JP2020515618A - ベータカテニン発現を減少させて免疫療法を強化する - Google Patents

ベータカテニン発現を減少させて免疫療法を強化する Download PDF

Info

Publication number
JP2020515618A
JP2020515618A JP2019553945A JP2019553945A JP2020515618A JP 2020515618 A JP2020515618 A JP 2020515618A JP 2019553945 A JP2019553945 A JP 2019553945A JP 2019553945 A JP2019553945 A JP 2019553945A JP 2020515618 A JP2020515618 A JP 2020515618A
Authority
JP
Japan
Prior art keywords
nucleotides
strand
nucleic acid
catenin
inhibitor molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019553945A
Other languages
English (en)
Other versions
JP7295804B2 (ja
JP2020515618A5 (ja
Inventor
シャンティ ガネーシュ
シャンティ ガネーシュ
マーク エイブラムス
マーク エイブラムス
Original Assignee
ディセルナ ファーマシューティカルズ インコーポレイテッド
ディセルナ ファーマシューティカルズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディセルナ ファーマシューティカルズ インコーポレイテッド, ディセルナ ファーマシューティカルズ インコーポレイテッド filed Critical ディセルナ ファーマシューティカルズ インコーポレイテッド
Publication of JP2020515618A publication Critical patent/JP2020515618A/ja
Publication of JP2020515618A5 publication Critical patent/JP2020515618A5/ja
Priority to JP2023029339A priority Critical patent/JP2023073256A/ja
Application granted granted Critical
Publication of JP7295804B2 publication Critical patent/JP7295804B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39541Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against normal tissues, cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/532Closed or circular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/533Physical structure partially self-complementary or closed having a mismatch or nick in at least one of the strands
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/31Combination therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

免疫療法に応答性でないがんを含むがんを処置するための方法及び組成物を本明細書に提供する。一態様では、処置方法は、対象に、治療有効量のβ−カテニン阻害剤及び治療有効量の免疫療法剤を投与することを含む。別の態様は、がんの処置に使用するためのβ−カテニン阻害剤を含む医薬組成物に関し、該組成物は、免疫療法剤と組み合わせて投与される。さらに別の態様は、β−カテニン阻害剤、例えば、β−カテニン核酸阻害剤分子を使用してがんに対する免疫療法の治療効果を強化する方法に関する。【選択図】図1

Description

関連出願に対する相互参照
本出願は、2017年3月28日に出願された米国仮特許出願第62/477,783号の利益を主張し、その出願日に依拠し、その開示全体が参照により本明細書に組み込まれる。
配列表
本出願は、ASCII形式で電子提出された配列表を含有し、その全体が参照により本明細書に組み込まれる。前記ASCIIコピーは、2018年3月23日に作製され、名称は0243_0007−PCT_SL.txtであり、2キロバイトのサイズである。
免疫系は、T細胞活性化を制御するならびに免疫系が健常細胞を標的とすること及び自己免疫を誘導することを防ぐために、チェックポイントとして免疫細胞の表面上のある特定の分子を使用する。ある特定のがん細胞は、これらの免疫チェックポイント分子をうまく利用して、免疫系を回避することができる。近年、細胞傷害性Tリンパ球関連タンパク質−4(CTLA−4)及びプログラムされた細胞死受容体1(PD−1)などの、免疫チェックポイント分子を遮断する免疫療法の戦略が、ある特定のがんに対して成功を示している。抗CTLA−4モノクローナル抗体(イピリムマブ)は、2011年に、進行性黒色腫を有する患者の処置に関して承認された。抗PD−1モノクローナル抗体(ニボルマブ)は、2014年に、単独またはイピリムマブと組み合わせて、ある特定の進行性がんを有する患者の処置に関して承認された。CTLA−4、PD−1、及びPD−L1のような免疫チェックポイント分子を遮断する抗体は、T細胞活性化のブレーキを解除し、強力な抗腫瘍免疫反応を促進するように思われる。しかしながら、この免疫療法に応答するのは、一部の患者のみである。
少なくともある特定の例では、免疫療法に応答する腫瘍は、浸潤性T細胞、T細胞を腫瘍微小環境に動員する広範なケモカインプロファイル、及び高レベルのIFNガンマ分泌を伴う既存のT細胞炎症表現型を有する(ホット(hot)または炎症性腫瘍(inflamed tumor))とも称される。Gajewski et al.,Nat Immunol.,2013,14(10):1014−22;Ji et al.,Cancer Immunol Immunother,2012,61:1019−31。反対に、免疫療法に応答しないある特定の腫瘍は、T細胞炎症性表現型を有しないと示されている(コールド(cold)または非炎症性腫瘍としても知られる)。Id。
非炎症性腫瘍を免疫療法に応答させ得る選択肢を含む、新しいがん処置選択肢を開発する必要性が当該技術分野に依然としてある。
典型的には、免疫療法に応答しないがんは、非T細胞炎症性表現型(コールドまたは非炎症性腫瘍としても知られる)を特徴とし、腫瘍微小環境にCD8+T細胞がほぼまたは全く浸潤していない。本出願は、β−カテニン発現を減少させることで、コールドまたは非炎症性腫瘍をホットまたは炎症性腫瘍へと変換し、活性化Wnt/β−カテニン経路を有さない腫瘍においてさえも、免疫療法の効果を強化することができることを開示する。言い換えると、β−カテニン阻害剤を免疫療法と組み合わせることによって、通常は免疫療法に応答しないコールドまたは非炎症性腫瘍を処置することが可能である。典型的には、短鎖干渉RNA(siRNA)、従来のアンチセンスオリゴヌクレオチド、マイクロRNA(miRNA)、リボザイム、及びアプタマーを含むがこれらに限定されない、β−カテニン核酸阻害剤分子を使用して、β−カテニン発現を減少させる。しかしながら、β−カテニン発現を減少させる任意のβ−カテニン阻害剤またはWnt/β−カテニン経路阻害剤が、本発明に記載の方法及び組成物において使用することができ、それには、β−カテニンまたはWnt/β−カテニン経路の構成要素を標的とする小分子、ペプチド、及び抗体が含まれるが、これらに限定されない。この併用療法アプローチは、強力に、そして多くの例では相乗的に、活性化Wnt/β−カテニン経路を有する及び有さないがんを含む、広範ながんにわたってin vivoで腫瘍増殖を阻害すると示されている。
一態様は、対象においてがんを処置する方法であって、該対象に、治療有効量のβ−カテニン阻害剤及び治療有効量の免疫療法剤を投与することを含む、方法に関する。ある特定の実施形態では、がんは、非Wnt活性化がんである。他の実施形態では、がんは、Wnt活性化がんである。ある特定の実施形態では、対象は、ヒトである。
ある特定の実施形態では、免疫療法剤は、阻害性免疫チェックポイント分子のアンタゴニストまたは共刺激チェックポイント分子のアゴニストである。ある特定の実施形態では、免疫療法剤は、阻害性チェックポイントのアンタゴニストであり、阻害性チェックポイントは、PD−1またはPD−L1である。ある特定の実施形態では、阻害性免疫チェックポイント分子のアンタゴニストまたは共刺激チェックポイント分子のアゴニストは、モノクローナル抗体である。ある特定の実施形態では、モノクローナル抗体は、抗CTLA−4モノクローナル抗体、抗PD−1モノクローナル抗体、抗PD−L1モノクローナル抗体、または抗CTLA−4モノクローナル抗体及び抗PD−1モノクローナル抗体の組み合わせである。
ある特定の実施形態では、ヒト対象においてがんを処置する方法は、該ヒト対象に:治療有効量のβ−カテニン核酸阻害剤分子、ここでβ−カテニン核酸阻害剤分子は、センス及びアンチセンス鎖ならびにセンス鎖とアンチセンス鎖との間に18〜34塩基対の相補性領域を含む二本鎖RNAi阻害剤分子であり、センス鎖は、18〜36ヌクレオチド長であり、アンチセンス鎖は、18〜38ヌクレオチド長であり、1〜5一本鎖ヌクレオチドをその3’末端で含む;ならびに治療有効量の免疫療法剤、ここで免疫療法剤は、抗CTLA−4モノクローナル抗体、抗PD−1モノクローナル抗体、抗PD−L1モノクローナル抗体、または抗CTLA−4モノクローナル抗体及び抗PD−1モノクローナル抗体の組み合わせを含む、を投与することを含む。ある特定の実施形態では、センス鎖は、25〜35ヌクレオチド長であり、アンチセンス鎖は、26〜38ヌクレオチド長である。
ある特定の実施形態では、がんは、非Wnt活性化がんである。他の実施形態では、がんは、Wnt活性化がんである。
ある特定の実施形態では、対象は、投与ステップの前に、非Wnt活性化がんを有すると同定されている。
ある特定の実施形態では、本方法は、投与ステップの前に、対象が非Wnt活性化がんを有するか否かを決定するために対象からの腫瘍試料を分析するステップをさらに含む。
別の態様は、がんに対する免疫療法剤の治療効果を強化する方法であって、がんを有する対象に、β−カテニン核酸阻害剤分子を、がんに対する免疫療法剤の治療効果を強化するのに十分な量で投与することを含む、方法に関する。ある特定の実施形態では、がんは、非Wnt活性化がんである。他の実施形態では、がんは、Wnt活性化がんである。
ある特定の実施形態では、β−カテニン核酸阻害剤分子を投与する前に、がんを、免疫療法に対して耐性を示す非T細胞炎症性表現型と関連付け、β−カテニン核酸阻害剤分子を投与することが、非T細胞炎症性表現型を、免疫療法剤に対して応答性であるT細胞炎症性表現型へと変換させる。
別の態様は、がんの処置に使用するためのβ−カテニン阻害剤を含む医薬組成物であって、免疫療法剤と組み合わせて投与される、医薬組成物に関する。
一実施形態では、医薬組成物は、がんの処置に使用するためのβ−カテニン核酸阻害剤分子を含み、該組成物は、免疫療法剤と組み合わせて投与され、該β−カテニン核酸阻害剤分子は、センス及びアンチセンス鎖ならびにセンス鎖とアンチセンス鎖との間に18〜34塩基対の相補性領域を含む二本鎖RNAi阻害剤分子であり、センス鎖は、19〜36ヌクレオチド長であり、アンチセンス鎖は、19〜38ヌクレオチド長であり、1〜5一本鎖ヌクレオチドをその3’末端で含み、該免疫療法剤は、抗CTLA−4モノクローナル抗体、抗PD−1モノクローナル抗体、抗PD−L1モノクローナル抗体、または抗CTLA−4モノクローナル抗体及び抗PD−1モノクローナル抗体の組み合わせである。ある特定の実施形態では、センス鎖は、25〜34ヌクレオチド長であり、アンチセンス鎖は、26〜38ヌクレオチド長である。ある特定の実施形態では、がんは、非Wnt活性化がんである。他の実施形態では、がんは、Wnt活性化がんである。
本方法または組成物のある特定の実施形態では、非Wnt活性化がんは、免疫療法剤をβ−カテニン核酸阻害剤分子と組み合わせて投与しないときには、免疫療法剤を用いた処置に対して耐性を示す。
本方法または組成物のある特定の実施形態では、非Wnt活性化がんは、黒色腫、神経芽細胞腫、または腎がんである。
本方法または組成物のある特定の実施形態では、β−カテニン阻害剤は、siRNA、従来のアンチセンスオリゴヌクレオチド、miRNA、リボザイム、及びアプタマーを含むが、これらに限定されないβ−カテニン核酸阻害剤分子である。本方法または組成物のある特定の実施形態では、β−カテニン核酸阻害剤分子は、相補性領域を形成するセンス鎖及びアンチセンス鎖を含む二本鎖RNAi阻害剤分子であり、任意選択で、センス鎖とアンチセンス鎖との間の相補性領域は、約15〜45塩基対である。
本方法または組成物のある特定の実施形態では、β−カテニン核酸阻害剤分子は、センススタンド(sense stand)及びアンチセンス鎖ならびにセンス鎖とアンチセンス鎖との間に約15〜45、18〜26、または19〜21塩基対の相補性領域を含む二本鎖RNAi阻害剤分子である。ある特定の実施形態では、センス鎖は、15〜66ヌクレオチドであり、アンチセンス鎖は、15〜66ヌクレオチドである。ある特定の実施形態では、センス鎖は、25〜40ヌクレオチドまたは19〜25ヌクレオチドである。ある特定の実施形態では、アンチセンス鎖は、25〜40ヌクレオチドまたは19〜25ヌクレオチドである。ある特定の実施形態では、センス鎖は、19〜25ヌクレオチドであり、アンチセンス鎖は、19〜25ヌクレオチドである。
