JP2021015012A - 超音波式距離測定装置 - Google Patents

超音波式距離測定装置 Download PDF

Info

Publication number
JP2021015012A
JP2021015012A JP2019128736A JP2019128736A JP2021015012A JP 2021015012 A JP2021015012 A JP 2021015012A JP 2019128736 A JP2019128736 A JP 2019128736A JP 2019128736 A JP2019128736 A JP 2019128736A JP 2021015012 A JP2021015012 A JP 2021015012A
Authority
JP
Japan
Prior art keywords
ultrasonic
propagation path
propagation
length
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019128736A
Other languages
English (en)
Other versions
JP7218683B2 (ja
Inventor
響子 黒川
Kyoko Kurokawa
響子 黒川
卓也 小泉
Takuya Koizumi
卓也 小泉
哲博 今野
Tetsuhiro Konno
哲博 今野
広記 岩宮
Hiroki Iwamiya
広記 岩宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019128736A priority Critical patent/JP7218683B2/ja
Priority to US16/921,141 priority patent/US11454532B2/en
Publication of JP2021015012A publication Critical patent/JP2021015012A/ja
Application granted granted Critical
Publication of JP7218683B2 publication Critical patent/JP7218683B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S7/52006Means for monitoring or calibrating with provision for compensating the effects of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

【課題】距離測定精度の低下の抑制された超音波式距離測定装置を提供する。【解決手段】超音波式距離測定装置は基準管で反射された超音波に基づく検出信号を検出するのに要する時間と基準管の所定長さに基づいて超音波の伝搬速さを算出する。超音波式距離測定装置は液面との間の最長伝搬経路長と最短伝搬経路長、および、算出した超音波の伝搬速さに基づいて、液面で反射された超音波に基づく検出信号を検出するための伝搬経路検出期間を設定する。超音波式距離測定装置は伝搬経路検出期間における検出信号の検出タイミングと超音波の出力タイミングとの時間差、および、超音波の伝搬速さに基づいて伝搬経路の距離を算出する。【選択図】図5

