X2で示すように、シリコン単結晶Cの下方のルツボ底面(ルツボの中心部底面)から上昇する。
その後、矢印X3で示すように、ルツボの径方向外側に流れた(蛇行した)後、矢印X4で示すように、シリコン単結晶Cの下方に戻り、矢印X5で示すように、シリコン単結晶側からルツボ側壁側に流れる。
The oxygen-containing silicon melt M rises from the bottom surface of the crucible (bottom surface of the center of the crucible) below the silicon single crystal C, as shown by the arrow X2.
After that, as shown by the arrow X3, it flowed (serpentically) outward in the radial direction of the crucible, then returned to the lower side of the silicon single crystal C as shown by the arrow X4, and returned to the lower side of the silicon single crystal C as shown by the arrow X5. Flows from the side wall of the crucible.

このように、石英ガラスルツボ1の側壁1aを溶解し、O(酸素)を取り込んだシリコン融液M、即ち、酸素を多く含有するシリコン融液Mは、シリコン単結晶C下方のルツボ1底面から上昇する際、径方向外側に大きく蛇行した後、自由表面に到達する。
その結果、シリコン融液Mに取り込まれたOは拡散し、シリコン融液Mの酸素濃度の低減が図られ、シリコン単結晶Cの酸素の取り込みが抑制され、シリコン単結晶Cの酸素濃度の低減が図られる。
In this way, the silicon melt M in which the side wall 1a of the quartz glass crucible 1 is melted and O (oxygen) is taken in, that is, the silicon melt M containing a large amount of oxygen is from the bottom surface of the crucible 1 below the silicon single crystal C. When ascending, it meanders outward in the radial direction and then reaches the free surface.
As a result, O taken into the silicon melt M diffuses, the oxygen concentration of the silicon melt M is reduced, the oxygen uptake of the silicon single crystal C is suppressed, and the oxygen concentration of the silicon single crystal C is reduced. Is planned.

次に、図1の状態からシリコン単結晶Cの引上げが進行し、石英ガラスルツボ2内のシリコン融液Mが減少した状態の石英ガラスルツボ1内のシリコン融液Mの流れを、図2に示す。尚、図2は、後に述べる実験1における固化率0.6の引上げ状況下のシリコン融液の流れのシミュレーションの結果を示している。 Next, the flow of the silicon melt M in the quartz glass crucible 1 in a state where the silicon single crystal C is pulled up from the state of FIG. 1 and the silicon melt M in the quartz glass crucible 2 is reduced is shown in FIG. Shown. Note that FIG. 2 shows the results of a simulation of the flow of the silicon melt under the condition of raising the solidification rate of 0.6 in Experiment 1 described later.

図2に示すように、シリコン単結晶Cの引上げが進行し、石英ガラスルツボ1内のシリコン融液が減少すると、図1に示すような径方向外側に大きく蛇行した流れの発生は抑制され、シリコン単結晶Cの下方のルツボ底面(ルツボ中心部底面)から上昇する流れX2が強くなる(流速が速くなる)。 As shown in FIG. 2, when the pulling of the silicon single crystal C progresses and the silicon melt in the quartz glass crucible 1 decreases, the generation of a large meandering flow outward in the radial direction as shown in FIG. 1 is suppressed. The flow X2 rising from the bottom surface of the crucible below the silicon single crystal C (bottom surface of the center of the crucible) becomes stronger (the flow velocity becomes faster).

このように、シリコン融液が蛇行することなく、シリコン単結晶Cの下端に向けて、ルツボ底面から上昇すると、酸素を取り込んだシリコン融液から酸素が拡散あるいは放出される前に、シリコン単結晶Cに取り込まれる。
即ち、シリコン単結晶下方のルツボ底面から上昇するシリコン融液には、Oが多く含まれており、これがシリコン単結晶に取り込まれると、酸素濃度の低減を図ることができず、結晶成長軸方向の酸素濃度の均一性が阻害される。
In this way, when the silicon melt rises from the bottom surface of the crucible toward the lower end of the silicon single crystal C without meandering, the silicon single crystal before oxygen is diffused or released from the silicon melt that has taken in oxygen. It is taken into C.
That is, the silicon melt rising from the bottom surface of the crucible below the silicon single crystal contains a large amount of O, and if this is incorporated into the silicon single crystal, the oxygen concentration cannot be reduced and the crystal growth axis direction. The uniformity of oxygen concentration in silicon is impaired.

ここで、シリコン単結晶下方のルツボ底面から上昇する流れX2の流速が小さい場合には、シリコン単結晶C側からルツボ側壁1aに流れるシリコン融液の流れX5の流速も小さくなる。
言い換えれば、シリコン単結晶側からルツボ側壁1aに流れるシリコン融液の流れX5の流速が小さい場合には、シリコン単結晶Cの下方のルツボ底面1bから上昇する流れX2の流速も小さい。
Here, when the flow velocity of the flow X2 rising from the bottom surface of the crucible below the silicon single crystal is small, the flow velocity of the silicon melt flowing from the silicon single crystal C side to the crucible side wall 1a is also small.
In other words, when the flow velocity of the silicon melt flow X5 flowing from the silicon single crystal side to the crucible side wall 1a is small, the flow velocity of the flow X2 rising from the crucible bottom surface 1b below the silicon single crystal C is also small.

そして、シリコン単結晶Cの下方のルツボ底面1bから上昇する流れX2が小さい場合には、図1に示すように、ルツボ側壁1aからルツボ底面を経由してシリコン単結晶Cに到達するまでの時間がかかる、もしくはルツボ底面から上昇し、その後、ルツボ径方向外方に蛇行して、液面直下を経由し、シリコン結晶に取り込まれるため、シリコン融液からOが拡散し、酸素濃度の低減と、結晶成長軸方向の酸素濃度の均一性、結晶成長軸と垂直な基板面内の酸素濃度の均一性を図ることができる。
特に、前記シリコン単結晶C側からルツボ側壁1bに流れるシリコン融液の流れX5の流速が0.16m/s以下である場合には、酸素濃度をより低減でき、結晶成長軸方向の酸素濃度のばらつきを抑制することができる。
When the flow X2 rising from the crucible bottom surface 1b below the silicon single crystal C is small, the time from the crucible side wall 1a to reach the silicon single crystal C via the crucible bottom surface 1a as shown in FIG. Or rises from the bottom of the crucible, then meanders outward in the radial direction of the crucible, passes just below the liquid surface, and is taken into the silicon crystal, so O diffuses from the silicon melt and the oxygen concentration is reduced. , The uniformity of the oxygen concentration in the direction of the crystal growth axis and the uniformity of the oxygen concentration in the substrate plane perpendicular to the crystal growth axis can be achieved.
In particular, when the flow velocity of the silicon melt flow X5 flowing from the silicon single crystal C side to the crucible side wall 1b is 0.16 m / s or less, the oxygen concentration can be further reduced, and the oxygen concentration in the crystal growth axis direction can be reduced. Variation can be suppressed.