本方法または組成物のある特定の実施形態では、β−カテニン核酸阻害剤分子は、テトラループを含有する。ある特定の実施形態では、センス鎖は、34〜40ヌクレオチドであり、ステム及びテトラループを含有し、アンチセンス鎖は、18〜24ヌクレオチドであり、センス鎖及びアンチセンス鎖は、18〜24塩基対の二重鎖領域を形成する。ある特定の実施形態では、センス鎖は、34〜36ヌクレオチドであり、ステム及びテトラループを含有し、アンチセンス鎖は、18〜24ヌクレオチドであり、センス鎖及びアンチセンス鎖は、18〜24塩基対の二重鎖領域を形成する。
本方法または組成物のある特定の実施形態では、β−カテニン核酸阻害剤分子は、センス及びアンチセンス鎖ならびにセンス鎖とアンチセンス鎖との間に18〜36塩基対の相補性領域を含む二本鎖RNAi阻害剤分子であり、センス鎖は、25〜34ヌクレオチド長であり、アンチセンス鎖は、26〜38ヌクレオチド長であり、1〜5ヌクレオチドの一本鎖オーバーハングをその3’末端で含む。ある特定の実施形態では、センス鎖は、18〜34ヌクレオチド長である。ある特定の実施形態では、二本鎖RNAi阻害剤分子のアンチセンス鎖は、1〜10ヌクレオチドの一本鎖オーバーハングをその5’末端でさらに含む。
本方法または組成物のある特定の実施形態では、β−カテニン核酸阻害剤分子は、センス及びアンチセンス鎖ならびにセンス鎖とアンチセンス鎖との間に20〜30、21〜26、19〜24、または19〜21塩基対の相補性領域を含む二本鎖RNAi阻害剤分子である。ある特定の実施形態では、センス鎖は、21ヌクレオチドを有し、2ヌクレオチドの一本鎖オーバーハングをその3’末端で含み、アンチセンス鎖は、21ヌクレオチドであり、2ヌクレオチドの一本鎖オーバーハングをその3’端で有し、センス鎖及びアンチセンス鎖は、19塩基対の二重鎖領域を形成する。ある特定の実施形態では、センス鎖は、21ヌクレオチドであり、アンチセンス鎖は、23ヌクレオチドであり、2ヌクレオチドの一本鎖オーバーハングをその3’端で有し、センス鎖及びアンチセンス鎖は、21塩基対の二重鎖領域を形成し、センス鎖の3’端及びアンチセンス鎖の5’端は、平滑末端を形成する。
本方法または組成物のある特定の実施形態では、センス鎖とアンチセンス鎖との間の相補性領域は、21〜26塩基対であり、センス鎖は、21〜26ヌクレオチド長であり、アンチセンス鎖は、23〜38ヌクレオチド長であり、1〜2ヌクレオチドの一本鎖オーバーハングをその3’末端で含む。ある特定の実施形態では、アンチセンス鎖は、1〜10ヌクレオチドの一本鎖オーバーハングをその5’末端でさらに含む。
本方法または組成物のある特定の実施形態では、β−カテニン核酸阻害剤分子は、センス及びアンチセンス鎖ならびにセンス鎖とアンチセンス鎖との間に26塩基対の相補性領域を含む二本鎖RNAi阻害剤分子であり、センス鎖は、26ヌクレオチド長であり、アンチセンス鎖は、38ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’末端で、及び10ヌクレオチドの一本鎖オーバーハングをその5’末端で含む。
二本鎖RNAi阻害剤分子のある特定の実施形態では、センス鎖は、配列番号1の配列を含むまたはからなる。二本鎖RNA阻害剤分子のある特定の実施形態では、アンチセンス鎖は、配列番号2の配列を含むまたはからなる。
本方法または組成物のある特定の実施形態では、β−カテニン核酸阻害剤分子は、一本鎖オリゴヌクレオチドである。本方法または組成物のある特定の実施形態では、β−カテニン核酸阻害剤分子は、ヒトβ−カテニン遺伝子の逆相補のセグメントを含む5’から3’方向のヌクレオチド配列を有する従来のアンチセンスオリゴヌクレオチドであり、12〜30、12〜25、12〜22、14〜20、または18〜22ヌクレオチド長である。ある特定の実施形態では、従来のアンチセンスオリゴヌクレオチドは、16〜18または18〜20ヌクレオチド長である。
本方法または組成物のある特定の実施形態では、β−カテニン核酸阻害剤分子は、脂質ナノ粒子を用いて製剤化される。ある特定の実施形態では、脂質ナノ粒子は、カチオン性脂質及びペグ化脂質を含む。
本方法または組成物のある特定の実施形態では、免疫療法剤は、阻害性免疫チェックポイント分子のアンタゴニストまたは共刺激チェックポイント分子のアゴニストである。ある特定の実施形態では、免疫療法剤は、阻害性チェックポイントのアンタゴニストであり、阻害性チェックポイントは、PD−1またはPD−L1である。ある特定の実施形態では、阻害性免疫チェックポイント分子のアンタゴニストまたは共刺激チェックポイント分子のアゴニストは、モノクローナル抗体である。ある特定の実施形態では、モノクローナル抗体は、抗CTLA−4モノクローナル抗体、抗PD−1モノクローナル抗体、抗PD−L1モノクローナル抗体、または抗CTLA−4モノクローナル抗体及び抗PD−1モノクローナル抗体の組み合わせである。
他の実施形態では、免疫療法剤は、阻害性免疫チェックポイント分子のアンタゴニストであり、該阻害性免疫チェックポイント分子は、PD−1のリガンド、例えばPD−L1またはPD−L2;CTLA4のリガンド、例えばCD80またはCD86;またはリンパ球活性化遺伝子3(LAG3)、キラー細胞免疫グロブリン様受容体(KIR)、T細胞膜タンパク質3(TIM3)、ガレクチン9(GAL9)、またはアデノシンA2a受容体(A2aR)である。ある特定の実施形態では、免疫療法剤は、共刺激分子のアゴニストであり、該共刺激分子は、CD28、誘導性T細胞共刺激分子(ICOS)、CD137、OX40、またはCD27である。他の実施形態では、免疫療法剤は、共刺激分子のリガンドのアゴニストであり、それには、例えば、CD80、CD86、B7RP1、B7−H3、B7−H4、CD137L、OX40L、またはCD70が含まれる。
添付の図面は、本明細書に組み込まれ、本明細書の一部をなし、ある特定の実施形態を図示し、記載の説明と共に、本明細書に開示の組成物及び方法のある特定の原理を説明する役割を果たす。
Wntシグナル伝達経路の簡略図を示す。左側は、Wntリガンドがその表面受容体に結合せず、β−カテニンが破壊複合体内に隔離され、ユビキチン化及び分解の標的とされ、標的遺伝子が抑制される細胞を図示する。右側は、Wntリガンドがその表面受容体に結合し、破壊複合体が解体され、安定化したβ−カテニンが放出され、核へと移入し、標的遺伝子が活性化される細胞を図示する。 免疫組織化学(40倍)により、β−カテニンが、両方とも活性化Wnt経路を有する4T1細胞株及び自然発生MMTV−Wnt1腫瘍の核内には局在化するが、非Wnt活性化細胞株であるNeuro2A、B16F10、及びRencaの核内には局在化しないことを示す。 B16F10、Neuro2A、Renca、4T1、及びMMTV−Wntに関して、組織/腫瘍型、モデル型、核β−カテンチン(catentin)染色、及び単独療法または免疫療法と組み合わせたときのβ−カテニン阻害の有効性をまとめた表である。 実施例3に記載する、非Wnt活性化、Neuro2A腫瘍を移植され、PBSまたはBCAT1を用いて処置されたA/Jマウスに関する処置計画を示す。 活性化Wnt経路を有さない、Neuro2A腫瘍細胞を移植されたマウスにおけるBCAT1を用いた単回処置サイクルが、β−カテニンmRNA発現を減少させ、Wnt/β−カテニン応答性マーカーである、cMycに影響せず、免疫細胞マーカー(CD8)、ケモカイン(CCL4)及びT細胞浸潤及び活性化に関与するチェックポイント(PD−1、PD−L1)のmRNA発現を亢進することを示す。 活性化Wnt経路を有さない、Neuro2A腫瘍細胞を移植されたマウスにおけるBCAT1を用いた単回処置サイクルが、β−カテニンmRNA発現を減少させ、Wnt/β−カテニン応答性マーカーである、cMycに影響せず、免疫細胞マーカー(CD8)、ケモカイン(CCL4)及びT細胞浸潤及び活性化に関与するチェックポイント(PD−1、PD−L1)のmRNA発現を亢進することを示す。 BCAT1及びチェックポイント分子阻害剤(抗PD−1/抗CTLA−4抗体)を用いた併用療法が、活性化Wnt経路を有する腫瘍、例えば4T1(C)において、ならびに活性化Wnt経路を有さない腫瘍、例えばNeuro2A(A)、B16F10(B)、及びRenca(D)においてさえも、BCAT1単独またはプラセボ及びチェックポイント分子阻害剤の組み合わせのいずれかと比較して、有意な腫瘍増殖遅延をもたらすことを実証する。 BCAT1及びチェックポイント分子阻害剤(抗PD−1/抗CTLA−4抗体)を用いた併用療法が、活性化Wnt経路を有する腫瘍、例えば4T1(C)において、ならびに活性化Wnt経路を有さない腫瘍、例えばNeuro2A(A)、B16F10(B)、及びRenca(D)においてさえも、BCAT1単独またはプラセボ及びチェックポイント分子阻害剤の組み合わせのいずれかと比較して、有意な腫瘍増殖遅延をもたらすことを実証する。 免疫組織化学により、BCAT1及び免疫療法(IO)を組み合わせることが、B16F10腫瘍細胞においてCD8細胞傷害性T細胞からのパーフォリン及びグランザイムBの放出を亢進させることを示す。 Aは、実施例7に記載する、PBSまたはBCAT1を用いて処置された自然発生MMTV−Wnt腫瘍を有するマウスの処置計画を示す。自然発生MMTV−Wnt1腫瘍を有するマウスにおけるBCAT1を用いた単回処置サイクルが、qPCRにより測定して、β−カテニン(Ctnnb1)及びc−Myc mRNAのレベルの減少(B);免疫組織化学(IHC)により測定して、β−カテニンタンパク質発現の減少(C);IHCにより測定して、腫瘍微小環境におけるCD8発現の増加(D);ならびに腫瘍増殖の減少(E)をもたらすこと;そして最初にプラセボを用いて処置したマウスにおける大きな腫瘍がBCAT1を用いる処置に応答することを示す(F)。 Aは、実施例7に記載する、PBSまたはBCAT1を用いて処置された自然発生MMTV−Wnt腫瘍を有するマウスの処置計画を示す。自然発生MMTV−Wnt1腫瘍を有するマウスにおけるBCAT1を用いた単回処置サイクルが、qPCRにより測定して、β−カテニン(Ctnnb1)及びc−Myc mRNAのレベルの減少(B);免疫組織化学(IHC)により測定して、β−カテニンタンパク質発現の減少(C);IHCにより測定して、腫瘍微小環境におけるCD8発現の増加(D);ならびに腫瘍増殖の減少(E)をもたらすこと;そして最初にプラセボを用いて処置したマウスにおける大きな腫瘍がBCAT1を用いる処置に応答することを示す(F)。 Aは、実施例7に記載する、PBSまたはBCAT1を用いて処置された自然発生MMTV−Wnt腫瘍を有するマウスの処置計画を示す。自然発生MMTV−Wnt1腫瘍を有するマウスにおけるBCAT1を用いた単回処置サイクルが、qPCRにより測定して、β−カテニン(Ctnnb1)及びc−Myc mRNAのレベルの減少(B);免疫組織化学(IHC)により測定して、β−カテニンタンパク質発現の減少(C);IHCにより測定して、腫瘍微小環境におけるCD8発現の増加(D);ならびに腫瘍増殖の減少(E)をもたらすこと;そして最初にプラセボを用いて処置したマウスにおける大きな腫瘍がBCAT1を用いる処置に応答することを示す(F)。 実施例7において使用された併用療法処置計画を示す。マウスを、サイクル1に従って処置し、その後、(サイクル1処置に応答したマウスに関しては)維持用量計画または(サイクル1処置の後に大きな腫瘍を有するマウスに関しては)サイクル2に従う処置のいずれかで処置した。 自然発生MMTV−Wnt1腫瘍を有するマウスにおけるサイクル1処置計画に従ってBCAT1及び抗PD−1/CTLA−4抗体を用いた併用療法が、処置された4匹のうち3匹の動物において完全な腫瘍退縮をもたらしたことを示す。 サイクル1処置計画を完了し、続けて維持用量のBCAT1及び抗PD−1/CTLA−4抗体を受けた自然発生MMTV−Wnt1腫瘍を有するマウスに関する併用療法処置計画を示す。 サイクル1処置の完了後に大きな腫瘍を有した4頭のマウスが、サイクル2処置計画に従ってBCAT1及び抗PD−1/CTLA−4抗体を用いて処置したときに腫瘍増殖の強力な阻害を呈したことを示す。 サイクル1処置計画の完了後に完全な腫瘍退縮を有した3マウスが、維持用量のBCAT1及び抗PD−1/CTLA−4を用いて処置したときに無腫瘍のままであったことを示す。 センス(またはパッセンジャー)鎖(配列番号1)及びアンチセンス(ガイド)鎖(配列番号2)を有する、二本鎖β−カテニン核酸阻害剤分子の一非限定的実施例を示す。このβ−カテニン核酸阻害剤分子は、本明細書でBCAT1と称する。 β−カテニン核酸阻害剤分子を製剤化するために使用することができる脂質ナノ粒子(LNP)の一非限定的実施例を示す。LNPは、以下のコア脂質:DL−048(カチオン性脂質)及びDSG−MPEG(ペグ化脂質)、ならびに以下のエンベロープ脂質:DL−103(カチオン性脂質)、DSPC、コレステロール、及びDSPE−MPEG(ペグ化脂質)を含む。 Aは、実施例3に記載する、非Wnt活性化、B16F10腫瘍を皮下同種移植され、プラセボまたはBCAT1を用いて処置された、C57BL/6マウスに関する処置計画を示す。移植B16F10腫瘍を有するC57BL/6マウスにおけるBCAT1を用いた単回処置サイクルが、qPCRにより測定して、β−カテニン(Ctnnb1)mRNAレベルの部分的な減少、CCL4、CD8a、及びItage(CD103)mRNAの同時増加(B);フローサイトメトリーにより測定して、腫瘍微小環境におけるCD3、CD8、CD103、及びPD−1発現の増加(C);ならびに免疫組織化学(IHC)により測定して、β−カテニンタンパク質のレベルの減少及びCD8タンパク質のレベルの増加(D)をもたらすことを示す。 