JP2021012057A - タイヤ試験システム - Google Patents

タイヤ試験システム Download PDF

Info

Publication number
JP2021012057A
JP2021012057A JP2019125306A JP2019125306A JP2021012057A JP 2021012057 A JP2021012057 A JP 2021012057A JP 2019125306 A JP2019125306 A JP 2019125306A JP 2019125306 A JP2019125306 A JP 2019125306A JP 2021012057 A JP2021012057 A JP 2021012057A
Authority
JP
Japan
Prior art keywords
tire
belt
vehicle
shaft
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019125306A
Other languages
English (en)
Other versions
JP7326937B2 (ja
Inventor
山口 崇
Takashi Yamaguchi
崇 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2019125306A priority Critical patent/JP7326937B2/ja
Publication of JP2021012057A publication Critical patent/JP2021012057A/ja
Application granted granted Critical
Publication of JP7326937B2 publication Critical patent/JP7326937B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

【課題】タイヤ側の制御に対し遅れることなくベルト側を制御できるタイヤ試験システムを提供すること。【解決手段】タイヤ試験システムは、その外周面に模擬路面が形成された帯状のフラットベルトと、フラットベルトが架け渡された一対のベルトドラムと、タイヤをタイヤ駆動軸で軸支するとともにこのタイヤを模擬路面上で運動させるタイヤ支持駆動装置と、一対のベルトドラムの少なくとも何れかを回転させる路面駆動モータ26と、タイヤ駆動軸に作用する力を検出する力センサ39と、力センサ39の検出信号に基づいて路面駆動モータ26への入力信号を生成する総括制御装置6と、を備える。総括制御装置6は、路面駆動モータ26によって所定慣性を模擬する電気慣性制御を力センサ39の検出信号に基づいて行うベルト軸コントローラ69を備える。【選択図】図4