また、図3に示すように、石英ガラスルツボ1内のシリコン融液の流れとして、例えば、石英ガラスルツボの側壁1aに接して(沿って)、下方から上方に流れる流れY1もある。
この場合にも、シリコン融液は石英ガラスルツボの石英成分と反応し、石英ガラスルツボの側壁1bを溶解し、O(酸素)を取り込む。
Further, as shown in FIG. 3, as a flow of the silicon melt in the quartz glass crucible 1, for example, there is a flow Y1 that flows from the lower side to the upper side in contact with (along) the side wall 1a of the quartz glass crucible.
Also in this case, the silicon melt reacts with the quartz component of the quartz glass crucible, dissolves the side wall 1b of the quartz glass crucible, and takes in O (oxygen).

このシリコン融液は、石英ガラスルツボ1の側壁に沿って流れ、自由表面に到達する。その後、石英ガラスルツボ1の側壁からシリコン単結晶側に流れる流れY2が形成される。
このシリコン融液の流れY2は、シリコン融液に取り込まれたOの拡散、蒸散の程度が高く、低酸素濃度のシリコン融液がシリコン単結晶側に流れ、シリコン単結晶の外周部のみが低濃度となり、面内分布の悪化につながるため、好ましくない。
This silicon melt flows along the side wall of the quartz glass crucible 1 and reaches the free surface. After that, a flow Y2 flowing from the side wall of the quartz glass crucible 1 to the silicon single crystal side is formed.
In this flow Y2 of the silicon melt, the degree of diffusion and evaporation of O taken into the silicon melt is high, the silicon melt having a low oxygen concentration flows to the silicon single crystal side, and only the outer peripheral portion of the silicon single crystal is low. It is not preferable because it becomes a concentration and leads to deterioration of the in-plane distribution.

また、この図3に示す場合にも、シリコン単結晶Cの下方のルツボ底面1bから上昇する流れX2が形成される。
即ち、石英ガラスルツボの側壁からシリコン単結晶側に流れるシリコン融液は、低酸素濃度となっており、シリコン単結晶Cの下方のルツボ底面から上昇するシリコン融液には、Oが拡散、放散されず、高酸素濃度となっている。
その結果、シリコン単結晶の中心部の酸素濃度が高濃度に、一方、シリコン単結晶の外周部が低濃度になるため、面内分布が悪化し、結晶成長軸と垂直な基板面内の酸素濃度の均一性が阻害される。
したがって、シリコン融液Mの表面の流れにおける、前記ルツボ側壁からシリコン単結晶側への流れY2は、シリコン単結晶まで到達しないことが望ましい。
Also in the case shown in FIG. 3, a flow X2 rising from the bottom surface 1b of the crucible below the silicon single crystal C is formed.
That is, the silicon melt flowing from the side wall of the quartz glass crucible to the silicon single crystal side has a low oxygen concentration, and O diffuses and dissipates in the silicon melt rising from the bottom surface of the crucible below the silicon single crystal C. It does not have a high oxygen concentration.
As a result, the oxygen concentration in the central part of the silicon single crystal becomes high, while the oxygen concentration in the outer peripheral part of the silicon single crystal becomes low, so that the in-plane distribution deteriorates and the oxygen in the substrate plane perpendicular to the crystal growth axis becomes high. Concentration uniformity is impaired.
Therefore, it is desirable that the flow Y2 from the crucible side wall to the silicon single crystal side in the surface flow of the silicon melt M does not reach the silicon single crystal.

また、石英ガラスルツボ内のシリコン融液の流れは、磁場強度の影響を受ける。特に、シリコン単結晶の引上げが進行し、石英ガラスルツボ内のシリコン融液が減少すると、磁場強度の影響を強く受け、前記シリコン単結晶側からルツボ側壁に流れるシリコン融液の流れが変化する。
即ち、不活性ガスの流量や炉内圧、石英ガラスルツボの回転数、シリコン単結晶の回転数を同一であっても、磁場強度の大小によって、石英ガラスルツボ内のシリコン融液の流れが変化する。
Further, the flow of the silicon melt in the quartz glass crucible is affected by the magnetic field strength. In particular, when the pulling of the silicon single crystal progresses and the amount of the silicon melt in the quartz glass crucible decreases, the flow of the silicon melt flowing from the silicon single crystal side to the side wall of the crucible changes due to the strong influence of the magnetic field strength.
That is, even if the flow rate of the inert gas, the pressure in the furnace, the rotation speed of the quartz glass crucible, and the rotation speed of the silicon single crystal are the same, the flow of the silicon melt in the quartz glass crucible changes depending on the magnitude of the magnetic field strength. ..

例えば、図4に水平方向に1000ガウス印加した場合のシリコン融液の流れを示す。
この図4は、後に述べる実験1における固化率0.6の引上げ状況下のシリコン融液の流れのシミュミレーションの結果を示し、水平方向に1000ガウス印加し、水平方向の磁場の中心が、シリコン単結晶中心部における自由表面の下方20mmのシリコン融液中に位置した状態のシリコン融液の流れを示している。
また、図中、Bの記号○点は、磁束の方向が紙面奥側から紙面手前側に向いていることを示している。またBの矢印記号は、磁束の方向を示している。尚、図4(b)は、図3と同じ図である。
For example, FIG. 4 shows the flow of the silicon melt when 1000 gauss is applied in the horizontal direction.
FIG. 4 shows the result of simulating the flow of the silicon melt under the condition of raising the solidification rate of 0.6 in Experiment 1 described later, and when 1000 gauss was applied in the horizontal direction, the center of the magnetic field in the horizontal direction was set. It shows the flow of the silicon melt located in the silicon melt 20 mm below the free surface in the center of the silicon single crystal.
Further, in the figure, the symbol ○ point of B indicates that the direction of the magnetic flux is from the back side of the paper surface to the front side of the paper surface. The arrow symbol B indicates the direction of the magnetic flux. Note that FIG. 4B is the same diagram as that of FIG.

この図4(a),図4(b)に示すように、1000ガウスの場合には、ルツボ側壁からシリコン単結晶側に流れる、シリコン融液の流れY2が発生するため、好ましくない。
また、シリコン単結晶Cの下方のルツボ底面から上昇する流れX2が強くなるため、酸素が取り込まれたシリコン融液がシリコン単結晶下端に流れ、シリコン単結晶に多くの酸素が取り込まれるため、好ましくない。
As shown in FIGS. 4 (a) and 4 (b), in the case of 1000 gauss, the flow Y2 of the silicon melt flowing from the side wall of the crucible to the silicon single crystal side is generated, which is not preferable.
Further, since the flow X2 rising from the bottom surface of the crucible below the silicon single crystal C becomes strong, the silicon melt in which oxygen is incorporated flows to the lower end of the silicon single crystal, and a large amount of oxygen is incorporated into the silicon single crystal, which is preferable. Absent.

また、図4に示す状態において、磁場強度を1000ガウスから2000ガウスに変化させた場合を、図5(a),図5(b)に示す。
図5に示すように、酸素を含有するシリコン融液は、径方向外側に大きく蛇行し(流れX3)、上昇する。その結果、シリコン融液の酸素は拡散し、酸素濃度の低減を図ることができる。
Further, in the state shown in FIG. 4, the case where the magnetic field strength is changed from 1000 gauss to 2000 gauss is shown in FIGS. 5 (a) and 5 (b).
As shown in FIG. 5, the oxygen-containing silicon melt meanders outward in the radial direction (flow X3) and rises. As a result, the oxygen in the silicon melt diffuses, and the oxygen concentration can be reduced.

