JP2021000949A - 操舵装置 - Google Patents

操舵装置 Download PDF

Info

Publication number
JP2021000949A
JP2021000949A JP2019116681A JP2019116681A JP2021000949A JP 2021000949 A JP2021000949 A JP 2021000949A JP 2019116681 A JP2019116681 A JP 2019116681A JP 2019116681 A JP2019116681 A JP 2019116681A JP 2021000949 A JP2021000949 A JP 2021000949A
Authority
JP
Japan
Prior art keywords
tooth surface
normal force
surface normal
calculation unit
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019116681A
Other languages
English (en)
Inventor
東 真康
Masayasu Azuma
真康 東
大輔 三木
Daisuke Miki
大輔 三木
ロバート フックス
Robert Fuchs
ロバート フックス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2019116681A priority Critical patent/JP2021000949A/ja
Priority to EP20181413.4A priority patent/EP3756977A1/en
Priority to US16/907,733 priority patent/US20200398889A1/en
Priority to CN202010574074.1A priority patent/CN112124414A/zh
Publication of JP2021000949A publication Critical patent/JP2021000949A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/20Connecting steering column to steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • B62D3/126Steering gears mechanical of rack-and-pinion type characterised by the rack
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0442Conversion of rotational into longitudinal movement
    • B62D5/0454Worm gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/006Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels using a measured or estimated road friction coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】ラック軸力を精度よく推定できる操舵装置を提供する。【解決手段】制御部は、減速機構に生じる第1摩擦トルクを演算する第1摩擦トルク演算部と、ラックアンドピニオン機構に生じる第2摩擦トルクを演算する第2摩擦トルク演算部と、操舵トルク、モータ電流、第1摩擦トルクおよび電動モータの回転角に基づき、減速機構に生じる第1負荷トルクおよびコラム軸の回転角であるコラム角を推定する第1負荷トルク・コラム角推定部と、第1負荷トルク、コラム角推定値および中間軸の剛性係数に基づき、ピニオン軸の回転角の推定値であるピニオン角推定値を推定するピニオン角推定部と、第1負荷トルク、第2摩擦トルクおよびピニオン角推定値に基づき、ラックアンドピニオン機構に生じる第2負荷トルクを推定する第2負荷トルク推定部とを有する。【選択図】図3