Description

本発明は、タイヤ試験システムに関する。より詳しくは、本発明は、実タイヤを模擬路面上で運動させることにより、実タイヤの性能を評価するタイヤ試験システムに関する。
四輪の自動車や自動二輪車等の多くの車両には、少なくとも2つのタイヤが装着される。タイヤの性能は、その材質、形状、空気圧、路面への接触荷重、及び温度等の様々な要因によって変化する。このようなタイヤの性能を評価するタイヤ試験装置として、ベルトやローラ等の模擬路面上でタイヤを回転させながら、そのキャンバー角、スリップ角、及び垂直荷重等を調整しつつ、この際にタイヤに加わる力や転がり抵抗等を測定するものが公知となっている。このようなタイヤ試験装置によれば、タイヤを現実の車両に装着したり、さらにこの実車両をテストコースで実際に走行させたりすることなく、タイヤ単体で性能を評価できるため、試験にかかる時間が短く利便性が高い。
また近年では、上記のようなタイヤ試験装置で現実のタイヤを用いることで得られた情報を入力として、車両モデルを用いたシミュレーションによって車両全体の挙動を再現し、さらにこのシミュレーションによって得られた情報をタイヤ試験装置において現実のタイヤを運動させるアクチュエータにフィードバックするタイヤ試験システムが提案されている(例えば、特許文献1参照)。このように、現実の装置(上記の例では、現実のタイヤ及びそのタイヤ試験装置)をシミュレーションに組み込んだ試験システムは、HIL(Hardware In the Loop)シミュレータとも呼称されている。
このようなタイヤ試験システムでは、車両の挙動を再現するシミュレーションによって得られた情報をタイヤ試験装置に入力することにより、より実走行条件に近い条件でタイヤの試験を行うことができる。またタイヤは、ゴム、有機繊維、金属等の複合素材で構成され、大きな変化を伴う弾性体であり、路面状態や温度によって性能が大きく変化すること等から、タイヤの挙動を精度良く再現できるタイヤモデルを構築することは困難である。これに対し、上記試験装置によれば、実タイヤから得られた情報を用いて、シミュレーションによって車両の挙動を再現することにより、より実走行条件に近い条件で精密な車両挙動の解析が可能となる。
特開2018−146421号公報
ところで特許文献1に示されたタイヤ試験システムでは、タイヤ側の制御とベルト側の制御とを独立して行っていた。より具体的には、タイヤ側については上記のようにシミュレーションと組み合わせた制御を行いつつ、ベルト側についてはベルトを移動させるベルトモータに設けられた軸トルクセンサや速度センサの検出信号を用いた速度制御基準の電気慣性制御を行っていた。
このようにタイヤ側とベルト側とを独立して制御する特許文献1のタイヤ試験システムでは、ベルト摩擦の大きさやベルトのがたつきにより、タイヤ側の駆動に対して正しく軸トルクを検出することができず、遅れやオフセット等の誤差が生じる場合がある。より具体的には、例えば発進時においてタイヤがベルト上で回転しているにも関わらず、ベルトにはトルクが十分に伝達しきっていないことでベルト側の電気慣性制御の立ち上がりが遅れてしまう場合があり、結果として想定と異なる挙動を示すおそれがある。
本発明は、タイヤ側の制御に対し遅れることなくベルト側を制御できるタイヤ試験システムを提供することを目的とする。
(1)本発明に係るタイヤ試験システム(例えば、後述のタイヤ試験システムS)は、実タイヤ(例えば、後述のタイヤT)を模擬路面(例えば、後述の模擬路面25a)上で運動させるものであって、その外周面に前記模擬路面が形成された帯状のベルト(例えば、後述のフラットベルト25)と、前記ベルトが架け渡された一対のドラム(例えば、後述のベルトドラム24a,24b)と、前記実タイヤをタイヤ軸(例えば、後述のタイヤ駆動軸42)で軸支するとともに当該実タイヤを前記模擬路面上で運動させるタイヤ支持駆動装置(例えば、後述のタイヤ支持駆動装置3)と、前記一対のドラムの少なくとも何れかを回転させるベルトアクチュエータ(例えば、後述の路面駆動モータ26)と、前記タイヤ軸に作用する力を検出する力センサ(例えば、後述の力センサ39)と、前記力センサの検出信号に基づいて前記ベルトアクチュエータへの入力信号を生成する制御装置(例えば、後述の総括制御装置6)と、を備えることを特徴とする。
(2)この場合、前記制御装置は、前記ベルトアクチュエータによって所定慣性を模擬する電気慣性制御を前記力センサの検出信号に基づいて行うことが好ましい。
(3)この場合、前記タイヤ試験システムは、前記ベルトアクチュエータの回転速度であるベルト軸回転速度(例えば、後述のベルト軸回転速度ωbel)を検出するベルト軸回転速度センサ(例えば、後述のベルト軸回転速度センサ27)をさらに備え、前記制御装置は、前記力センサの検出信号に基づいて前記実タイヤを駆動輪とした仮想車両の挙動を模擬することにより、前記仮想車両の車速(例えば、後述の車体速度Vx)を算出する車両モデルシミュレータ(例えば、後述の車両モデルシミュレータ60)と、前記ベルト軸回転速度と前記車速に比例するベルト軸回転速度指令(例えば、後述のωbel_cmd)との偏差が無くなるように前記ベルトアクチュエータの回転速度を制御するベルト速度制御装置(例えば、後述のベルト軸コントローラ69)と、を備えることが好ましい。
(4)この場合、前記タイヤ試験システムは、前記タイヤ軸に作用するタイヤ軸トルク(例えば、後述のタイヤ軸トルクTtire)を検出するタイヤ軸トルクセンサ(例えば、後述のタイヤ軸トルクセンサ40)と、前記タイヤ軸のタイヤ軸回転速度(例えば、後述のタイヤ軸回転速度ωtire)を検出するタイヤ軸回転速度センサ(例えば、後述のタイヤ軸回転速度センサ41)と、をさらに備え、前記制御装置は、前記タイヤ軸トルクと前記車両モデルシミュレータによって算出されるタイヤ軸トルク指令(例えば、後述のタイヤ軸トルク指令Ttire_cmd)との偏差が無くなるように前記タイヤ軸トルクを制御するタイヤ軸トルク制御装置(例えば、後述のタイヤ軸コントローラ68)を備え、前記車両モデルシミュレータは、前記力センサの検出信号に基づいて前記仮想車両の車体の挙動を模擬することにより、前記仮想車両の車速を算出する車体モデル演算部(例えば、後述の車体モデル演算部613)と、前記車速と当該車速に対する車速指令(例えば、後述の車速指令V_cmd)との偏差が無くなるように前記仮想車両に搭載される仮想パワートレインに対する指令信号を生成する仮想車速制御装置(例えば、後述の仮想車速制御装置63)と、前記仮想車速制御装置によって生成される指令信号と前記タイヤ軸回転速度センサの検出信号とに基づいて前記仮想パワートレインの挙動を模擬することにより、前記仮想パワートレインの仮想出力軸に発生する軸トルクを前記タイヤ軸トルク指令として算出するパワートレインモデル演算部(例えば、後述のパワートレインモデル演算部612)と、を備えることが好ましい。
(1)本発明のタイヤ試験システムは、実タイヤをタイヤ軸で軸支するとともにこの実タイヤを模擬路面上で運動させるタイヤ支持駆動装置と、タイヤ軸に作用する力を検出する力センサと、ベルトが架け渡された一対のドラムの少なくとも何れかを回転させるベルトアクチュエータと、力センサの検出信号に基づいてベルトアクチュエータへの入力信号を生成する制御装置と、を備える。ここでタイヤ支持駆動装置によって実タイヤを模擬路面上で運動させると、実タイヤを軸支するタイヤ軸には模擬路面からの反力が作用する。よって本発明によれば、このようなタイヤ側に設けられた力センサの検出信号に基づいてベルトアクチュエータを制御することにより、ベルト摩擦の小さい場合やベルトにがたつきが存在する場合であっても、タイヤ支持駆動装置によるタイヤ側の制御に対し遅れることなくベルトアクチュエータを制御できる。
