JP2020516348A5 - - Google Patents

Download PDF

Info

Publication number
JP2020516348A5
JP2020516348A5 JP2019554674A JP2019554674A JP2020516348A5 JP 2020516348 A5 JP2020516348 A5 JP 2020516348A5 JP 2019554674 A JP2019554674 A JP 2019554674A JP 2019554674 A JP2019554674 A JP 2019554674A JP 2020516348 A5 JP2020516348 A5 JP 2020516348A5
Authority
JP
Japan
Prior art keywords
myocardial infarction
computing system
characteristic
boundary condition
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019554674A
Other languages
English (en)
Japanese (ja)
Other versions
JP7229170B2 (ja
JP2020516348A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2018/055367 external-priority patent/WO2018184779A1/en
Publication of JP2020516348A publication Critical patent/JP2020516348A/ja
Publication of JP2020516348A5 publication Critical patent/JP2020516348A5/ja
Application granted granted Critical
Publication of JP7229170B2 publication Critical patent/JP7229170B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2019554674A 2017-04-06 2018-03-05 Ecg信号からの心筋微小血管抵抗の推定に基づく冠状動脈疾患メトリック Active JP7229170B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762482223P 2017-04-06 2017-04-06
US62/482,223 2017-04-06
US201762557213P 2017-09-12 2017-09-12
US62/557,213 2017-09-12
PCT/EP2018/055367 WO2018184779A1 (en) 2017-04-06 2018-03-05 Coronary artery disease metric based on estimation of myocardial microvascular resistance from ecg signal

Publications (3)

Publication Number Publication Date
JP2020516348A JP2020516348A (ja) 2020-06-11
JP2020516348A5 true JP2020516348A5 (enExample) 2021-04-15
JP7229170B2 JP7229170B2 (ja) 2023-02-27

Family

ID=61655731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019554674A Active JP7229170B2 (ja) 2017-04-06 2018-03-05 Ecg信号からの心筋微小血管抵抗の推定に基づく冠状動脈疾患メトリック

Country Status (5)