Description

この発明は、操舵装置に関する。
電動パワーステアリングシステム(EPS:electric power steering)のアシストトルク制御やステアバイワイヤシステムの反力トルク制御において、路面情報を運転者に伝達することで操舵性能を向上させるために、EPSや車両に搭載されたセンサ信号を用いて、路面反力やラック軸力を推定する技術が開発されている。
例えば、特許文献1では、EPSに搭載されたセンサ情報(モータ電流、モータ角度および操舵トルク)と、車両に搭載されたセンサ情報(車速)とを使用して、ラック軸力を推定する技術が開示されている。
特開2017−226318号公報
特許文献1に記載の技術では、摩擦トルクを精度よく推定できないため、路面やタイヤの状態に応じて、ラック軸力の推定精度が低下するという問題がある。
この発明の目的は、ラック軸力を精度よく推定できる操舵装置を提供することである。
請求項1に記載の発明は、操舵部材と、軸方向移動により転舵輪を転舵させるラック軸と、前記操舵部材に作用する操舵トルクを検出する操舵トルク検出部と、前記操舵部材に連結されたコラム軸と、前記ラック軸と共にラックアンドピニオン機構を構成するピニオン軸と、前記コラム軸および前記ピニオン軸を連結する中間軸と、電動モータと、前記電動モータの回転速度を減じて前記コラム軸に出力する減速機構と、前記電動モータの回転角を検出する角度検出部と、前記電動モータに流れるモータ電流を検出する電流検出部と、前記電動モータを制御する制御部とを備え、前記制御部は、前記減速機構に生じる摩擦トルクである第1摩擦トルクを演算する第1摩擦トルク演算部と、前記ラックアンドピニオン機構に生じる摩擦トルクである第2摩擦トルクを演算する第2摩擦トルク演算部と、前記操舵トルク、前記モータ電流、前記第1摩擦トルクおよび前記電動モータの回転角に基づき、前記減速機構に生じる負荷トルクである第1負荷トルクおよび前記コラム軸の回転角であるコラム角を推定する第1負荷トルク・コラム角推定部と、前記第1負荷トルク、前記コラム角推定値および前記中間軸の剛性係数に基づき、前記ピニオン軸の回転角の推定値であるピニオン角推定値を推定するピニオン角推定部と、前記第1負荷トルク、前記第2摩擦トルクおよび前記ピニオン角推定値に基づき、前記ラックアンドピニオン機構に生じる負荷トルクである第2負荷トルクを推定する第2負荷トルク推定部と、前記第2負荷トルクに基づき、前記ラックシャフトに作用する軸力を推定する軸力推定部とを有する操舵装置である。
この構成では、第1摩擦トルク演算部を備えているので、減速機構で発生する第1摩擦トルクを精度よく推定できる。また、この構成では、第2摩擦トルク演算部を備えているので、ラックアンドピニオン機構で発生する第2摩擦トルクを精度よく推定できる。これにより、ラック軸力を精度よく推定できる。
請求項2に記載の発明は、前記第1摩擦トルク演算部は、前記減速機構のすべり速度である第1すべり速度を演算する第1すべり速度演算部と、前記第1すべり速度に基づき、前記減速機構の摩擦係数である第1摩擦係数を演算する摩擦係数演算部と、前記減速機構の歯面垂直抗力である第1歯面垂直抗力を演算するための第1歯面垂直抗力演算部と、前記第1摩擦係数および前記第1歯面垂直抗力を用いて、前記第1摩擦トルクを演算する第1トルク演算部とを有する、請求項1に記載の操舵装置である。
請求項3に記載の発明は、前記第1歯面垂直抗力演算部は、前記モータ電流、前記操舵トルクおよび前記コラム角に基づいて前記減速機構における一点接触状態での歯面垂直抗力である第1一点接触歯面垂直抗力を演算する第1一点接触歯面垂直抗力演算部と、前記減速機構における二点接触状態での歯面垂直抗力である第1二点接触歯面垂直抗力を演算する第1二点接触歯面垂直抗力演算部と、前記第1一点接触歯面垂直抗力と前記第1二点接触歯面垂直抗力のうち絶対値が大きい方の歯面垂直抗力を、前記第1歯面垂直抗力として選択する第1最大値選択部とを有する、請求項2に記載の操舵装置である。
請求項4に記載の発明は、前記第2摩擦トルク演算部は、前記ラックアンドピニオン機構のすべり速度である第2すべり速度を演算する第2すべり速度演算部と、前記第2すべり速度に基づき、前記ラックアンドピニオン機構の摩擦係数である第2摩擦係数を演算する摩擦係数演算部と、前記ラックアンドピニオン機構の歯面垂直抗力である第2歯面垂直抗力を演算するための第2歯面垂直抗力演算部と、前記第2摩擦係数および前記第2歯面垂直抗力を用いて、前記第2摩擦トルクを演算する第2トルク演算部とを有する、請求項1〜3のいずれか一項に記載の操舵装置である。
請求項5に記載の発明は、前記第2歯面垂直抗力演算部は、前記第1負荷トルクおよび前記第2負荷トルクに基づいて前記ラックアンドピニオン機構における一点接触状態での歯面垂直抗力である第2一点接触歯面垂直抗力を演算する第2一点接触歯面垂直抗力演算部と、前記ラックアンドピニオン機構における二点接触状態での歯面垂直抗力である第2二点接触歯面垂直抗力を演算する第2二点接触歯面垂直抗力演算部と、前記第2一点接触歯面垂直抗力と前記第2二点接触歯面垂直抗力のうち絶対値が大きい方の歯面垂直抗力を、前記第2歯面垂直抗力として選択する第2最大値選択部とを有する、請求項4に記載の操舵装置である。
請求項6に記載の発明は、前記第2摩擦トルク演算部は、前記ラックアンドピニオン機構のすべり速度である第2すべり速度を演算する第2すべり速度演算部と、前記第2すべり速度に基づき、前記ラックアンドピニオン機構の摩擦係数である第2摩擦係数を演算する摩擦係数演算部と、前記第1歯面垂直抗力に基づいて、前記ラックアンドピニオン機構の歯面垂直抗力である第2歯面垂直抗力を演算する第2歯面垂直抗力演算部と、前記第2摩擦係数および前記第2歯面垂直抗力を用いて、前記第2摩擦トルクを演算する第2トルク演算部とを有する、請求項2に記載の操舵装置である。
請求項7に記載の発明は、前記第2摩擦トルク演算部は、前記ラックアンドピニオン機構のすべり速度である第3すべり速度を演算する第3すべり速度演算部と、前記第3すべり速度に基づき、前記ラックアンドピニオン機構の摩擦係数である第3摩擦係数を演算する摩擦係数演算部と、前記第1一点接触歯面垂直抗力を補正することにより、前記ラックアンドピニオン機構における一点接触状態での歯面垂直抗力である第3の一点接触歯面垂直抗力を演算する一点接触歯面垂直抗力補正部と、前記第1二点接触歯面垂直抗力を補正することにより、前記ラックアンドピニオン機構における二点接触状態での歯面垂直抗力である第3二点接触歯面垂直抗力を演算する二点接触歯面垂直抗力補正部と、前記第3一点接触歯面垂直抗力と前記第3二点接触歯面垂直抗力のうち絶対値が大きい方の歯面垂直抗力を、前記ラックアンドピニオン機構の歯面垂直抗力である第3歯面垂直抗力として選択する第3最大値選択部と、前記第3摩擦係数および前記第3歯面垂直抗力を用いて、前記第2摩擦トルクを演算する第3トルク演算部とを有する、請求項3に記載の操舵装置である。
本発明の一実施形態に係る操舵装置が適用された電動パワーステアリングシステムの概略構成を示す模式図である。 ECUの電気的構成を示すブロック図である。 ラック軸力推定部の電気的構成を示すブロック図である。 電動パワーステアリングシステムの二慣性モデルを示す模式図である。 第1オブザーバの構成を示すブロック図である。 第2オブザーバの構成を示すブロック図である。 第1摩擦トルク推定部の構成を示すブロック図である。 ウォームホイールとウォームギヤの噛み合いモデルを示す模式図である。 第2摩擦トルク推定部の構成を示すブロック図である。 ラックとピニオンの噛み合いモデルを示す模式図である。 ウォームホイールとウォームギヤの噛み合い摩擦トルクと、ラックとピニオンの噛み合い摩擦トルクとの間に相関関係があることを説明するためのグラフである。 第1摩擦トルク演算部および変形例に係る第2摩擦トルク演算部の構成を示すブロック図である。
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、本発明の一実施形態に係る操舵装置が適用された電動パワーステアリングシステムの概略構成を示す模式図である。
この電動パワーステアリング装置(操舵装置)1は、コラム部に電動モータと減速機構とが配置されているコラムアシスト式電動パワーステアリング装置(以下、「コラム式EPS」という)である。
コラム式EPS1は、車両を操向するための操舵部材としてのステアリングホイール(ハンドル)2と、このステアリングホイール2の回転に連動して転舵輪3を転舵する転舵機構4と、運転者の操舵を補助するための操舵補助機構5とを備えている。ステアリングホイール2と転舵機構4とは、ステアリングシャフト6、第1ユニバーサルジョイント28、中間軸7および第2ユニバーサルジョイント29を介して機械的に連結されている。
ステアリングシャフト6は、ステアリングホイール2に連結された第1軸8と、第1ユニバーサルジョイント28を介して中間軸7に連結された第2軸9とを含む。第1軸8と第2軸9とは、トーションバー10を介して相対回転可能に連結されている。第2軸9は、本発明の「コラム軸」に相当する。
ステアリングシャフト6の周囲には、トルクセンサ11が設けられている。トルクセンサ11は、第1軸8および第2軸9の相対回転変位量に基づいて、トーションバー10に加えられているトーションバートルクTtbを検出する。トルクセンサ11によって検出されるトーションバートルクTtbは、ECU(電子制御ユニット:Electronic Control Unit)12に入力される。トルクセンサ11は、本発明の「操舵トルク検出部」の一例である。この実施形態では、トーションバートルクTtbは、本発明の「操舵トルク」に相当する。
転舵機構4は、ピニオン軸13と、転舵軸としてのラック軸14とを含むラックアンドピニオン機構からなる。ラック軸14の各端部には、タイロッド15およびナックルアーム(図示略)を介して転舵輪3が連結されている。ピニオン軸13は、第2ユニバーサルジョイント29を介して中間軸7に連結されている。ピニオン軸13の先端には、ピニオン16が連結されている。
ラック軸14は、車両の左右方向に沿って直線状に延びている。ラック軸14の軸方向の中間部には、ピニオン16に噛み合うラック17が形成されている。このピニオン16およびラック17によってラックアンドピニオン機構が構成され、ピニオン軸13の回転がラック軸14の軸方向移動に変換される。