Aは、実施例3に記載する、非Wnt活性化、B16F10腫瘍を皮下同種移植され、プラセボまたはBCAT1を用いて処置された、C57BL/6マウスに関する処置計画を示す。移植B16F10腫瘍を有するC57BL/6マウスにおけるBCAT1を用いた単回処置サイクルが、qPCRにより測定して、β−カテニン(Ctnnb1)mRNAレベルの部分的な減少、CCL4、CD8a、及びItage(CD103)mRNAの同時増加(B);フローサイトメトリーにより測定して、腫瘍微小環境におけるCD3、CD8、CD103、及びPD−1発現の増加(C);ならびに免疫組織化学(IHC)により測定して、β−カテニンタンパク質のレベルの減少及びCD8タンパク質のレベルの増加(D)をもたらすことを示す。 Aは、実施例3に記載する、非Wnt活性化、B16F10腫瘍を皮下同種移植され、プラセボまたはBCAT1を用いて処置された、C57BL/6マウスに関する処置計画を示す。移植B16F10腫瘍を有するC57BL/6マウスにおけるBCAT1を用いた単回処置サイクルが、qPCRにより測定して、β−カテニン(Ctnnb1)mRNAレベルの部分的な減少、CCL4、CD8a、及びItage(CD103)mRNAの同時増加(B);フローサイトメトリーにより測定して、腫瘍微小環境におけるCD3、CD8、CD103、及びPD−1発現の増加(C);ならびに免疫組織化学(IHC)により測定して、β−カテニンタンパク質のレベルの減少及びCD8タンパク質のレベルの増加(D)をもたらすことを示す。 Aは、実施例3に記載する、非Wnt活性化、B16F10腫瘍を皮下同種移植され、プラセボまたはBCAT1を用いて処置された、C57BL/6マウスに関する処置計画を示す。移植B16F10腫瘍を有するC57BL/6マウスにおけるBCAT1を用いた単回処置サイクルが、qPCRにより測定して、β−カテニン(Ctnnb1)mRNAレベルの部分的な減少、CCL4、CD8a、及びItage(CD103)mRNAの同時増加(B);フローサイトメトリーにより測定して、腫瘍微小環境におけるCD3、CD8、CD103、及びPD−1発現の増加(C);ならびに免疫組織化学(IHC)により測定して、β−カテニンタンパク質のレベルの減少及びCD8タンパク質のレベルの増加(D)をもたらすことを示す。 腫瘍微小環境のフローサイトメトリーにより、移植B16F10腫瘍を有するC57BL/6マウスにおけるBCAT1を用いた単回処置サイクルが、CD8+T細胞上で発現される3つの異なるT細胞受容体補因子(PD−1、TIM−3及びLAG−3)の増加をもたらし(A);腫瘍関連天然キラー(NK)細胞、骨髄由来抑制細胞(MDSC)、または制御性T細胞(Treg)への処置関連作用が最小限から全く観察されなかった(B)ことを示す。 腫瘍微小環境のフローサイトメトリーにより、移植B16F10腫瘍を有するC57BL/6マウスにおけるBCAT1を用いた単回処置サイクルが、CD8+T細胞上で発現される3つの異なるT細胞受容体補因子(PD−1、TIM−3及びLAG−3)の増加をもたらし(A);腫瘍関連天然キラー(NK)細胞、骨髄由来抑制細胞(MDSC)、または制御性T細胞(Treg)への処置関連作用が最小限から全く観察されなかった(B)ことを示す。 BCAT1を用いた単回処置サイクルが、B16F10腫瘍を移植されたマウス(A)及びNeuro2A腫瘍を移植されたマウス(B)においてCxcl10、Cxcl11、及びCD3mRNAの上方制御を引き起こすことを示す。 BCAT1を用いた単回処置サイクルが、B16F10腫瘍を移植されたマウス(A)及びNeuro2A腫瘍を移植されたマウス(B)においてCxcl10、Cxcl11、及びCD3mRNAの上方制御を引き起こすことを示す。 BCAT1を用いた単回処置サイクルが、Wnt活性化4T1腫瘍を移植されたマウスにおいてCxcl10、Cxcl11、及びCD3のmRNA発現を増加させること(A);ならびに腫瘍微小環境において腫瘍関連天然キラー(NK)細胞または骨髄由来抑制細胞(MDSC)には最小限から全く作用しないが、制御性T細胞(Treg)は増加させる(B)ことを示す。 BCAT1を用いた単回処置サイクルが、Wnt活性化4T1腫瘍を移植されたマウスにおいてCxcl10、Cxcl11、及びCD3のmRNA発現を増加させること(A);ならびに腫瘍微小環境において腫瘍関連天然キラー(NK)細胞または骨髄由来抑制細胞(MDSC)には最小限から全く作用しないが、制御性T細胞(Treg)は増加させる(B)ことを示す。 BCAT1(3用量のqd×3)(A)、及び高用量LGK−974(3用量qd×3)(C)の、MMTTV−Wnt腫瘍を有するマウスにおいてCD8mRNA発現を有意に亢進する能力を示す。低用量LGK−974(単回用量のqd×1)も、これらのマウスにおいてCD8mRNA発現を亢進するが、BCAT1または高用量LGK−974より程度は低い(B)。BCAT1及びLGK−974は両方とも、Axin2mRNA発現を減少させるが、BCAT1が誘導するAxin2mRNAの減少は、24時間を通してより良好に持続する。LGK−974は、β−カテニン(Ctnnb1)mRNA発現に作用しない。 BCAT1(3用量のqd×3)(A)、及び高用量LGK−974(3用量qd×3)(C)の、MMTTV−Wnt腫瘍を有するマウスにおいてCD8mRNA発現を有意に亢進する能力を示す。低用量LGK−974(単回用量のqd×1)も、これらのマウスにおいてCD8mRNA発現を亢進するが、BCAT1または高用量LGK−974より程度は低い(B)。BCAT1及びLGK−974は両方とも、Axin2mRNA発現を減少させるが、BCAT1が誘導するAxin2mRNAの減少は、24時間を通してより良好に持続する。LGK−974は、β−カテニン(Ctnnb1)mRNA発現に作用しない。 BCAT1(3用量のqd×3)(A)、及び高用量LGK−974(3用量qd×3)(C)の、MMTTV−Wnt腫瘍を有するマウスにおいてCD8mRNA発現を有意に亢進する能力を示す。低用量LGK−974(単回用量のqd×1)も、これらのマウスにおいてCD8mRNA発現を亢進するが、BCAT1または高用量LGK−974より程度は低い(B)。BCAT1及びLGK−974は両方とも、Axin2mRNA発現を減少させるが、BCAT1が誘導するAxin2mRNAの減少は、24時間を通してより良好に持続する。LGK−974は、β−カテニン(Ctnnb1)mRNA発現に作用しない。 BCAT1がAPC機能喪失突然変異を有するヒト腫瘍異種移植片においてCtnnb1及びAxin2の両方の発現を減少させること、ならびにLGK−974が、高く誇張された用量レベルであってもこのような腫瘍においてAxin2のほんのわずかな、一過性の減少しかもたらさないことを示す。 非Wnt活性化B16F10腫瘍を移植されたマウスにおいて、BCAT1処置がCtnnb1mRNAを減少させるがAxin2mRNAに作用しないこと(A)、及びLGK−974がこの非Wnt活性化腫瘍においてAxin2mRNA発現を減少させるまたはCd8a mRNA発現を増加させることができないこと(B)を示す。 非Wnt活性化B16F10腫瘍を移植されたマウスにおいて、BCAT1処置がCtnnb1mRNAを減少させるがAxin2mRNAに作用しないこと(A)、及びLGK−974がこの非Wnt活性化腫瘍においてAxin2mRNA発現を減少させるまたはCd8a mRNA発現を増加させることができないこと(B)を示す。
定義
本開示のより容易な理解のために、幾つかの用語を初めに下記に規定する。以下の用語及び他の用語の付加的な定義は本明細書を通して示され得る。下に明記する用語の定義が、参照により組み込まれる出願または特許における定義と一致しない場合には、本出願に明記する定義を使用して、その用語の意味が理解されるべきである。
本明細書及び添付の特許請求の範囲において使用する場合、単数形「a」、「an」、及び「the」は、文脈に別段の明確な指定がない限り、複数形の指示物を含む。ゆえに、例えば、「方法」に対する言及は、1つもしくは複数の方法、ならびに/または本明細書に記載の及び/もしくは本開示を読むことにより当業者に明らかとなるだろうタイプのステップが含まれ、他も同様である。
投与する:本明細書で使用する場合、組成物を対象に「投与すること」は、対象に組成物を与える、適用するまたは対象を組成物と接触させることを意味する。投与は、例えば局所、経口、皮下、筋肉内、腹腔内、静脈内、髄腔内及び皮内を含む、多数の経路のいずれかによって達成することができる。
抗体:本明細書で使用する場合、「抗体」という用語は、免疫グロブリンまたはその抗原結合ドメインを指す。本用語は、ポリクローナル、モノクローナル、単一特異的、多重特異的、非特異的、ヒト化、ヒト、一本鎖、キメラ、合成、組み換え、ハイブリッド、変異型、移植、及びin vitroで生成された抗体を含むが、これらに限定されない。抗体は、定常領域、またはその一部、例えばカッパ、ラムダ、アルファ、ガンマ、デルタ、イプシロン及びミュー定常領域遺伝子を含むことができる。例えば、様々なアイソタイプの重鎖定常領域を使用することができ、それには:IgG1、IgG2、IgG3、IgG4、IgM、IgA1、IgA2、IgD、及びIgEが含まれる。例として、軽鎖定常領域は、カッパまたはラムダであることができる。
抗原結合ドメイン:本明細書で使用する場合、「抗原結合ドメイン」という用語は、抗体と抗原との間の特異的結合を担うアミノ酸を含む抗体分子の部分を指す。ある特定の抗原に関しては、抗原結合ドメインは、抗原の一部にのみ結合し得る。抗体により特異的に認識され、結合される抗原のその部分は、「エピトープ」または「抗原決定基」と称される。抗原結合ドメインは、Fab(Fragment antigen−binding);F(ab’)2フラグメント、ヒンジ領域でジスルフィド架橋により連結される2つのFabフラグメントを有する二価フラグメント;Fvフラグメント;一本鎖Fvフラグメント(scFv)例えば、Bird et al.(1988)Science 242:423−426;及びHuston et al.(1988)Proc.Natl.Acad.Sci.USA85:5879−5883)を参照されたい;2つのVH及びCH1ドメインを有するFdフラグメント;dAb(Ward et al.,(1989)Nature341:544−546)、ならびに抗原結合機能を保持する他の抗体フラグメントを含む。Fabフラグメントは、定常領域間でジスルフィド結合により共有結合されたVH−CH1及びVL−CLドメインを有する。Fvフラグメントは、より小さく、非共有結合しているVH及びVLドメインを有する。非共有結合しているドメインが解離する傾向を克服するために、scFvを構築することができる。scFvは、(1)VHのC末端をVLのN末端に、または(2)VLのC末端をVHのN末端に連結させる、柔軟なポリペプチドを含有する。15−mer(Gly4Ser)3ペプチドをリンカーとして使用してよいが、他のリンカーが当該技術分野で公知である。これらの抗体フラグメントは、当業者に公知の従来の技術を使用して獲得され、フラグメントは、インタクト抗体と同じ様式にて機能に関して評価される。
アンチセンス鎖:dsRNAi阻害剤分子は、2つのオリゴヌクレオチド鎖:アンチセンス鎖及びセンス鎖を含む。アンチセンス鎖またはその領域は、標的核酸の対応する領域に対して、部分的に、実質的にまたは完全に相補的である。加えて、dsRNAi阻害剤分子のアンチセンス鎖またはその領域は、dsRNAi阻害剤分子のセンス鎖またはその領域に対して、部分的に、実質的にまたは完全に相補的である。ある特定の実施形態では、アンチセンス鎖は、標的核酸配列に対して非相補的であるヌクレオチドも含有し得る。非相補的ヌクレオチドは、相補的配列のいずれかの側にあってよい、または相補的配列の両側にあってよい。ある特定の実施形態では、アンチセンス鎖またはその領域が、センス鎖またはその領域に対して、部分的にまたは実質的に相補的である場合、非相補的ヌクレオチドは、相補性の1つまたは複数の領域の間に位置し得る(例えば、1つまたは複数のミスマッチ)。dsRNAi阻害剤分子のアンチセンス鎖は、ガイド鎖とも称される。
およそ:本明細書で使用する場合、「およそ」または「約」という用語は、対象の1つまたは複数の値に適用される場合、述べられる参照値と同様の値を指す。ある特定の実施形態では、「およそ」または「約」という用語は、別段の指定がない限りまたは文脈からそうでないと明らかでない限り(かかる数が可能な値の100%を超えることになる場合を除いて)、述べられる参照値のいずれかの方向で(それを上回るまたは下回る)25%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%またはそれ未満に含まれる値の範囲を指す。
β−カテニン:本明細書で使用する場合、「β−カテニン」は、そのようなβ−カテニンタンパク質をコードするポリペプチドまたは核酸配列のいずれかを指す。ポリペプチドに言及するとき、「β−カテニン」は、β−カテニン遺伝子/転写物(CTNNB1)(Genbankアクセッション番号NM_001904.3(ヒトβ−カテニン転写変異体1)、NM_001098209.1(ヒトβ−カテニン転写変異体2)、NM_001098210.1(ヒトβ−カテニン転写変異体3)、ならびにNM_007614.2及びNM_007614.3(マウスβ−カテニン)のポリペプチド遺伝子産物を指す。
BCAT1:本明細書で使用する場合、「BCAT1」は、β−カテニン遺伝子を標的とし、配列番号1からなる核酸配列を有するセンス鎖及び配列番号2からなる核酸配列を有するアンチセンス鎖を有する核酸阻害剤分子を指す。