また同様に、図4に示す状態において、磁場強度を1000ガウスから3000ガウスに変化させた場合を、図6(a),図6(b)に示す。
図6に示すように、酸素を含有するシリコン融液は、径方向外側に大きく蛇行し(流れX3)、上昇する。その結果、シリコン融液の酸素は拡散し、酸素濃度の低減を図ることができる。
Similarly, in the state shown in FIG. 4, the case where the magnetic field strength is changed from 1000 gauss to 3000 gauss is shown in FIGS. 6 (a) and 6 (b).
As shown in FIG. 6, the oxygen-containing silicon melt meanders outward in the radial direction (flow X3) and rises. As a result, the oxygen in the silicon melt diffuses, and the oxygen concentration can be reduced.

したがって、シリコン単結晶の引上げ中は、磁場強度が少なくとも2000ガウスであり、シリコン融液表面の流れとして、前記シリコン単結晶側からルツボ側壁に流れるシリコン融液の流れが存在するように制御するのが好ましい。
また、シリコン融液表面の流れとして、前記ルツボ側壁からシリコン単結晶側に向かう流れが存在する場合には、ルツボ側壁からシリコン単結晶側に向かう流れは、シリコン単結晶に到達しないように制御するのが好ましい。
Therefore, during the pulling of the silicon single crystal, the magnetic field strength is at least 2000 gauss, and the flow of the silicon melt flowing from the silicon single crystal side to the side wall of the crucible is controlled as a flow on the surface of the silicon melt. Is preferable.
Further, when there is a flow from the crucible side wall toward the silicon single crystal side as a flow on the surface of the silicon melt, the flow from the crucible side wall toward the silicon single crystal side is controlled so as not to reach the silicon single crystal. Is preferable.

特に、石英ガラスルツボ内に、十分なシリコン融液が存在する、固化率0.4以下のシリコン単結晶の直胴部の引上げ中は、磁場強度は少なくとも3000ガウスであることが好ましい。
石英ガラスルツボ内に、十分なシリコン融液が存在するために、図1に示すような径方向外側に大きく蛇行した流れが発生する。その結果、シリコン融液中の酸素は拡散、放散されるため、シリコン単結晶の酸素濃度の低減を図ることができる。
In particular, the magnetic field strength is preferably at least 3000 gauss during pulling up of the straight body portion of a silicon single crystal having a solidification rate of 0.4 or less, in which a sufficient silicon melt is present in the quartz glass crucible.
Due to the presence of sufficient silicon melt in the quartz glass crucible, a large meandering flow occurs outward in the radial direction as shown in FIG. As a result, oxygen in the silicon melt is diffused and dissipated, so that the oxygen concentration of the silicon single crystal can be reduced.

また、固化率0.4を越えて固化率0.6まで、前記磁場強度を徐々に下げ、固化率0.6以降、磁場強度を2000ガウスとすることが望ましい。
石英ガラスルツボ内に、シリコン融液の減少に伴い、前記磁場強度を徐々に下げ、固化率0.6以降、磁場強度を2000ガウスとした場合、図5(a)(b)に示すように、酸素を含有するシリコン融液は、径方向外側に大きく蛇行し、シリコン単結晶下方のルツボ底面から上昇する。その結果、シリコン融液の酸素は拡散し、酸素濃度の低減を図ることができ、図1と図5(b)が同じような環境となるため、結晶軸方向の酸素濃度が均一となる。
Further, it is desirable to gradually reduce the magnetic field strength from the solidification rate of 0.4 to the solidification rate of 0.6, and to set the magnetic field strength to 2000 gauss after the solidification rate of 0.6.
As shown in FIGS. 5 (a) and 5 (b), when the magnetic field strength is gradually lowered in the quartz glass crucible as the silicon melt decreases, and the magnetic field strength is set to 2000 gauss after the solidification rate of 0.6. The oxygen-containing silicon melt meanders outward in the radial direction and rises from the bottom surface of the crucible below the silicon single crystal. As a result, the oxygen in the silicon melt is diffused and the oxygen concentration can be reduced, and the environment shown in FIGS. 1 and 5 (b) is similar, so that the oxygen concentration in the crystal axis direction becomes uniform.

また、このシリコン単結晶側からルツボ側壁に流れるシリコン融液の流れが存在し、前記シリコン単結晶側からルツボ側壁に流れるシリコン融液の流速が0.16m/s以下という条件は、磁場強度、不活性ガスの流量や炉内圧制御、石英ガラスルツボの回転制御、シリコン単結晶の回転制御等の影響を受ける。
シリコン融液の流速は、トレーサーなどを用いて測定することができるが、測定を行う際には引き上げ中の結晶は製品として使用できなくなり、また作業に手間がかかるものである。そのため、シリコン融液の流速はシミュレーションで推定するが、横磁場の様に3次元の対流解析が必要な条件では、計算時間が膨大となってしまう。
Further, the condition that there is a flow of the silicon melt flowing from the silicon single crystal side to the crucible side wall and the flow velocity of the silicon melt flowing from the silicon single crystal side to the crucible side wall is 0.16 m / s or less is the magnetic field strength. It is affected by the flow rate of inert gas, internal pressure control, rotation control of quartz glass crucible, rotation control of silicon single crystal, etc.
The flow velocity of the silicon melt can be measured using a tracer or the like, but when the measurement is performed, the crystal being pulled up cannot be used as a product, and the work is troublesome. Therefore, the flow velocity of the silicon melt is estimated by simulation, but the calculation time becomes enormous under the condition that three-dimensional convection analysis is required such as a transverse magnetic field.

そこで、本発明者らは、シリコン単結晶側からルツボ側壁に流れるシリコン融液の流速が0.16m/s以下とするための条件を簡易に見出すための関係式を検討した。
具体的には、シリコン単結晶の半径÷ルツボ半径×シリコン単結晶回転数×磁場強度÷(シリコン融液の表面から遮蔽板の下端までの距離)から算出した値が、190以下である場合には、シリコン単結晶側からルツボ側壁に流れるシリコン融液の流速が0.16m/s以下となすことができることが、3次元のシミュレーションにより明らかになった。
Therefore, the present inventors have investigated a relational expression for easily finding a condition for the flow velocity of the silicon melt flowing from the silicon single crystal side to the side wall of the crucible to be 0.16 m / s or less.
Specifically, when the value calculated from the radius of the silicon single crystal ÷ crucible radius × silicon single crystal rotation speed × magnetic field strength ÷ (distance from the surface of the silicon melt to the lower end of the shielding plate) is 190 or less. It was clarified by a three-dimensional simulation that the flow velocity of the silicon melt flowing from the silicon single crystal side to the side wall of the crucible can be set to 0.16 m / s or less.

ここで、シリコン単結晶の半径÷ルツボ半径×シリコン単結晶回転数×磁場強度÷(シリコン融液の表面から遮蔽板の下端までの距離)とした理由は、以下による。
シリコン結晶からルツボ壁側への流れの駆動力は、シリコン単結晶およびルツボ半径、シリコン単結晶回転数と磁場強度によるものである。
ここで、ルツボ半径が大きい場合には、シリコン結晶からルツボ壁側への流れの駆動力は小さくする方向に働くため、ルツボ半径は除する(割る)こととした。
Here, the reason why the radius of the silicon single crystal ÷ the radius of the crucible × the number of rotations of the silicon single crystal × the magnetic field strength ÷ (distance from the surface of the silicon melt to the lower end of the shielding plate) is as follows.
The driving force of the flow from the silicon crystal to the crucible wall side is due to the silicon single crystal and the crucible radius, the silicon single crystal rotation speed and the magnetic field strength.
Here, when the crucible radius is large, the driving force of the flow from the silicon crystal to the crucible wall side works in the direction of decreasing, so the crucible radius is divided (divided).