(2)本発明のタイヤ試験システムにおいて、制御装置は、ベルトアクチュエータによって所定慣性を模擬する電気慣性制御を、タイヤ側に設けられた力センサの検出信号に基づいて行う。これにより、タイヤ支持駆動装置によるタイヤ側の制御に対し遅れることなくベルトアクチュエータを制御できる。
(3)本発明のタイヤ試験システムにおいて、制御装置は、力センサの検出信号に基づいて実タイヤを駆動輪とした仮想車両の挙動を模擬することによって、仮想車両の車速を算出する車両モデルシミュレータと、ベルト軸回転速度センサによって検出されるベルト軸回転速度と車速に比例するベルト軸回転速度指令との偏差が無くなるようにベルトアクチュエータの回転速度を制御するベルト速度制御装置と、を備える。このように本発明では、ベルト軸回転速度センサによって検出されるベルト軸回転速度と車両モデルシミュレータにおいて仮想車両の挙動を模擬することによって算出されるベルト軸回転速度指令との偏差が無くなるようにベルトアクチュエータの回転速度を制御することにより、ベルト、ドラム、及びベルトアクチュエータを合わせた機械慣性を車両モデルシミュレータで想定する車体慣性にする電気慣性制御を行うことができる。
(4)本発明のタイヤ試験システムにおいて、車両モデルシミュレータは、力センサの検出信号に基づいて仮想車両の車体の挙動を模擬することによって仮想車両の車速を算出する車体モデル演算部と、車速とこの車速に対する車速指令との偏差が無くなるように仮想パワートレインに対する指令信号を生成する仮想車速制御装置と、この仮想車速制御装置によって生成される指令信号とタイヤ軸回転速度センサの検出信号とに基づいて仮想パワートレインの挙動を模擬することによってタイヤ軸トルク指令を算出するパワートレインモデル演算部と、を備える。またタイヤ軸トルク制御装置は、タイヤ軸トルクセンサによって検出されるタイヤ軸トルクとパワートレインモデル演算部によって算出されるタイヤ軸トルク指令との偏差が無くなるようにタイヤ支持駆動装置を用いることによってタイヤ軸トルクを制御し、ベルト速度制御装置は、ベルト軸回転速度センサによって検出されるベルト軸回転速度と車体モデル演算部における演算を経て算出されるベルト軸回転速度指令との偏差が無くなるようにベルトアクチュエータの回転速度を制御する。これにより、実タイヤを用いたタイヤ試験ユニットと、パワートレインモデル演算部及び車体モデル演算部とをリアルタイムで連携し、より現実に近い実車走行を模擬路面上で再現できるHILシステムを構築できる。
本発明の一実施形態に係るタイヤ試験システムの構成を示す図である。 タイヤ試験システムに設けられる複数のモータ及び複数のセンサを模式的に示す図である。 模擬路面上におけるスリップ角を示す図である。 模擬路面上におけるキャンバー角を示す図である。 模擬路面上で運動するタイヤに作用する力を示す図である。 総括制御装置の機能ブロック図である。 パワートレインモデル演算部で用いられるパワートレインモデルの構成を示す図である。 仮想車両の車体の平面図に、車体モデル演算部への入力情報を模式的に示した図である。 仮想車両の車体の平面図に、車体モデル演算部における演算によって算出されるパラメータを模式的に示した図である。 車体の運動方程式に基づいて導出される車体加速モデルの一例を示す図である。
以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係るタイヤ試験システムSの構成を示す図である。
図2は、タイヤ試験システムSに設けられる複数のモータ及び複数のセンサを模式的に示す図である。
タイヤ試験システムSは、複数のモータを用いて現実のタイヤTに様々な外力を加えることによってタイヤTを運動させるタイヤ試験ユニット1と、タイヤ試験ユニット1を制御する総括制御装置6と、を備える。
タイヤ試験システムSは、タイヤ試験ユニット1において現実のタイヤTを用いて得らえた情報を総括制御装置6への入力とし、総括制御装置6ではタイヤTを構成要素の一部とした仮想車両の挙動を、モデルを用いたシミュレーションによって再現し、さらにこのシミュレーションによって得られた情報をタイヤ試験ユニット1にフィードバックする。すなわち、タイヤ試験システムSは、現実のタイヤTをシミュレーションに組み込んだ所謂HILシステムと呼称されるものである。
なお以下では、タイヤ試験システムSにおいて想定する仮想車両は、エンジンを動力発生源とした四輪の自動車とするが、仮想車両の車輪の数や動力発生源はこれらに限らない。またタイヤTは、この仮想車両における動力発生源からの動力が伝達する駆動輪でありかつ運転者が操作可能なステアリングによって操舵角を変化させることができる転舵輪である場合について説明するが、仮想車両におけるタイヤTの役割はこれに限らない。
タイヤ試験ユニット1は、ホイールにリム組みされたタイヤTと、タイヤTが接する路面模擬装置2と、タイヤTを支持しつつこのタイヤTを路面模擬装置2上で運動させるタイヤ支持駆動装置3と、を備える。
路面模擬装置2は、水平な床面に固定された基台21と、この基台21に対し垂直な鉛直方向に沿った回動軸OSAを中心として回動自在に設けられたベルトユニット22と、このベルトユニット22を、回動軸を中心として回動させるスリップ角モータ23(図2参照)と、スリップ角センサ29(図2参照)と、を備える。
ベルトユニット22は、回転可能に設けられた一対の筒状のベルトドラム24a,24bと、これらベルトドラム24a.24bの外周に架け渡された無端帯状のフラットベルト25と、を備える。フラットベルト25の外周面には、実路面を模した加工が施されている。これにより、フラットベルト25の外周面のうち鉛直上方の面は、タイヤTが接する模擬路面25aとなっている。これらベルトドラム24a,24bの回転軸は、互いに平行でありかつ上記回動軸OSAに対し垂直となっている。
また一対のベルトドラム24a,24bの少なくとも何れかには、その出力軸が同軸に連結された路面駆動モータ26(図2参照)と、路面駆動モータ26の出力軸の回転速度を検出するベルト軸回転速度センサ27(図2参照)と、が設けられている。
路面駆動モータ26は、総括制御装置6からの指令信号に応じてドラム24aを回転駆動する。これにより模擬路面25aは、ベルトドラム24aの回転速度に応じた速度で、回動軸OSAに対し垂直な平面内を、路面進行方向FRに沿って流れる。ベルト軸回転速度センサ27は、路面駆動モータ26の出力軸の回転速度(以下、ベルト軸回転速度ωbelという)に応じたベルト軸回転速度検出信号を生成し、これを総括制御装置6へ送信する。
スリップ角モータ23は、総括制御装置6からの信号に応じてベルトユニット22を、回動軸OSAを中心として回動させる。路面模擬装置2では、スリップ角モータ23を用いてベルトユニット22を回動させることにより、図3Aに示すように、模擬路面25a上におけるタイヤTの回転軸Rと垂直なタイヤ進行方向FTと路面進行方向FRとの成す角αであるスリップ角を調整することができる。スリップ角センサ29は、スリップ角θSAに応じたスリップ角検出信号を生成し、総括制御装置6へ送信する。
タイヤ支持駆動装置3は、ベルトユニット22のベルト送り方向である路面進行方向FRの両端側の床面に固定された一対の台座31a,31bと、これら台座31a,31bによって両端部が支持された弧状のフレーム33と、このフレーム33によって支持された棒状の支持アーム35と、このアーム35の先端部に設けられた回転駆動ユニット36と、を備える。