Description

本明細書に記載の開示は、タンクに貯留された被検出液体の液面と超音波素子との間の超音波の伝搬経路の距離を測定する超音波式距離測定装置に関するものである。
特許文献1に示されるように、燃料の液面に向けて超音波を発生し、その液面で反射された超音波を検出することで液面の位置を検出する液面検出装置が知られている。
特開2018−119808号公報
特許文献1に示される液面検出装置は、検出した超音波に基づく受信信号を増幅整流して検波信号に変換している。そして液面検出装置は検波信号が閾値信号よりも大きくなった時間に基づいて、液面検出装置から液面まで伝搬し、液面で反射されて液面から液面検出装置に戻ってきた超音波の伝搬時間を算出している。液面検出装置はこの伝搬時間と別途算出した超音波の速さなどに基づいて液面の位置を算出している。
しかしながら液面検出装置にノイズが混入すると、検波信号が閾値信号よりも大きくなる時間が不正確になる虞がある。伝搬時間が不正確になり、液面の位置の検出精度が低下する虞がある。
そこで本明細書に記載の開示は、距離測定精度の低下の抑制された超音波式距離測定装置を提供することを目的とする。
開示の1つは、タンク(200)に貯留された被検出液体(210)の液面(210a)と超音波素子(11)との間の超音波の伝搬経路の距離を測定する超音波式距離測定装置であって、
超音波素子と液面とが並ぶ高さ方向に対して直交する横方向に所定長さ延びた基準管(31)、および、基準管の中空と自身の中空とが連通する態様で、基準管の先端側から液面に向かって高さ方向に延びた検出管(32)を備える伝送管(30)と、
基準管の中空において、基準管の先端側に向かって超音波を発生するとともに、入力された超音波を電気信号に変換する超音波素子と、
超音波素子に超音波を発生するための駆動信号を出力する送信回路(40)と、
超音波素子で変換された電気信号が閾値よりも大きくなった際に検出信号を出力する比較回路(53)と、
基準管の所定長さ、および、伝搬経路の最長伝搬経路長と最短伝搬経路長を記憶する記憶部(63)と、
超音波素子から超音波の出力される出力タイミングと、基準管の先端側で反射された超音波に基づく検出信号が比較回路から出力される基準タイミングとの第1時間差、および、記憶部に記憶された基準管の所定長さに基づいて、伝搬経路を伝搬する超音波の伝搬速さを算出する第1演算回路(61)と、
記憶部に記憶された最長伝搬経路長と最短伝搬経路長、および、第1演算回路で算出された超音波の伝搬速さに基づいて、液面で反射された超音波に基づく検出信号が比較回路から出力される液面タイミングを検出するための伝搬経路検出期間を設定する期間回路(61)と、
伝搬経路検出期間における液面タイミングと、出力タイミングとの第2時間差、および、第1演算回路で算出された超音波の伝搬速さに基づいて、伝搬経路の距離を算出する第2演算回路(61)と、を有する。
超音波素子(11)で発生した超音波は液面(210a)に向かって伝搬する。その超音波の一部が液面(210a)で反射される。その反射された超音波の一部が超音波素子(11)にかえってくる。この超音波素子(11)で発生して液面(210a)で反射された超音波が超音波素子(11)にかえってくるのに要する時間(伝搬時間)は、超音波素子(11)と液面(210a)との間の超音波の伝搬経路の距離と、その伝搬経路を伝搬する超音波の伝搬速さによって求められる。
伝搬速さ一定において、伝搬時間が最も長くなるのは伝搬経路の距離が最長の時である。伝搬時間が最も短くなるのは伝搬経路の距離が最短の時である。液面(210a)で反射された超音波が超音波素子(11)にかえってくるタイミングは、伝搬時間が最長の時と最短の時の間になることが期待される。伝搬時間が最短の時と最長の時の間以外の期間に、比較回路(53)から検出信号が出力された場合、その検出信号は、液面(210a)の位置に基づく信号ではないことが期待される。
これに対して本開示では、超音波の最長伝搬経路長と最短伝搬経路長、および、超音波の伝搬速さに基づいて、液面(210a)で反射された超音波に基づく検出信号が比較回路(53)から出力される液面タイミングを検出するための伝搬経路検出期間を設定している。そしてこの伝搬経路検出期間における液面タイミングと出力タイミングとの第2時間差、および、超音波の伝搬速さに基づいて伝搬経路の距離を算出している。
これにより、液面(210a)の位置に基づかない検出信号によって、超音波素子(11)と液面(210a)との間の伝搬経路の距離を測定することが抑制される。距離測定精度の低下が抑制される。
なお、上記の括弧内の参照番号は、後述の実施形態に記載の構成との対応関係を示すものに過ぎず、技術的範囲を何ら制限するものではない。
超音波式距離測定装置の全体構成を示す説明図である。 超音波センサの概略構成を説明するための断面図である。 超音波式距離測定装置を伝達する信号を説明するためのブロック図である。 信号処理を説明するためのタイミングチャートである。 ノイズ混入時の信号処理を説明するためのタイミングチャートである。 伝搬速さ一定において液位の高さが変化した場合の検波信号を説明するためのタイミングチャートである。 検出期間の設定を説明するためのタイミングチャートである。 検出期間の更新を説明するためのタイミングチャートである。 液位一定において燃料温度が変化した場合の検波信号を説明するためのタイミングチャートである。 検出期間の設定を説明するためのタイミングチャートである。 検出期間の更新を説明するためのタイミングチャートである。 経過時間検出処理を説明するためのフローチャートである。 伝搬速さ検出処理を説明するためのフローチャートである。 伝搬経路検出処理を説明するためのフローチャートである。 超音波式距離測定装置の変形例を説明するためのブロック図である。
(第1実施形態)
以下、図1〜図14に基づいて超音波式距離測定装置100を説明する。それにあたって、以下においては互いに直交の関係にある3方向をx方向、y方向、および、z方向と示す。x方向が横方向に相当する。z方向が高さ方向に相当する。
超音波式距離測定装置100は、図1に示すように車両用の燃料タンク200内に設けられる。超音波式距離測定装置100は燃料タンク200の内に貯留された燃料210の液面210aの位置(液位)を検出する機能を果たす。燃料210は例えばガソリンである。燃料210が被検出液体である。
図1と図3に示すように超音波式距離測定装置100は、超音波センサ10、伝送管30、送信回路40、受信回路50、および、制御回路60を有する。超音波センサ10は伝送管30に設けられている。超音波センサ10は送信回路40と受信回路50それぞれと電気的に接続されている。送信回路40と受信回路50それぞれは制御回路60と電気的に接続されている。
超音波センサ10と伝送管30は燃料タンク200の底面200aに設けられている。超音波センサ10と伝送管30は燃料210の中にある。超音波センサ10で発生した超音波は燃料タンク200内の燃料210を伝搬する。
なお、超音波センサ10と伝送管30は底面200aからz方向に離間した天面200bに設けられてもよい。車両が水平面に停車している場合、z方向は天地方向に沿う。天面200bは燃料210の液面210aよりも鉛直方向上方に位置する。超音波センサ10と伝送管30は燃料210の外にある。超音波センサ10で発生した超音波は燃料タンク200内の空気を伝搬する。
<超音波センサ>
超音波センサ10は、超音波素子11とケース12を有する。超音波素子11は超音波を発生する超音波振動子である。超音波素子11はピエゾ効果を発生するチタン酸ジルコン酸鉛(PZT)などの圧電材料からなる。圧電材料は電圧印加によって体積を変化し、外力印加によって電圧を発生する。
超音波素子11はx方向を厚み方向とする円盤形状を成している。超音波素子11はx方向に並ぶ当接面11aと裏面11bを有する。これら当接面11aと裏面11bそれぞれに電極が印刷成形されている。電極は当接面11aと裏面11bそれぞれの全面にわたって形成されている。
当接面11aと裏面11bそれぞれに形成された電極にリード14の一端が半田若しくは圧接によって接続されている。そしてリード14の他端は図2に示すターミナル15に接続されている。ターミナル15は図1に示すリードワイヤ16に接続されている。このリードワイヤ16に送信回路40と受信回路50が電気的に接続されている。
ケース12は超音波素子11を収容する収納空間を有する。ケース12は絶縁性の樹脂材料からなる。具体的に言えばケース12は、筒部21、底部22、および、蓋部23を有する。底部22は筒部21と一体的に連結されている。蓋部23は筒部21および底部22とは別体である。
筒部21はz方向に直交するx方向を軸方向として延びている。筒部21の有する2つの開口のうちの一方が底部22によって閉塞されている。筒部21の有する2つの開口のうちの他方が開口している。蓋部23は筒部21の開口を閉塞する態様で筒部21に連結されている。これにより筒部21の中空は閉塞空間になっている。筒部21の中空がケース12の収納空間になっている。なお蓋部23には上記したリード14の一部を収納空間の外に突出するための貫通孔23aが形成されている。