ステアリングホイール2が操舵(回転)されると、この回転が、ステアリングシャフト6および中間軸7を介して、ピニオン軸13に伝達される。そして、ピニオン軸13の回転は、ピニオン16およびラック17によって、ラック軸14の軸方向移動に変換される。これにより、転舵輪3が転舵される。
操舵補助機構5は、操舵補助力を発生するための電動モータ18と、電動モータ18の出力トルクを増幅して転舵機構4に伝達するための減速機構19とを含む。この実施形態では、電動モータ18は、三相ブラシレスモータである。減速機構19は、ウォームギヤ20と、このウォームギヤ20と噛み合うウォームホイール21とを含むウォームギヤ機構からなる。減速機構19は、ギヤハウジング22内に収容されている。以下において、減速機構19の減速比(ギヤ比)をiwwで表す。減速比iwwは、ウォームホイール21の回転角であるウォームホイール角θwwに対するウォームギヤ20の回転角であるウォームギヤ角θwgの比(θwg/θww)として定義される。ウォームホイール角θwwは、本発明の「コラム角」に相当する。
ウォームギヤ20は、電動モータ18によって回転駆動される。ウォームホイール21は、第2軸9に一体回転可能に連結されている。ウォームホイール21は、ウォームギヤ20によって回転駆動される。
電動モータ18は運転者の操舵状態や自動運転システム等の外部制御装置の指示に応じて駆動され、電動モータ18によってウォームギヤ20が回転駆動される。これにより、ウォームホイール21が回転駆動され、ステアリングシャフト6にモータトルクが付与されることによりステアリングシャフト6(第2軸9)が回転する。そして、ステアリングシャフト6の回転は、中間軸7を介してピニオン軸13に伝達される。
ピニオン軸13の回転は、ラック軸14の軸方向移動に変換される。これにより、転舵輪3が転舵される。すなわち、電動モータ18によってウォームギヤ20を回転駆動することによって、電動モータ18による操舵補助が可能となっている。
電動モータ18のロータの回転角は、レゾルバ等の回転角センサ25によって検出される。また、車速Vは車速センサ26によって検出される。回転角センサ25の出力信号および車速センサ26によって検出される車速Vは、ECU12に入力される。電動モータ18は、ECU12によって制御される。
図2は、ECU12の電気的構成を示すブロック図である。
ECU12は、マイクロコンピュータ31と、マイクロコンピュータ31によって制御され、電動モータ18に電力を供給する駆動回路(3相インバータ回路)32と、電動モータ18に流れる電流(以下、「モータ電流」という)を検出するための電流検出部33とを備えている。
マイクロコンピュータ31は、CPUおよびメモリ(ROM、RAM、不揮発性メモリなど)を備えており、所定のプログラムを実行することによって、複数の機能処理部として機能するようになっている。この複数の機能処理部には、モータ制御部34と、回転角演算部35と、ラック軸力推定部36とが含まれる。
回転角演算部35は、回転角センサ25の出力信号に基づいて、電動モータ18のロータ回転角θを演算する。
モータ制御部34は、例えば、車速センサ26によって検出される車速V、トルクセンサ11によって検出されるトーションバートルクTtb、電流検出部33によって検出されるモータ電流Iおよび回転角演算部35によって演算されるロータ回転角θに基づいて、駆動回路32を駆動制御する。
具体的には、モータ制御部34は、トーションバートルクTtbおよび車速Vに基づいて、電動モータ18に流れるモータ電流Iの目標値である電流指令値を設定する。電流指令値は、車両状態および操舵状況に応じた操舵補助力(アシストトルク)の目標値に対応している。そして、モータ制御部34は、電流検出部33によって検出されるモータ電流が電流指令値に近づくように、駆動回路32を駆動制御する。これにより、車両状態および操舵状況に応じた適切な操舵補助が実現される。なお、電流指令値は、自動運転システム等の外部制御装置からの指示に応じて設定される場合もある。
ラック軸力推定部36は、ロータ回転角θ、モータ電流IおよびトーションバートルクTtbに基づいて、ラック軸力Fを推定する。以下において、ラック軸力Fの推定値を^Fで表す。
図3は、ラック軸力推定部36の電気的構成を示すブロック図である。
ラック軸力推定部36は、第1乗算部41と、第2乗算部42と、第1オブザーバ43と、第1摩擦トルク演算部44と、ピニオン角推定部45と、第2オブザーバ46と、第3乗算部47と、第2摩擦トルク演算部48とを含む。第1オブザーバ43は、本発明の「第1負荷トルク・コラム角推定部」の一例である。第2オブザーバ46は、本発明の「第2負荷トルク推定部」および「軸力推定部」の一例である。
第1乗算部41は、電流検出部33によって検出されるモータ電流Iに電動モータ18のトルク定数Kと減速機構19の減速比iwwとを乗算することにより、電動モータ18のモータトルクT(=K・I)によって第2軸9(ウォームホイール21)に作用するトルク(以下、「駆動トルクiww・T」という。)を演算する。
第2乗算部42は、ロータ回転角θに、減速機構19の減速比iwwの逆数を乗算することにより、ロータ回転角θを第2軸9(ウォームホイール21)の回転角(ウォームホイール角θww)に換算する。
第1オブザーバ43は、駆動トルクiww・T、トーションバートルクTtb、ウォームホイール角θwwおよび第1摩擦トルク演算部44によって演算される第1摩擦トルクTf,wwに基づいて、ロアシャフトトルクTls、ウォームホイール角θwwおよびウォームホイール角速度dθww/dtを推定する。
ロアシャフトトルクTlsは、第2軸9におけるウォームホイール21よりも下流側の部分(ロアシャフト)に生じるトルクである。ロアシャフトトルクTlsは、本発明の「減速機構に生じる第1負荷トルク」に相当する。以下において、ロアシャフトトルクTls、ウォームホイール角θwwおよびウォームホイール角速度dθww/dtの推定値を、それぞれ^Tls、^θwwおよびd^θww/dtで表す。第1オブザーバ43の詳細については後述する。
第1摩擦トルク演算部44は、駆動トルクiww・T、トーションバートルクTtbおよび第1オブザーバ43によって推定されるウォームホイール角速度推定値d^θww/dtに基づいて、減速機構19で発生する第1摩擦トルクTf,wwを演算する。第1摩擦トルク演算部44の詳細については後述する。
ピニオン角推定部45は、第1オブザーバ43によって推定されるロアシャフトトルク^Tlsおよびウォームホイール角推定値^θwwに基づいて、ピニオン軸13の回転角であるピニオン角θを推定する。以下において、ピニオン角θの推定値を^θで表す。ピニオン角推定部45の詳細については後述する。
第2オブザーバ46は、第1オブザーバ43によって推定されるロアシャフトトルク^Tls、ピニオン角推定部45によって推定されるピニオン角^θおよび第2摩擦トルク演算部48によって演算される第2摩擦トルクTf,rpに基づいて、ラック軸力F、ピニオン角θおよびピニオン角速度dθ/dtを推定する。以下において、第2オブザーバ46によって推定されるラック軸力推定値F、ピニオン角推定値θおよびピニオン角速度推定値dθ/dtを、それぞれ^F、^^θおよびd^^θ/dtで表す。第2オブザーバ46の詳細については後述する。
第3乗算部47は、ラック軸力推定値^Fにラックアンドピニオン機構16,17のギヤ比irpを乗算することにより、ラック軸力^Fによって第2軸9(ウォームホイール21)に作用するトルク(以下、「トルク換算ラック軸力irp・^F」という。)を演算する。
トルク換算ラック軸力irp・^Fは、本発明の「ラックアンドピニオン機構に生じる第2負荷トルク」に相当する。後述するように、第2オブザーバ46は、トルク換算ラック軸力irp・^Fを推定し、トルク換算ラック軸力irp・^Fからラック軸力^Fを推定する。
第2摩擦トルク演算部48は第1オブザーバ43によって推定されるロアシャフトトルク^Tls、第2オブザーバ46によって推定されるピニオン角速度d^^θ/dtおよび第3乗算部47によって演算されるトルク換算ラック軸力irp・^Fに基づいて、ラックアンドピニオン機構16,17で発生する第2摩擦トルクTf,rpを演算する。第2摩擦トルク演算部48の詳細については後述する。
以下、第1オブザーバ43、第1摩擦トルク演算部44、ピニオン角推定部45、第2オブザーバ46および第2摩擦トルク演算部48について、詳しく説明する。
まず、第1オブザーバ43、ピニオン角推定部45および第2オブザーバ46について説明する。
図4は、第1オブザーバ43、ピニオン角推定部45および第2オブザーバ46に用いられる電動パワーステアリングシステムの二慣性モデルの一例を示す模式図である。
この二慣性モデル100は、コラム部101と、ラックアンドピニオン部102と、それらを連結するばね103とを含む。コラム部101は、コラム慣性Jを有している。コラム慣性Jは、ウォームホイール21の慣性(ウォームホイール慣性)Jww、ウォームギヤ20の慣性(ウォームギヤ慣性)Jwgおよび電動モータ18のシャフトの慣性(モータシャフト慣性)Jmsを含む。
ラックアンドピニオン部102は、ラックアンドピニオン慣性Jrpを有している。ラックアンドピニオン慣性Jrpは、ピニオン軸13の慣性(ピニオン慣性)Jおよびラック軸14のピニオン軸13換算の慣性J(=M・S )を含む。Mはラック軸14の質量であり、Sはラックアンドピニオン機構16,17のストロークレシオである。
ばね103は、中間軸7からなる。ばね103のばね定数(横弾性係数)をkintで表す。kintは、本発明の「中間軸の剛性係数」に相当する。
コラム部101には、ステアリングホイール2からトーションバー10を介してトーションバートルクTtbが与えられるとともにウォームギヤ20を介して駆動トルクiww・Tが与えられる。さらに、コラム部101には、減速機構19で発生する第1摩擦トルクTf,wwおよびロアシャフトトルクTlsが与えられる。
ラックアンドピニオン部102には、ピニオンシャフトトルクTが与えられるとともに転舵輪3側からトルク換算ラック軸力irp・Fが与えられる。ピニオンシャフトトルクTは、ピニオン軸13に生じるトルクである。この実施形態では、ピニオンシャフトトルクTは、ロアシャフトトルクTlsと等しいものとする。さらに、ラックアンドピニオン部102には、ラックアンドピニオン機構16,17で発生する第2摩擦トルクTf,rpが与えられる。