フレーム33は、フラットベルト25の鉛直上方を延びる。フレーム33の両端部は、それぞれ、台座31a,31bによってフラットベルト25の延在方向と略垂直な回動軸OCAを中心として回動自在に支持されている。また台座31aには、フレーム33を、回動軸OCAを中心として回動駆動するキャンバー角調整モータ32(図2参照)と、フレーム33の模擬路面25aに対する角度を検出するキャンバー角センサ34と、が設けられている。キャンバー角調整モータ32は、総括制御装置6からの指令信号に応じてフレーム33を、回動軸OCAを中心として回動させる。タイヤ支持駆動装置3では、このキャンバー角調整モータ32を用いてフレーム33及びこれに支持された支持アーム35を回動させることにより、図3Bに示すように、模擬路面25a上におけるタイヤTの回転軸Rと模擬路面25aとの成す角、すなわち模擬路面25aの法線と回転軸Rと垂直な面との成す角βであるキャンバー角を調整することができる。キャンバー角センサ34は、キャンバー角θCAに応じたキャンバー角検出信号を生成し、総括制御装置6へ送信する。
支持アーム35は、模擬路面25aに対し垂直な鉛直方向に沿って延びる。支持アーム35の基端部は、フレーム33によって支持アーム35の延在方向に沿って摺動自在に支持されている。フレーム33には、支持アーム35を、その延在方向に沿って変位させる垂直荷重調整モータ37(図2参照)が設けられている。垂直荷重調整モータ37は、総括制御装置6からの指令信号に応じて、支持アーム35を、その延在方向に沿って変位させる。タイヤ支持駆動装置3では、この垂直荷重調整モータ37を用いて支持アーム35を変位させることにより、タイヤTを模擬路面25aに対し接地させたり、タイヤTを模擬路面25aに対し離間させたりする。またタイヤ支持駆動装置3では、この垂直荷重調整モータ37を用いて支持アーム35を変位させることにより、タイヤTを模擬路面25aに押さえつける力である垂直荷重を調整することも可能となっている。
回転駆動ユニット36は、支持アーム35の先端部において、タイヤTを回転自在に支持する。図2に示すように、回転駆動ユニット36は、タイヤ駆動モータ38と、力センサ39と、タイヤ軸トルクセンサ40と、タイヤ軸回転速度センサ41と、タイヤ駆動軸42と、を備える。
タイヤ駆動軸42は、支持アーム35に対し略垂直に延び、その先端側においてタイヤTを軸支する。タイヤ駆動軸42の先端側は、タイヤTのハブに連結され、基端側は、タイヤ駆動モータ38の出力軸に連結されている。タイヤ駆動モータ38は、総括制御装置6からの指令信号に応じてタイヤTを回動駆動する。タイヤ軸回転速度センサ41は、タイヤ駆動軸42の回転速度(以下、タイヤ軸回転速度ωtireという)に応じたタイヤ軸回転速度検出信号を生成し、これを総括制御装置6へ送信する。
力センサ39は、模擬路面25a上で運動するタイヤTを軸支するタイヤ駆動軸42に作用する力を検出する。この力センサ39には、例えば、図3Cに示すようにタイヤ駆動軸42に作用する6分力のうちの5つを検出する5分力計が用いられる。より具体的には、力センサ39は、タイヤTの進行方向軸Xに沿った前後力Fxに応じた前後力検出信号と、タイヤTの横方向軸Yに沿った横力Fyに応じた横力検出信号と、タイヤTの縦方向軸Zに沿った垂直荷重Fzに応じた垂直荷重検出信号と、タイヤTの進行方向軸X周りのモーメントMxに応じたオーバターニング検出信号と、及びタイヤTの縦方向軸Z周りのモーメントMzに応じたセルフアライニングトルク検出信号と、を総括制御装置6へ送信する。なお以下では、力センサ39によって生成される上記5つの信号をまとめて力検出信号ともいう。
タイヤ軸トルクセンサ40は、タイヤ駆動軸42における軸トルク(以下、タイヤ軸トルクTtireという)、すなわちタイヤTの横方向軸周りのモーメントに応じたタイヤ軸トルク検出信号を生成し、このタイヤ軸トルク検出信号を総括制御装置6へ送信する。
図4は、総括制御装置6の機能ブロック図である。総括制御装置6は、現実のタイヤTを駆動輪の1つとし、このタイヤTによって模擬路面25a上を走行する仮想車両の挙動を、タイヤ試験ユニット1に設けられた複数のセンサの検出信号を入力として模擬することにより、タイヤ試験ユニット1に設けられた複数のアクチュエータへの入力信号を生成し、これら入力信号を各アクチュエータに入力する。
総括制御装置6は、入出力信号をA/D変換するI/Oインターフェース、各種プログラムに従って演算処理を実行するCPU、各種データを記憶するROM及びRAM等の記憶手段、作業者が各種指令を入力するために操作可能な入力手段、並びに演算結果等を作業者が視認可能な態様で表示する表示手段等のハードウェアによって構成されるコンピュータである。また総括制御装置6には、以下で説明する機能を備えるモジュールとして、車両モデルシミュレータ60と、スリップ角コントローラ65と、垂直荷重コントローラ66と、キャンバー角コントローラ67と、タイヤ軸コントローラ68と、ベルト軸コントローラ69とが、上記ハードウェアによって構成されている。
車両モデルシミュレータ60は、車両モデル演算部61と、仮想車速制御装置63と、を備える。
仮想車速制御装置63は、車両モデル演算部61における演算によってその挙動が再現される仮想車両のスロットル開度に対する指令(以下、スロットル開度指令Thという)に相当するスロットル開度指令信号を生成し、これを車両モデル演算部61へ入力する。より具体的には、仮想車速制御装置63は、予め定められた車速指令V_cmdと車両モデル演算部61における演算によって算出される仮想車両の車体速度Vxとの偏差に基づくPI制御によって、この偏差が無くなるようにスロットル開度指令Thを算出し、このスロットル開度指令Thに応じたスロットル開度指令信号を車両モデル演算部61へ入力する。
車両モデル演算部61は、予め定められたステアリング角指令θSTと、スロットル開度指令Thと、タイヤ軸回転速度ωtireと、前後力Fxと、横力Fyと、垂直荷重Fzと、を入力として用いて、仮想車両の挙動を模擬した演算を行うことによって、タイヤ試験ユニット1の各アクチュエータへの入力信号に対する指令信号に相当するスリップ角指令信号と、垂直荷重指令信号と、キャンバー角指令信号と、タイヤ軸トルク指令信号と、ベルト軸回転速度指令信号と、を生成する。
より具体的には、車両モデル演算部61では、仮想車両を構成する複数の装置を、現実のタイヤTと、仮想パワートレイン要素と、仮想車体要素と、に分けるとともに、各要素の挙動を別々の演算によって再現することにより、仮想車両全体の挙動を再現する。
車両モデル演算部61には、仮想パワートレイン要素の挙動を演算によって再現するパワートレインモデル演算部612と、仮想車体要素の挙動を演算によって再現する車体モデル演算部613と、車速をベルト軸回転速度に変換する単位変換部614と、が構成されている。
パワートレインモデル演算部612では、仮想車両における仮想動力発生源である仮想エンジンから仮想車両の駆動輪であるタイヤTのハブに連結される仮想出力軸までの仮想パワートレイン要素の入出力特性を、演算によって再現する。より具体的には、パワートレインモデル演算部612では、仮想車速制御装置63によって算出されるスロットル開度指令Thと、図示しない処理によって算出された仮想的な動力発生源であるエンジンの回転数ωengと、タイヤ軸回転速度ωtireと、を含む複数の入力に基づいて、上記仮想パワートレイン要素における仮想エンジンから仮想出力軸までの挙動を模擬した演算を行うことによって、この仮想出力軸に発生する軸トルクをタイヤ軸トルク指令Ttire_cmdとして算出し、このタイヤ軸トルク指令Ttire_cmdに応じたタイヤ軸トルク指令信号をタイヤ軸コントローラ68へ入力する。