この収納空間には超音波素子11の他に防振部17が設けられている。防振部17は柔軟な樹脂材料若しくはゴム材料によって形成されている。この形成材料としては例えばニトリルゴムがある。
収納空間において超音波素子11は底部22側に位置している。防振部17は蓋部23側に位置している。蓋部23が筒部21に固定されると、防振部17が超音波素子11と蓋部23との間で圧縮される。防振部17はx方向に弾性変形する。防振部17はx方向において自身から遠ざかる方向に復元力を発生する。この復元力によって超音波素子11の当接面11aが底部22の内面22aに当接している。それとともに防振部17が蓋部23に接触している。
送信回路40から超音波素子11に超音波を発生するための駆動信号が入力されると、超音波素子11は当接面11aと裏面11bの並ぶx方向に振動する。この振動によって、超音波素子11の当接しているケース12の底部22もx方向に振動する。底部22の外面22bに接している燃料210が振動する。燃料210に超音波が発生する。
逆に、外部から入力される振動によって底部22が振動すると、超音波素子11がx方向において底部22と防振部17との間で圧縮される。これにより超音波素子11で電圧が発生する。この受信した振動に応じた電圧が、超音波の受信信号として受信回路50に入力される。
なお、超音波を発生した後の超音波素子11には残響振動が残る。防振部17はこの残響振動の発生を抑制する機能を果たしている。それとともに防振部17は超音波素子11で発生した超音波が蓋部23を介してケース12の収納空間の外に漏れることを抑制している。
<伝送管>
伝送管30は、超音波センサ10から出力される超音波を燃料210の液面210aに向けて伝播させるとともに、液面210aで反射した超音波を再び超音波素子11に伝播させる経路(伝播経路)を構成する。
伝送管30は、この伝搬経路を構成する部材として、水平管31、垂直管32、および、反射板33を有する。また伝送管30はこれら伝搬経路を構成する部材と超音波センサ10のケース12とを連結するハウジング34を有する。
水平管31と垂直管32はそれぞれ例えばアルミニウムダイカスト用合金などの金属材料によって形成されている。水平管31と垂直管32それぞれの中空が連通している。水平管31の有する2つの開口のうちの一方にケース12が設けられている。水平管31の有する2つの開口のうちの他方に垂直管32が連結されている。なお水平管31と垂直管32は絶縁性の樹脂材料によって形成されてもよい。水平管31の有する2つの開口のうちの他方側が基準管の先端側に相当する。
水平管31は燃料タンク200の底面200aに設けられている。図示しないが、水平管31には底面200a側に開口する連通孔が形成されている。この連通孔を介して水平管31の中空に燃料210が浸入する。水平管31の中空と連通する垂直管32の中空に燃料210が浸入する。
図1に示すように水平管31はx方向に延びている。水平管31の内径は、2つの開口のうちの一方から他方に向かうにしたがって徐々に狭まっている。この水平管31の有する2つの開口のうちの一方側にケース12の底部22が設けられている。2つの開口のうちの一方は底部22の外面22bによって閉塞されている。
水平管31における2つの開口のうちの他方側には急激に内径の狭まる箇所が局所的に形成されている。水平管31における2つの開口のうちの他方側には、水平管31の軸方向(x方向)まわりの周方向に環状を成す基準面31aが形成されている。
この基準面31aは水平管31の有する2つの開口のうちの一方を閉塞するケース12の外面22bとx方向で対向している。基準面31aと超音波素子11の当接面11aとの間のx方向での離間距離が所定長さの基準距離L1に定められている。
以上に示した構成により、超音波素子11で超音波が発生すると、その超音波は水平管31の一方側の開口から他方側の開口へと向かって伝搬する。超音波の一部が基準面31aに入射して反射される。この反射された超音波(基準波)の一部が超音波センサ10の外面22bに入射する。これにより超音波素子11が振動する。超音波素子11で基準波に基づく受信信号が生成される。
上記したように基準距離L1は所定長さに定められている。そのためにこの基準距離L1と、超音波が出力されてから基準波が超音波素子11に戻ってくるまでの基準時間t01とに基づいて、燃料210を伝搬する超音波の伝搬速さvを求めることができる。数式で書けばv=2L1/t01となる。水平管31における2つの開口のうちの一方から基準面31aまでの間の部位が基準管に相当する。
垂直管32はz方向に延びている。垂直管32の一端が水平管31の他端に連結されている。垂直管32の他端が天面200b側に位置している。垂直管32の内径は、水平管31の他端側の内径と同等になっている。垂直管32が検出管に相当する。
垂直管32のz方向の長さは、燃料タンク200に燃料210が満タンに貯留された際の液面210aよりも天面200b側に他端側が突き出すように設定されている。垂直管32の中空内の燃料210とその外の燃料210それぞれの液面210aの位置は互いに等しくなっている。
反射板33は例えば鉄系金属やステンレス鋼板等の金属材料によって形成されている。反射板33は水平管31と垂直管32との間に設けられている。反射板33は水平管31と垂直管32それぞれの中空を区画する内壁面と連なる反射面33aを有する。反射面33aは水平管31と垂直管32それぞれの内壁面とともに、伝送管30の伝搬経路を区画している。
反射板33は板形状を成している。反射板33は燃料タンク200の底面200aに対して45°程度傾斜している。反射板33の反射面33aは水平管31の中空に満たされた燃料210を介して超音波センサ10の外面22bとx方向で対向している。反射面33aは垂直管32の中空に満たされた燃料210を介して液面210aとz方向で対向している。
超音波センサ10で超音波が発生すると、超音波は水平管31と垂直管32との間に位置する反射板33に向かって伝搬する。この超音波の一部が反射板33の反射面33aに入射すると、超音波の一部が液面210aに向かって反射される。そして超音波の一部が液面210aに入射して反射される。この液面210aで反射された超音波(液面波)の一部が反射板33に向かって伝搬し、反射面33aに入射する。反射面33aに入射した液面波の一部が反射されて、超音波センサ10へと向かって伝搬する。この超音波が超音波センサ10の外面22bに入射する。これにより超音波素子11で液面波に基づく受信信号が生成される。
上記したように超音波の伝搬速さvは基準波によって求められる。そのためにこの伝搬速さvと、超音波が出力されてから液面波が超音波素子11に戻ってくるまでの伝搬経路時間t02とに基づいて、伝搬経路長L2を求めることができる。数式で書けばL2=v×t02/2となる。
ハウジング34は燃料210に対して安定性に優れる樹脂材料によって形成されている。ハウジング34は水平管31、垂直管32における水平管31側、および、筒部21それぞれの外側の表面を覆っている。ハウジング34によって超音波センサ10が水平管31に固定されている。
<送信回路>
送信回路40は駆動回路41とインピーダンス整合回路42を備えている。駆動回路41は電源とグランドとの間に設けられたスイッチを有する。インピーダンス整合回路42は電源とスイッチとの間に設けられたダイオードを有する。ダイオードのカソード電極が電源に接続されている。またインピーダンス整合回路42はダイオードに並列接続された一次パルストランスと、この一次パルストランスと磁気結合した二次パルストランスと、を有する。二次パルストランスの両端にリードワイヤ16が接続されている。
スイッチ素子は制御回路60から入力される制御信号によって開閉制御される。スイッチ素子が開状態から閉状態になると、上記したパルストランスに駆動信号としての電流が流れる。これによりリードワイヤ16を介して超音波素子11に電圧が印加される。
<受信回路>
受信回路50は、増幅回路51、検波回路52、および、比較回路53を有する。増幅回路51には上記した二次パルストランスの両端に接続された2つのリードワイヤ16が接続されている。そのために増幅回路51には、送信回路40から超音波素子11に入力される駆動信号(送信信号)と、超音波素子11から入力される受信信号が入力される。
増幅回路51はこれら送信信号と受信信号それぞれを増幅する。増幅回路51は送信信号と受信信号それぞれを増幅した信号(増幅信号)を検波回路52に出力する。
検波回路52は増幅信号を半波整流し、その半波整流された複数の信号それぞれのピークを繋いだ検波信号を生成する。検波回路52はこの検波信号を比較回路53に出力する。
比較回路53は検波信号と閾値とを比較する。比較回路53は検波信号が閾値よりも大きい場合にハイレベル、検波信号が閾値よりも小さい場合にローレベルになる比較信号を生成する。比較回路53はこの比較信号を制御回路60に出力する。なお、比較回路53は検波信号が閾値よりも大きい場合にローレベル、検波信号が閾値よりも小さい場合にハイレベルになる比較信号を生成してもよい。比較信号が検出信号に相当する。