相補的:本明細書で使用する場合、「相補的」という用語は、2つのヌクレオチドが互いに塩基対を形成することを可能にする2つのヌクレオチド間の構造的関係を指す(例えば、単一の核酸鎖の2つの対向する核酸または対向する領域)。例えば、対向する核酸のピリミジンヌクレオチドに対して相補的である1つの核酸のプリンヌクレオチドは、互いに水素結合を形成することにより共に塩基対合し得る。いくつかの実施形態では、相補的ヌクレオチドは、ワトソン・クリック様式または安定した二重鎖の形成を可能にする任意の他の様式にて塩基対合することができる。「完全に相補的」または100%相補性は、第一のオリゴヌクレオチド鎖または第一のオリゴヌクレオチド鎖のセグメントの各ヌクレオチドモノマーが、第二のオリゴヌクレオチド鎖または第二のオリゴヌクレオチド鎖のセグメントの各ヌクレオチドモノマーと塩基対を形成することができる状況を指す。100%未満の相補性は、2つのオリゴヌクレオチド鎖(または2つのオリゴヌクレオチド鎖の2つのセグメント)のヌクレオチドモノマーが、全てではないが一部、互いに塩基対を形成することができる状況を指す。「実質的な相補性」は、2つのオリゴヌクレオチド鎖(または2つのオリゴヌクレオチド鎖のセグメント)が互いに90%以上の相補性を呈していることを指す。「十分に相補的」は、標的mRNAによってコードされるタンパク質の量が減少している、標的mRNAと核酸阻害剤分子との間の相補性を指す。
相補的鎖:本明細書で使用する場合、「相補的鎖」という用語は、他方の鎖に対して、部分的に、実質的にまたは完全に相補的である二本鎖核酸阻害剤分子の鎖を指す。
従来のアンチセンスオリゴヌクレオチド:本明細書で使用する場合、「従来のアンチセンスオリゴヌクレオチド」という用語は、以下の機序:(1)立体障害、例えば、アンチセンスオリゴヌクレオチドは、例えば、遺伝子の転写、mRNA前駆体のスプライシング及びmRNAの翻訳に直接干渉することにより、遺伝子発現及び/またはコードされるタンパク質の産生に関与する一連の事象のいくつかのステップに干渉する;(2)RNase Hによる標的とされる遺伝子のRNA転写物の酵素消化の誘導;(3)RNase Lによる標的とされる遺伝子のRNA転写物の酵素消化の誘導;(4)RNase Pによる標的とされる遺伝子のRNA転写物の酵素消化の誘導:(5)二本鎖RNaseによる標的とされる遺伝子のRNA転写物の酵素消化の誘導;ならびに(6)同一のアンチセンスオリゴにおける立体障害と酵素消化活性の誘導の組み合わせのうちの1つにより標的とされる遺伝子の発現を阻害する一本鎖オリゴヌクレオチドを指す。従来のアンチセンスオリゴヌクレオチドは、RNAi阻害剤分子のようなRNAi作用機序を有さない。RNAi阻害剤分子は、いくつかの方法において従来のアンチセンスオリゴヌクレオチドと区別されることができ、それには、アンチセンス鎖がAgo2タンパク質を目的の標的(複数可)へと及びAgo2が標的のサイレンシングのために必要とされている場所へと指向するように、RNAiアンチセンス鎖と合一するAgo2に関する要件が含まれる。
デオキシリボヌクレオチド:本明細書で使用する場合、「デオキシリボヌクレオチド」という用語は、天然のヌクレオチド(本明細書で定義する)または糖部分の2’位で水素基を有する修飾ヌクレオチド(本明細書で定義する)を指す。
二重鎖:本明細書で使用する場合、核酸(例えば、オリゴヌクレオチド)に関する「二重鎖」という用語は、ヌクレオチドの2つの逆平行配列の相補的塩基対合を通して形成された構造を指す。
賦形剤:本明細書で使用する場合、「賦形剤」という用語は、例えば、所望の粘稠度または安定化効果をもたらすまたはそれに寄与するために組成物中に含まれ得る非治療剤を指す。
ヌクレオチド間連結基:本明細書で使用する場合、「ヌクレオチド間連結基」または「ヌクレオチド間連結」という用語は、2つのヌクレオシド部分を共有結合できる化学基を指す。典型的には、該化学基は、リン酸基または亜リン酸基を含有するリン含有連結基である。リン酸連結基は、ホスホジエステル連結、ホスホロジチオエート連結、ホスホロチオエート連結、ホスホトリエステル連結、チオノアルキルホスホネート連結、チオンアルキルホスホトリエステル連結、ホスホルアミダイト連結、ホスホネート連結及び/またはボラノホスフェート連結を含むことを意味する。多くのリン含有連結が、当該技術分野で周知であり、例えば、米国特許第3,687,808号;同第4,469,863号;同第4,476,301号;同第5,023,243号;同第5,177,196号;同第5,188,897号;同第5,264,423号;同第5,276,019号;同第5,278,302号;同第5,286,717号;同第5,321,131号;同第5,399,676号;同第5,405,939号;同第5,453,496号;同第5,455,233号;同第5,466,677号;同第5,476,925号;同第5,519,126号;同第5,536,821号;同第5,541,306号;同第5,550,111号;同第5,563,253号;同第5,571,799号;同第5,587,361号;同第5,194,599号;同第5,565,555号;同第5,527,899号;同第5,721,218号;同第5,672,697号及び同第5,625,050号に開示されている。他の実施形態では、オリゴヌクレオチドは、亜リン酸原子を含有しない1つまたは複数のヌクレオチド間連結基、このような短鎖アルキルもしくはシクロアルキルヌクレオチド間連結、混合ヘテロ原子及びアルキルもしくはシクロアルキルヌクレオチド間連結、または1つもしくは複数の短鎖ヘテロ原子もしくは複素環式ヌクレオチド間連結を含有し、それには、シロキサン骨格;スルフィド、スルホキシド、及びスルホン骨格;ホルムアセチル及びチオホルムアセチル骨格;メチレンホルムアセチル及びチオホルムアセチル骨格;リボアセチル骨格;アルケン含有骨格;スルファメート骨格;メチレンイミノ及びメチレンヒドラジノ骨格;スルホネート及びスルホンアミド骨格;ならびにアミド骨格が含まれるが、これらに限定されない。非亜リン酸含有連結は、当該技術分野で周知であり、例えば、米国特許第5,034,506号;同第5,166,315号;同第5,185,444号;同第5,214,134号;同第5,216,141号;同第5,235,033号;同第5,264,562号;同第5,264,564号;同第5,405,938号;同第5,434,257号;同第5,466,677号;同第5,470,967号;同第5,489,677号;同第5,541,307号;同第5,561,225号;同第5,596,086号;同第5,602,240号;同第5,610,289号;同第5,602,240号;同第5,608,046号;同第5,610,289号;同第5,618,704号;同第5,623,070号;同第5,663,312号;同第5,633,360号;同第5,677,437号;同第5,792,608号;同第5,646,269号及び同第5,677,439号に開示されている。
免疫チェックポイント分子:本明細書で使用する場合、「免疫チェックポイント分子」という用語は、免疫系が外来病原体に応答するとき、自己寛容の維持(または自己免疫の予防)ならびに宿主細胞及び組織の保護のために正常な生理的条件下で重要である、T細胞などの免疫細胞上の分子を指す。ある特定の免疫チェックポイント分子は、抗原に対するT細胞応答に関与するシグナルを増幅する共刺激分子であり、一方である特定の免疫チェックポイント分子は、抗原に対するT細胞応答に関与するシグナルを減少させる阻害性分子(例えば、CTLA−4またはPD−1)である。
ループ:本明細書で使用する場合、「ループ」という用語は、特定の一本鎖ヌクレオチド領域に隣接する相補的領域が、該相補的領域間の一本鎖ヌクレオチド領域が二重鎖形成またはワトソン・クリック型塩基対合から除外される方法で、ハイブリッド形成する、核酸の一本鎖によって形成される構造を指す。ループは、任意の長さの一本鎖ヌクレオチド領域である。ループの例には、ヘアピン及びテトラループなどの構造中に存在する、対合していないヌクレオチドが含まれる。
修飾ヌクレオシド:本明細書で使用する場合、「修飾ヌクレオシド」という用語は、修飾もしくはユニバーサルヌクレオ塩基または修飾糖のうちの1つまたは複数を含有するヌクレオシドを指す。修飾またはユニバーサルヌクレオ塩基(本明細書では、塩基類似体とも称する)は、一般的に、ヌクレオシド糖部分の1’位に位置し、1’位でのアデニン、グアニン、シトシン、チミン及びウラシル以外のヌクレオ塩基を指す。ある特定の実施形態では、修飾またはユニバーサルヌクレオ塩基は、窒素塩基である。ある特定の実施形態では、修飾ヌクレオ塩基は、窒素原子を含有しない。例えば、米国公開特許出願第20080274462号を参照されたい。ある特定の実施形態では、修飾ヌクレオチドは、ヌクレオ塩基(脱塩基)を含有しない。修飾糖(本明細書では、糖類似体とも称する)は、修飾デオキシリボースまたはリボース部分を含み、例えば、この場合、修飾は、糖の2’−、3’−、4’−、または5’−炭素位で生じる。修飾糖は、非天然の代替炭素構造、例えばロックド核酸(「LNA」)(例えば、Koshkin et al.(1998),Tetrahedron,54,3607−3630を参照されたい)架橋化核酸(「BNA」)(例えば、米国特許第7,427,672号及びMitsuoka et al.(2009),Nucleic Acids Res.,37(4):1225−38を参照されたい);及びアンロックド核酸(「UNA」)(例えば、Snead et al.(2013),Molecular Therapy−Nucleic Acids,2,e103(doi:10.1038/mtna.2013.36を参照されたい))に存在するものも含み得る。本開示の状況における好適な修飾もしくはユニバーサルヌクレオ塩基または修飾糖は、本明細書に記載する。
修飾ヌクレオチド:本明細書で使用する場合、「修飾ヌクレオチド」という用語は、修飾もしくはユニバーサルヌクレオ塩基、修飾糖、または修飾リン酸基のうちの1つまたは複数を含有するヌクレオチドを指す。修飾またはユニバーサルヌクレオ塩基(本明細書では、塩基類似体とも称する)は、一般的に、ヌクレオシド糖部分の1’位に位置し、1’位でのアデニン、グアニン、シトシン、チミン及びウラシル以外のヌクレオ塩基を指す。ある特定の実施形態では、修飾またはユニバーサルヌクレオ塩基は、窒素塩基である。ある特定の実施形態では、修飾ヌクレオ塩基は、窒素原子を含有しない。例えば、米国公開特許出願第20080274462号を参照されたい。ある特定の実施形態では、修飾ヌクレオチドは、ヌクレオ塩基(脱塩基)を含有しない。修飾糖(本明細書では、糖類似体とも称する)は、修飾デオキシリボースまたはリボース部分を含み、例えば、この場合修飾は、糖の2’−、3’−、4’−、または5’−炭素位で生じる。修飾糖は、非天然の代替炭素構造、例えばロックド核酸(「LNA」)(例えば、Koshkin et al.(1998),Tetrahedron,54,3607−3630を参照されたい);架橋化核酸(「BNA」)(例えば、米国特許第7,427,672号及びMitsuoka et al.(2009),Nucleic Acids Res.,37(4):1225−38を参照されたい);及びアンロックド核酸(「UNA」)(例えば、Snead et al.(2013),Molecular Therapy−Nucleic Acids,2,e103(doi:10.1038/mtna.2013.36)を参照されたい)に存在するものも含み得る。修飾リン酸基は、天然ヌクレオチドには生じず、本明細書に記載の非天然に生じるリン酸塩模倣物を含む、リン酸基の修飾を指し、該リン酸塩模倣物には、亜リン酸原子及びリン酸塩を含まないアニオン性リン酸模倣物(例えば、酢酸塩)が含まれる。修飾リン酸基は、非天然に生じるヌクレオチド間連結基も含み、これには、本明細書に記載の亜リン酸含有ヌクレオチド間連結基及び非亜リン酸含有連結基の両方が含まれる。本開示の状況における好適な修飾もしくはユニバーサルヌクレオ塩基、修飾糖、または修飾リン酸塩は、本明細書に記載する。
ネイキッドオリゴヌクレオチド:本明細書で使用する場合、「ネイキッドオリゴヌクレオチド」という用語は、保護脂質ナノ粒子または他の保護用製剤内に製剤化されておらず、ゆえにin vivo投与されたときに、血液及びエンドソーム/リソソームコンパートメントに曝露されるオリゴヌクレオチドを指す。
天然ヌクレオシド:本明細書で使用する場合、「天然ヌクレオシド」という用語は、糖(例えば、デオキシリボースもしくはリボースまたはその類似体)とN−グリコシド連結している複素環窒素塩基を指す。天然複素環窒素塩基には、アデニン、グアニン、シトシン、ウラシル及びチミンが含まれる。
天然ヌクレオチド:本明細書で使用する場合、「天然ヌクレオチド」という用語は、リン酸基に連結した糖(例えば、リボースもしくはデオキシリボースまたはその類似体)とN−グリコシド連結している複素環窒素塩基を指す。天然複素環窒素塩基には、アデニン、グアニン、シトシン、ウラシル及びチミンが含まれる。
非T細胞炎症性表現型:本明細書で使用する場合、「非T細胞炎症性表現型」は、腫瘍微小環境における浸潤CD8+T細胞の蓄積がほとんどまたは全くないことによって証明される、腫瘍に対する既存のT細胞応答を伴わない腫瘍微小環境を指す。典型的には、非T細胞炎症性表現型は、腫瘍微小環境におけるCD8+T細胞の動員及び蓄積を促進しない限定されたケモカインプロファイル、及び/またはI型IFN遺伝子シグネチャーが最小限であるまたは存在しないことも特徴とする。