Country Link
US (1) US11710569B2 (enExample)
EP (1) EP3606421B1 (enExample)
JP (1) JP7229170B2 (enExample)
CN (1) CN110494081A (enExample)
WO (1) WO2018184779A1 (enExample)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10210956B2 (en) 2012-10-24 2019-02-19 Cathworks Ltd. Diagnostically useful results in real time
JP7036742B2 (ja) 2016-05-16 2022-03-15 キャスワークス リミテッド 血管評価システム
EP4241694A3 (en) 2016-05-16 2023-12-20 Cathworks Ltd. Selection of vascular paths from images
US11918291B2 (en) * 2017-03-31 2024-03-05 Koninklijke Philips N.V. Simulation of transcatheter aortic valve implantation (TAVI) induced effects on coronary flow and pressure
CN112105970B (zh) * 2018-04-27 2022-05-31 日本瑞翁株式会社 宽带波长膜及其制造方法、以及圆偏振膜的制造方法
JP7532402B2 (ja) 2019-04-01 2024-08-13 キャスワークス リミテッド 血管造影画像選択のための方法および装置
EP4555935A3 (en) 2019-09-23 2025-07-30 Cathworks Ltd. Methods, apparatus, and system for synchronization between a three-dimensional vascular model and an imaging device
JP7678479B2 (ja) 2019-11-22 2025-05-16 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン 機械学習を使用する冠状動脈疾患の解剖学的および機能的評価
CN111067495A (zh) * 2019-12-27 2020-04-28 西北工业大学 基于血流储备分数和造影图像的微循环阻力计算方法
CN111067494B (zh) * 2019-12-27 2022-04-26 西北工业大学 基于血流储备分数和血流阻力模型的微循环阻力快速计算方法
CN111652881B (zh) * 2020-07-01 2025-01-10 杭州脉流科技有限公司 基于深度学习的冠脉重构和血流储备分数计算方法、装置、设备以及可读存储介质
US12315076B1 (en) 2021-09-22 2025-05-27 Cathworks Ltd. Four-dimensional motion analysis of a patient's coronary arteries and myocardial wall
CN118985005A (zh) 2022-02-10 2024-11-19 凯思沃克斯有限公司 用于基于机器学习的传感器分析和血管树分割的系统和方法
CN115299956B (zh) * 2022-08-19 2024-06-25 山东大学 一种基于确定学习和心电图的心肌缺血检测方法及系统
US12475559B2 (en) 2023-05-18 2025-11-18 Regents Of The University Of Michigan Machine learning approach for coronary 3D reconstruction from X-ray angiography images
US12446965B2 (en) 2023-08-09 2025-10-21 Cathworks Ltd. Enhanced user interface and crosstalk analysis for vascular index measurement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138574A1 (en) * 2002-07-17 2004-07-15 Resolution Medical, Inc. Methods and apparatus for enhancing diagnosis of myocardial infarctions
NL1024765C2 (nl) * 2003-11-12 2005-05-17 Consult In Medicine B V Werkwijze en inrichting voor het vaststellen van de aanwezigheid van een ischemisch gebied in het hart van een mens of dier.
WO2011135507A1 (en) 2010-04-28 2011-11-03 Koninklijke Philips Electronics N.V. Visualization of myocardial infarct size in diagnostic ecg
US10186056B2 (en) 2011-03-21 2019-01-22 General Electric Company System and method for estimating vascular flow using CT imaging
US10162932B2 (en) * 2011-11-10 2018-12-25 Siemens Healthcare Gmbh Method and system for multi-scale anatomical and functional modeling of coronary circulation
US9129053B2 (en) * 2012-02-01 2015-09-08 Siemens Aktiengesellschaft Method and system for advanced measurements computation and therapy planning from medical data and images using a multi-physics fluid-solid heart model
WO2013171644A1 (en) 2012-05-14 2013-11-21 Koninklijke Philips N.V. Determination of a fractional flow reserve (ffr) value for a stenosis of a vessel
CN104582572B (zh) * 2012-08-16 2018-04-13 东芝医疗系统株式会社 图像处理装置、医用图像诊断装置以及血压监视器
BR112015010012A2 (pt) 2012-11-06 2017-07-11 Koninklijke Philips Nv método; e sistema
US10595806B2 (en) * 2013-10-22 2020-03-24 Koninklijke Philips N.V. Fractional flow reserve (FFR) index with adaptive boundary condition parameters
US9595089B2 (en) * 2014-05-09 2017-03-14 Siemens Healthcare Gmbh Method and system for non-invasive computation of hemodynamic indices for coronary artery stenosis
CN106659400B (zh) 2014-06-30 2021-01-05 皇家飞利浦有限公司 用于确定血流储备分数值的装置
US9668700B2 (en) * 2014-09-09 2017-06-06 Heartflow, Inc. Method and system for quantifying limitations in coronary artery blood flow during physical activity in patients with coronary artery disease
KR102527582B1 (ko) * 2015-04-02 2023-05-03 하트플로우, 인크. 생리학적 특성, 해부학적 특성, 및 환자 특성으로부터 관류 결핍을 예측하기 위한 시스템 및 방법
US11191490B2 (en) * 2015-12-02 2021-12-07 Siemens Healthcare Gmbh Personalized assessment of patients with acute coronary syndrome

Similar Documents

Publication Publication Date Title
JP2020516348A5 (enExample)
US11728039B2 (en) Methods and systems for predicting sensitivity of blood flow calculations to changes in anatomical geometry
JP6679709B2 (ja) 造影剤分布予測及び測定を使用してプラーク及び/または狭窄性病変の重症度を評価するシステム及び方法
Huttunen et al. Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data
JP2017510350A5 (enExample)
JP2020512871A5 (enExample)
CN105078440B (zh) 无创计算冠状动脉狭窄的血液动力学指标的方法和系统
JP6453883B2 (ja) 血管造影画像データにおいて血管をインタラクティブにセグメント化するためのセグメンテーション装置
Perel et al. Respiratory variations in the arterial pressure during mechanical ventilation reflect volume status and fluid responsiveness
JP2017516535A5 (enExample)
JP2015192921A5 (enExample)
JP2018536454A (ja) 携行式血圧及びバイタルサインモニタリング装置、システム、及び方法
JP2017521115A5 (enExample)
JP2017529146A5 (enExample)
JP2020044409A (ja) 心筋ブリッジ及び患者に及ぼす影響を自動的に判定するためのシステム及び方法
EP3043276A3 (en) Personalized whole-body circulation in medical imaging
RU2016142360A (ru) Устройство для обработки и способ обработки данных о сердечной деятельности живого существа
CN106537392A (zh) 用于冠状动脉中的血液动力学计算的方法和系统
RU2009143056A (ru) Устройство и способ для определения физиологических параметров
JP2018075411A5 (enExample)
JP7371106B2 (ja) 血圧を測定するのに使用するための装置
WO2017184700A1 (en) Adaptive transfer function for determining central blood pressure
EP3019075B1 (en) Determination of a hemodynamic parameter
Banerjee et al. HeartSense: smart phones to estimate blood pressure from photoplethysmography
Starfinger et al. Model-based identification of PEEP titrations during different volemic levels