<制御回路>
制御回路60は、演算回路61、タイマ62、および、メモリ63を有する。演算回路61は後述の経過時間検出処理、伝搬速さ検出処理、および、伝搬経路検出処理を例えば100ms毎に周期的に行っている。または演算回路61は車両のイグニッションスイッチがオフからオンに切り換ると、イベント処理として経過時間検出処理、伝搬速さ検出処理、および、伝搬経路検出処理を行っている。演算回路61が第1演算回路、第2演算回路、および、期間回路に相当する。メモリ63が記憶部に相当する。
演算回路61は図4に示す制御信号を送信回路40に出力する。制御信号を受け取ると送信回路40は駆動信号を超音波素子11に出力する。駆動信号が入力されると超音波センサ10は伝送管30内の燃料210に超音波を出力する。超音波の一部は基準面31aで反射され、基準波として超音波センサ10に戻ってくる。さらに伝送管30内の燃料210を伝搬した超音波の一部が液面210aで反射され、液面波として超音波センサ10に戻ってくる。
超音波を受信すると超音波センサ10は、それを電圧に変換して電気信号(受信信号)を生成する。超音波センサ10はこの受信信号を受信回路50に出力する。
受信信号が入力されると受信回路50は、それを増幅するとともに検波信号に変換する。受信回路50は検波信号と閾値とを比較して比較信号を生成する。受信回路50はこの比較信号を演算回路61に出力する。
上記したように駆動信号は超音波センサ10だけではなく受信回路50にも入力される。そのために受信回路50は受信信号を検波信号に変換して比較信号を生成する前に、駆動信号を検波信号に変換して比較信号を生成する。受信回路50はこの駆動信号に基づく比較信号も演算回路61に出力する。
演算回路61は入力された複数の比較信号それぞれの電圧レベルがローレベルからハイレベルに立ち上がったタイミング(立ち上がりエッジ)を検出する。演算回路61は初めに検出された立ち上がりエッジを駆動信号が超音波センサ10に入力されることで、超音波センサ10から超音波が出力されたタイミングと認定する。
演算回路61はこの立ち上がりエッジと、この後に検出される立ち上がりエッジとの時間差をタイマ62の計測時間に基づいて算出する。これによって演算回路61は超音波センサ10から出力された超音波が超音波センサ10に戻ってくるまでの経過時間を算出する。それとともに演算回路61はメモリ63にその経過時間を記憶する。
<立ち上がりエッジの数>
ところで、例えば図4に示すように、超音波を出力した後に超音波センサ10が受信する超音波は、基準面31aで反射された基準波と液面210aで反射された液面波の2つであることが期待される。そのために演算回路61が検出する立ち上がりエッジの数は、駆動信号に基づく立ち上がりエッジを除くと、2つであることが期待される。そしてこれら2つの立ち上がりエッジのうち、短時間で検出された立ち上がりエッジは基準波に基づくものであることが期待される。長時間で検出された立ち上がりエッジは液面波に基づくものであることが期待される。
しかしながら、例えば図5に示すように検波信号にノイズが重複する場合がある。この場合、2つよりも多くの立ち上がりエッジが検出される。図5では4つの立ち上がりエッジが検出される。そのためにいずれの立ち上がりエッジが基準波と液面波に基づくものであるかを判別することができなくなる。
係る課題を解決するために演算回路61は、基準波に基づく立ち上がりエッジを検出するための基準検出期間を設定している。演算回路61は液面波に基づく立ち上がりエッジを検出するための伝搬経路検出期間を設定している。
なお、当然ながらにして液面210aの位置は燃料タンク200内の燃料210の貯留量によって変化する。そのために例えば図6に示すように超音波の伝搬速さvが一定だとしても、液面210aの位置によって液面波の検出されるタイミングが異なってくる。
また、超音波の伝搬速さvは温度によって変化する。そのために例えば図9に示すように燃料210の温度によって基準波と液面波の検出されるタイミングが異なってくる。
演算回路61はこのように液面210aの位置と伝搬速さvの変化によって基準波と液面波の検出されるタイミングが異なったとしても、これらを検出するとともにノイズを除去できる基準検出期間と伝搬経路検出期間を設定する。
<基準検出期間>
超音波センサ10で超音波が出力されてから、基準面31aで反射された基準波が超音波センサ10に戻ってくるまでの基準時間t01は、基準距離L1と超音波の伝搬速さvに依存している。基準距離L1は一定値なので、基準時間t01は伝搬速さvによって変化する。
基準時間t01が最も長くなるのは伝搬速さvが最も遅い時である。基準時間t01が最も短くなるのは伝搬速さvが最も速い時である。基準波に基づく立ち上がりエッジの検出されるタイミングは、基準時間t01が最短の時と最長の時の間になることが期待される。基準時間t01が最短の時と最長の時の間以外の期間に、立ち上がりエッジが検出された場合、その立ち上がりエッジは、基準波に基づくものではないことが期待される。
なお、超音波の伝搬速さvの温度依存特性は、超音波の伝搬する燃料210の組成によって異なる。本実施形態の燃料210は、温度が低まるほどに伝搬速さvが速まる性質を有する。そのために上記した伝搬速さvの最も速い時とは、超音波式距離測定装置100(超音波素子11)の使用環境温度の最低温度の時である。伝搬速さvの最も遅い時とは、使用環境温度の最高温度の時である。
以下においては表記を簡便とするために、使用環境温度における最低温度時の伝搬速さを最高伝搬速さvh、最高温度時の伝搬速さを最低伝搬速さvlと示す。これら最高伝搬速さvhと最低伝搬速さvlはメモリ63に予め記憶されている。最高伝搬速さvhが第1速さに相当する。最低伝搬速さvlが第2速さに相当する。
メモリ63に記憶される最高伝搬速さvhは上記した使用環境温度の最低温度時に燃料210を伝搬する超音波の伝搬速さよりも若干速くともよい。同様にして、メモリ63に記憶される最低伝搬速さvlは上記した使用環境温度の最高温度時に燃料210を伝搬する超音波の伝搬速さよりも若干遅くともよい。
初めて基準検出期間を設定する場合、演算回路61は、例えば図7と図10に示すように、基準距離L1、最高伝搬速さvh、および、最低伝搬速さvlそれぞれによって基準検出期間の下限値と上限値とを定めている。式で表せば、基準検出期間の下限値は2L1/vhと表される。基準検出期間の上限値は2L1/vlと表される。
演算回路61はこの基準検出期間内に入力された比較信号の立ち上がりエッジを検出する。そして演算回路61は検出した立ち上がりエッジと基準検出期間よりも前の期間で初めに検出された立ち上がりエッジとの時間差を基準時間t01として算出する。演算回路61は算出した基準時間t01をメモリ63に記憶する。基準検出期間よりも前の期間で初めに検出された立ち上がりエッジの立つタイミングが出力タイミングに相当する。検出した立ち上がりエッジと基準検出期間よりも前の期間で初めに検出された立ち上がりエッジとの時間差が第1時間差に相当する。
なお、ノイズなどのために、例えば図5に示すように基準検出期間内に複数の立ち上がりエッジが検出される場合がある。この場合に演算回路61は、基準検出期間内において最も短時間で検出された立ち上がりエッジを基準波に基づく立ち上がりエッジとみなして選択する。基準波に基づく立ち上がりエッジの立つタイミングが基準タイミングに相当する。
演算回路61は算出した基準時間t01と基準距離L1とに基づいて、超音波の伝搬速さvを算出する。式で表せば、v=2L1/t01と表される。演算回路61は算出した伝搬速さvをメモリ63に記憶する。
再度、基準検出期間を設定する場合、メモリ63には前の基準検出期間の設定処理時に算出した基準時間t01が記憶されている。またメモリ63には伝搬速さv(燃料温度)に対する基準波の波形の長さLw1の相関関係が予め記憶されている。
この「波形の長さ」とは、超音波の伝搬速さを周波数で割った波長を示しているわけではない。例えば図4に示す検波信号の波形の長さを示している。検波信号が例えば閾値よりも低い0Vなどの基準値よりも大きい範囲の長さを示している。
演算回路61はこのメモリ63に記憶された相関関係から前の基準検出期間の設定処理時に算出した伝搬速さvに対応する基準波の波形の長さLw1を読み出す。そして演算回路61は読み出した基準波の波形の長さLw1とメモリ63に記憶された基準時間t01とによって基準検出期間を更新する。これによれば、例えば図8と図11に示すように基準検出期間が適切に狭められる。
更新された基準検出期間の下限値はt01−Lw1/2と表される。上限値はt01+Lw1/2と表される。このように、更新された基準検出期間の中心値はメモリ63に記憶された基準時間t01に設定される。基準検出期間の幅は、基準波の波形の長さLw1になる。
なお、基準波に基づく検波信号が閾値を上回るのは、検波信号がピーク値を取る手前である。そのために基準検出期間の中心値はメモリ63に記憶された基準時間t01よりも若干遅めに設定してもよい。基準検出期間の幅はLw1に1以上の係数を乗算した値に設定してもよい。メモリ63には基準波の波形の長さLw1が固定値として記憶されていてもよい。図8と図11ではメモリ63に記憶された基準時間をt01mと表記している。