二慣性モデル100の運動方程式は、次式(1),(2),(3)で表される。
Figure 2021000949
第1オブザーバ43は、前記式(1)の運動方程式に基づいて、ロアシャフトトルクTls、ウォームホイール角θwwおよびウォームホイール角速度dθww/dtを推定する。
前記式(1)から、ロアシャフトトルクTlsを求める式は、次式(4)となる。
Figure 2021000949
第1オブザーバ43の状態空間モデル(拡張状態モデル)は、次式(5)で表される。
Figure 2021000949
前記式(5)において、xe1は状態変数ベクトル、uは既知入力ベクトル、yは出力ベクトル(測定値)、Ae1はシステム行列、Be1は入力行列、Ce1は第1出力行列、Dは直達行列である。
e1、uおよびyは、それぞれ、次式(6)で表される。
Figure 2021000949
e1、Be1、Ce1およびDは、それぞれ、次式(7)で表される。
Figure 2021000949
前記式(7)におけるコラム慣性Jは、ウォームホイール慣性Jww、ウォームギヤ慣性Jwgおよびモータシャフト慣性Jmsを用いて次式(8)で表される
Figure 2021000949
拡張状態モデルにLuenbergerの状態オブザーバを適用することで、通常の状態オブザーバと同様に、ロアシャフトトルクTlsの推定が可能となる。オブザーバモデルを次式(9)に示す。
Figure 2021000949
式(9)において、^xe1はxe1の推定値を表している。また、Lはオブザーバゲイン行列である。また、^yはyの推定値を表している。オブザーバゲイン行列Lは、次式(10)で表される。
Figure 2021000949
式(10)において、ω[rad/sec]は極周波数である。極周波数ωは、第1オブザーバ43により補償したい負荷に応じて設定される。
ウォームホイール角速度推定値d^θww/dtは、状態変数ベクトル^xe1を用いて、次式(11a)で表される。式(11a)において、Ce2は第2出力行列であり、次式(11b)で表される。
Figure 2021000949
ロアシャフトトルク推定値^Tlsは、状態変数ベクトル^xe1を用いて、次式(12a)で表される。式(12a)において、Ce3は第3出力行列であり、次式(12b)で表される。
Figure 2021000949
図5は、第1オブザーバ43の構成を示すブロック図である。
第1オブザーバ43は、Ae1乗算部51と、Be1乗算部52と、Ce1乗算部53Aと、Ce2乗算部53Bと、Ce3乗算部53Cと、D乗算部54と、第1加算部55と、第2加算部56と、L乗算部57と、第3加算部58と、積分部59とを含む。
駆動トルクiww・TとトーションバートルクTtbと第1摩擦トルクTf,wwとの和(iww・T+Ttb+Tf,ww)は、前記式(9)の入力ベクトルuに相当し、Be1乗算部52およびD乗算部54に与えられる。図3の第2乗算部42によって演算されるウォームホイール角θwwは、前記式(9)の出力ベクトル(測定値)yに相当し、第2加算部56に与えられる。
積分部59の演算結果が、状態変数ベクトルxe1の推定値^xe1に含まれる、ウォームホイール角推定値^θww、ウォームホイール角速度推定値^dθww/dtおよびロアシャフトトルク推定値^Tlsとなる。演算開始時、これらの推定値^θww、^dθww/dtおよび^Tlsの初期値は、例えば0である。
e1乗算部53Aは、積分部59によって演算される^xe1にCe1を乗算することにより、前記式(9)のCe1・^xe1を演算する。この実施形態では、Ce1・^xe1は、ウォームホイール角推定値^θwwとなる。Ce2乗算部53Bは、^xe1にCe2を乗算することにより、ウォームホイール角速度推定値^dθww/dtを演算する(前記式(11a)参照)。Ce3乗算部53Cは、^xe1にCe3を乗算することにより、ロアシャフトトルク推定値^Tlsを演算する(前記式(12a)参照)。これらの推定値^θww,^dθww/dt,^Tlsが、第1オブザーバ43の出力となる。
e1乗算部51は、積分部59によって演算される^xe1にAe1を乗算することにより、前記式(9)のAe1・^xe1を演算する。Be1乗算部52は、(iww・T+Ttb+Tf,ww)にBe1を乗算することにより、前記式(9)のBe1・uを演算する。D乗算部54は、(iww・T+Ttb+Tf,ww)にDを乗算することにより、前記式(9)のD・uを演算する。
第1加算部55は、Ce1乗算部53Aによって演算されるCe1・^xe1 (=^θww)に、D乗算部54によって演算されるD・uを加算することにより、前記式(9)の出力ベクトルの推定値^yを演算する。この実施形態では、D=0であるので、^y=^θwwとなる。
第2加算部56は、出力ベクトルの測定値y(=θww)から、第1加算部55によって演算される出力ベクトルの推定値^y(=^θww)を減算することにより、これらの差(y−^y)を演算する。
乗算部57は、第2加算部56の演算結果(y−^y)にオブザーバゲイン行列Lを乗算することにより、前記式(9)のL(y−^y)を演算する。
第3加算部58は、Ae1乗算部51の演算結果Ae1・^xe1と、Be1乗算部52の演算結果Be1・uと、L乗算部57の演算結果L(y−^y)を加算することにより、前記式(9)のd^xe1/dtを演算する。積分部59は、d^xe1/dtを積分することによって、前記式(9)の^xe1を演算する。
ピニオン角推定部45(図3参照)は、前記式(2)の運動方程式に基づいて、ピニオン角推定値^θを演算する。具体的には、ピニオン角推定部45は、第1オブザーバ43によって推定された^θwwおよびロアシャフトトルク推定値^Tlsを用いて、次式(13)に基づいて、ピニオン角推定値^θを演算する。
Figure 2021000949
第2オブザーバ46(図3参照)は、前記式(3)の運動方程式に基づいて、ラック軸力F、ピニオン角θおよびピニオン角速度dθpw/dtを推定する。
前記式(3)から、ラック軸力Fのトルク換算値irp・Fを求める式は、次式(14)となる。
Figure 2021000949
第2オブザーバ46の状態空間モデル(拡張状態モデル)は、次式(15)で表される。
Figure 2021000949
前記式(15)において、xe2は状態変数ベクトル、uは既知入力ベクトル、yは出力ベクトル(測定値)、Ae2はシステム行列、Be2は入力行列、Ce4は第4出力行列、Dは直達行列である。
e2、uおよびyは、それぞれ、次式(16)で表される。
Figure 2021000949
e2、Be2、Ce4およびDは、それぞれ、次式(17)で表される。
Figure 2021000949
前記式(15)におけるラックアンドピニオン慣性Jrpは、ラック質量M、ラックアンドピニオン機構16,17のストロークレシオSおよびピニオン慣性Jを用いて次式(18)で表される
Figure 2021000949
拡張状態モデルにLuenbergerの状態オブザーバを適用することで、通常の状態オブザーバと同様に、トルク換算ラック軸力irp・F(ラック軸力F)の推定が可能となる。オブザーバモデルを次式(19)に示す。
Figure 2021000949
式(19)において、^xe2はxe2の推定値を表している。また、Lはオブザーバゲイン行列である。また、^yはyの推定値を表している。オブザーバゲイン行列Lは、次式(20)で表される。
Figure 2021000949
式(20)において、ω[rad/sec]は極周波数である。極周波数ωは、第2オブザーバ46により補償したい負荷に応じて設定される。
ピニオン角速度推定値^θの推定値^^θは、状態変数ベクトル^xe2を用いて、次式(21a)で表される。式(21a)において、Ce5は第5出力行列であり、次式(21b)で表される。
Figure 2021000949
ラック軸力F(推定値)は、状態変数ベクトル^xe2を用いて、次式(22a)で表される。式(22a)において、Ce6は第6出力行列であり、次式(22b)で表される。
Figure 2021000949
図6は、第2オブザーバ46の構成を示すブロック図である。
第2オブザーバ46は、Ae2乗算部61と、Be2乗算部62と、Ce4乗算部63Aと、Ce5乗算部63Bと、Ce6乗算部63Cと、D乗算部64と、第1加算部65と、第2加算部66と、L乗算部67と、第3加算部68と、積分部69とを含む。
ピニオンシャフトトルクT(=Tls)と第2摩擦トルクTf,rpとの和(Tls+Tf,rp-)は、前記式(19)の入力ベクトルuに相当し、Be2乗算部62およびD乗算部64に与えられる。図3のピニオン角推定部45によって演算されるピニオン角推定値^θは、前記式(19)の出力ベクトル(測定値)yに相当し、第2加算部66に与えられる。
積分部69の演算結果が、状態変数ベクトルxe2の推定値^xe2に含まれる、ピニオン角推定値^^θ、ピニオン角速度推定値^dθ/dtおよびトルク換算ラック軸力推定値irp・^Fとなる。演算開始時、これらの推定値^^θ、^dθ/dtおよびirp・^Fの初期値は、例えば0である。
e4乗算部63Aは、積分部69によって演算される^xe2にCe4を乗算することにより、前記式(19)のCe4・^xe2を演算する。この実施形態では、Ce4・^xe2は、ピニオン角推定値^θの推定値^θとなる。
e5乗算部63Bは、^xe2にCe5を乗算することにより、ピニオン角速度推定値d^θ/dtを演算する(前記式(21a)参照)。Ce6乗算部64Cは、^xe2にCe6を乗算することにより、ラック軸力推定値^Fを演算する(前記式(22a)参照)。ピニオン角速度推定値d^θ/dtおよびラック軸力推定値^Fが、第2オブザーバ46の出力となる。
e2乗算部61は、積分部69によって演算される^xe2にAe2を乗算することにより、前記式(19)のAe2・^xe2を演算する。Be2乗算部62は、(^Tls+Tf,rp-)にBe2を乗算することにより、前記式(19)のBe2・uを演算する。D乗算部64は、(^Tls+Tf,rp-)にDを乗算することにより、前記式(19)のD・uを演算する。