また、通常であれば、駆動力のみを考慮するべきではあるが、シリコン融液表面から遮蔽板下端までの距離により、融液酸素濃度のコントロールのし易さが変化するため、この距離も考慮する必要がある。例えば、この距離が狭すぎると、炉内雰囲気(Arガス流量や炉内圧)の影響が大きいため、磁場強度による制御が難しくなるが、距離が広い場合は融液対流の影響が強いためこの駆動力の制御が有効となる。
尚、ルツボの回転数は流速に与える影響は小さいと考えられるため、上記関係式に含めていない。しかし、ルツボの回転数を低速にするほど低酸素の結晶を得ることができるため、ルツボ回転数は1.0rpm以下とするのが好ましい。
Normally, only the driving force should be considered, but since the ease of controlling the melt oxygen concentration changes depending on the distance from the surface of the silicon melt to the lower end of the shielding plate, this distance is also taken into consideration. There is a need to. For example, if this distance is too narrow, the influence of the atmosphere inside the furnace (Ar gas flow rate and pressure inside the furnace) is large, and it is difficult to control by the magnetic field strength. Force control is effective.
Since it is considered that the rotation speed of the crucible has a small effect on the flow velocity, it is not included in the above relational expression. However, the lower the rotation speed of the crucible, the lower the oxygen crystal can be obtained. Therefore, the rotation speed of the crucible is preferably 1.0 rpm or less.

(実験1〜4)
図7に示すような一般的な引上げ装置を用い、表1及び図8に示す条件で、シリコン単結晶の引上げを行い、引上げ中におけるシリコン単結晶側からルツボ側壁側へのシリコン融液の流速、シリコン単結晶の結晶成長軸方向の酸素濃度と酸素濃度のばらつき、結晶成長軸と垂直な基板面内の酸素濃度のばらつきを測定した。
(Experiments 1-4)
Using a general pulling device as shown in FIG. 7, the silicon single crystal is pulled under the conditions shown in Tables 1 and 8, and the flow velocity of the silicon melt from the silicon single crystal side to the rutsubo side wall side during the pulling. , The variation of the oxygen concentration and the oxygen concentration in the crystal growth axis direction of the silicon single crystal, and the variation of the oxygen concentration in the substrate plane perpendicular to the crystal growth axis were measured.

まず、図7に示した引上げ装置について説明すると、この装置10は、円筒形状のチャンバ(チャンバ)11と、チャンバ11内に設けられたルツボ12と、ルツボ12に装填された原料シリコンを溶融するカーボンヒータ13とを有している。このルツボ12は、内側が石英ガラスルツボ12a、外側が黒鉛ルツボ12bで構成されている。また、チャンバ11内において、カーボンヒータ13の外周囲には保温筒14が設けられている。この保温筒14は円筒状に形成され、その上端部に内方に延設された保温板15が設けられている。また、育成中(引上げ中)のシリコン単結晶Cに、カーボンヒータ13等からの余計な輻射熱を与えないようにするための輻射シールド(遮蔽板)16が設けられている。 First, the pulling device shown in FIG. 7 will be described. This device 10 melts a cylindrical chamber (chamber) 11, a crucible 12 provided in the chamber 11, and a raw material silicon loaded in the crucible 12. It has a carbon heater 13. The crucible 12 is composed of a quartz glass crucible 12a on the inside and a graphite crucible 12b on the outside. Further, in the chamber 11, a heat insulating cylinder 14 is provided around the outer periphery of the carbon heater 13. The heat insulating cylinder 14 is formed in a cylindrical shape, and an inwardly extending heat insulating plate 15 is provided at the upper end thereof. Further, a radiant shield (shielding plate) 16 is provided on the growing (pulling) silicon single crystal C so as not to give extra radiant heat from the carbon heater 13 or the like.

前記輻射シールド(遮蔽板)16は、ルツボ12の上方且つ近傍には、シリコン単結晶Cの周囲を包囲するように上部と下部に開口16a,16bが形成され、上部から下部に行くにしたがって、開口の面積が徐々に小さくなるようにテーパ面16cが形成されている。この輻射シールド16が設けられることにより、上方からルツボ12内に供給されたパージ用不活性ガス(Arガス)Gは、輻射シールド16とシリコン融液Mの表面との隙間を通って、ルツボ12外に流れ、最終的にチャンバ11外(チャンバ外)に排出される。
尚、輻射シールド16の下端とシリコン融液Mの表面との隙間をギャップ(Gap)という。
The radiation shield (shielding plate) 16 has openings 16a and 16b formed in the upper part and the lower part so as to surround the periphery of the silicon single crystal C above and in the vicinity of the crucible 12, and as it goes from the upper part to the lower part, The tapered surface 16c is formed so that the area of the opening gradually decreases. By providing the radiation shield 16, the purging inert gas (Ar gas) G supplied into the crucible 12 from above passes through the gap between the radiation shield 16 and the surface of the silicon melt M, and passes through the crucible 12. It flows out and is finally discharged to the outside of the chamber 11 (outside the chamber).
The gap between the lower end of the radiation shield 16 and the surface of the silicon melt M is called a gap.

また、チャンバ11の外側には、水平方向に磁場を印加するための磁場発生装置17が設けられている。この磁場発生装置17による磁場は、水平方向の磁場の中心がシリコン単結晶中心部における自由表面の下方のシリコン融液中に位置するように配置されている。
また、磁場発生装置17は、シリコン単結晶の引上げ中、磁場強度が少なくとも2000ガウス発生するように制御される。
Further, on the outside of the chamber 11, a magnetic field generator 17 for applying a magnetic field in the horizontal direction is provided. The magnetic field generated by the magnetic field generator 17 is arranged so that the center of the magnetic field in the horizontal direction is located in the silicon melt below the free surface in the center of the silicon single crystal.
Further, the magnetic field generator 17 is controlled so that the magnetic field strength is generated at least 2000 gauss during the pulling of the silicon single crystal.

尚、図示しないが、チャンバ11の上方には、シリコン単結晶Cを引上げる引上げ機構が設けられている。この引上げ機構は、モータ駆動される巻取り機構と、この巻取り機構に巻き上げられる引上げワイヤ18とにより構成される。そして、ワイヤ18の先端に種結晶Pが取り付けられ、シリコン単結晶Cを育成しながら引上げるようになされている。 Although not shown, a pulling mechanism for pulling up the silicon single crystal C is provided above the chamber 11. This pulling mechanism is composed of a winding mechanism driven by a motor and a pulling wire 18 wound around the winding mechanism. Then, a seed crystal P is attached to the tip of the wire 18 so as to pull up the silicon single crystal C while growing it.