<伝搬経路検出期間>
超音波センサ10で超音波が出力されてから、液面210aで反射された液面波が超音波センサ10に戻ってくるまでの伝搬経路時間t02は、伝搬経路長L2と超音波の伝搬速さvに依存している。
伝搬速さv一定において、伝搬経路時間t02が最も短くなるのは伝搬経路長L2が最も短い時である。伝搬経路時間t02が最も長くなるのは伝搬経路長L2が最も長い時である。液面波に基づく立ち上がりエッジの検出されるタイミングは、伝搬経路時間t02が最短の時と最長の時の間になることが期待される。伝搬経路時間t02が最短の時と最長の時の間以外の期間に、立ち上がりエッジが検出された場合、その立ち上がりエッジは、液面波に基づく信号ではないことが期待される。
なお、伝搬経路長L2の最も短い時とは、燃料タンク200に燃料210がほとんどない時である。伝搬経路長L2の最も長い時とは、燃料タンク200に燃料210が満タンの時である。以下においては表記を簡便とするために、燃料210がほとんどない時の伝搬経路長を最短伝搬経路長Ll、燃料210が満タンの時の伝搬経路長を最長伝搬経路長Lhと示す。これら最短伝搬経路長Llと最長伝搬経路長Lhはメモリ63に記憶されている。
メモリ63に記憶される最短伝搬経路長Llは燃料タンク200に燃料210がほとんどない時の伝搬経路長よりも若干短くともよい。同様にして、メモリ63に記憶される最長伝搬経路長Lhは燃料タンク200に燃料210が満タンの時の伝搬経路長よりも若干長くともよい。
初めて伝搬経路検出期間を設定する場合、演算回路61は、例えば図7と図10に示すように、メモリ63に記憶された伝搬速さv、最短伝搬経路長Ll、および、最長伝搬経路長Lhそれぞれによって伝搬経路検出期間の下限値と上限値とを定めている。式で表せば、伝搬経路検出期間の下限値は2Ll/vと表される。伝搬経路検出期間の上限値は2Lh/vと表される。
なお、メモリ63に記憶された伝搬速さvは、基準検出期間の設定処理時に算出された伝搬速さvである。図7に示すタイミングチャートでは超音波の伝搬速さvが一定なので、液面210aの位置が異なったとしても、伝搬経路検出期間は同一になっている。図10に示すタイミングチャートでは超音波の伝搬速さvが異なるので、各温度に対して伝搬経路検出期間が異なっている。
演算回路61はこの伝搬経路検出期間内に入力された比較信号の立ち上がりエッジを検出する。そして演算回路61は検出した立ち上がりエッジと基準検出期間よりも前の期間で初めに検出された立ち上がりエッジとの時間差を伝搬経路時間t02として算出する。演算回路61は算出した伝搬経路時間t02をメモリ63に記憶する。伝搬経路検出期間内に入力された比較信号の立ち上がりエッジと基準検出期間よりも前の期間で初めに検出された立ち上がりエッジとの時間差が第2時間差に相当する。
なお、ノイズなどのために、伝搬経路検出期間内に複数の立ち上がりエッジが検出される場合がある。この場合に演算回路61は、伝搬経路検出期間において最も短時間で検出された立ち上がりエッジを液面波に基づく立ち上がりエッジとみなして選択する。液面波に基づく立ち上がりエッジの立つタイミングが液面タイミングに相当する。
演算回路61は算出した伝搬経路時間t02と伝搬速さvとに基づいて、伝搬経路長L2を算出する。式で表せば、L2=v×t02/2と表される。演算回路61は算出した伝搬経路長L2をメモリ63に記憶する。
再度、伝搬経路検出期間を設定する場合、メモリ63には前の伝搬経路検出期間の設定処理時に算出した伝搬経路時間t02が記憶されている。またメモリ63には伝搬速さv(燃料温度)に対する液面波の波形の長さLw2の相関関係が予め記憶されている。
演算回路61はこのメモリ63に記憶された相関関係から基準検出期間の設定処理時に算出した伝搬速さvに対応する液面波の波形の長さLw2を読み出す。そして演算回路61は読み出した液面波の波形の長さLw2とメモリ63に記憶された伝搬経路時間t02とによって伝搬経路検出期間を更新する。これによれば、例えば図8と図11に示すように伝搬経路検出期間が適切に狭められる。
更新された伝搬経路検出期間の下限値はt02−Lw2/2と表される。上限値はt02+Lw2/2と表される。このように、更新された伝搬経路検出期間の中心値はメモリ63に記憶された伝搬経路時間t02に設定される。伝搬経路検出期間の幅は、液面波の波形の長さLw2になる。
なお、液面波に基づく検波信号が閾値を上回るのは、検波信号がピーク値を取る手前になる。そのために伝搬経路検出期間の中心値はメモリ63に記憶された伝搬経路時間t02よりも若干遅めに設定してもよい。伝搬経路検出期間の幅はLw2に1以上の係数を乗算した値に設定してもよい。また、メモリ63には液面波の波形の長さLw2が固定値として記憶されていてもよい。メモリ63には基準波と液面波それぞれの波形の長さを同一とみなした長さLwが記憶されていてもよい。すなわちメモリ63には伝搬経路で反射された超音波の波形の長さが固定値として記憶されていてもよい。図8と図11ではメモリ63に記憶された伝搬経路時間をt02mと表記している。
次に、演算回路61の経過時間検出処理、伝搬速さ検出処理、および、伝搬経路検出処理を図12〜図14に基づいて説明する。
<経過時間検出処理>
図12に経過時間検出処理を簡易的に示す。周期的若しくは突発的なイベントタスクが立ち上がると、演算回路61は図12に示すステップS10を実行し始める。ステップS10において演算回路61は、タイマ62によって時間を計測し始める。
ステップS20へ進むと演算回路61は、制御信号を送信回路40に出力する。これにより受信回路50に駆動信号と受信信号とが入力される。演算回路61にはこれら2種類の信号に基づく比較信号が入力される。
ステップS30において演算回路61は入力された比較信号の立ち上がりエッジを検出する。演算回路61は初めに検出された立ち上がりエッジと、この後に検出される立ち上がりエッジとの時間差を、超音波センサ10から出力された超音波が超音波センサ10に戻ってくるまでの経過時間として算出する。演算回路61はその経過時間をメモリ63に記憶する。
ステップS40に進むと演算回路61はタイマ62による時間計測を終了する。この時間計測の終了タイミングは、超音波素子11の使用環境温度において超音波の伝搬速さvが最も遅く、燃料タンク200に燃料210が満タンに貯留されている際に液面波が超音波センサ10に戻ってくることの期待される時間よりも長めに設定される。以上が経過時間検出処理である。
<伝搬速さ検出処理>
図13に伝搬速さ検出処理を簡易的に示す。演算回路61は時間経過検出処理を実行し終えると図13に示すステップS110を実行し始める。
ステップS110において演算回路61は、メモリ63に基準時間t01が記憶されているか否かを判定する。メモリ63に基準時間t01が記憶されている場合に演算回路61はステップS120に進む。メモリ63に基準時間t01が記憶されていない場合に演算回路61はステップS130に進む。
ステップS120に進むと演算回路61はメモリ63に記憶された基準時間t01と基準波の波形の長さLw1を読み出す。そして演算回路61は基準検出期間の下限値t01−Lw1/2と上限値t01+Lw1/2を算出する。この後に演算回路61はステップS140に進む。
ステップS130に進んだ場合に演算回路61はメモリ63に記憶された基準距離L1、最低伝搬速さvl、および、最高伝搬速さvhを読み出す。そして演算回路61は基準検出期間の下限値2L1/vhと上限値2L1/vlを算出する。この後に演算回路61はステップS140に進む。
なお、演算回路61が初めて伝搬速さ検出処理を実行する場合、メモリ63には基準時間t01が記憶されていない。そのために初めて伝搬速さ検出処理を実行する場合に演算回路61はステップS120ではなくステップS130を実行する。その後の伝搬速さ検出処理で演算回路61はステップS120を実行する。これにより基準検出期間が更新される。基準検出期間の幅が狭められる。
ステップS140に進むと演算回路61は基準検出期間内に入力された比較信号の立ち上がりエッジを選択する。基準検出期間内に複数の立ち上がりエッジがある場合に演算回路61はこれらのうち最も基準検出期間の下限値に近い立ち上がりエッジを選択する。そして演算回路61はステップS150に進む。
ステップS150に進むと演算回路61はステップS140で選択した立ち上がりエッジに対応する経過時間を基準時間t01としてメモリ63に記憶する。この経過時間は経過時間検出処理のステップS30で算出済みである。この後に演算回路61はステップS160に進む。
ステップS160に進むと演算回路61はステップS150で選択した経過時間(基準時間t01)と基準距離L1をメモリ63から読み出す。そして演算回路61は超音波の伝搬速さv=2L1/t01を算出する。演算回路61はこの伝搬速さvをメモリ63に記憶する。以上が伝搬速さ検出処理である。
<伝搬経路検出処理>