第1加算部65は、Ce4乗算部63Aによって演算されるCe4・^xe2 (=^θ)に、D乗算部64によって演算されるD・uを加算することにより、前記式(19)の出力ベクトルの推定値^yを演算する。この実施形態では、D=0であるので、^y=^θとなる。
第2加算部66は、出力ベクトルの測定値y(=^θ)から、第1加算部65によって演算される出力ベクトルの推定値^y(=^θ)を減算することにより、これらの差(y−^y)を演算する。
乗算部67は、第2加算部66の演算結果(y−^y)にオブザーバゲイン行列Lを乗算することにより、前記式(19)のL(y−^y)を演算する。
第3加算部68は、Ae2乗算部61の演算結果Ae2・^xe2と、Be2乗算部62の演算結果Be2・uと、L乗算部67の演算結果L(y−^y)を加算することにより、前記式(19)のd^xe2/dtを演算する。積分部69は、d^xe2/dtを積分することによって、前記式(19)の^xe2を演算する。
次に、第1摩擦トルク演算部44について詳しく説明する。
図7は、第1摩擦トルク演算部44の電気的構成を示すブロック図である。
第1摩擦トルク演算部44は、第1すべり速度演算部71と、第1摩擦係数演算部72と、第1二点接触歯面垂直抗力演算部73と、第1一点接触歯面垂直抗力演算部74と、第1最大値選択部75と、第1乗算部76と、第2乗算部77とを含んでいる。第1二点接触歯面垂直抗力演算部73、第1一点接触歯面垂直抗力演算部74および第1最大値選択部75によって、本発明の「第1歯面垂直抗力演算部」が構成されている。
まず、第1二点接触歯面垂直抗力演算部73、第1一点接触歯面垂直抗力演算部74および第1最大値選択部75について説明する。
第1二点接触歯面垂直抗力演算部73および第1一点接触歯面垂直抗力演算部74は、それぞれ、ウォームホイールとウォームギヤの噛み合いモデルを用いて、二点接触状態での歯面垂直抗力および一点接触状態での歯面垂直抗力を設定する。
図8は、ウォームホイールとウォームギヤの噛み合いモデルを示す模式図である。
図8において、添え字のwwはウォームホイールを、wgはウォームギヤをそれぞれ示す。また、x軸およびy軸は、ウォームギヤおよびウォームホイールのピッチ円上の噛み合い点における接線である。また、z軸は、これらのギヤに共通する径方向に沿う方向である。ウォームホイールの回転は、y方向の移動に対応し、ウォームギヤの回転は、x方向の移動に対応する。ウォームホイールの圧力角βwwが常に一定であると仮定した。さらに、歯面の摩擦トルクは、ウォームホイールのリード角γwwの方向に働くと仮定した。
システムが停止しているときには、予圧(preload)F0,wwによって、ウォームホイールに噛み合うウォームギヤの歯は、ウォームホイールの上下の2点で接触する。このような状態を二点接触状態という。
ウォームホイールとウォームギヤとの間の相互作用力Fc,ww,Fc,wgは、2つの接触点i=1,2で発生する、歯面垂直抗力Ni,xx(xx=ww,wg)および摩擦トルクFfi,xxからなる。歯面垂直抗力Ni,xxは、係数kのばねによって表される材料ひずみによって生成される。
なお、上側ばねまたは下側ばねの圧縮量が零になると、接触点が失われる。2つの接触点の一方が失われた状態を、一点接触状態という。
ギヤ歯面の摩擦トルクTf,wwは、次式(23)によって表される。
Figure 2021000949
前記式(23)において、μwwは摩擦係数であり、rwwはウォームギヤの半径であり、FN,wwは歯面垂直抗力である。以下、歯面垂直抗力FN,wwの演算方法について説明する。
次式(24)は、予圧F0,wwを考慮しない場合の歯面間の接触力である歯面接触力Fc,wwを表す式である。
Figure 2021000949
接触状態が二点接触状態である場合には、歯面接触力Fc,wwが所定値F0,ww/sin(βww)以下(Fc,ww≦F0,ww/sin(βww))になる。この場合には、歯面垂直抗力FN,wwは、次式(25a)に基づいて設定される。一方、接触状態が一点接触状態である場合には、歯面接触力Fc,wwが所定値F0,ww/sin(βww)よりも大きく(Fc,ww>F0,ww/sin(βww))なる。この場合には、歯面垂直抗力FN,wwは、次式(25b)に基づいて設定される。
Figure 2021000949
接触状態が二点接触状態である場合には、式(25a)に基づいて演算される歯面垂直抗力FN,wwの絶対値が、式(25b)に基づいて演算される歯面垂直抗力FN,wwの絶対値よりも大きくなり、接触状態が一点接触状態である場合には、その逆になることが知られている。したがって、式(25a)に基づいて演算される歯面垂直抗力FN,wwと、式(25b)に基づいて演算される歯面垂直抗力FN,wwとのうち、その絶対値が大きい方の値が、歯面垂直抗力FN,wwとなる。
図7に戻り、第1二点接触歯面垂直抗力演算部73は、前記式(25a)で示される歯面垂直抗力FN,wwを、二点接触状態に対する歯面垂直抗力FN2,wwとして設定する。第1一点接触歯面垂直抗力演算部74は、前記式(25b)で示される歯面垂直抗力FN,wwを、一点接触状態に対する歯面垂直抗力FN1,wwとして設定する。
第1最大値選択部75は、一点接触状態に対する歯面垂直抗力FN1,wwと、第2接触状態に対する歯面垂直抗力FN2,wwのうち、その絶対値が大きい方の歯面垂直抗力を、最終的な歯面垂直抗力FN,wwとして選択して、第1乗算部76に与える。
次に、第1すべり速度演算部71および摩擦係数演算部72について説明する。第1すべり速度演算部71および摩擦係数演算部72は、LuGreモデルを用いて、ウォームホイールとウォームギヤの噛み合い部の摩擦係数μwwを推定する。LuGreモデルによる摩擦係数μwwの演算は、二物体間のすべり速度vs,wwとブラシの撓み状態変数zとを用いて次式(26)で表わされる。
Figure 2021000949
ここで、μc,wwは、クーロン摩擦係数である。μba,wwは、静摩擦係数である。vstb,wwは、ストライベック速度係数である。σ0,wwは、ブラシの剛性係数である。σ1,wwは、ブラシの減衰係数である。σ2,wwは粘性摩擦係数である。これらの6つのパラメータは、実験的に求められる。LuGreモデルの入力であるすべり速度vs,wwは、次式(27)によって表される。
Figure 2021000949
第1すべり速度演算部71は、第1オブザーバ43(図3参照)によって演算されるウォームホイール角速度推定値^dθww/dtを用い、前記式(27)に基づいて、すべり速度vs,wwを演算する。なお、ウォームホイール角速度推定値^dθww/dtの代わりに、第2乗算部42(図3参照)によって演算されるウォームホイール角θwwを時間微分した値dθww/dtを用いてもよい。第1摩擦係数演算部72は、第1すべり速度演算部71によって演算されたすべり速度vs,wwを用い、前記式(26)に基づいて、摩擦係数μwwを演算する。
第1乗算部76は、最終的な歯面垂直抗力FN,wwに摩擦係数μwwを乗算する。第2乗算部77は、第1乗算部76の乗算結果である合成摩擦力μww・FN,wwに、rww/sin(γww)を乗算することにより、第1摩擦トルクTf,wwを演算する。
次に、第2摩擦トルク演算部48について詳しく説明する。
図9は、第2摩擦トルク演算部48の電気的構成を示すブロック図である。
第2摩擦トルク演算部48は、第2すべり速度演算部81と、第2摩擦係数演算部82と、第2二点接触歯面垂直抗力演算部83と、第2一点接触歯面垂直抗力演算部84と、第2最大値選択部85と、第3乗算部86と、第4乗算部87とを含んでいる。第2二点接触歯面垂直抗力演算部83、第2一点接触歯面垂直抗力演算部84および第2最大値選択部85によって、本発明の「第2歯面垂直抗力演算部」が構成されている。
まず、第2二点接触歯面垂直抗力演算部83、第2一点接触歯面垂直抗力演算部84および第2最大値選択部85について説明する。
第2二点接触歯面垂直抗力演算部83および第2一点接触歯面垂直抗力演算部84は、それぞれ、ラックとピニオンの噛み合いモデルを用いて、二点接触での歯面垂直抗力および一点接触での歯面垂直抗力を設定する。
図10は、ラックとピニオンの噛み合いモデルを示す模式図である。
図10において、添え字のrはラックを、pはピニオンをそれぞれ示す。このモデルでは、ピニオンはピッチ円の接線方向(y方向)に、ラックはラック軸の方向(y方向)に併進運動する。
システムが停止しているときには、予圧(preload)F0,rpによって、ラックに噛み合うピニオンの歯は、ラックの左右の2点で接触する。このような状態を二点接触状態という。
ラックとピニオンとの間の相互作用力Fc,r,Fc,pは、2つの接触点i=1,2で発生する、歯面垂直抗力Ni,xx(xx=r,p)および摩擦トルクFfi,xxからなる。歯面垂直抗力Ni,xxは、係数krpのばねによって表される材料ひずみによって生成される。
なお、左側ばねまたは右側ばねの圧縮量が零になると、接触点が失われる。2つの接触点の一方が失われた状態を、一点接触状態という。
ギヤ歯面の摩擦トルクTf,rpは、次式(28)によって表される。
Figure 2021000949
前記式(28)において、rはピニオンの半径であり、γはピニオンねじれ角であり、γはラックねじれ角であり、μrpは摩擦係数であり、FN,rpは歯面垂直抗力である。なお、前述のラックアンドピニオン機構16,17のギヤ比irpは、irp=rcos(γ)/cos(γ)で表される。
以下、歯面垂直抗力FN,rpの演算方法について説明する。
次式(29)は、予圧F0,rpを考慮しない場合の歯面間の接触力である歯面接触力Fc,rpを表す式である。
Figure 2021000949
前記式(29)において、βrpは圧力角である。前記式(29)の右辺のピニオンシャフトトルクTとしては、第1オブザーバ43(図3参照)によって演算されるロアシャフトトルク推定値^Tlsが用いられる。前記式(29)の右辺のトルク換算ラック軸力irp・^Fとしては、第3乗算部47(図3参照)によって演算されるトルク換算ラック軸力irp・^Fが用いられる。