また、シリコン単結晶の製造装置10は、図示しないが、ルツボ12を回転させるモータと、ルツボ12の高さを制御する昇降装置と、前記モータ、前記昇降装置を制御する制御装置を備え、ルツボ12を回転させると共に、ルツボ12の高さを上昇させながら、シリコン単結晶Cを育成するように構成されている。 Although not shown, the silicon single crystal manufacturing apparatus 10 includes a motor for rotating the crucible 12, an elevating device for controlling the height of the crucible 12, and a control device for controlling the motor and the elevating device. It is configured to grow the silicon single crystal C while rotating the 12 and increasing the height of the crucible 12.

また、図示しないが、チャンバ11の上部にはガス供給口11aが設けられ、パージ用不活性ガス(Arガス)がチャンバ11内に供給されるように構成されている。また、チャンバ11の底面には、複数の排気口11bが設けられ、この排気口には排気手段としての排気ポンプ(図示せず)が接続されている。
したがって、ガス供給口からチャンバ11内に供給されたパージ用不活性ガス(Arガス)Gは、排気ポンプによって、輻射シールド16とシリコン融液Mの表面との隙間を通って、ルツボ外に流れ、最終的にチャンバ11外(チャンバ外)に排出される。
Further, although not shown, a gas supply port 11a is provided in the upper part of the chamber 11 so that the purging inert gas (Ar gas) is supplied into the chamber 11. Further, a plurality of exhaust ports 11b are provided on the bottom surface of the chamber 11, and an exhaust pump (not shown) as an exhaust means is connected to the exhaust ports.
Therefore, the purging inert gas (Ar gas) G supplied into the chamber 11 from the gas supply port flows out of the rutsubo through the gap between the radiation shield 16 and the surface of the silicon melt M by the exhaust pump. Finally, the gas is discharged to the outside of the chamber 11 (outside the chamber).

ここで、表1におけるGapは、輻射シールド16とシリコン融液Mの表面との隙間寸法、SRは結晶回転数、CRはルツボ回転数、チャンバ11内に供給されるパージ用不活性ガス(Arガス)の流量、炉内圧はチャンバ11内の圧力である。
また磁場強度は、図8に示す条件で変化させ、磁場位置は、シリコン融液Mの表面下、20mmとした。
即ち、実験1では、磁場強度を3000ガウスとして、シリコン単結晶の引上げを行った。
実験2では、磁場強度を3000ガウスとして、固化率0.4までシリコン単結晶の引上げを行い、固化率0.7まで磁場強度を徐々に下げ、その後磁場強度を1500ガウスとしてシリコン単結晶の引上げを行った。
実験3では、磁場強度を3000ガウスとして、固化率0.4までシリコン単結晶の引上げを行い、固化率0.6まで磁場強度を徐々に下げ、その後磁場強度を2000ガウスとしてシリコン単結晶の引上げを行った。
実験4では、磁場強度を3000ガウスとして、固化率0.2まで磁場強度を徐々に下げ、その後磁場強度を2000ガウスとしてシリコン単結晶の引上げを行った。
Here, Gap in Table 1 is the clearance dimension between the radiation shield 16 and the surface of the silicon melt M, SR is the crystal rotation speed, CR is the crucible rotation speed, and the purging inert gas (Ar) supplied into the chamber 11. The flow rate of gas) and the pressure in the furnace are the pressures in the chamber 11.
The magnetic field strength was changed under the conditions shown in FIG. 8, and the magnetic field position was set to 20 mm below the surface of the silicon melt M.
That is, in Experiment 1, the silicon single crystal was pulled up with the magnetic field strength set to 3000 gauss.
In Experiment 2, the magnetic field strength was set to 3000 gauss and the silicon single crystal was pulled up to a solidification rate of 0.4, the magnetic field strength was gradually lowered to a solidification rate of 0.7, and then the silicon single crystal was pulled up to a solidification rate of 1500 gauss. Was done.
In Experiment 3, the magnetic field strength was set to 3000 gauss and the silicon single crystal was pulled up to a solidification rate of 0.4, the magnetic field strength was gradually lowered to a solidification rate of 0.6, and then the magnetic field strength was set to 2000 gauss and the silicon single crystal was pulled up. Was done.
In Experiment 4, the magnetic field strength was set to 3000 gauss, the magnetic field strength was gradually reduced to a solidification rate of 0.2, and then the magnetic field strength was set to 2000 gauss to pull up the silicon single crystal.

図9に、上記実験1〜4における、引上げ中におけるシリコン融液の流れの方向と、流速を示す。
図9(a)は、実験1における固化率0.25引上げ時(3000ガウス:図8参照)における、シリコン融液の流れの方向と、流速を示している。
図9(b)は、実験1における固化率0.6引上げ時(3000ガウス:図8参照)における、シリコン融液の流れの方向と、流速を示している。
図9(c)は、実験3における固化率0.6引上げ時(2000ガウス:図8参照)における、シリコン融液の流れの方向と、流速を示している。
FIG. 9 shows the flow direction and the flow velocity of the silicon melt during pulling in Experiments 1 to 4.
FIG. 9A shows the flow direction and the flow velocity of the silicon melt when the solidification rate is raised by 0.25 in Experiment 1 (3000 gauss: see FIG. 8).
FIG. 9B shows the flow direction and the flow velocity of the silicon melt when the solidification rate is increased by 0.6 in Experiment 1 (3000 gauss: see FIG. 8).
FIG. 9C shows the flow direction and the flow velocity of the silicon melt when the solidification rate is increased by 0.6 in Experiment 3 (2000 gauss: see FIG. 8).

図9(a)に示すように、固化率0.25引上げ時(3000ガウス)の流速の最大値は0.20〜0.24m/sの範囲内である。
また、図9(b)に示すように、固化率0.6引上げ時(3000ガウス)の流速の最大値は0.20〜0.24m/sの範囲内である。
これに対して、図9(c)に示すように、固化率0.6引上げ時(2000ガウス)流速の最大値は0.12〜0.16m/sの範囲内である。
したがって、シリコン単結晶の引上げが進行し、石英ガラスルツボ内のシリコン融液が減少した際、磁場強度を低下させることにより、シリコン単結晶側から石英ルツボ側壁に流れるシリコン融液の流速の最大値は0.16m/s以下とすることができる。
As shown in FIG. 9A, the maximum value of the flow velocity when the solidification rate is raised by 0.25 (3000 gauss) is in the range of 0.25 to 0.24 m / s.
Further, as shown in FIG. 9B, the maximum value of the flow velocity when the solidification rate is raised by 0.6 (3000 gauss) is within the range of 0.20 to 0.24 m / s.
On the other hand, as shown in FIG. 9C, the maximum value of the flow velocity when the solidification rate is raised by 0.6 (2000 gauss) is in the range of 0.12 to 0.16 m / s.
Therefore, when the pulling of the silicon single crystal progresses and the silicon melt in the quartz glass crucible decreases, the maximum value of the flow velocity of the silicon melt flowing from the silicon single crystal side to the side wall of the quartz crucible by lowering the magnetic field strength. Can be 0.16 m / s or less.

また、引上げられたシリコン単結晶の酸素濃度を測定した。測定はフーリエ変換赤外分光法(FT−IR)を用いて測定した。その結果を図10に示す。
実験1において、固化率0.6以降の酸素濃度が上昇しているのに対して、実験2,3,4における、固化率0.6以降の酸素濃度の上昇は見られない、もしくは、酸素濃度が上昇しても1.0×1018 atoms/cm未満である。
In addition, the oxygen concentration of the pulled-up silicon single crystal was measured. The measurement was performed using Fourier transform infrared spectroscopy (FT-IR). The result is shown in FIG.
In Experiment 1, the oxygen concentration after the solidification rate of 0.6 increased, whereas in Experiments 2, 3 and 4, no increase in the oxygen concentration after the solidification rate of 0.6 was observed, or oxygen. Even if the concentration increases, it is less than 1.0 × 10 18 atoms / cm 3.