図14に伝搬経路検出処理を簡易体に示す。なお図3に示すように、車両には給油があったか否かを判定する給油センサ300が設けられている。演算回路61は伝搬速さ検出処理を実行し終えると図14に示すステップS210を実行し始める。
ステップS210において演算回路61は、給油センサ300の出力を取得する。それに基づいて演算回路61は燃料タンク200に燃料210の給油があったか否かを判定する。給油がない場合、演算回路61はステップS220に進む。給油があった場合、演算回路61はステップS230に進む。
ステップS220に進むと演算回路61は、メモリ63に伝搬経路時間t02が記憶されているか否かを判定する。メモリ63に伝搬経路時間t02が記憶されている場合、演算回路61はステップS240に進む。メモリ63に伝搬経路時間t02が記憶されていない場合、演算回路61はステップS230に進む。
ステップS240に進むと演算回路61は、メモリ63に記憶された伝搬経路時間t02と液面波の波形の長さLw2を読み出す。そして演算回路61は伝搬経路検出期間の下限値t02−Lw2/2と上限値t02+Lw2/2を算出する。演算回路61はステップS250に進む。
ステップS230に進んだ場合に演算回路61はメモリ63に記憶された伝搬速さv、最短伝搬経路長Ll、および、最長伝搬経路長Lhを読み出す。そして演算回路61は伝搬経路検出期間の下限値2Ll/vと上限値2Lh/vを算出する。この後に演算回路61はステップS250に進む。
なお、演算回路61が初めて伝搬経路検出処理を実行する場合、メモリ63には伝搬経路時間t02が記憶されていない。そのために初めて伝搬経路検出処理を実行する場合に演算回路61はステップS240ではなくステップS230を実行する。その後の伝搬経路検出処理で演算回路61はステップS240を実行する。これにより伝搬経路検出期間が更新される。伝搬経路検出期間の幅が狭められる。
ステップS250に進むと演算回路61は伝搬経路検出期間内に入力された比較信号の立ち上がりエッジを選択する。伝搬経路検出期間内に複数の立ち上がりエッジがある場合に演算回路61はこれらのうち最も伝搬経路検出期間の下限値に近い立ち上がりエッジを選択する。そして演算回路61はステップS260に進む。
ステップS260に進むと演算回路61はステップS250で選択した立ち上がりエッジに対応する経過時間を伝搬経路時間t02としてメモリ63に記憶する。この経過時間は経過時間検出処理のステップS30で算出済みである。この後に演算回路61はステップS270に進む。
ステップS270に進むと演算回路61はステップS250で選択した経過時間(伝搬経路時間t02)と伝搬速さvをメモリ63から読み出す。そして演算回路61は伝搬経路長L2=v×t02/2を算出する。演算回路61はこの伝搬経路長L2をメモリ63に記憶する。以上が伝搬経路検出処理である。
以上に示した処理の実行によって伝搬経路長L2を検出すると、演算回路61は伝搬経路長L2と基準距離L1などに基づいて液面210aのz方向における高さ位置(液位)を算出する。そして演算回路61は算出した液位を含むデータを例えば車両の液面位置表示装置に出力する。
<作用効果>
次に超音波式距離測定装置100の作用効果を説明する。
液面210aで反射された超音波が超音波素子11にかえってくるタイミングは、超音波の伝搬時間が最長の時と最短の時の間になることが期待される。伝搬時間が最短の時と最長の時の間以外の期間に立ち上がりエッジが検出された場合、その立ち上がりエッジは、液面210aの位置に基づく信号ではないことが期待される。
そこで超音波式距離測定装置100は、超音波の伝搬経路の最短伝搬経路長Llと最長伝搬経路長Lh、および、超音波の伝搬速さvに基づいて、液面波に基づく立ち上がりエッジを検出する伝搬経路検出期間を設定している。超音波式距離測定装置100は、この伝搬経路検出期間における立ち上がりエッジの超音波が出力されてからの経過時間(伝搬経路時間t02)と、超音波の伝搬速さvとに基づいて伝搬経路長L2を算出している。
これにより、液面210aの位置に基づかない信号によって伝搬経路長L2を測定することが抑制される。距離測定精度の低下が抑制される。
メモリ63に伝搬経路時間t02が記憶されている場合、演算回路61はその伝搬経路時間t02と液面波の波形の長さLw2によって伝搬経路検出期間を更新する。これにより伝搬経路検出期間の幅が狭められる。液面210aの位置に基づかない信号によって伝搬経路長L2を測定することがより効果的に抑制される。
メモリ63には伝搬速さv(燃料温度)に対する液面波の波形の長さLw2の相関関係が予め記憶されている。演算回路61はこのメモリ63に記憶された相関関係から伝搬速さvに対応する液面波の波形の長さLw2を読み出す。これによれば、メモリ63に固定値としての波形の長さが記憶されている構成と比べて、より適切に伝搬経路検出期間の幅が狭められる。
基準面31aで反射された基準波が超音波センサ10に戻ってくるタイミングは、超音波素子11と基準面31aとの間の経路を伝搬する超音波の伝搬速さが最も速い時と最も遅い時の間になることが期待される。この間以外の期間に立ち上がりエッジが検出された場合、その立ち上がりエッジは、基準面31aの位置に基づくものではないことが期待される。
そこで超音波式距離測定装置100は、基準距離L1、最高伝搬速さvh、および、最低伝搬速さvlに基づいて、基準波に基づく立ち上がりエッジを検出する基準検出期間を設定している。超音波式距離測定装置100は、この基準検出期間における立ち上がりエッジの超音波が出力されてからの経過時間(基準時間t01)と、基準距離L1とに基づいて伝搬速さvを算出している。
これにより、基準面31aの位置に基づかない信号によって伝搬速さvを算出することが抑制される。この結果、距離測定精度の低下が抑制される。
メモリ63に基準時間t01が記憶されている場合、演算回路61はその基準時間t01と基準波の波形の長さLw1によって基準検出期間を更新する。これにより基準検出期間の幅が狭められる。基準面31aの位置に基づかない信号によって伝搬速さvを算出することがより効果的に抑制される。
メモリ63には伝搬速さv(燃料温度)に対する基準波の波形の長さLw1の相関関係が予め記憶されている。演算回路61はこのメモリ63に記憶された相関関係から伝搬速さvに対応する基準波の波形の長さLw1を読み出す。これによれば、メモリ63に固定値としての波形の長さが記憶されている構成と比べて、より適切に基準検出期間の幅が狭められる。
以上、本開示の好ましい実施形態について説明したが、本開示は上記した実施形態になんら制限されることなく、本開示の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
(第1の変形例)
本実施形態では、超音波式距離測定装置100として、燃料タンク200内の燃料210の液面210aの位置を検出するものとして説明した。しかしながら超音波式距離測定装置100の被検出液体としてはガソリンなどの燃料210に限らない。被検出液体としては、例えば、ウォシャ液、冷却液、ブレーキオイル、ATフルードなどを採用することができる。
メモリ63には燃料210に対する最低伝搬速さvlと最高伝搬速さvhの記憶された例を示した。しかしながらメモリ63には、燃料210以外の最低伝搬速さvlと最高伝搬速さvhの記憶された構成を採用することもできる。
係る変形例において超音波式距離測定装置100は、図15に示すように、超音波を出力する媒介の組成を検出する組成センサ400を有する。この組成センサ400の出力が演算回路61に入力される。演算回路61は組成センサ400で検出された媒介の組成に対する最低伝搬速さvlと最高伝搬速さvhをメモリ63から読み出す。もちろんではあるが、メモリ63にはこれら最低伝搬速さvlと最高伝搬速さvhだけではなく、媒介の組成に対する超音波の波長の長さが記憶されていてもよい。
(その他の変形例)
本実施形態において演算回路61は経過時間を算出した後に基準検出期間と伝搬経路検出期間とを設定する例を示した。しかしながら演算回路61は基準検出期間と伝搬経路検出期間とを設定した後に経過時間を算出してもよい。
本実施形態では例えば図13に示すようにメモリ63に基準時間t01が記憶されている場合にそれを用いて基準検出期間を更新する例を示した。しかしながら基準検出期間を更新せずに、基準距離L1、最高伝搬速さvh、および、最低伝搬速さvlに基づいて基準検出期間を固定設定してもよい。
本実施形態では例えば図14に示すようにメモリ63に伝搬経路時間t02が記憶されている場合にそれを用いて液面検出期間を更新する例を示した。しかしながら液面検出期間を更新せずに、伝搬速さv、最短伝搬経路長Ll、および、最長伝搬経路長Lhに基づいて液面検出期間を設定してもよい。
本実施形態では1つの演算回路61が、超音波の伝搬速さの算出処理、検出期間の設定処理、および、伝搬経路長の算出処理を行う例を示した。しかしながらこれら3種類の処理を別々の処理回路で実施してもよい。
11…超音波素子、30…伝送管、31…水平管、32…垂直管、40…送信回路、53…比較回路、61…演算回路、63…メモリ、100…超音波式距離測定装置、200…燃料タンク、210…燃料、210a…液面