図5は、パワートレインモデル演算部612で用いられるパワートレインモデルMの構成を示す図である。図5に示すように、パワートレインモデルMは、仮想エンジンの入出力特性を模擬するエンジン出力モデルMeと、仮想エンジンの仮想クランクシャフトから仮想出力軸までの機械特性を模擬するパワートレイン機械モデルMpと、を組み合わせて構成される。
エンジン出力モデルMeは、スロットル開度指令Th及びエンジン回転数ωengを入力として、仮想エンジンの入出力特性を模擬した演算を行うことによって、エンジントルクTengを算出する。なお、現実のエンジンの入出力特性は一般的には非線形である。そこでエンジン出力モデルMeでは、このような入出力特性の非線形性を的確に再現できるように、例えば現実のエンジンの入出力特性を測定することによって構築されたマップやテーブルを用いることによって、スロットル開度指令Th及びエンジン回転数ωengに応じたエンジントルクTengを算出する。
パワートレイン機械モデルMpは、エンジントルクTeng及びタイヤ軸回転速度ωtireを入力として、仮想パワートレイン要素の機械特性を模擬した演算を行うことによって、タイヤ軸トルク指令Ttire_cmdを算出する。パワートレイン機械モデルMpでは、仮想パワートレイン要素を、仮想エンジンと、その入力軸が仮想エンジンの出力軸と連結された仮想トルクコンバータと、その入力軸が仮想トルクコンバータの出力軸と連結された仮想トランスミッションと、この仮想トランスミッションの出力軸と連結された仮想出力軸と、で構成されるものとする。そしてパワートレイン機械モデルMpでは、図5に示すように、仮想エンジンの機械特性をエンジン機械モデルMp1によって再現し、仮想トルクコンバータの機械特性をトルクコンバータ機械モデルMp2によって再現し、仮想トランスミッションの機械特性をトランスミッション機械モデルMp3によって再現し、仮想出力軸の機械特性を出力軸機械モデルMp4によって再現する。
エンジン機械モデルMp1では、仮想エンジンを、所定のエンジン慣性モーメントJEを有しかつエンジン出力モデルMeによって算出されたエンジントルクTengが入力される慣性体として扱うことにより、その機械特性を模擬する。
トルクコンバータ機械モデルMp2では、慣性体が連結される入力軸から仮想トランスミッションの入力軸が連結される出力軸までの仮想トルクコンバータの機械特性を、例えば、予め実機を用いて構築されたマップやテーブル等を用いることによって模擬する。またトルクコンバータ機械モデルMp2では、その入力軸は慣性体に連結されていることから、その回転速度は慣性体の回転速度と等しいものとして扱う。
トランスミッション機械モデルMp3では、仮想トルクコンバータの出力軸が連結される入力軸から仮想出力軸が連結される出力軸までの仮想トランスミッションの機械特性を、例えば、予め実機を用いて構築されたマップやテーブル等を用いることによって模擬する。またトランスミッション機械モデルMp3では、その入力軸は仮想トルクコンバータの出力軸に連結されていることから、その回転速度は仮想トルクコンバータの出力軸の回転速度と等しいものとして扱う。
出力軸機械モデルMp4では、仮想出力軸を、所定の出力軸慣性モーメントJshaftを有し、かつ所定のばね剛性K及び減衰係数Cを有する軸体として扱うことにより、その機械特性を模擬する。出力軸機械モデルMp4では、軸体の入力側は仮想トランスミッションの出力軸に連結されていることから、この軸体の入力側の回転速度は仮想トランスミッションの出力軸の回転速度と等しいものとして扱う。また出力軸機械モデルMp4では、軸体の出力側はタイヤTのハブに連結されていることから、その回転速度はタイヤ軸回転速度ωtireと等しいものとして扱う。
パワートレイン機械モデルMpでは、以上のように構成された機械モデルMp1〜Mp4を組み合わせることにより、エンジントルクTeng及びタイヤ軸回転速度ωtireに応じたタイヤ軸トルク指令Ttire_cmdを算出する。
次に、車体モデル演算部613における演算について説明する。
車体モデル演算部613では、力センサ39によって検出される前後力Fx及び横力Fyと、ステアリング角指令θSTとに基づいて、タイヤTを駆動輪の1つとする仮想車両の車体の挙動を模擬する演算を行うことにより、この仮想車両の路面進行方向FRに沿った速度である車体速度Vxと、スリップ角指令θSA_cmdと、垂直荷重指令Fz_cmdと、キャンバー角指令θCA_cmdと、を算出する。
図6は、仮想車両の車体Bの平面図に、車体モデル演算部613への入力情報を模式的に示した図である。車体モデル演算部613では、例えば、前方側の2つのタイヤを駆動輪とする前輪駆動の車両でありかつ前方右側の駆動輪をタイヤTとする車両を仮想車両とし、この仮想車両の車体Bの挙動を模擬する。より具体的には、車体モデル演算部613は、力センサ39によって検出される前後力Fx及び横力Fyと、ステアリング角指令θSTと、予め定められた車体Bの車両重量及び重心位置と、に基づいて車体Bの挙動を模擬した演算を行う。
図7は、仮想車両の車体Bの平面図に、車体モデル演算部613における演算によって算出されるパラメータを模式的に示した図である。車体モデル演算部613では、上述のような入力情報に基づいて車体Bの挙動を模擬した演算を行うことにより、図7に示すように、車体Bの路面進行方向FRに沿った速度である車体速度Vxと、車体Bのヨー角θyawと、車体Bのロール角θrollと、垂直荷重指令Fz_cmdと、を算出する。
より具体的には、車体モデル演算部613は、車体Bの前方側の2つの駆動輪にはそれぞれ前後力Fx及び横力Fyに応じた駆動力が発生し、さらにこれら2つの駆動輪のステアリング角はθSTであるという条件の下で車体Bに対して成立する運動方程式を解くことによって車体速度Vx、ヨー角θyaw、ロール角θroll、及び垂直荷重指令Fz_cmdを算出する。
図8は、前輪駆動車の車体Bの運動方程式に基づいて導出される車体加速モデルの一例を示す図である。図8において、“M”は車両重量であり、“s”はラプラス演算子であり、“D”は走行中の車体Bに作用する走行抵抗である。車体モデル演算部613は、力センサ39によって検出される前後力Fxを図8に示すような車体加速モデルに入力することによって車体速度Vxを算出する。
図4に示すように、車体モデル演算部613は、以上のようにして算出した車体速度Vxに応じた車体速度信号を仮想車速制御装置63及び単位変換部614へ入力する。また車体モデル演算部613は、以上のようにして算出した垂直荷重指令Fzに応じた垂直荷重指令信号を垂直荷重コントローラ66へ入力する。また車体モデル演算部613は、以上のようにして算出したヨー角θyaw及びロール角θrollに基づいてタイヤTのスリップ角指令θSA_cmd及びキャンバー角指令θCA_cmdを算出し、これらスリップ角指令θSA_cmd及びキャンバー角指令θCA_cmdに応じたスリップ角指令信号及びキャンバー角指令信号をスリップ角コントローラ65及びキャンバー角コントローラ67へ入力する。
単位変換部614は、車体モデル演算部613によって算出される車体速度Vxに所定の変換係数を乗算することによって、ベルト軸回転速度ωbelに対する指令に相当するベルト軸回転速度指令ωbel_cmdを算出し、このベルト軸回転速度指令ωbel_cmdに応じたベルト軸回転速度指令信号をベルト軸コントローラ69へ入力する。