即ち、固化率0.6以降、3000ガウスの磁場を作用させた結果、図9(b)からわかるように、シリコン融液表面の流速は速い。
そのため、図1に示すような径方向外側に大きく蛇行した流れは発生せず、シリコン単結晶下方のルツボ底面から上昇し、シリコン単結晶に取り込まれる。その結果、固化率0.6以降、酸素濃度が上昇したものと思われる。
That is, as a result of applying a magnetic field of 3000 gauss after the solidification rate of 0.6, as can be seen from FIG. 9B, the flow velocity on the surface of the silicon melt is high.
Therefore, a large meandering flow outward in the radial direction as shown in FIG. 1 does not occur, and the flow rises from the bottom surface of the crucible below the silicon single crystal and is incorporated into the silicon single crystal. As a result, it is considered that the oxygen concentration increased after the solidification rate of 0.6.

また、引上げられたシリコン単結晶の結晶長さ方向の酸素濃度のばらつきΔOiを測定した。測定はフーリエ変換赤外分光法(FT−IR)を用い、半径方向に5mmピッチの条件下で測定した。その結果を図11に示す。
酸素濃度のばらつきΔOiは、
ΔOi=(測定点の最大値 − 最小値)/最小値 ×100 [%]の式から求めた。
In addition, the variation ΔOi of the oxygen concentration in the crystal length direction of the pulled-up silicon single crystal was measured. The measurement was performed by Fourier transform infrared spectroscopy (FT-IR) under the condition of a pitch of 5 mm in the radial direction. The result is shown in FIG.
Oxygen concentration variation ΔOi
It was calculated from the formula ΔOi = (maximum value of measurement point − minimum value) / minimum value × 100 [%].

実験2において、固化率0.7以降の酸素濃度がばらついているのに対して、実験1,3,4における、酸素濃度の面内のおおきなばらつきは、見られない。
これは、固化率0.7以降、2000ガウス以下の磁場(1500ガウス)を作用させた結果、シリコン融液対流が不安定になり、酸素濃度のばらつきが大きくなったものと思われる。
In Experiment 2, the oxygen concentration after the solidification rate of 0.7 varies, whereas in Experiments 1, 3 and 4, no large in-plane variation in oxygen concentration is observed.
It is considered that this is because the silicon melt convection became unstable and the variation in oxygen concentration became large as a result of applying a magnetic field (1500 gauss) of 2000 gauss or less after the solidification rate of 0.7.

更に、実験2における図12(a)の測定磁場強度における基板面内の酸素濃度のバラツキを図12(b)に示す。
即ち、実験2における固化率0.52(試料No.1)、0.59(試料No.2),0.67(試料No.3)、0.75(試料No.4)から切り出した基板の面内酸素濃度のばらつきを測定した。測定はフーリエ変換赤外分光法(FT−IR)を用い、半径方向に5mmピッチの条件下で測定した。その結果を図12(b)に示す。
この図からわかるように、磁場強度を2000ガウスとすることが、面内の酸素濃度のバラツキが少ないことが分かる。
Further, FIG. 12 (b) shows the variation in the oxygen concentration in the substrate surface at the measured magnetic field strength of FIG. 12 (a) in Experiment 2.
That is, the substrates cut out from the solidification rates of 0.52 (Sample No. 1), 0.59 (Sample No. 2), 0.67 (Sample No. 3), and 0.75 (Sample No. 4) in Experiment 2. The variation in the in-plane oxygen concentration was measured. The measurement was performed by Fourier transform infrared spectroscopy (FT-IR) under the condition of a pitch of 5 mm in the radial direction. The result is shown in FIG. 12 (b).
As can be seen from this figure, when the magnetic field strength is 2000 gauss, there is little variation in the in-plane oxygen concentration.

(実験5,6)
実験5,6は、図13に示すように磁場強度を変化させて、シリコン単結晶の引上げを行った。引き上げ条件は、以下の通りである。
実験5は、磁場強度を3000ガウスとし、固化率0.4から磁場強度を徐々に下げ、固化率0.6から磁場強度を2000ガウスとした。その他の条件は、実験1と同じにした。
実験6は、磁場強度を2000ガウスとし、固化率0.2まで磁場強度を徐々に上げ、その後、固化率0.4から磁場強度を徐々に下げ、固化率0.6から磁場強度を2000ガウスとした。その他の条件は、実験1と同じにした。
(Experiments 5 and 6)
In Experiments 5 and 6, the silicon single crystal was pulled up by changing the magnetic field strength as shown in FIG. The conditions for raising the price are as follows.
In Experiment 5, the magnetic field strength was set to 3000 gauss, the magnetic field strength was gradually lowered from the solidification rate of 0.4, and the magnetic field strength was set to 2000 gauss from the solidification rate of 0.6. Other conditions were the same as in Experiment 1.
In Experiment 6, the magnetic field strength was set to 2000 gauss, the magnetic field strength was gradually increased to a solidification rate of 0.2, then the magnetic field strength was gradually decreased from the solidification rate of 0.4, and the magnetic field strength was increased to 2000 gauss from the solidification rate of 0.6. And said. Other conditions were the same as in Experiment 1.

そして、引上げられたシリコン単結晶から切り出した基板の面内の抵抗率のばらつきを測定した。測定は、四探針法を用い、前記シリコン基板の径方向に5mmピッチで測定した。その結果を図14に示す。
この図14から明らかなように、磁場強度を2000ガウスとすると、面内の抵抗率のバラツキが小さいことが分かる。
Then, the variation in the in-plane resistivity of the substrate cut out from the pulled-up silicon single crystal was measured. The measurement was performed using a four-probe method at a pitch of 5 mm in the radial direction of the silicon substrate. The result is shown in FIG.
As is clear from FIG. 14, when the magnetic field strength is 2000 gauss, the in-plane resistivity variation is small.

(実験7から実験15)
シリコン単結晶側からルツボ側壁に流れるシリコン融液の流れが存在し、前記シリコン単結晶側からルツボ側壁に流れるシリコン融液の流れの流速が0.16m/s以下となる条件を簡易に見出すための関係式を確認した。尚、表2の流速は、シミュレーションから得られた値となる。
即ち、表2で示す条件を用いて、シリコン単結晶の半径÷ルツボ半径×シリコン単結晶回転数×磁場強度÷遮蔽板の下端までの距離から算出した値が190以下である場合には、シリコン単結晶側からルツボ側壁に流れるシリコン融液の流れが存在し、前記シリコン単結晶側からルツボ側壁に流れるシリコン融液の流れの流速が0.16m/s以下にできることを確認した。
尚、磁場強度が1000ガウス、1500ガウスの場合も流速が0.16m/s以下となすことができる場合があるが、酸素濃度の良好な面内均一性を得ることができないため、好ましくない。
(Experiment 7 to Experiment 15)
To easily find the condition that there is a flow of the silicon melt flowing from the silicon single crystal side to the crucible side wall and the flow velocity of the silicon melt flowing from the silicon single crystal side to the crucible side wall is 0.16 m / s or less. Confirmed the relational expression of. The flow velocity in Table 2 is a value obtained from the simulation.
That is, when the value calculated from the radius of the silicon single crystal ÷ crucible radius × silicon single crystal rotation speed × magnetic field strength ÷ distance to the lower end of the shielding plate using the conditions shown in Table 2 is 190 or less, silicon. It was confirmed that there was a flow of the silicon melt flowing from the single crystal side to the crucible side wall, and the flow velocity of the silicon melt flowing from the silicon single crystal side to the crucible side wall could be 0.16 m / s or less.
Even when the magnetic field strength is 1000 gauss and 1500 gauss, the flow velocity may be 0.16 m / s or less, but this is not preferable because good in-plane uniformity of oxygen concentration cannot be obtained.