Claims (10)

  1. タンク(200)に貯留された被検出液体(210)の液面(210a)と超音波素子(11)との間の超音波の伝搬経路の距離を測定する超音波式距離測定装置であって、
    前記超音波素子と前記液面とが並ぶ高さ方向に対して直交する横方向に所定長さ延びた基準管(31)、および、前記基準管の中空と自身の中空とが連通する態様で、前記基準管の先端側から前記液面に向かって前記高さ方向に延びた検出管(32)を備える伝送管(30)と、
    前記基準管の中空において、前記基準管の先端側に向かって前記超音波を発生するとともに、入力された前記超音波を電気信号に変換する前記超音波素子と、
    前記超音波素子に前記超音波を発生するための駆動信号を出力する送信回路(40)と、
    前記超音波素子で変換された前記電気信号が閾値よりも大きくなった際に検出信号を出力する比較回路(53)と、
    前記基準管の所定長さ、および、前記伝搬経路の最長伝搬経路長と最短伝搬経路長を記憶する記憶部(63)と、
    前記超音波素子から前記超音波の出力される出力タイミングと、前記基準管の先端側で反射された前記超音波に基づく前記検出信号が前記比較回路から出力される基準タイミングとの第1時間差、および、前記記憶部に記憶された前記基準管の所定長さに基づいて、前記伝搬経路を伝搬する前記超音波の伝搬速さを算出する第1演算回路(61)と、
    前記記憶部に記憶された前記最長伝搬経路長と前記最短伝搬経路長、および、前記第1演算回路で算出された前記超音波の伝搬速さに基づいて、前記液面で反射された前記超音波に基づく前記検出信号が前記比較回路から出力される液面タイミングを検出するための伝搬経路検出期間を設定する期間回路(61)と、
    前記伝搬経路検出期間における前記液面タイミングと、前記出力タイミングとの第2時間差、および、前記第1演算回路で算出された前記超音波の伝搬速さに基づいて、前記伝搬経路の距離を算出する第2演算回路(61)と、を有する超音波式距離測定装置。
  2. 前記記憶部は、前記基準管の所定長さ、前記最長伝搬経路長、および、前記最短伝搬経路長の他に、前記伝搬経路で反射されて前記超音波素子に入力される前記超音波の波形の長さを記憶し、
    前記第2演算回路は算出した前記第2時間差を前記記憶部に記憶させており、
    前記期間回路は、
    前記記憶部に前記第2時間差が記憶されていない場合、前記記憶部に記憶された前記最長伝搬経路長と前記最短伝搬経路長、および、前記第1演算回路で算出された前記超音波の伝搬速さに基づいて前記伝搬経路検出期間を設定し、
    前記記憶部に前記第2時間差が記憶されている場合、前記記憶部に記憶された前記第2時間差と前記超音波の波形の長さに基づいて前記伝搬経路検出期間を設定する請求項1に記載の超音波式距離測定装置。
  3. 前記記憶部には、前記超音波の伝搬速さと前記超音波の波形の長さとの相関関係が記憶されており、
    前記期間回路は、前記記憶部に前記第2時間差が記憶されている場合、前記記憶部に記憶された、前記第2時間差、および、前記第1演算回路で算出された前記超音波の伝搬速さに応じた前記超音波の波形の長さに基づいて前記伝搬経路検出期間を設定する請求項2に記載の超音波式距離測定装置。
  4. 前記記憶部は、前記基準管の所定長さ、前記最長伝搬経路長、および、前記最短伝搬経路長の他に、前記超音波素子の使用環境温度において、前記伝搬経路を伝搬する前記超音波の最も速い第1速さと、最も遅い第2速さと、を記憶し、
    前記期間回路は、前記伝搬経路検出期間を設定するだけではなく、前記記憶部に記憶された前記基準管の所定長さ、前記第1速さ、および、前記第2速さに基づいて、前記基準タイミングを検出する基準検出期間を設定し、
    前記第1演算回路は、前記基準検出期間における前記基準タイミングと、前記出力タイミングとの前記第1時間差、および、前記基準管の所定長さに基づいて前記超音波の伝搬速さを算出する請求項1〜3いずれか1項に記載の超音波式距離測定装置。
  5. 前記記憶部は、前記基準管の所定長さ、前記最長伝搬経路長、前記最短伝搬経路長、前記第1速さ、および、前記第2速さの他に、前記伝搬経路で反射されて前記超音波素子に入力される前記超音波の波形の長さを記憶し、
    前記第1演算回路は算出した前記第1時間差を前記記憶部に記憶させており、
    前記期間回路は、
    前記記憶部に前記第1時間差が記憶されていない場合、前記基準管の所定長さ、前記第1速さ、および、前記第2速さに基づいて前記基準検出期間を設定し、
    前記記憶部に前記第1時間差が記憶されている場合、前記記憶部に記憶された前記第1時間差と前記超音波の波形の長さに基づいて前記基準検出期間を設定する請求項4に記載の超音波式距離測定装置。
  6. 前記記憶部には、前記超音波の伝搬速さと前記超音波の波形の長さとの相関関係が記憶されており、
    前記期間回路は、前記記憶部に前記第1時間差が記憶されている場合、前記記憶部に記憶された、前記第1時間差、および、前記第1演算回路で算出された前記超音波の伝搬速さに応じた前記超音波の波形の長さに基づいて前記基準検出期間を設定する請求項5に記載の超音波式距離測定装置。
  7. 前記第1演算回路は、前記基準検出期間に前記検出信号が複数ある場合、複数の前記検出信号のうち、最も前記出力タイミングとの時間差の短い前記検出信号の前記比較回路から出力されるタイミングを前記基準タイミングとして選択する請求項6に記載の超音波式距離測定装置。
  8. 前記第2演算回路は、前記伝搬経路検出期間に前記検出信号が複数ある場合、複数の前記検出信号のうち、最も前記出力タイミングとの時間差の短い前記検出信号の前記比較回路から出力されるタイミングを前記液面タイミングとして選択する請求項1〜7いずれか1項に記載の超音波式距離測定装置。
  9. 前記被検出液体は燃料である請求項1〜8いずれか1項に記載の超音波式距離測定装置。
  10. 前記タンクに貯留された前記被検出液体中に設けられる請求項1〜9いずれか1項に記載の超音波式距離測定装置。
JP2019128736A 2019-07-10 2019-07-10 超音波式距離測定装置 Active JP7218683B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019128736A JP7218683B2 (ja) 2019-07-10 2019-07-10 超音波式距離測定装置
US16/921,141 US11454532B2 (en) 2019-07-10 2020-07-06 Ultrasonic distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019128736A JP7218683B2 (ja) 2019-07-10 2019-07-10 超音波式距離測定装置