スリップ角コントローラ65は、車体モデル演算部613によって算出されるスリップ角指令θSA_cmdと、スリップ角センサ29によって検出されるスリップ角θSAとの偏差に基づくPI制御によって、この偏差が無くなるようにスリップ角モータ23への入力信号を生成し、これをスリップ角モータ23へ入力する。
垂直荷重コントローラ66は、車体モデル演算部613によって算出される垂直荷重指令Fz_cmdと、力センサ39によって検出される垂直荷重Fzとの偏差に基づくPI制御によって、この偏差が無くなるように垂直荷重調整モータ37への入力信号を生成し、これを垂直荷重調整モータ37へ入力する。
キャンバー角コントローラ67は、車体モデル演算部613によって算出されるキャンバー角指令θCA_cmdと、キャンバー角センサ34によって検出されるキャンバー角θCAとの偏差に基づくPI制御によって、この偏差が無くなるようにキャンバー角調整モータ32への入力信号を生成し、これをキャンバー角調整モータ32へ入力する。
タイヤ軸コントローラ68は、パワートレインモデル演算部612によって算出されるタイヤ軸トルク指令Ttire_cmdと、タイヤ軸トルクセンサ40によって検出されるタイヤ軸トルクTtireとの偏差に基づくPI制御によって、この偏差が無くなるようにタイヤ駆動モータ38への入力信号を生成し、これをタイヤ駆動モータ38へ入力する。
ベルト軸コントローラ69は、単位変換部614において車体速度Vxに基づいて算出されるベルト軸回転速度指令ωbel_cmdと、ベルト軸回転速度センサ27によって検出されるベルト軸回転速度ωbelとの偏差に基づくPI制御によって、この偏差が無くなるように路面駆動モータ26への入力信号を生成し、これを路面駆動モータ26へ入力する。換言すれば、ベルト軸コントローラ69は、模擬路面25aの路面進行方向FRに沿った速度が車体モデル演算部613によって算出される車体速度Vxになるように、路面駆動モータ26の回転速度を制御する。なお上述のように車体モデル演算部613では、仮想車両の車体Bの車両重量M及び走行抵抗Dを考慮して車体速度Vxを算出する。このため、ベルト軸コントローラ69によって上述のように路面駆動モータ26の速度制御を行うことは、路面駆動モータ26によって車両重量M相当の車体慣性を模擬する電気慣性制御、すなわちフラットベルト25、ベルトドラム24a,24b、及び路面駆動モータ26を合わせた機械慣性を車両重量M相当の車体慣性にする電気慣性制御を行うことと等価である。
本実施形態に係るタイヤ試験システムSによれば、以下の効果を奏する。
(1)タイヤ試験システムSは、タイヤTをタイヤ駆動軸42で軸支するとともにこのタイヤTを模擬路面25a上で運動させるタイヤ支持駆動装置3と、タイヤ駆動軸42に作用する力を検出する力センサ39と、フラットベルト25が架け渡された一対のベルトドラム24a,24bの少なくとも何れかを回転させる路面駆動モータ26と、力センサ39の検出信号に基づいて路面駆動モータ26への入力信号を生成する総括制御装置6と、を備える。ここでタイヤ支持駆動装置3によってタイヤTを模擬路面25a上で運動させると、タイヤTを軸支するタイヤ駆動軸42には模擬路面25aからの反力が作用する。よってタイヤ試験システムSによれば、このようなタイヤ側に設けられた力センサ39の検出信号に基づいて路面駆動モータ26を制御することにより、ベルト摩擦の小さい場合やベルトにがたつきが存在する場合であっても、タイヤ支持駆動装置3によるタイヤ側の制御に対し遅れることなく路面駆動モータ26を制御できる。
(2)総括制御装置6は、路面駆動モータ26によって車両重量M相当の車体慣性を模擬する電気慣性制御を、タイヤ側に設けられた力センサ39の検出信号に基づいて行う。これにより、タイヤ支持駆動装置3によるタイヤ側の制御に対し遅れることなく路面駆動モータ26を制御できる。
(3)総括制御装置6は、力センサ39の検出信号に基づいてタイヤTを駆動輪とした仮想車両の挙動を模擬することによって、仮想車両の車体速度Vxを算出する車両モデルシミュレータ60と、ベルト軸回転速度センサ27によって検出されるベルト軸回転速度ωbelと車体速度Vxに比例するベルト軸回転速度指令ωbel_cmdとの偏差が無くなるように路面駆動モータ26の回転速度を制御するベルト軸コントローラ69と、を備える。このようにタイヤ試験システムSでは、ベルト軸回転速度センサ27によって検出されるベルト軸回転速度ωbelと車両モデルシミュレータ60において仮想車両の挙動を模擬することによって算出されるベルト軸回転速度指令ωbel_cmdとの偏差が無くなるように路面駆動モータ26の回転速度を制御することにより、フラットベルト25、ベルトドラム24a,24b、及び路面駆動モータ26を合わせた機械慣性を車両重量M相当の車体慣性にする電気慣性制御を行うことができる。
(4)車両モデルシミュレータ60は、力センサ39の検出信号に基づいて仮想車両の車体Bの挙動を模擬することによって仮想車両の車体速度Vxを算出する車体モデル演算部613と、車体速度Vxとこの車体速度Vxに対する車速指令V_cmdとの偏差が無くなるように仮想パワートレインに対するスロットル開度指令Thを算出する仮想車速制御装置63と、この仮想車速制御装置63によって算出されるスロットル開度指令Thとタイヤ軸回転速度センサ41によって検出されるタイヤ軸回転速度ωtireとに基づいて仮想パワートレインの挙動を模擬することによってタイヤ軸トルク指令Ttire_cmdを算出するパワートレインモデル演算部612と、を備える。またタイヤ軸コントローラ68は、タイヤ軸トルクセンサ40によって検出されるタイヤ軸トルクTtireとパワートレインモデル演算部612によって算出されるタイヤ軸トルク指令Ttire_cmdとの偏差が無くなるようにタイヤ駆動モータ38を用いることによってタイヤ軸トルクを制御し、ベルト軸コントローラ69は、ベルト軸回転速度センサ27によって検出されるベルト軸回転速度ωbelと車体モデル演算部613における演算を経て算出されるベルト軸回転速度指令ωbel_cmdとの偏差が無くなるように路面駆動モータ26の回転速度を制御する。これにより、タイヤTを用いたタイヤ試験ユニット1と、パワートレインモデル演算部612及び車体モデル演算部613とをリアルタイムで連携し、より現実に近い実車走行を模擬路面25a上で再現できるHILシステムを構築できる。
以上、本発明の一実施形態について説明したが、本発明はこれに限らない。本発明の趣旨の範囲内で、細部の構成を適宜変更してもよい。
S…タイヤ試験システム
1…タイヤ試験ユニット
T…タイヤ(実タイヤ)
2…路面模擬装置
24a,24b…ベルトドラム(ドラム)
25…フラットベルト(ベルト)
25a…模擬路面
26…路面駆動モータ(ベルトアクチュエータ)
27…ベルト軸回転速度センサ(ベルト軸回転速度センサ)
3…タイヤ支持駆動装置
36…回転駆動ユニット
38…タイヤ駆動モータ
39…力センサ
40…タイヤ軸トルクセンサ
41…タイヤ軸回転速度センサ
42…タイヤ駆動軸(タイヤ軸)
6…総括制御装置(制御装置)
60…車両モデルシミュレータ
61…車両モデル演算部
612…パワートレインモデル演算部
613…車体モデル演算部
614…単位変換部
63…仮想車速制御装置
68…タイヤ軸コントローラ(タイヤ軸トルク制御装置)
69…ベルト軸コントローラ(ベルト速度制御装置)