このように、このシリコン単結晶の半径÷ルツボ半径×シリコン単結晶回転数×磁場強度÷(シリコン融液の表面から遮蔽板の下端までの距離)から算出した値が190以下の場合は、シリコン単結晶側からルツボ側壁に流れるシリコン融液の流れの流速が0.16m/s以下となる。
したがって、シリコン融液の流速を測定するまでもなく、シリコン単結晶の半径÷ルツボ半径×シリコン単結晶回転数×磁場強度÷(シリコン融液の表面から遮蔽板の下端までの距離)から算出した値によって、シリコン単結晶側からルツボ側壁に流れるシリコン融液の流れの流速が0.16m/s以下となるかを判断することができる。
In this way, when the value calculated from the radius of the silicon single crystal ÷ crucible radius × silicon single crystal rotation speed × magnetic field strength ÷ (distance from the surface of the silicon melt to the lower end of the shielding plate) is 190 or less, silicon The flow velocity of the silicon melt flowing from the single crystal side to the side wall of the crucible is 0.16 m / s or less.
Therefore, it was calculated from the radius of the silicon single crystal ÷ radius of the crucible × the number of rotations of the silicon single crystal × the magnetic field strength ÷ (distance from the surface of the silicon melt to the lower end of the shielding plate) without measuring the flow velocity of the silicon melt. From the value, it can be determined whether the flow velocity of the silicon melt flowing from the silicon single crystal side to the crucible side wall is 0.16 m / s or less.

(実験1、実験16から実験20)
表3に示すように、実験1(磁場の中心の位置を融液表面から下方20mm)において、シリコン単結晶を引上げ、固化率0.25における酸素濃度を測定した。測定はフーリエ変換赤外分光法(FT−IR)を用いて測定した。その結果を図15に示す。
実験1に対して、表3に示すように、磁場の中心の位置を変えた以外、実験1と同一条件で、シリコン単結晶を引上げ、固化率0.25における酸素濃度を測定した(実験16〜実験20)。その結果を図15に示す。
(Experiment 1, Experiment 16 to Experiment 20)
As shown in Table 3, in Experiment 1 (the position of the center of the magnetic field was 20 mm below the surface of the melt), the silicon single crystal was pulled up and the oxygen concentration at a solidification rate of 0.25 was measured. The measurement was performed using Fourier transform infrared spectroscopy (FT-IR). The result is shown in FIG.
With respect to Experiment 1, as shown in Table 3, the silicon single crystal was pulled up under the same conditions as in Experiment 1 except that the position of the center of the magnetic field was changed, and the oxygen concentration at a solidification rate of 0.25 was measured (Experiment 16). ~ Experiment 20). The result is shown in FIG.

図15から明らかなように磁場の中心が融液表面から下方60mmの範囲内のシリコン融液中に位置している場合(実験17,18)、酸素濃度が1.0×1018 atoms/cm未満と低いことが判明した。 As is clear from FIG. 15, when the center of the magnetic field is located in the silicon melt within a range of 60 mm below the surface of the melt (Experiments 17, 18), the oxygen concentration is 1.0 × 10 18 atoms / cm. It turned out to be as low as less than 3.

1 石英ガラスルツボ
1a 石英ガラスルツボ側壁
C シリコン単結晶
M シリコン融液
X1 石英ガラスルツボの側壁に接しながら上方から下方に流れる、シリコン融液の流れ
X2 シリコン単結晶Cの下方のルツボ底面から上昇する、シリコン融液の流れ
X3 ルツボの径方向外側に流れる、シリコン融液の流れ
X4 ルツボの径方向内側に流れ、シリコン単結晶の下方に戻る、シリコン融液の流れ
X5 シリコン融液の表面における、シリコン単結晶側からルツボ側壁側に流れる、シリコン融液の流れ
1 Quartz glass crucible 1a Quartz glass crucible side wall C Silicon single crystal M Silicon melt X1 Flow of silicon melt flowing from above to downward while in contact with the side wall of quartz glass crucible X2 Ascending from the bottom of the crucible below silicon single crystal C , Silicon melt flow X3 Flow of silicon melt flowing outward of the crucible X4 Flow of silicon melt flowing inward of the crucible X4 and returning to the bottom of the silicon single crystal, Silicon melt flow X5 On the surface of the silicon melt, Flow of silicon melt flowing from the silicon single crystal side to the crucible side wall side

Claims (5)