Publications (2)

Publication Number Publication Date
JP2021015012A true JP2021015012A (ja) 2021-02-12
JP7218683B2 JP7218683B2 (ja) 2023-02-07

Family

ID=74101779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019128736A Active JP7218683B2 (ja) 2019-07-10 2019-07-10 超音波式距離測定装置

Country Status (2)

Country Link
US (1) US11454532B2 (ja)
JP (1) JP7218683B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563500A (en) * 1978-11-07 1980-05-13 Sumitomo Electric Industries Vehicle detector
US5131271A (en) * 1990-04-16 1992-07-21 Magnetrol International, Inc. Ultrasonic level detector
JPH08507607A (ja) * 1993-03-16 1996-08-13 シーメンス アクチエンゲゼルシヤフト パルスエコー方式で動作する間隔センサの受信信号における有効信号と障害信号の識別および分離方法
JP2001241999A (ja) * 2000-02-29 2001-09-07 Koito Ind Ltd 河川観測システム
JP2001242000A (ja) * 2000-03-01 2001-09-07 Yokogawa Electric Corp 超音波レベル計
JP2018119808A (ja) * 2017-01-23 2018-08-02 株式会社デンソー 液面検出装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315325A (en) * 1980-07-02 1982-02-09 Purecycle Corporation Echo ranging pulse discrimination circuit
US4785664A (en) * 1986-04-28 1988-11-22 Kay-Ray, Inc. Ultrasonic sensor
US4901245A (en) * 1987-12-01 1990-02-13 Moore Technologies, Inc. Nonintrusive acoustic liquid level sensor
US5319972A (en) * 1992-10-19 1994-06-14 Westinghouse Electric Corp. Ultrasonic liquid level measurement system
GB9502087D0 (en) * 1995-02-02 1995-03-22 Croma Dev Ltd Improvements relating to pulse echo distance measurement
US7117738B2 (en) * 2003-10-02 2006-10-10 Denso Corporation Liquid level detecting apparatus
JP2006145403A (ja) 2004-11-19 2006-06-08 Denso Corp 超音波計測回路およびそれを用いた液面検出装置
US9458759B2 (en) * 2014-12-26 2016-10-04 Ford Global Technologies, Llc Method and system for engine cooling system control
JP6562036B2 (ja) 2017-05-16 2019-08-21 株式会社デンソー 液面検出装置
JP6562037B2 (ja) 2017-05-16 2019-08-21 株式会社デンソー 液面検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563500A (en) * 1978-11-07 1980-05-13 Sumitomo Electric Industries Vehicle detector
US5131271A (en) * 1990-04-16 1992-07-21 Magnetrol International, Inc. Ultrasonic level detector
JPH08507607A (ja) * 1993-03-16 1996-08-13 シーメンス アクチエンゲゼルシヤフト パルスエコー方式で動作する間隔センサの受信信号における有効信号と障害信号の識別および分離方法
JP2001241999A (ja) * 2000-02-29 2001-09-07 Koito Ind Ltd 河川観測システム
JP2001242000A (ja) * 2000-03-01 2001-09-07 Yokogawa Electric Corp 超音波レベル計
JP2018119808A (ja) * 2017-01-23 2018-08-02 株式会社デンソー 液面検出装置

Also Published As

Publication number Publication date
US11454532B2 (en) 2022-09-27
US20210010848A1 (en) 2021-01-14
JP7218683B2 (ja) 2023-02-07

Similar Documents

Publication Publication Date Title
US7966136B2 (en) Immersed fuel level sensor
JP6562037B2 (ja) 液面検出装置
JP2011250328A (ja) 超音波センサ
WO2018211822A1 (ja) 液面検出装置
JP2018119808A (ja) 液面検出装置
JP2006145403A (ja) 超音波計測回路およびそれを用いた液面検出装置
KR101688844B1 (ko) 주기적 진동신호응답의 스타팅 인스턴스를 결정하는 방법
JP7218683B2 (ja) 超音波式距離測定装置
JP2019197019A (ja) 物体検知装置
JP7192686B2 (ja) 超音波式距離測定装置
JP7218682B2 (ja) 超音波式距離測定装置
JP6665792B2 (ja) 液面検出装置
WO2020080511A1 (ja) 液面検出装置
JP7272187B2 (ja) 液面検出装置、およびそのパラメータ設定方法
JP2008256451A (ja) 超音波レベル計
JP7575755B2 (ja) 表面波検出装置、液面位置検出装置及び液種特定装置
JP2021021625A (ja) 液面検出装置
JP4306582B2 (ja) 液面検出装置
JP2019124642A (ja) 液面検出装置
WO2019167660A1 (ja) 液面位置検出装置
WO2019172334A1 (ja) 液面検出装置
JP2020139851A (ja) 液面位置検出装置
JP2017062118A (ja) 液面検出装置
JP2020139852A (ja) 液面位置検出装置
WO2019031130A1 (ja) 液面検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230109

R151 Written notification of patent or utility model registration

Ref document number: 7218683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151