非Wnt活性化疾患または障害:本明細書で使用する場合、「非Wnt活性化」疾患または障害は、Wnt/β−カテニン経路の活性化に関連しない疾患または障害を指す。「非Wnt活性化」疾患または障害は、ある特定のがん及び/または増殖性疾患、状態、もしくは障害を含み、これらには、ある特定の結腸直腸、デスモイド、子宮内膜、胃、肝細胞、肝芽腫、腎臓(ウィルムス腫瘍)、髄芽腫、黒色腫、神経芽細胞腫、卵巣(類内膜)、膵臓、毛母腫、前立腺、腎臓、甲状腺(未分化)及び子宮(子宮内膜)癌が含まれる。一実施形態では、「非Wnt活性化」疾患または障害は、結腸直腸癌、肝細胞癌腫、または黒色腫である。一実施形態では、「非Wnt活性化」疾患または障害は、神経芽細胞腫、腎癌、または黒色腫である。上に列挙したがん及び/または増殖性疾患を含む疾患または障害が、非Wnt活性化サブタイプの疾患または障害及び、下に提供するWnt活性化疾患または障害の定義と一致している、Wnt活性化サブタイプの疾患または障害の両方を含み得ることが理解されたい。
核酸阻害剤分子:本明細書で使用する場合、「核酸阻害剤分子」という用語は、標的遺伝子の発現を減少させるまたは除去するオリゴヌクレオチド分子を指し、該オリゴヌクレオチド分子は、標的遺伝子mRNA中の配列を特異的に標的とする領域を含有する。典型的には、核酸阻害剤分子の標的化領域は、指定の標的遺伝子へと核酸阻害剤分子の作用を指向するのに、標的遺伝子mRNA上の配列に対して十分に相補的である配列を含む。核酸阻害剤分子は、リボヌクレオチド、デオキシリボヌクレオチド、及び/または修飾ヌクレオチドを含み得る。
ヌクレオシド:本明細書で使用する場合、「ヌクレオシド」という用語は、天然ヌクレオシドまたは修飾ヌクレオシドを指す。
ヌクレオチド:本明細書で使用する場合、「ヌクレオチド」という用語は、天然ヌクレオチドまたは修飾ヌクレオチドを指す。
オーバーハング:本明細書で使用する場合、「オーバーハング」という用語は、二本鎖核酸阻害剤分子のいずれかの鎖のいずれかの端での末端の非塩基対合ヌクレオチド(複数可)を指す。ある特定の実施形態では、オーバーハングは、第一の鎖または領域が二重鎖を形成する相補的鎖の末端を超えて伸長する一方の鎖または領域から生じる。塩基対の水素結合を通して二重鎖を形成することができる2オリゴヌクレオチド領域の一方または両方は、2ポリヌクレオチドまたは領域により共有される相補的な3’及び/または5’端を超えて伸長する5’及び/または3’端を有し得る。二重鎖の3’及び/または5’端を超えて伸長する一本鎖領域を、オーバーハングと称する。
医薬組成物:本明細書で使用する場合、「医薬組成物」という用語は、薬理学的に有効量のβ−カテニン核酸阻害剤分子または免疫療法剤、例えば抗体(例えば、抗CTLA−4、抗PD−1、または抗PD−L1抗体のうちの1つまたは複数を含む)及び薬学的に許容され得る賦形剤を含む。本明細書で使用する場合、「薬理学的有効量」、「治療有効量」または「有効量」は、目的の薬理学的、治療または予防的結果を産生するのに有効である、β−カテニン核酸阻害剤分子または免疫療法剤、例えば抗体(例えば、抗CTLA−4、抗PD−1、または抗PD−L1抗体のうちの1つまたは複数を含む)の量を指す。
薬学的に許容され得る賦形剤:「薬学的に許容され得る賦形剤」という句は、賦形剤が、ヒト及び/または動物での使用に好適なものであり、過度の有害副作用(例えば毒性、刺激、及びアレルギー反応)を伴わず、合理的な利益/リスク比に見合ったものであることを意味する。
リン酸塩模倣物:本明細書で使用する場合、「リン酸塩模倣物」という用語は、リン酸基の静電特性及び立体特性を模倣するオリゴヌクレオチドの5’末端にある化学的部分を指す。オリゴヌクレオチドの5’端に付着することができる多くのリン酸塩模倣物が開発されている(例えば、米国特許第8,927,513号;Prakash et al.Nucleic Acids Res.,2015,43(6):2993−3011を参照されたい)。典型的には、これらの5’−リン酸塩模倣物は、ホスファターゼ耐性連結を含有する。好適なリン酸塩模倣物には、5’−ホスホネート、例えば5’−メチレンホスホネート(5’−MP)及び5’−(E)−ビニルホスホネート(5’−VP)及び4’−リン酸塩類似体が含まれ、これらはオリゴヌクレオチドの5’末端ヌクレオチドの糖部分(例えば、リボースもしくはデオキシリボースまたはその類似体)の4’−炭素に結合する、例えば4’−オキシメチルホスホネート、4’−チオメチルホスホネート、または4’−アミノメチルホスホネートであり、これはその全体が参照により本明細書に組み込まれる、国際公開WO2018/045317に記載されている。ある特定の実施形態では、4’−オキシメチルホスホネートは、式−O−CH2−PO(OH)2または−O−CH2−PO(OR)2により表され、式中Rは、H、CH3、アルキル基、または保護基から独立して選択される。ある特定の実施形態では、アルキル基は、CH2CH3である。より典型的には、Rは、H、CH3、またはCH2CH3から独立して選択される。他の修飾が、オリゴヌクレオチドの5’端に関して、開発されている(例えば、WO2011/133871を参照されたい)。
強化する:「強化する」または「強化すること」という用語は、本明細書で用いる場合、1つの治療剤(例えば、β−カテニン核酸阻害剤分子)が別の治療剤(例えば、阻害性免疫チェックポイント分子のアンタゴニスト、例えばCTLA−4もしくはPD−1、または共刺激チェックポイント分子のアゴニスト)の治療効果を増加させるまたは亢進させる能力を指す。
減少させる:「減少させる」という用語は、本明細書で用いる場合、当該技術分野で一般的に認められるその意味を指す。例示的な核酸阻害剤分子(例えば、β−カテニンRNAi阻害剤分子)に関して、本用語は概して、核酸阻害剤分子の非存在下に観察されるものを下回る、遺伝子の発現、あるいはRNA分子または1つもしくは複数のタンパク質もしくはタンパク質サブユニットをコードする同等のRNA分子のレベル、あるいは1つまたは複数のタンパク質またはタンパク質サブユニットの活性の減少を指す。
耐性:免疫療法に関連して使用される「耐性」または「耐性を示す」という用語は、免疫療法に対して医薬的に有意な応答を示さないがん及び/または増殖性疾患、状態もしくは障害を指す。本明細書に開示するように、免疫療法に対する耐性は、β−カテニン発現を減少させることにより逆転させることができる。
リボヌクレオチド:本明細書で使用する場合、「リボヌクレオチド」という用語は、ヒドロキシル基を糖部の2’位で有する、天然または修飾ヌクレオチドを指す。
RNAi阻害剤分子:本明細書で使用する場合、「RNAi阻害剤分子」という用語は、(a)センス鎖(パッセンジャー)及びアンチセンス鎖(ガイド)を有し、アンチセンス鎖もしくはアンチセンス鎖の一部がアルゴノート2(Ago2)エンドヌクレアーゼにより標的mRNAの開裂において使用される二本鎖核酸阻害剤分子(「dsRNAi阻害剤分子」)、または(b)アンチセンス鎖(またはアンチセンス鎖の一部)がAgo2エンドヌクレアーゼにより標的mRNAの開裂において使用される、単一のアンチセンス鎖を有する一本鎖核酸阻害剤分子(「ssRNAi阻害剤分子」)のいずれかを指す。
センス鎖:dsRNAi阻害剤分子は、2本のオリゴヌクレオチド鎖:アンチセンス鎖及びセンス鎖を含む。センス鎖またはその領域は、dsRNAi阻害剤分子のアンチセンス鎖またはその領域に対して、部分的に、実質的にまたは完全に相補的である。ある特定の実施形態では、センス鎖は、アンチセンス鎖に対して非相補的であるヌクレオチドも含有し得る。非相補的ヌクレオチドは、相補的配列のいずれかの側にあり得るまたは相補的配列の両側にあり得る。ある特定の実施形態では、センス鎖またはその領域が、アンチセンス鎖またはその領域に対して、部分的にまたは実質的に相補的である場合、非相補的ヌクレオチドは、相補性の1つまたは複数の領域の間に位置し得る(例えば、1つまたは複数のミスマッチ)。センス鎖は、パッセンジャー鎖とも称される。
対象:本明細書で使用する場合、「対象」という用語は、マウス、ウサギ、及びヒトを含む任意の哺乳類を意味する。一実施形態では、対象は、ヒトである。「個体」または「患者」という用語は、「対象」と置き換え可能であると意図される。
T細胞炎症性腫瘍表現型:本明細書で使用する場合、「T細胞炎症性表現型」は、腫瘍微小環境における浸潤CD8+T細胞の蓄積によって証明される、腫瘍に対する既存のT細胞応答を伴う腫瘍微小環境を指す。典型的には、T細胞炎症性表現型は、CD8+T細胞を腫瘍微小環境に動員することが可能である広範なケモカインプロファイル(CXCL9及び/またはCXCL10を含む)及び/またはI型IFN遺伝子シグネチャーも特徴とする。
テトラループ:本明細書で使用する場合、「テトラループ」という用語は、隣接するワトソン・クリックハイブリダイズしたヌクレオチドの安定性に寄与する安定な二次構造を形成するループ(一本鎖領域)を指す。理論に制限されないが、テトラループは、スタッキング相互作用によりワトソン・クリック型塩基対を安定化し得る。加えて、テトラループにおけるヌクレオチド間の相互作用には、非ワトソン・クリック型塩基対合、スタッキング相互作用、水素結合及び接触相互作用が含まれるが、これらに限定されない(Cheong et al.,Nature,1990,346(6285):680−2;Heus and Pardi,Science,1991,253(5016):191−4)。テトラループは、ランダムな塩基からなる単純なモデルループ配列から予想されるよりも高い、隣接する二重鎖の融解温度(Tm)を増加させる。例えば、テトラループは、少なくとも2塩基対長の二重鎖を含むヘアピンに対して、10mM NaHPO4中で、少なくとも50℃、少なくとも55℃、少なくとも56℃、少なくとも58℃、少なくとも60℃、少なくとも65℃または少なくとも75℃の融解温度を与えることができる。テトラループは、リボヌクレオチド、デオキシリボヌクレオチド、修飾ヌクレオチド、及びそれらの組み合わせを含有し得る。ある特定の実施形態では、テトラループは、4ヌクレオチドからなる。ある特定の実施形態では、テトラループは、5ヌクレオチドからなる。
RNAテトラループの例には、テトラループのUNCGファミリー(例えば、UUCG)、テトラループのGNRAファミリー(例えば、GAAA)、及びCUUGテトラループが含まれる。(Woese et al.,PNAS,1990,87(21):8467−71;Antao et al.,Nucleic Acids Res.,1991,19(21):5901−5)。DNAテトラループの例には、テトラループのd(GNNA)ファミリー(例えば、d(GTTA)、テトラループのd(GNRA))ファミリー、テトラループのd(GNAB)ファミリー、テトラループのd(CNNG)ファミリー、及びテトラループのd(TNCG)ファミリー(例えば、d(TTCG))が含まれる(Nakano et al.Biochemistry,2002,41(48):14281−14292.Shinji et al.,Nippon Kagakkai Koen Yokoshu,2000,78(2):731)。
治療有効量:本明細書で使用する場合、「治療有効量」または「薬理学的有効量」は、処置されている対象の疾患または状態症状を予防する、軽減するまたは緩和するのに有効である、化合物(1つまたは複数)の量を意味する。
Wnt活性化疾患または障害:本明細書で使用する場合、「Wnt活性化」疾患または障害は、活性化Wnt/β−カテニン経路と関連する疾患または障害を指す。「Wnt関連」疾患または障害には、がん及び/または増殖性疾患、状態、もしくは障害が含まれ、それには結腸直腸、デスモイド、子宮内膜、胃、肝細胞、肝芽腫、腎臓(ウィルムス腫瘍)、髄芽腫、黒色腫、卵巣(類内膜)、膵臓、毛母腫、前立腺、甲状腺(未分化)及び子宮(子宮内膜)癌が含まれる。一実施形態では、「Wnt活性化」疾患または障害は、結腸直腸癌、肝細胞癌腫、または黒色腫である。上に列挙したがん及び/または増殖性疾患を含む疾患または障害が、疾患または障害のWnt活性化版及び、上に提供する非Wnt活性化疾患または障害の定義と一致している、疾患または障害の非Wnt活性化版の両方を含み得ることが理解されたい。
Wnt/β−カテニン経路:本明細書で用いる「Wnt/β−カテニン経路」は、β−カテニンに関与する下流シグナル伝達経路を開始する、Wntリガンド、受容体、及び共受容体の組み合わせを通して媒介される細胞における分子シグナル伝達経路を指す(例えば、図1を参照されたい)。Wntシグナル伝達の非存在下では、β−カテニンは、細胞の細胞質におけるユビキチン化を介する分解の標的となる。Wntリガンド及びWntシグナル伝達の存在下では、β−カテニンは安定化され、細胞核に移行し、そこで転写因子、例えばT細胞転写因子(TCF)及びリンパ系強化転写因子(LEF)と相互作用し、遺伝子転写を活性化させることができる。Wnt/β−カテニン経路の制御解除及び活性化は、β−カテニン遺伝子またはβ−カテニン機能を下方制御する大腸腺腫性ポリポーシス(APC)をコードする遺伝子における突然変異により引き起こされることが最も多いが、Wnt/β−カテニン経路の他の要素、例えばAxin、LEF、及びICATをコードする遺伝子における突然変異によっても引き起こされる場合がある。
本出願は、免疫療法に応答しないがんを含むがんを処置するための新しい方法及び組成物を提供する(例えば、免疫チェックポイント分子の阻害)。典型的には、免疫療法に応答しないがんは、非T細胞炎症性表現型(コールドまたは非炎症性腫瘍としても知られる)を特徴とし、腫瘍微小環境にCD8+T細胞がほぼまたは全く浸潤していない。β−カテニン発現を減少させることで、活性化Wnt/β−カテニン経路を有さない腫瘍においてさえも、コールドまたは非炎症性腫瘍をホットまたは炎症性腫瘍へと変換し、免疫療法の効果を強化することができる。言い換えると、β−カテニン阻害剤を免疫療法と組み合わせることで、通常免疫療法に応答しないコールドまたは非炎症性腫瘍を処置することが可能である。典型的には、β−カテニン核酸阻害剤分子を使用して、β−カテニン発現を減少させる。しかしながら、β−カテニン発現を減少させる任意のβ−カテニン阻害剤またはWnt/β−カテニン経路阻害剤が、本明細書に記載の方法及び組成物において使用されることができ、それには、β−カテニンまたはWnt/β−カテニン経路の要素を標的とする小分子、ペプチド、及び抗体が含まれるが、これらに限定されない。この併用療法手法は、活性化Wnt/β−カテニン経路を有する及び有さないがんを含む、広範ながんにわたってin vivoで腫瘍増殖を強く阻害すると示されている。