Claims (4)

  1. 実タイヤを模擬路面上で運動させるタイヤ試験システムであって、
    その外周面に前記模擬路面が形成された帯状のベルトと、
    前記ベルトが架け渡された一対のドラムと、
    前記実タイヤをタイヤ軸で軸支するとともに当該実タイヤを前記模擬路面上で運動させるタイヤ支持駆動装置と、
    前記一対のドラムの少なくとも何れかを回転させるベルトアクチュエータと、
    前記タイヤ軸に作用する力を検出する力センサと、
    前記力センサの検出信号に基づいて前記ベルトアクチュエータへの入力信号を生成する制御装置と、を備えることを特徴とするタイヤ試験システム。
  2. 前記制御装置は、前記ベルトアクチュエータによって所定慣性を模擬する電気慣性制御を前記力センサの検出信号に基づいて行うことを特徴とする請求項1に記載のタイヤ試験システム。
  3. 前記ベルトアクチュエータの回転速度であるベルト軸回転速度を検出するベルト軸回転速度センサをさらに備え、
    前記制御装置は、
    前記力センサの検出信号に基づいて前記実タイヤを駆動輪とした仮想車両の挙動を模擬することにより、前記仮想車両の車速を算出する車両モデルシミュレータと、
    前記ベルト軸回転速度と前記車速に比例するベルト軸回転速度指令との偏差が無くなるように前記ベルトアクチュエータの回転速度を制御するベルト速度制御装置と、を備えることを特徴とする請求項2に記載のタイヤ試験システム。
  4. 前記タイヤ軸に作用するタイヤ軸トルクを検出するタイヤ軸トルクセンサと、
    前記タイヤ軸のタイヤ軸回転速度を検出するタイヤ軸回転速度センサと、をさらに備え、
    前記制御装置は、前記タイヤ軸トルクと前記車両モデルシミュレータによって算出されるタイヤ軸トルク指令との偏差が無くなるように前記タイヤ軸トルクを制御するタイヤ軸トルク制御装置を備え、
    前記車両モデルシミュレータは、
    前記力センサの検出信号に基づいて前記仮想車両の車体の挙動を模擬することにより、前記仮想車両の車速を算出する車体モデル演算部と、
    前記車速と当該車速に対する車速指令との偏差が無くなるように前記仮想車両に搭載される仮想パワートレインに対する指令信号を生成する仮想車速制御装置と、
    前記仮想車速制御装置によって生成される指令信号と前記タイヤ軸回転速度センサの検出信号とに基づいて前記仮想パワートレインの挙動を模擬することにより、前記仮想パワートレインの仮想出力軸に発生する軸トルクを前記タイヤ軸トルク指令として算出するパワートレインモデル演算部と、を備えることを特徴とする請求項3に記載のタイヤ試験システム。
JP2019125306A 2019-07-04 2019-07-04 タイヤ試験システム Active JP7326937B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019125306A JP7326937B2 (ja) 2019-07-04 2019-07-04 タイヤ試験システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019125306A JP7326937B2 (ja) 2019-07-04 2019-07-04 タイヤ試験システム