接触状態が二点接触状態である場合には、歯面接触力Fc,rpが所定値F0,rp/sin(βrp)以下(Fc,rp≦F0,rp/sin(βrp))になる。βrpは圧力角である。この場合には、歯面垂直抗力FN,rpは、次式(30a)に基づいて設定される。一方、接触状態が一点接触状態である場合には、歯面接触力Fc,rpが所定値F0,rp/sin(βrp)よりも大きく(Fc,rp>F0,rp/sin(βrp))なる。この場合には、歯面垂直抗力FN,rpは、次式(30b)に基づいて設定される。
Figure 2021000949
接触状態が二点接触状態である場合には、式(30a)に基づいて演算される歯面垂直抗力FN,rpの絶対値が、式(30b)に基づいて演算される歯面垂直抗力FN,rpの絶対値よりも大きくなり、接触状態が一点接触状態である場合には、その逆になることが知られている。したがって、式(30a)に基づいて演算される歯面垂直抗力FN,rpと、式(30b)に基づいて演算される歯面垂直抗力FN,rpとのうち、その絶対値が大きい方の値が、歯面垂直抗力FN,rpとなる。
図9に戻り、第2二点接触歯面垂直抗力演算部83は、前記式(30a)で示される歯面垂直抗力FN,rpを、二点接触状態に対する歯面垂直抗力FN2,rpとして設定する。第2一点接触歯面垂直抗力演算部84は、前記式(30b)で示される歯面垂直抗力FN,rpを、一点接触状態に対する歯面垂直抗力FN1,rpとして設定する。
第2最大値選択部85は、一点接触状態に対する歯面垂直抗力FN1,rpと、第2接触状態に対する歯面垂直抗力FN2,rpのうち、その絶対値が大きい方の歯面垂直抗力を、最終的な歯面垂直抗力FN,rpとして選択して、第3乗算部86に与える。
次に、第2すべり速度演算部81および摩擦係数演算部82について説明する。第2すべり速度演算部81および摩擦係数演算部82は、LuGreモデルを用いて、ラックとピニオンの噛み合い部の摩擦係数μrpを推定する。LuGreモデルによる摩擦係数μrpの演算は、二物体間のすべり速度vs,rpとブラシの撓み状態変数zとを用いて次式(31)で表わされる。
Figure 2021000949
ここで、μc,rpは、クーロン摩擦係数である。μba,rpは、静摩擦係数である。vstb,rpは、ストライベック速度係数である。σ0,rpは、ブラシの剛性係数である。σ1,rpは、ブラシの減衰係数である。σ2,rpは粘性摩擦係数である。これらの6つのパラメータは、実験的に求められる。LuGreモデルの入力であるすべり速度vs,rpは、次式(32)によって表される。
Figure 2021000949
第2すべり速度演算部81は、第2オブザーバ46(図3参照)によって演算されるピニオン角速度推定値d^θ/dtを用い、前記式(32)に基づいて、すべり速度vs,rpを演算する。なお、ピニオン角速度推定値d^θ/dtの代わりにピニオン角推定部45(図3参照)によって演算されるピニオン角推定値^θを時間微分した値d^θ/dtを用いてもよい。第2摩擦係数演算部82は、第2すべり速度演算部81によって演算されたすべり速度vs,rpを用い、前記式(31)に基づいて、摩擦係数μrpを演算する。
第3乗算部86は、最終的な歯面垂直抗力FN,rpに摩擦係数μrpを乗算する。第4乗算部87は、第3乗算部86の乗算結果である合成摩擦力μrp・FN,rpに、rsin(γ−γ)/cos(γ)を乗算することにより、第2摩擦トルクTf,rpを演算する。
本実施形態では、第1摩擦トルク演算部44を備えているので、減速機構19で発生する第1摩擦トルクTf,wwを精度よく推定できる。また、本実施形態では、第2摩擦トルク演算部48を備えているので、ラックアンドピニオン機構16,17で発生する第2摩擦トルクTf,rpを精度よく推定できる。これにより、ラック軸力Fを精度よく推定できる。
以下、第2摩擦トルク演算部の変形例について説明する。
変形例に係る第2摩擦トルク演算部48Aの基本的な考え方について説明する。
図7に示される第1摩擦トルク演算部44によって演算された第1摩擦トルクTf,wwおよび図9に示される第2摩擦トルク演算部48によって演算された第2摩擦トルクTf,rpを、横軸にモータトルクをとり、縦軸に摩擦トルクをとって、グラフで示すと、図11に示すようになる。図11において、W1は、一点接触状態での第1摩擦トルクTf,wwの範囲を、W2は、二点接触状態での第1摩擦トルクTf,rpの範囲を、R1は、一点接触状態での第2摩擦トルクTf,wwの範囲を、R2は、二点接触状態での第2摩擦トルクTf,rpの範囲を、それぞれ示している。
図11から、一点接触状態における第1摩擦トルクTf,wwと一点接触状態における第2摩擦トルクTf,rpとの間には相関関係があり、二点接触状態における第1摩擦トルクTf,wwと二点接触状態における第2摩擦トルクTf,rpとの間にも相関関係があることがわかる。つまり、第1摩擦トルクTf,wwと第2摩擦トルクTf,rpとの間に、相関関係があることがわかる。
したがって、この相関関係を利用して、第1摩擦トルクTf,wwから第2摩擦トルクTf,rpを推定することが可能である。しかしながら、第1摩擦トルクTf,wwから第2摩擦トルクTf,rpを推定した場合、操舵方向切替時等において、減速機構19とラックアンドピニオン機構16,17との間にある中間軸7の剛性によって生じる両機構の位相差から、第2摩擦トルクTf,rpの推定に誤差が生じる。
例えば、操舵方向切替時に、第1摩擦トルクTf,wwの方向が切り替わっても、中間軸7の剛性によって、第2摩擦トルクTf,rpの方向が切り替わっていない状態が発生する。このような場合では、第1摩擦トルクTf,wwから推定される第2摩擦トルクTf,rpに誤差が生じる。
そこで、変形例に係る第2摩擦トルク演算部48Aは、ラックアンドピニオン機構16,17に作用する摩擦の方向が反映される摩擦係数μrpを図9の第2摩擦トルク演算部48と同様な方法で演算し、ラックアンドピニオン機構16,17に作用する歯面垂直抗力のみを減速機構19に作用する歯面垂直抗力から推定する。そして、第2摩擦トルク演算部48Aは、このようにして演算または推定された摩擦係数μrpおよび歯面垂直抗力とを乗算し、かつこれらの乗算結果に所定値を乗算することにより、第2摩擦トルクTf,rpを演算する。
図12は、第1摩擦トルク演算部44および変形例に係る第2摩擦トルク演算部48Aの構成を示すブロック図である。第1摩擦トルク演算部44は、図7の第1摩擦トルク演算部44と同じある。
第2摩擦トルク演算部48Aは、第2すべり速度演算部81と、第2摩擦係数演算部82と、二点接触歯面垂直抗力補正部91と、一点接触歯面垂直抗力補正部92と、第3最大値選択部93と、第5乗算部94と、第6乗算部95とを含む。
第2すべり速度演算部81および第2摩擦係数演算部82は、それぞれ図9の第2すべり速度演算部81および第2摩擦係数演算部82と同じなので、その説明を省略する。変形例における第2すべり速度演算部81および第2摩擦係数演算部82は、それぞれ本発明の「第3すべり速度演算部」および「第3摩擦係数演算部」に相当する。
二点接触歯面垂直抗力補正部91は、第1二点接触歯面垂直抗力演算部73によって演算される歯面垂直抗力FN2,wwに所定の二点接触時補正係数を乗算することにより、ラックアンドピニオン機構16,17における二点接触状態に対する歯面垂直抗力FN2,rpを演算する。この歯面垂直抗力FN2,rpは、本発明の「第3二点接触歯面垂直抗力」に相当する。
一点接触歯面垂直抗力補正部92は、第1一点接触歯面垂直抗力演算部74によって演算される歯面垂直抗力FN1,wwに所定の一点接触時補正係数を乗算することにより、ラックアンドピニオン機構16,17における一点接触状態に対する歯面垂直抗力FN1,rpを演算する。この歯面垂直抗力FN1,rpは、本発明の「第3一点接触歯面垂直抗力」に相当する。
第3最大値選択部93は、二点接触状態に対する歯面垂直抗力FN2,rpおよび一点接触状態に対する歯面垂直抗力FN1,rpのうち、その絶対値が大きい方の歯面垂直抗力を、最終的な歯面垂直抗力FN,rpとして選択して、第5乗算部94に与える。この最終的な歯面垂直抗力FN,rpは、本発明の「第3歯面垂直抗力」に相当する。
第5乗算部94は、最終的な歯面垂直抗力FN,rpに摩擦係数μrpを乗算する。第6乗算部95は、第5乗算部94の乗算結果である合成摩擦力μrp・FN,rpに、rsin(γ−γ)/cos(γ)を乗算することにより、第2摩擦トルクTf,rpを演算する。
この変形例では、減速機構19の二点接触状態に対する歯面垂直抗力FN2,wwおよび一点接触状態に対する歯面垂直抗力FN1,wwと、予め設定された二点接触時補正係数および一点接触時補正係数とに基づいて、ラックアンドピニオン機構16,17における歯面垂直抗力FN,rpを演算している。このため、減速機構19の歯面垂直抗力FN,wwとラックアンドピニオン機構16,17の歯面垂直抗力FN,rpとを、それぞれの噛み合いモデルを用いて別々に演算する場合に比べて、ラックアンドピニオン機構16,17の歯面垂直抗力FN,rpの演算が簡単となる。
この変形例では、ラックアンドピニオン機構16,17の歯面垂直抗力FN,rpを減速機構19の歯面垂直抗力から推定しているが、摩擦係数μrpとしては、ラックアンドピニオン機構16,17に応じたすべり速度vs,rpから演算される摩擦係数μrpを用いている。したがって、この変形例においても、操舵方向切替時等において、中間軸7の剛性によって生じる両機構の位相差から、第2摩擦トルクTf,rpの推定に誤差が生じるのを回避できる。これにより、図9の第2摩擦トルク演算部48と同じように第2摩擦トルクTf,rpを精度よく推定できるから、ラック軸力Fを精度よく推定できる。
この発明は、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1…電動パワーステアリング装置(操舵装置)、3…転舵輪、4…転舵機構、16…ピニオン、17…ラック、18…電動モータ、19…減速機構、43…第1オブザーバ、44…第1摩擦トルク演算部、45…ピニオン角推定部、46…第2オブザーバ、48,48A…第2摩擦トルク演算部、71,81…すべり速度演算部、72,82…摩擦係数演算部、73,83…二点接触歯面垂直抗力演算部、74,84…一点接触歯面垂直抗力演算部、75,85,93…最大値選択部、91…二点接触歯面垂直抗力補正部、92…一点接触歯面垂直抗力補正部