Wnt/β−カテニン経路
上に記載するように、Wnt/β−カテニン経路は、β−カテニン発がん遺伝子に関与する下流シグナル伝達経路を開始する、Wntリガンド、受容体、及び共受容体の組み合わせを通して媒介される(例えば、図1を参照されたい)。Wntシグナル伝達の非存在下では、β−カテニンは、細胞の細胞質におけるユビキチン化を介する分解の標的となる。Wntリガンド及びWntシグナル伝達の存在下では、β−カテニンは安定化され、細胞核に移行し、そこで転写因子、例えばT細胞転写因子(TCF)及びリンパ系強化転写因子(LEF)と相互作用し、遺伝子転写を活性化させる。
β−カテニンは、細胞におけるWntシグナル伝達の重要なメディエーターである。β−カテニンは、複数の細胞部位で幾つかの細胞機能を果たし、それには、形質膜、そこではβ−カテニンは細胞間接着複合体の安定化に寄与する、細胞質、そこではβ−カテニンレベルが制御される、及び核、そこではβ−カテニンは転写制御及びクロマチン相互作用に関与する、が含まれる。
(ヒトにおいてCTNNB1遺伝子によりコードされる)β−カテニンの突然変異は、結腸直腸、デスモイド、子宮内膜、胃、肝細胞、肝芽腫、腎臓(ウィルムス腫瘍)、髄芽腫、黒色腫、卵巣(類内膜)、膵臓、毛母腫、前立腺、甲状腺(未分化)及び子宮(子宮内膜)癌と特に関連している(Polakis P.Genes Dev.14:1837−51;Samowitz et al.Cancer Res.59:1442−4;Iwao et al.Cancer Res.58:1021−6;Mirabelli−Primdahl et al.Cancer Res.59:3346−51;Shitoh et al.J Clin Path.52:695−6;Tejpar et al.Oncogene18:6615−20;Kitaeva et al.Cancer Res.57:4478−81;Sparks et al.Cancer Res.58:1130−4;Miyaki et al.Cancer Res.59:4506−9;Park et al.Cancer Res.59:4257−60;Huang et al.Am J Pathol.155:1795−801;Nhieu et al.Am J Pathol.155:703−10;Legoix et al.Oncogene18:4044−6;Jeng et al.Cancer Lett.152:45−51;Koch et al.Cancer Res.59:269−73;Wei et al.Oncogene 19:498−504;Koesters et al.Cancer Res.59:3880−2;Maiti et al.Cancer Res.60:6288−92;Zurawel et al.Cancer Res.58:896−9;Gamallo et al.Am J Pathol.155:527−36;Palacios and Gamallo Cancer Res.58:1344−7;Wright et al.Int J Cancer82:625−9;Gerdes et al.Digestion60:544−8;Chan et al.Nat Genet.21:410−3;Voeller et al.Cancer Res.58:2520−3;Garcia−Rostan et al.Cancer Res.59:1811−5;Fukuchi et al.Cancer Res.58:3526−8)。
β−カテニン/Wnt経路は、80%を超える結腸直腸癌において一貫して活性化している。結腸直腸癌の発症におけるβ−カテニンの役割は、腫瘍サプッレサーであるAPC(結腸腺腫性ポリポーシス)遺伝子の発現産物により制御されることが示されている(Korinek et al.,Science,1997,275:1784−1787;Morin et al.,Science,1997,275:1787−1790)。APCタンパク質は、通常は、転写因子複合体を形成するTCF/LEFと併せてβ−カテニンと結合する。Morinら(Morin et al.,Science,1997,275:1787−1790)は、APCタンパク質が、結腸癌においてβ−カテニン及びTcf−4により媒介される転写活性化を下方制御することを報告している。彼らの結果は、β−カテニンの制御がAPCの腫瘍抑制効果と関連すること、そしてこの制御が、APCまたはβ−カテニンのいずれかにおける突然変異により回避され得ることを指摘するものであった。
β−カテニン/Wnt経路は、50%を超える肝細胞癌腫(HCC)患者においても一貫して活性化されている。活性化Wntシグナル伝達及び核β−カテニンは、疾患の再発及び予後不良と相関している(Takigawa et al.2008,Curr Drug Targets November;9(11):1013−24)。
β−カテニン遺伝子における突然変異には、β−カテニンのN末端の一部の欠失をもたらすトランケーション、または、β−カテニンのリン酸化を媒介し、プロテオソームによるその分解を標的とするGSK3α/βもしくはCKIαなどの細胞質破壊複合体の構成要素により標的とされるセリン残基及びトレオニン残基に影響する点突然変異が含まれる。これらの突然変異β−カテニンタンパク質は、リン酸化を受けにくいため、プロテオソーム分解を回避する。結果として、β−カテニンは罹患細胞内に蓄積する。安定化し、核に局在するβ−カテニンは、結腸癌のほぼ全ての事例の際だった特徴である(Clevers,H.,2006,Cell127:469−480)。Morinらは、リン酸化部位を改変するβ−カテニンの突然変異により、細胞がβ−カテニンのAPCに媒介される下方制御の影響を受けなくなること、そしてこの機序の破壊が結腸直腸の腫瘍形成に重要であることを実証した(Morin et al.,1997,Science275:1787−1790)。
本明細書に開示の方法及び組成物のある特定の実施形態では、がんは、活性化Wnt/β−カテニンシグナル伝達経路を有する。他の実施形態では、がんは、活性化Wnt/β−カテニンシグナル伝達経路を有さない。
核酸阻害剤分子
ある特定の実施形態では、β−カテニン発現は、核酸阻害剤分子を使用して減少される。様々なオリゴヌクレオチド構造が核酸阻害剤分子として使用されており、それには一本鎖及び二本鎖オリゴヌクレオチドが含まれる。
ある特定の実施形態では、核酸阻害剤分子は、センス(またはパッセンジャー)鎖及びアンチセンス(またはガイド)鎖を含む、二本鎖RNAi阻害剤分子である。様々な二本鎖RNAi阻害剤分子構造が当該技術分野で公知である。例えば、RNAi阻害剤分子に関する初期の研究は、各々の鎖が19〜25ヌクレオチドのサイズを有し、少なくとも1つの1〜5ヌクレオチドの3’オーバーハングを有する二本鎖核酸分子に着目していた(例えば、米国特許第8,372,968号を参照されたい)。その後に、ダイサー酵素によりin vivoでプロセシングされて活性RNAi阻害剤分子となるより長い二本鎖RNAi阻害剤分子が開発された(例えば、米国特許第8,883,996号を参照されたい)。近年の研究では、一方の鎖が熱力学的に安定しているテトラループ構造を含む構造を含む、少なくとも一方の鎖の少なくとも一方の端部が該分子の二本鎖標的化領域を超えて伸長されている、伸長された二本鎖核酸阻害剤分子が開発された(例えば、米国特許第8,513,207号、米国特許第8,927,705号、WO2010/033225、及びWO2016/100401を参照されたく、これらは、これらの二本鎖核酸阻害剤分子のその開示に関して参照により本明細書に組み込まれる)。これらの構造は、(分子の片側または両側での)一本鎖伸長及び二本鎖伸長を含む。
いくつかの実施形態では、センス及びアンチセンス鎖は、15〜66、25〜40、または19〜25ヌクレオチドの範囲である。いくつかの実施形態では、センス鎖は、30ヌクレオチド未満、例えば19〜24ヌクレオチド、例えば21ヌクレオチドである。いくつかの実施形態では、アンチセンス鎖は、30ヌクレオチド未満、例えば19〜24ヌクレオチド、例えば21、22、または23ヌクレオチドである。典型的には、二重鎖構造は、15から50、例えば15から30、例えば18から26、より典型的には19から23であり、ある特定の例では、19から21塩基対長である。
いくつかの実施形態では、dsRNAi阻害剤分子は、1つまたは複数の一本鎖ヌクレオチドオーバーハング(複数可)をさらに含み得る。典型的には、dsRNAi阻害剤分子は、1〜10、1〜4、または1〜2ヌクレオチドの一本鎖オーバーハングを有する。一本鎖オーバーハングは、典型的には、センス鎖の3’端及び/またはアンチセンス鎖の3’端に位置する。ある特定の実施形態では、1〜10、1〜4、または1〜2ヌクレオチドの一本鎖オーバーハングは、アンチセンス鎖の5’端に位置する。ある特定の実施形態では、1〜10、1〜4、または1〜2ヌクレオチドの一本鎖オーバーハングは、センス鎖の5’端に位置する。ある特定の実施形態では、1〜2ヌクレオチドの一本鎖オーバーハングは、アンチセンス鎖の3’端に位置する。ある特定の実施形態では、dsRNA阻害剤分子は、平滑末端を、典型的には分子の右手側、すなわち、センス鎖の3’端及びアンチセンス鎖の5’端で有する。
ある特定の実施形態では、dsRNAi阻害剤分子は、21ヌクレオチド長のガイド鎖及び21ヌクレオチド長のパッセンジャー鎖を有し、この場合、2ヌクレオチド3’パッセンジャー鎖オーバーハングが分子の右側(パッセンジャー鎖の3’端/ガイド鎖の5’端)にあり、2ヌクレオチド3’ガイド鎖オーバーハングが分子の左側(パッセンジャー鎖の5’端/ガイド鎖の3’端)にある。このような分子では、19塩基対二重鎖領域が存在する。
ある特定の実施形態では、dsRNAi阻害剤分子は、23ヌクレオチド長のガイド鎖及び21ヌクレオチド長のパッセンジャー鎖を有し、この場合、平滑末端が分子の右側(パッセンジャー鎖の3’端/ガイド鎖の5’端)にあり、2ヌクレオチド3’ガイド鎖オーバーハングが分子の左側(パッセンジャー鎖の5’端/ガイド鎖の3’端)にある。このような分子では、21塩基対二重鎖領域が存在する。
いくつかの実施形態では、dsRNAi阻害剤分子は、ステム及びループを含む。典型的には、dsRNAi阻害剤分子のパッセンジャー鎖の3’末端領域または5’末端領域が、一本鎖ステム及びループ構造を形成する。
いくつかの実施形態では、dsRNAi阻害剤分子は、ステム及びテトラループを含有する。ある特定の実施形態では、dsRNAi阻害剤分子は、ガイド鎖及びパッセンジャー鎖を含み、パッセンジャー鎖は、ステム及びテトラループを含有し、20〜66ヌクレオチド長の範囲である。典型的には、ガイド及びパッセンジャー鎖は、別個の鎖であり、それぞれ5’及び3’端を有し、隣接したオリゴヌクレオチドを形成しない(「ニック」構造と称される場合もある)。
これらのある特定の実施形態では、ガイド鎖は、15から40ヌクレオチド長である。ある特定の実施形態では、ステム及びテトラループを含有するパッセンジャー鎖の伸長部分は、該鎖の3’端上にある。ある特定の他の実施形態では、ステム及びテトラループを含有するパッセンジャー鎖の伸長部分は、該鎖の5’端上にある。
ある特定の実施形態では、ステム及びテトラループを含有するdsRNAi阻害剤分子のパッセンジャー鎖は、34から40ヌクレオチド長であり、dsRNAi阻害剤分子のガイド鎖は、20から24ヌクレオチドを含有し、パッセンジャー鎖及びガイド鎖は、18〜24塩基対の二重鎖領域を形成する。
ある特定の実施形態では、dsRNAi阻害剤分子は、(a)ステム及びテトラループを含有し、36ヌクレオチド長であるパッセンジャー鎖、ここでパッセンジャー鎖の5’端から最初の20ヌクレオチドは、ガイド鎖に対して相補的であり、パッセンジャー鎖の後続の16ヌクレオチドは、ステム及びテトラループを形成する、ならびに(b)22ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’端で有するガイド鎖を含み、該ガイド及びパッセンジャー鎖は、隣接したオリゴヌクレオチドを形成しない別個の鎖である。
ある特定の実施形態では、核酸阻害剤分子は、一本鎖核酸阻害剤分子である。一本鎖核酸阻害剤分子は、当該技術分野で公知である。例えば、最近の取り組みでは、ssRNAi阻害剤分子の活性が実証されている(例えば、Matsui et al.,Molecular Therapy,2016,24(5):946−55)。そして、アンチセンス分子は、何十年にもわたり特定の標的遺伝子の発現を減少させるために使用されている。Pelechano and Steinmetz,Nature Review Genetics,2013,14:880−93。これらの構造の共通のテーマにおける多数の変形形態が、様々な標的に関して開発されている。一本鎖核酸阻害剤分子には、例えば、従来のアンチセンスオリゴヌクレオチド、マイクロRNA、リボザイム、アプタマー、及びssRNAi阻害剤分子が含まれ、これらは全て当該技術分野で公知である。
ある特定の実施形態では、核酸阻害剤分子は、14〜50、16〜30、または15〜25ヌクレオチドを有するssRNAi阻害剤分子である。他の実施形態では、ssRNAi阻害剤分子は、18〜22または20〜22ヌクレオチドを有する。ある特定の実施形態では、ssRNAi阻害剤分子は、20ヌクレオチドを有する。他の実施形態では、ssRNAi阻害剤分子は、22ヌクレオチドを有する。ある特定の実施形態では、核酸阻害剤分子は、外因性RNAi阻害剤分子または天然miRNAを阻害する一本鎖オリゴヌクレオチドである。