Publications (2)

Publication Number Publication Date
JP2021012057A true JP2021012057A (ja) 2021-02-04
JP7326937B2 JP7326937B2 (ja) 2023-08-16

Family

ID=74227544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019125306A Active JP7326937B2 (ja) 2019-07-04 2019-07-04 タイヤ試験システム

Country Status (1)

Country Link
JP (1) JP7326937B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030671A (ja) * 2006-07-31 2008-02-14 Yokohama Rubber Co Ltd:The タイヤの制駆動時動特性評価方法および装置
JP2008058082A (ja) * 2006-08-30 2008-03-13 Kobe Steel Ltd タイヤ試験方法及びタイヤ試験装置
JP2016145719A (ja) * 2015-02-06 2016-08-12 株式会社ブリヂストン シミュレーション装置
JP2018146421A (ja) * 2017-03-07 2018-09-20 株式会社明電舎 試験装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030671A (ja) * 2006-07-31 2008-02-14 Yokohama Rubber Co Ltd:The タイヤの制駆動時動特性評価方法および装置
JP2008058082A (ja) * 2006-08-30 2008-03-13 Kobe Steel Ltd タイヤ試験方法及びタイヤ試験装置
JP2016145719A (ja) * 2015-02-06 2016-08-12 株式会社ブリヂストン シミュレーション装置
JP2018146421A (ja) * 2017-03-07 2018-09-20 株式会社明電舎 試験装置

Also Published As

Publication number Publication date
JP7326937B2 (ja) 2023-08-16

Similar Documents

Publication Publication Date Title
JP4266818B2 (ja) 操縦安定性の実時間評価用タイヤ試験機
KR100967510B1 (ko) 타이어의 제동 특성 시험 장치
US7421890B2 (en) Tire HIL simulator
EP2796850B1 (en) Vehicle test system
JP6202303B2 (ja) 車両用試験装置および車両用試験システム
JP6801525B2 (ja) 試験装置
KR102479175B1 (ko) 테스트 스탠드 상에서 테스트 런을 수행하기 위한 방법 및 장치
JP7431145B2 (ja) 自動車試験システム及び実路走行シミュレータ
JP2015040762A (ja) 車両の運動性能評価のためのシミュレーション装置
JP6164465B2 (ja) ドライビングシミュレータのモーション制御方法及び車両試験システム
JP6416006B2 (ja) シミュレーション装置
US6733294B2 (en) Motorcycle cornering simulator
JP7175446B2 (ja) タイヤ試験装置のタイヤ駆動制御装置
JP7326937B2 (ja) タイヤ試験システム
JPS6310775B2 (ja)
JP7175445B2 (ja) タイヤ試験装置の軸トルク制御器
Vörös et al. Small-scale experimental test rig for lateral vehicle control
JPH102842A (ja) 車両シミュレーションシステム
JP5414582B2 (ja) タイヤ試験装置
JP6380798B2 (ja) 車両挙動再現システム
JP2000132083A (ja) 車両用シミュレーションシステム
JP2014215227A (ja) 車両用試験装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R150 Certificate of patent or registration of utility model

Ref document number: 7326937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150