Claims (7)

  1. 操舵部材と、
    軸方向移動により転舵輪を転舵させるラック軸と、
    前記操舵部材に作用する操舵トルクを検出する操舵トルク検出部と、
    前記操舵部材に連結されたコラム軸と、
    前記ラック軸と共にラックアンドピニオン機構を構成するピニオン軸と、
    前記コラム軸および前記ピニオン軸を連結する中間軸と、
    電動モータと、
    前記電動モータの回転速度を減じて前記コラム軸に出力する減速機構と、
    前記電動モータの回転角を検出する角度検出部と、
    前記電動モータに流れるモータ電流を検出する電流検出部と、
    前記電動モータを制御する制御部とを備え、
    前記制御部は、
    前記減速機構に生じる摩擦トルクである第1摩擦トルクを演算する第1摩擦トルク演算部と、
    前記ラックアンドピニオン機構に生じる摩擦トルクである第2摩擦トルクを演算する第2摩擦トルク演算部と、
    前記操舵トルク、前記モータ電流、前記第1摩擦トルクおよび前記電動モータの回転角に基づき、前記減速機構に生じる負荷トルクである第1負荷トルクおよび前記コラム軸の回転角であるコラム角を推定する第1負荷トルク・コラム角推定部と、
    前記第1負荷トルク、前記コラム角推定値および前記中間軸の剛性係数に基づき、前記ピニオン軸の回転角の推定値であるピニオン角推定値を推定するピニオン角推定部と、
    前記第1負荷トルク、前記第2摩擦トルクおよび前記ピニオン角推定値に基づき、前記ラックアンドピニオン機構に生じる負荷トルクである第2負荷トルクを推定する第2負荷トルク推定部と、
    前記第2負荷トルクに基づき、前記ラックシャフトに作用する軸力を推定する軸力推定部とを有する操舵装置。
  2. 前記第1摩擦トルク演算部は、
    前記減速機構のすべり速度である第1すべり速度を演算する第1すべり速度演算部と、
    前記第1すべり速度に基づき、前記減速機構の摩擦係数である第1摩擦係数を演算する摩擦係数演算部と、
    前記減速機構の歯面垂直抗力である第1歯面垂直抗力を演算するための第1歯面垂直抗力演算部と、
    前記第1摩擦係数および前記第1歯面垂直抗力を用いて、前記第1摩擦トルクを演算する第1トルク演算部とを有する、請求項1に記載の操舵装置。
  3. 前記第1歯面垂直抗力演算部は、
    前記モータ電流、前記操舵トルクおよび前記コラム角に基づいて前記減速機構における一点接触状態での歯面垂直抗力である第1一点接触歯面垂直抗力を演算する第1一点接触歯面垂直抗力演算部と、
    前記減速機構における二点接触状態での歯面垂直抗力である第1二点接触歯面垂直抗力を演算する第1二点接触歯面垂直抗力演算部と、
    前記第1一点接触歯面垂直抗力と前記第1二点接触歯面垂直抗力のうち絶対値が大きい方の歯面垂直抗力を、前記第1歯面垂直抗力として選択する第1最大値選択部とを有する、請求項2に記載の操舵装置。
  4. 前記第2摩擦トルク演算部は、
    前記ラックアンドピニオン機構のすべり速度である第2すべり速度を演算する第2すべり速度演算部と、
    前記第2すべり速度に基づき、前記ラックアンドピニオン機構の摩擦係数である第2摩擦係数を演算する摩擦係数演算部と、
    前記ラックアンドピニオン機構の歯面垂直抗力である第2歯面垂直抗力を演算するための第2歯面垂直抗力演算部と、
    前記第2摩擦係数および前記第2歯面垂直抗力を用いて、前記第2摩擦トルクを演算する第2トルク演算部とを有する、請求項1〜3のいずれか一項に記載の操舵装置。
  5. 前記第2歯面垂直抗力演算部は、
    前記第1負荷トルクおよび前記第2負荷トルクに基づいて前記ラックアンドピニオン機構における一点接触状態での歯面垂直抗力である第2一点接触歯面垂直抗力を演算する第2一点接触歯面垂直抗力演算部と、
    前記ラックアンドピニオン機構における二点接触状態での歯面垂直抗力である第2二点接触歯面垂直抗力を演算する第2二点接触歯面垂直抗力演算部と、
    前記第2一点接触歯面垂直抗力と前記第2二点接触歯面垂直抗力のうち絶対値が大きい方の歯面垂直抗力を、前記第2歯面垂直抗力として選択する第2最大値選択部とを有する、請求項4に記載の操舵装置。
  6. 前記第2摩擦トルク演算部は、
    前記ラックアンドピニオン機構のすべり速度である第2すべり速度を演算する第2すべり速度演算部と、
    前記第2すべり速度に基づき、前記ラックアンドピニオン機構の摩擦係数である第2摩擦係数を演算する摩擦係数演算部と、
    前記第1歯面垂直抗力に基づいて、前記ラックアンドピニオン機構の歯面垂直抗力である第2歯面垂直抗力を演算する第2歯面垂直抗力演算部と、
    前記第2摩擦係数および前記第2歯面垂直抗力を用いて、前記第2摩擦トルクを演算する第2トルク演算部とを有する、請求項2に記載の操舵装置。
  7. 前記第2摩擦トルク演算部は、
    前記ラックアンドピニオン機構のすべり速度である第3すべり速度を演算する第3すべり速度演算部と、
    前記第3すべり速度に基づき、前記ラックアンドピニオン機構の摩擦係数である第3摩擦係数を演算する摩擦係数演算部と、
    前記第1一点接触歯面垂直抗力を補正することにより、前記ラックアンドピニオン機構における一点接触状態での歯面垂直抗力である第3一点接触歯面垂直抗力を演算する一点接触歯面垂直抗力補正部と、
    前記第1二点接触歯面垂直抗力を補正することにより、前記ラックアンドピニオン機構における二点接触状態での歯面垂直抗力である第3二点接触歯面垂直抗力を演算する二点接触歯面垂直抗力補正部と、
    前記第3一点接触歯面垂直抗力と前記第3二点接触歯面垂直抗力のうち絶対値が大きい方の歯面垂直抗力を、前記ラックアンドピニオン機構の歯面垂直抗力である第3歯面垂直抗力として選択する第3最大値選択部と、
    前記第3摩擦係数および前記第3歯面垂直抗力を用いて、前記第2摩擦トルクを演算する第3トルク演算部とを有する、請求項3に記載の操舵装置。
JP2019116681A 2019-06-24 2019-06-24 操舵装置 Pending JP2021000949A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019116681A JP2021000949A (ja) 2019-06-24 2019-06-24 操舵装置
EP20181413.4A EP3756977A1 (en) 2019-06-24 2020-06-22 Steering device
US16/907,733 US20200398889A1 (en) 2019-06-24 2020-06-22 Steering device
CN202010574074.1A CN112124414A (zh) 2019-06-24 2020-06-22 转向装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019116681A JP2021000949A (ja) 2019-06-24 2019-06-24 操舵装置