ある特定の実施形態では、核酸阻害剤分子は、8〜80、12〜50、12〜30、または12〜22ヌクレオチドを有する一本鎖アンチセンスオリゴヌクレオチドである。ある特定の実施形態では、一本鎖アンチセンスオリゴヌクレオチドは、16〜20、16〜18、18〜22または18〜20ヌクレオチドを有する。
修飾
典型的には、核酸阻害剤分子の複数のヌクレオチドサブユニットは、ヌクレアーゼに対する耐性または免疫原性の低下などの分子の様々な特徴を改善するように修飾される。例えば、Bramsen et al.(2009),Nucleic Acids Res.,37,2867−2881を参照されたい。多くのヌクレオチド修飾が、オリゴヌクレオチドの分野で、特に核酸阻害剤分子に関して使用されている。このような修飾は、糖部分、ホスホエステル連結、及びヌクレオ塩基を含む、ヌクレオチドの任意の部分でなされることができる。本核酸阻害剤分子のある特定の実施形態では、1から全ヌクレオチドが、糖部分の2’−炭素で修飾され、これには、例えば、当該技術分野で公知である及び本明細書に記載の2’−炭素修飾が使用される。2’−炭素修飾の典型的な例には、2’−F、2’−O−メチル(「2’−OMe」または「2’−OCH3」)、2’−O−メトキシエチル(「2’−MOE」または「2’−OCH2CH2OCH3」)が含まれるが、これらに限定されない。修飾は、本明細書に記載するように、ヌクレオチドの糖部分の他の部位、例えば5’−炭素でも生じることができる。
ある特定の実施形態では、糖部分の環構造が修飾されており、ロックド核酸(「LNA」)(例えば、Koshkin et al.(1998),Tetrahedron,54,3607−3630)を参照されたい)、架橋化核酸(「BNA」)(例えば、米国特許第7,427,672号及びMitsuoka et al.(2009),Nucleic Acids Res.,37(4):1225−38を参照されたい);及びアンロックド核酸(「UNA」)(例えば、Snead et al.(2013),Molecular Therapy−Nucleic Acids,2,e103(doi:10.1038/mtna.2013.36)を参照されたい)が含まれるが、これらに限定されない。
修飾ヌクレオ塩基は、当該技術分野で公知である及び本明細書に記載するように、アデニン、グアニン、シトシン、チミン及びウラシル以外のヌクレオ塩基を1’位で含む。修飾ヌクレオ塩基の典型的な例は、5’−メチルシトシンである。
RNA及びDNAの天然に生じるヌクレオチド間連結は、3’から5’へのホスホジエステル連結である。修飾ホスホエステル連結は、非天然に生じるヌクレオチド間連結基を含み、当該技術分野で公知である及び本明細書に記載するように、これには亜リン酸原子を含有するヌクレオチド間連結及び亜リン酸原子を含有しないヌクレオチド間連結が含まれる。典型的には、核酸阻害剤分子は、本明細書に記載するように、1つまたは複数の亜リン酸含有ヌクレオチド間連結基を含有する。他の実施形態では、核酸阻害剤分子のヌクレオチド間連結基のうちの1つまたは複数は、本明細書に記載するように、非リン含有連結である。ある特定の実施形態では、核酸阻害剤分子は、1つまたは複数の亜リン酸含有ヌクレオチド間連結基及び1つまたは複数の非亜リン酸含有ヌクレオチド間連結基を含有する。
核酸阻害剤分子の5’端は、天然置換基、例えば、ヒドロキシルまたはリン酸基を含むことができる。ある特定の実施形態では、ヒドロキシル基は、核酸阻害剤分子の5’末端に付着している。ある特定の実施形態では、リン酸基は、核酸阻害剤分子の5’末端に付着している。典型的には、リン酸塩は、オリゴヌクレオチド合成の前にモノマーに付加される。他の実施形態では、5’−リン酸化は、核酸阻害剤分子が、サイトゾルへと、例えば、サイトゾルClp1キナーゼにより導入された後で、自然に達成される。いくつかの実施形態では、5’末端リン酸塩は、リン酸基、例えば5’−一リン酸塩[(HO)2(O)P−O−5’]、5’−二リン酸塩[(HO)2(O)P−O−P(HO)(O)−O−5’]または5’−三リン酸塩[(HO)2(O)P−O−(HO)(O)P−O−P(HO)(O)−0−5’]である。
核酸阻害剤分子の5’端も修飾されることができる。例えば、いくつかの実施形態では、核酸阻害剤分子の5’端は、ホスホロアミド酸[(ΗΟ)2(O)Ρ−ΝΗ−5’、(ΗΟ)(ΝΗ2)(O)Ρ−O−5’]に付着している。ある特定の実施形態では、核酸阻害剤分子の5’末端は、リン酸塩模倣物に付着している。好適なリン酸塩模倣物には、5’−ホスホネート、例えば、5’−メチレンホスホネート(5’−MP)、5’−(E)−ビニルホスホネート(5’−VP)が含まれる。Lima et al.,Cell,2012,150−883−94;WO2014/130607。他の好適なリン酸塩模倣物には、その全体が参照により本明細書に組み込まれる国際公開番号WO2018/045317に記載されているように、オリゴヌクレオチドの5’末端ヌクレオチドの糖部分(例えば、リボースもしくはデオキシリボースまたはその類似体)の4’−炭素に結合している、4−リン酸塩類似体が含まれる。例えば、いくつかの実施形態では、核酸阻害剤分子の5’端は、オキシメチルホスホネートに付着しており、この場合オキシメチル基の酸素原子は、糖部分またはその類似体の4’−炭素に結合している。他の実施形態では、リン酸塩類似体は、チオメチルホスホネートまたはアミノメチルホスホネートであり、この場合、チオメチル基の硫黄原子またはアミノメチル基の窒素原子は、糖部分またはその類似体の4’−炭素に結合している。
ある特定の実施形態では、核酸阻害剤分子は、1つまたは複数のデオキシリボヌクレオチドを含む。典型的には、核酸阻害剤分子は、5より少ないデオキシリボヌクレオチドを含有する。ある特定の実施形態では、核酸阻害剤分子は、1つまたは複数のリボヌクレオチドを含む。ある特定の実施形態では、核酸阻害剤分子のヌクレオチドは全てリボヌクレオチドである。
ある特定の実施形態では、核酸阻害剤分子の1つまたは2つのヌクレオチドが、グルタチオン感受性部分を用いて可逆的に修飾されている。典型的には、グルタチオン感受性部分は、糖部分の2’−炭素に位置し、スルホニル基を含む。ある特定の実施形態では、グルタチオン感受性部分は、ホスホロアミダイトオリゴヌクレオチド合成法と相性がよく、これは、例えば、その全体が参照により本明細書に組み込まれる国際公開番号WO2018/045317に記載されている。ある特定の実施形態では、核酸阻害剤分子の2つ超のヌクレオチドがグルタチオン感受性部分を用いて可逆的に修飾されている。ある特定の実施形態では、大半のヌクレオチドは、グルタチオン感受性部分を用いて可逆的に修飾されている。ある特定の実施形態では、核酸阻害剤分子の全てまたは実質的に全てのヌクレオチドが、グルタチオン感受性部分を用いて可逆的に修飾されている。
少なくとも1つのグルタチオン感受性部分は、典型的には、一本鎖核酸阻害剤分子の5’もしくは3’末端ヌクレオチドまたは二本鎖核酸阻害剤分子のパッセンジャー鎖もしくはガイド鎖の5’もしくは3’末端ヌクレオチドに位置する。しかしながら、少なくとも1つのグルタチオン感受性部分は、核酸阻害剤分子内の任意の対象のヌクレオチドに位置してよい。
ある特定の実施形態では、核酸阻害剤分子は、完全に修飾されており、ここで完全に修飾された核酸阻害剤分子のヌクレオチドは全て修飾されている。ある特定の実施形態では、完全に修飾された核酸阻害剤分子は、可逆的な修飾を含有しない。いくつかの実施形態では、一本鎖核酸阻害剤分子または二本鎖核酸阻害剤分子のガイド鎖もしくはパッセンジャー鎖の少なくとも1、例えば少なくとも2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、もしくは20ヌクレオチドが修飾されている。
ある特定の実施形態では、完全に修飾された核酸阻害剤分子は、1つまたは複数の可逆的な、グルタチオン感受性部分を用いて修飾される。ある特定の実施形態では、核酸阻害剤分子のヌクレオチドの実質的に全てが修飾されている。ある特定の実施形態では、核酸阻害剤分子のヌクレオチドの半分超が、可逆的な修飾以外の化学修飾を用いて修飾されている。ある特定の実施形態では、核酸阻害剤分子のヌクレオチドの半分未満が、可逆的な修飾以外の化学修飾を用いて修飾されている。修飾は、核酸阻害剤分子上に群で生じることができるまたは異なる修飾ヌクレオチドが散在することができる。
本核酸阻害剤分子のある特定の実施形態では、1から全ヌクレオチドが2’−炭素で修飾される。ある特定の実施形態では、核酸阻害剤分子(またはそのセンス鎖及び/もしくはアンチセンス鎖)は、2’−F、2’−O−Me、及び/または2’−MOEを用いて部分的にまたは完全に修飾される。本核酸阻害剤分子のある特定の実施形態では、1から全亜リン酸原子が修飾され、1から全ヌクレオチドが2’−炭素で修飾される。
β−カテニン核酸阻害剤
本明細書に開示するように、β−カテニン核酸阻害剤分子は、ある特定の疾患または障害、例えば非Wnt活性化がんを処置するために免疫療法と組み合わせることができる。本発明者らは、これらの組み合わせが、個別の各作用物質の投与と比較して、相乗効果を産生することができることを示している。例えば、実施例4を参照されたい。
β−カテニン核酸阻害剤分子は公知であり、例えば、米国仮特許出願第62/573,999号;米国公開出願第2015/0291954号及び同第2015/0291956号ならびに米国特許第6,066,500号;同第8,198,427号;同第8,835,623号;または同第9,243,244号に開示されており、これらは全て、これらのβ−カテニン核酸阻害剤分子のその開示に関して参照により本明細書に組み込まれる。ある特定の実施形態では、β−カテニン核酸阻害剤分子は、米国特許第9,243,244号に開示される分子である。ある特定の実施形態では、β−カテニン核酸阻害剤分子は、米国仮特許出願第62/573,999号に開示される分子である。
ある特定の実施形態では、本発明のβ−カテニン核酸阻害剤分子は、dsRNAi阻害剤分子であり、ここで該分子の二本鎖領域は、15〜40ヌクレオチド長である。これらのある特定の実施形態では、二本鎖領域は、19〜30、19〜23、または19〜21ヌクレオチド長である。これらのある特定の実施形態では、二本鎖領域は、19、20、21、22、23、24、25、または26ヌクレオチド長である。
ある特定の実施形態では、本発明のβ−カテニン核酸阻害剤分子は、dsRNAi阻害剤分子であり、ここでセンス鎖は、18から66ヌクレオチド長である。ある特定の実施形態では、センス鎖は、18から25ヌクレオチド長である。ある特定の実施形態では、センス鎖は、18、19、20、21、22、23、または24ヌクレオチド長である。これらのある特定の実施形態では、センス鎖は、25から45ヌクレオチド長である。ある特定の実施形態では、センス鎖は、30から40ヌクレオチド長である。ある特定の実施形態では、センス鎖は、36、37、38、39、または40ヌクレオチド長である。ある特定の実施形態では、センス鎖は、25から30ヌクレオチド長である。これらのある特定の実施形態では、センス鎖は、25、26、または27ヌクレオチド長である。
ある特定の実施形態では、β−カテニン核酸阻害剤分子は、dsRNAi阻害剤分子であり、ここでアンチセンス鎖は、18から66ヌクレオチド長である。典型的には、アンチセンス鎖は、標的遺伝子へと核酸阻害剤分子の作用に指向するのに、標的遺伝子mRNA内の配列に対して十分に相補的である配列を含む。ある特定の実施形態では、アンチセンス鎖は、標的遺伝子mRNA内に含有される配列と完全に相補的である配列を含み、ここで、完全に相補的な配列は、18から40ヌクレオチド長さである。これらのある特定の実施形態では、アンチセンス鎖は、20から50ヌクレオチド長である。ある特定の実施形態では、アンチセンス鎖は、20から30ヌクレオチド長である。ある特定の実施形態では、アンチセンス鎖は、21、22、23、24、25、26、27、または28ヌクレオチド長である。ある特定の実施形態では、アンチセンス鎖は、35から40ヌクレオチド長である。これらのある特定の実施形態では、アンチセンス鎖は、36、37、38、または39ヌクレオチド長である。
ある特定の実施形態では、β−カテニン核酸阻害剤分子は、センス及びアンチセンス鎖ならびに18〜34塩基対の二重鎖領域を含むdsRNAi阻害剤分子であり、センス鎖は、25〜34ヌクレオチド長であり、アンチセンス鎖は、26〜38ヌクレオチド長であり、1〜5一本鎖ヌクレオチドをその3’末端で含む。ある特定の実施形態では、センス鎖は、26ヌクレオチドであり、アンチセンス鎖は、38ヌクレオチドであり、2ヌクレオチドの一本鎖オーバーハングをその3’末端で、及び10ヌクレオチドの一本鎖オーバーハングをその5’末端で有し、センス鎖及びアンチセンス鎖は、26塩基対の二重鎖領域を形成する。ある特定の実施形態では、センス鎖は、25ヌクレオチドであり、アンチセンス鎖は、27ヌクレオチドであり、2ヌクレオチドの一本鎖オーバーハングをその3’末端で有し、センス鎖及びアンチセンス鎖は、25塩基対の二重鎖領域を形成する。
ある特定の実施形態では、β−カテニン核酸阻害剤分子は、センス及びアンチセンス鎖ならびに19〜21塩基対の二重鎖領域を含むdsRNAi阻害剤分子であり、センス鎖は、19〜21ヌクレオチド長であり、アンチセンス鎖は、21〜23ヌクレオチド長であり、1〜2ヌクレオチドの一本鎖オーバーハングをその3’末端で含む。ある特定の実施形態では、センス鎖は、21ヌクレオチドであり、2ヌクレオチドの一本鎖オーバーハングをその3’端で有し、アンチセンス鎖は、21ヌクレオチドであり、2ヌクレオチドの一本鎖オーバーハングをその3’端で有し、センス鎖及びアンチセンス鎖は、19塩基対の二重鎖領域を形成する。ある特定の実施形態では、センス鎖は、21ヌクレオチドであり、アンチセンス鎖は、23ヌクレオチドであり、2ヌクレオチドの一本鎖オーバーハングをその3’端で有し、センス鎖及びアンチセンス鎖は、21塩基対の二重鎖領域を形成し、センス鎖の3’端及びアンチセンス鎖の5’端は、平滑末端を形成する。