石英ガラスルツボ内のシリコン融液からシリコン単結晶を引上げるに際して、水平方向の磁場を印加しながらシリコン単結晶を成長させるシリコン単結晶の製造方法において、
シリコン融液表面に、前記シリコン単結晶側から石英ルツボ側壁に流れるシリコン融液の流れが存在し、前記シリコン単結晶側から石英ガラスルツボ側壁に流れるシリコン融液の流速が0.16m/s以下であることを特徴とするシリコン単結晶の製造方法。
In a method for producing a silicon single crystal in which a silicon single crystal is grown while applying a horizontal magnetic field when the silicon single crystal is pulled up from a silicon melt in a quartz glass crucible.
On the surface of the silicon melt, there is a flow of the silicon melt flowing from the silicon single crystal side to the side wall of the quartz crucible, and the flow velocity of the silicon melt flowing from the silicon single crystal side to the side wall of the quartz glass crucible is 0.16 m / s or less. A method for producing a silicon single crystal, which is characterized by the above.
前記水平方向の磁場の中心が融液表面から下方60mmの範囲内のシリコン融液中に位置し、シリコン単結晶の引上げ中は、磁場強度が少なくとも2000ガウスであることを特徴とする請求項1記載のシリコン単結晶の製造方法。 Claim 1 is characterized in that the center of the horizontal magnetic field is located in the silicon melt within a range of 60 mm below the surface of the melt, and the magnetic field strength is at least 2000 gauss during the pulling of the silicon single crystal. The method for producing a silicon single crystal according to the above. 前記水平方向の磁場の中心が、シリコン単結晶中心部の下方に位置し、
固化率0.4以下のシリコン単結晶の直胴部の引上げ中は、磁場強度は少なくとも3000ガウスであり、
固化率0.4を越えて固化率0.6まで、前記磁場強度を徐々に下げ、
固化率0.6以降、磁場強度を2000ガウスとすることを特徴とする請求項1または請求項2記載のシリコン単結晶の製造方法。
The center of the horizontal magnetic field is located below the center of the silicon single crystal.
The magnetic field strength is at least 3000 gauss during pulling up of the straight body of a silicon single crystal with a solidification rate of 0.4 or less.
Gradually reduce the magnetic field strength from the solidification rate of 0.4 to the solidification rate of 0.6.
The method for producing a silicon single crystal according to claim 1 or 2, wherein the magnetic field strength is 2000 gauss after the solidification rate of 0.6.
シリコン単結晶の半径[mm]÷ルツボ半径[mm]×シリコン単結晶回転数[rpm]×磁場強度[Gauss]÷(シリコン融液の表面から遮蔽板の下端までの距離)[mm]から算出した値が、190以下であることを特徴とする請求項1乃至請求項3のいずれかに記載のシリコン単結晶の製造方法。 Calculated from the radius of the silicon single crystal [mm] ÷ radius of the rut [mm] x the number of rotations of the silicon single crystal [rpm] x magnetic field strength [Gauss] ÷ (distance from the surface of the silicon melt to the lower end of the shielding plate) [mm] The method for producing a silicon single crystal according to any one of claims 1 to 3, wherein the value obtained is 190 or less. 石英ガラスルツボ内のシリコン融液からシリコン単結晶を引上げるに際して、水平方向の磁場を印加しながらシリコン単結晶を成長させるシリコン単結晶の製造方法において、
シリコン単結晶を引上げ工程中、
シリコン単結晶の半径[mm]÷ルツボ半径[mm]×シリコン単結晶回転数[rpm]×磁場強度[Gauss]÷(シリコン融液の表面から遮蔽板の下端までの距離)[mm]から算出した値が、190以下となるように、
シリコン単結晶の半径、ルツボ半径、シリコン単結晶回転数、磁場強度、シリコン融液の表面から遮蔽板の下端までの距離が調整され、
シリコン単結晶が引上げられることを特徴とするシリコン単結晶の製造方法。
In a method for producing a silicon single crystal in which a silicon single crystal is grown while applying a horizontal magnetic field when the silicon single crystal is pulled up from a silicon melt in a quartz glass crucible.
During the pulling process of the silicon single crystal,
Calculated from the radius of the silicon single crystal [mm] ÷ radius of the rut [mm] x rotation speed of the silicon single crystal [rpm] x magnetic field strength [Gauss] ÷ (distance from the surface of the silicon melt to the lower end of the shielding plate) [mm] So that the value is 190 or less
The radius of the silicon single crystal, the radius of the crucible, the number of rotations of the silicon single crystal, the magnetic field strength, and the distance from the surface of the silicon melt to the lower end of the shielding plate are adjusted.
A method for producing a silicon single crystal, which comprises pulling up a silicon single crystal.
JP2019155738A 2019-08-28 2019-08-28 Manufacturing method of silicon single crystal Active JP7249913B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019155738A JP7249913B2 (en) 2019-08-28 2019-08-28 Manufacturing method of silicon single crystal
TW109128497A TWI730878B (en) 2019-08-28 2020-08-21 Production method of single crystal silicon
DE102020210833.1A DE102020210833A1 (en) 2019-08-28 2020-08-27 Process for the production of a single crystal silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019155738A JP7249913B2 (en) 2019-08-28 2019-08-28 Manufacturing method of silicon single crystal

Publications (2)

Publication Number Publication Date
JP2021031356A true JP2021031356A (en) 2021-03-01
JP7249913B2 JP7249913B2 (en) 2023-03-31

Family

ID=74565036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019155738A Active JP7249913B2 (en) 2019-08-28 2019-08-28 Manufacturing method of silicon single crystal

Country Status (3)

Country Link
JP (1) JP7249913B2 (en)
DE (1) DE102020210833A1 (en)
TW (1) TWI730878B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761893A (en) * 1993-08-26 1995-03-07 Nec Corp Single crystal growing method
JP2010222241A (en) * 2009-02-25 2010-10-07 Sumco Corp Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
JP2014080302A (en) * 2012-10-12 2014-05-08 Globalwafers Japan Co Ltd Single crystal pulling apparatus and single crystal pulling method
JP2016519049A (en) * 2013-05-24 2016-06-30 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited Method for producing low oxygen silicon ingot
JP2018188338A (en) * 2017-05-09 2018-11-29 株式会社Sumco Production method of silicon single crystal, and silicon single crystal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179889A (en) * 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
DE102015226399A1 (en) * 2015-12-22 2017-06-22 Siltronic Ag Silicon wafer with homogeneous radial oxygen variation
JP6680108B2 (en) * 2016-06-28 2020-04-15 株式会社Sumco Method for producing silicon single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761893A (en) * 1993-08-26 1995-03-07 Nec Corp Single crystal growing method
JP2010222241A (en) * 2009-02-25 2010-10-07 Sumco Corp Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
JP2014080302A (en) * 2012-10-12 2014-05-08 Globalwafers Japan Co Ltd Single crystal pulling apparatus and single crystal pulling method
JP2016519049A (en) * 2013-05-24 2016-06-30 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited Method for producing low oxygen silicon ingot
JP2018188338A (en) * 2017-05-09 2018-11-29 株式会社Sumco Production method of silicon single crystal, and silicon single crystal

Also Published As

Publication number Publication date
TWI730878B (en) 2021-06-11
DE102020210833A1 (en) 2021-03-04
JP7249913B2 (en) 2023-03-31
TW202113174A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US8114216B2 (en) Semiconductor single crystal growth method having improvement in oxygen concentration characteristics
JP6950581B2 (en) Silicon single crystal manufacturing method and silicon single crystal pulling device
JPWO2003029533A1 (en) Single crystal semiconductor manufacturing apparatus, manufacturing method, and single crystal ingot
JP6680108B2 (en) Method for producing silicon single crystal
WO2015068370A1 (en) Method for manufacturing silicon single crystals
CN108291327B (en) Method for producing silicon single crystal and silicon single crystal
JP2020114802A (en) Method for manufacturing silicon single crystal
JP2021031356A (en) Method for manufacturing silicon single crystal
JP2018177593A (en) Production method and apparatus of single crystal
JP2006069841A (en) Magnetic field application method for pulling silicon single crystal
WO2019167986A1 (en) Method of controlling convection patterns of silicon melt and method of manufacturing silicon single crystal
JP2004189559A (en) Single crystal growth method
JP2019210199A (en) Manufacturing method of silicon single crystal
JP6729484B2 (en) Method for producing silicon single crystal
JP2005231944A (en) Method for manufacturing single crystal semiconductor
JP6958632B2 (en) Silicon single crystal and its manufacturing method and silicon wafer
JP4951186B2 (en) Single crystal growth method
JP3635694B2 (en) Single crystal manufacturing method
WO2022102251A1 (en) Single crystal production method, magnetic field generator, and single crystal production device
JP5077299B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
WO2023223691A1 (en) Method for growing single-crystal silicon, method for producing silicon wafer, and single-crystal pulling device
JP5003733B2 (en) Single crystal growth method
JP2018043904A (en) Method for manufacturing silicon single crystal
JP2004083317A (en) Pulling up method for silicon single crystal
JP2019178066A (en) METHOD OF MANUFACTURING n-TYPE SILICON SINGLE CRYSTAL INGOT, METHOD OF MANUFACTURING n-TYPE SILICON WAFER, AND n-TYPE SILICON WAFER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7249913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150