Publications (1)

Publication Number Publication Date
JP2021000949A true JP2021000949A (ja) 2021-01-07

Family

ID=71266268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019116681A Pending JP2021000949A (ja) 2019-06-24 2019-06-24 操舵装置

Country Status (4)

Country Link
US (1) US20200398889A1 (ja)
EP (1) EP3756977A1 (ja)
JP (1) JP2021000949A (ja)
CN (1) CN112124414A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102111319B1 (ko) * 2018-12-10 2020-06-04 주식회사 만도 조향 제어 시스템, 조향 제어 장치 및 조향 제어 방법
JP7307879B2 (ja) * 2019-03-25 2023-07-13 株式会社ジェイテクト 操舵装置
FR3125003A1 (fr) * 2021-07-08 2023-01-13 Jtekt Europe Procede de determination de couple de frottements

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308379B2 (ja) * 2012-11-26 2018-04-11 株式会社ジェイテクト 制御システム
JP5975046B2 (ja) * 2014-01-23 2016-08-23 株式会社デンソー 電動パワーステアリング制御装置
JP6750341B2 (ja) 2016-06-22 2020-09-02 株式会社ジェイテクト 操舵制御装置

Also Published As

Publication number Publication date
EP3756977A1 (en) 2020-12-30
CN112124414A (zh) 2020-12-25
US20200398889A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP5975046B2 (ja) 電動パワーステアリング制御装置
JP7116888B2 (ja) モータ制御装置
JP6308379B2 (ja) 制御システム
JP6512430B2 (ja) 電動パワーステアリング装置および電動パワーステアリング装置におけるゲイン設定方法
US8234041B2 (en) Electric power steering controller
JP7129004B2 (ja) モータ制御装置
JP6769047B2 (ja) 操舵制御装置
JP3353770B2 (ja) 電動式パワーステアリング制御装置
CN110406589B (zh) 马达控制装置
JP4561806B2 (ja) 電動パワーステアリング装置
WO2016031216A1 (ja) 電動ステアリング制御装置
JP4666083B2 (ja) 電動パワーステアリング装置
JP2021000949A (ja) 操舵装置
JP7129003B2 (ja) モータ制御装置
JP7256958B2 (ja) 電動パワーステアリング装置
JP6058221B2 (ja) 操舵制御装置
JP7307879B2 (ja) 操舵装置
JP7342876B2 (ja) ステアリング制御装置およびパワーステアリング装置
JP7199643B2 (ja) 車両用操向装置
JP5979079B2 (ja) 電動パワーステアリング装置
JP2022024284A (ja) 異常検出装置
JP2021027744A (ja) モータ制御装置、モータ制御方法および電動パワーステアリング装置