いくつかの実施形態では、β−カテニン核酸阻害剤分子は、ステム及びテトラループを含むdsRNAi阻害剤分子である。ある特定の実施形態では、dsRNAi阻害剤分子のセンス鎖は、ステム及びテトラループを含有し、34〜40または34〜36ヌクレオチド長であり、dsRNAi阻害剤分子のアンチセンス鎖は、20〜24ヌクレオチドを含有し、センス鎖及びアンチセンス鎖は、18〜24塩基対の二重鎖領域を形成する。
ある特定の実施形態では、dsRNAi阻害剤分子は、(a)ステム及びテトラループを含有し、36ヌクレオチド長であるセンス鎖であって、該センス鎖の5’端から最初の20ヌクレオチドが、アンチセンス鎖に対して相補的であり、該センス鎖の後続の16ヌクレオチドが、ステム及びテトラループを形成する、前記センス鎖ならびに(b)22ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’端で有するアンチセンス鎖を含み、該アンチセンス及びセンス鎖が、隣接したオリゴヌクレオチドを形成しない別個の鎖である、前記アンチセンス鎖を含む。
ある特定の実施形態では、β−カテニン核酸阻害剤分子は、標的核酸(例えば、β−カテニン)の逆相補のセグメントを含む5’から3’方向の配列を有する従来のアンチセンスオリゴヌクレオチドである。ある特定の実施形態では、アンチセンスオリゴヌクレオチドは、12〜30、12〜25、12〜22、14〜20、16〜20、または18〜22ヌクレオチドを含む。ある特定の実施形態では、アンチセンスオリゴヌクレオチドは、16〜18ヌクレオチドを含む。ある特定の実施形態では、アンチセンスオリゴヌクレオチドは、18〜20ヌクレオチドを含む。他の実施形態では、アンチセンスオリゴヌクレオチドは、8〜80または12〜50ヌクレオチドを有する。ある特定の実施形態では、アンチセンスオリゴヌクレオチドまたはその一部は、標的核酸(例えば、β−カテニン)またはその特定の部分に対して完全に相補的である。ある特定の実施形態では、アンチセンスオリゴヌクレオチドまたはその一部は、標的核酸(例えば、β−カテニン)の少なくとも12、13、14、15、16、17、18、19、20、またはそれ以上の連続したヌクレオチドに対して相補的である。ある特定の実施形態では、アンチセンスオリゴヌクレオチドは、標的核酸(例えば、β−カテニン)またはその一部に対して5、4、3、2、または1以下の非相補的ヌクレオチドを含有する。活性を排除することなくアンチセンスオリゴヌクレオチドの長さを減少させる及び/またはミスマッチ塩基を導入することが可能である。
ある特定の実施形態では、本発明のβ−カテニン核酸阻害剤分子は、ssRNAi阻害剤分子である。
ある特定の実施形態では、β−カテニン核酸阻害剤分子のアンチセンス鎖は、配列番号2の配列を含む。ある特定の実施形態では、β−カテニン核酸阻害剤分子のアンチセンス鎖は、配列番号2の配列からなる。ある特定の実施形態では、β−カテニン核酸阻害剤分子は、dsRNAi阻害剤分子であり、センス鎖は、配列番号1の配列を含む。ある特定の実施形態では、β−カテニン核酸阻害剤分子は、dsRNAi阻害剤分子であり、センス鎖は、配列番号1の配列からなる。ある特定の実施形態では、β−カテニン核酸阻害剤分子は、dsRNAi阻害剤分子であり、センス鎖は、配列番号1の配列を含み、アンチセンス鎖は、配列番号2の配列を含む。ある特定の実施形態では、β−カテニン核酸阻害剤分子は、dsRNAi阻害剤分子であり、ここでセンス鎖は、配列番号1の配列からなり、アンチセンス鎖は、配列番号2の配列からなる。
β−カテニンRNAのレベルまたは活性は、現在当該技術分野で公知であるかまたは後に開発される好適な方法により決定することができる。標的RNA及び/または標的遺伝子の「発現」を測定するために使用される方法が、標的遺伝子及びそのコードされるRNAの特性に依存し得ることが理解され得る。例えば、標的β−カテニンRNA配列がタンパク質をコードする場合、「発現」という用語は、β−カテニン遺伝子(ゲノムまたは外来起源のいずれか)に由来するタンパク質またはβ−カテニンRNA/転写物を指すことができる。このような例では、標的β−カテニンRNAの発現は、β−カテニンRNA/転写物の量を直接測定することによりまたはβ−カテニンタンパク質の量を測定することにより決定することができる。タンパク質は、タンパク質アッセイにおいて、例えば染色もしくはイムノブロッティングによって、または該タンパク質が測定可能な反応を触媒する場合には、反応速度を測定することにより測定することができる。全てのそのような方法は、当該技術分野で公知であり、使用することができる。標的β−カテニンRNAレベルが測定される場合、当該技術分野で認識されるRNAレベルの検出方法を使用することができる(例えば、RT−PCR、ノーザンブロッティング等)。β−カテニンRNAの標的において、対象、組織、細胞中、in vitroもしくはin vivoのいずれか、または細胞抽出物中のβ−カテニンRNAまたはタンパク質のレベルの減少における核酸阻害剤分子の有効性の測定を使用して、β−カテニン関連表現型(例えば、疾患または障害、例えば、がんまたは腫瘍形成、増殖、転移、拡大等)の減少の程度を測定することもでき、これは、例えば、WO/2017/160983として公開された、国際出願番号PCT/US2017/022510に開示されている。上記測定は、細胞、細胞抽出物、組織、組織抽出物、または他の好適な起源の材料に対して行うことができる。
免疫療法
本明細書に開示の方法及び組成物は、β−カテニン阻害剤及び免疫療法(または免疫療法剤)の併用療法に関する。β−カテニン阻害剤を投与することは、免疫療法に応答しない腫瘍を免疫療法に対して感受性にする。
免疫療法は、免疫応答を亢進する方法を指す。典型的には、本明細書に開示する方法では、抗腫瘍免疫応答を亢進する。ある特定の実施形態では、免疫療法は、腫瘍またはがんに対するT細胞応答を亢進する方法を指す。
ある特定の実施形態では、免疫療法または免疫療法剤は、免疫チェックポイント分子を標的とする。ある特定の腫瘍は、免疫チェックポイント経路を利用することによって免疫系を回避することができる。ゆえに、免疫チェックポイントを標的とすることは、免疫系を回避する腫瘍の能力に対抗し、ある特定のがんに対する抗腫瘍免疫を活性化するための効果的なアプローチとして浮上している。Pardoll,Nature Reviews Cancer,2012,12:252−264。
ある特定の実施形態では、免疫チェックポイント分子は、抗原に対するT細胞応答に関与するシグナルを減少させる阻害性分子である。例えば、CTLA4は、T細胞上で発現し、抗原提示細胞上のCD80(別名 B7.1)またはCD86(別名 B7.2)に結合することによって、T細胞活性化を下方制御することにおいて役割を担う。PD−1は、T細胞上で発現する別の阻害性免疫チェックポイント分子である。PD−1は、炎症性応答の間、末梢組織におけるT細胞の活性を制限する。加えて、PD−1のリガンド(PD−L1またはPD−L2)は、多くの異なる腫瘍の表面上で共通して上方制御され、腫瘍微小環境における抗腫瘍免疫応答の下方制御をもたらす。ある特定の実施形態では、阻害性免疫チェックポイント分子は、CTLA4またはPD−1である。他の実施形態では、阻害性免疫チェックポイント分子は、PD−1のリガンド、例えばPD−L1またはPD−L2である。他の実施形態では、阻害性免疫チェックポイント分子は、CTLA4のリガンド、例えばCD80またはCD86である。他の実施形態では、阻害性免疫チェックポイント分子は、リンパ球活性化遺伝子3(LAG3)、キラー細胞免疫グロブリン様受容体(KIR)、T細胞膜タンパク質3(TIM3)、ガレクチン9(GAL9)、またはアデノシンA2a受容体(A2aR)である。
これらの阻害性免疫チェックポイント分子を標的とするアンタゴニストは、ある特定のがんに対する、抗原特異的T細胞応答を亢進するために使用することができる。従って、ある特定の実施形態では、免疫療法または免疫療法剤は、阻害性免疫チェックポイント分子のアンタゴニストである。ある特定の実施形態では、阻害性免疫チェックポイント分子は、PD−1である。ある特定の実施形態では、阻害性免疫チェックポイント分子は、PD−L1である。ある特定の実施形態では、阻害性免疫チェックポイント分子のアンタゴニストは、抗体であり、好ましくは、モノクローナル抗体である。ある特定の実施形態では、抗体またはモノクローナル抗体は、抗CTLA4、抗PD−1、抗PD−L1、または抗PD−L2抗体である。ある特定の実施形態では、抗体は、モノクローナル抗PD−1抗体である。ある特定の実施形態では、抗体は、モノクローナル抗PD−L1抗体である。ある特定の実施形態では、モノクローナル抗体は、抗CTLA4抗体及び抗PD−1抗体、抗CTLA4抗体及び抗PD−L1抗体、または抗PD−L1抗体及び抗PD−1抗体の組み合わせである。ある特定の実施形態では、抗PD−1抗体は、ペムブロリズマブ(Keytruda(登録商標))またはニボルマブ(Opdivo(登録商標))のうちの1つまたは複数である。ある特定の実施形態では、抗CTLA4抗体は、イピリムマブ(Yervoy(登録商標))である。ある特定の実施形態では、抗PD−L1抗体は、アテゾリズマブ(Tecentriq(登録商標))、アベルマブ(Bavencio(登録商標))、またはデュルバルマブ(Imfinzi(登録商標))のうちの1つまたは複数である。
ある特定の実施形態では、免疫療法または免疫療法剤は、CD80、CD86、LAG3、KIR、TIM3、GAL9、またはA2aRに対するアンタゴニスト(例えば、抗体)である。他の実施形態では、アンタゴニストは、可溶性である阻害性免疫チェックポイント分子、例えば、阻害性免疫チェックポイント分子の細胞外ドメイン及び抗体のFcドメインを含む可溶性融合タンパク質である。ある特定の実施形態では、可溶性融合タンパク質は、CTLA4、PD−1、PD−L1、またはPD−L2の細胞外ドメインを含む。ある特定の実施形態では、可溶性融合タンパク質は、CD80、CD86、LAG3、KIR、TIM3、GAL9、またはA2aRの細胞外ドメインを含む。一実施形態では、可溶性融合タンパク質は、PD−L2またはLAG3の細胞外ドメインを含む。
ある特定の実施形態では、免疫チェックポイント分子は、抗原に対するT細胞応答に関与するシグナルを増幅させる共刺激分子である。例えば、CD28は、T細胞上に発現される共刺激受容体である。T細胞が、抗原にそのT細胞受容体を通して結合するとき、CD28は、抗原提示細胞上にあるCD80(別名 B7.1)またはCD86(別名 B7.2)に結合して、T細胞受容体シグナル伝達を増幅し、T細胞活性化を促進する。CD28が、CTLA4と同じリガンド(CD80及びCD86)に結合するため、CTLA4は、CD28により媒介される共刺激シグナル伝達に反作用するまたはこれを制御することができる。ある特定の実施形態では、免疫チェックポイント分子は、CD28、誘導性T細胞共刺激分子(ICOS)、CD137、OX40、またはCD27から選択される共刺激分子である。他の実施形態では、免疫チェックポイント分子は、共刺激分子のリガンドであり、それには例えば、CD80、CD86、B7RP1、B7−H3、B7−H4、CD137L、OX40L、またはCD70が含まれる。
これらの共刺激チェックポイント分子を標的とするアゴニストは、ある特定のがんに対する抗原特異的T細胞応答を亢進するために使用することができる。従って、ある特定の実施形態では、免疫療法または免疫療法剤は、共刺激チェックポイント分子のアゴニストである。ある特定の実施形態では、共刺激チェックポイント分子のアゴニストは、アゴニスト抗体であり、好ましくは、モノクローナル抗体である。ある特定の実施形態では、アゴニスト抗体またはモノクローナル抗体は、抗CD28抗体である。他の実施形態では、アゴニスト抗体またはモノクローナル抗体は、抗ICOS、抗CD137、抗OX40、または抗CD27抗体である。他の実施形態では、アゴニスト抗体またはモノクローナル抗体は、抗CD80、抗CD86、抗B7RP1、抗B7−H3、抗B7−H4、抗CD137L、抗OX40L、または抗CD70抗体である。
医薬組成物
本開示は、治療有効量のβ−カテニン核酸阻害剤分子及び薬学的に許容され得る賦形剤を含む医薬組成物を提供する。典型的には、β−カテニン核酸阻害剤分子は、IDO阻害剤または免疫療法剤と同一の医薬組成物中に含まれない。しかしながら、ある特定の実施形態では、β−カテニン核酸阻害剤分子及び薬学的に許容され得る賦形剤を含む医薬組成物は、治療有効量の免疫療法剤、例えば、阻害性免疫チェックポイント分子のアンタゴニスト(例えば、抗CTLA−4、抗PD−1、または抗PD−L1抗体のうちの1つまたは複数)または共刺激チェックポイント分子のアゴニストをさらに含む。
これらの医薬組成物は、慣用の滅菌技術により滅菌され得るか、または濾過滅菌され得る。得られた水溶液は、そのまま使用するために包装され得るか、または凍結乾燥され得、凍結乾燥された調製物は、投与前に滅菌水性賦形剤と合わされる。該調製物のpHは典型的には、3から11の間、より好ましくは5から9の間、または6から8の間であり、最も好ましくは7から8の間であり、例えば7〜7.5であるだろう。
本開示の医薬組成物は、治療用途に適用される。ゆえに、本開示の一態様は、疾患または状態に罹患しているヒトを含むがこれらに限定されない対象を、該対象に治療有効量の本開示の医薬組成物を投与することにより処置するために使用され得る、医薬組成物を提供する。典型的には、疾患または状態は、本明細書に記載のがんである。
ある特定の実施形態では、本開示は、治療有効量の本明細書に記載の医薬組成物の、それを必要とする対象の処置のための医薬品の製造のための使用に関する。典型的には、対象は、本明細書に記載のがんを有する。
薬学的に許容され得る賦形剤
典型的には、本開示において有用な薬学的に許容され得る賦形剤は、慣用の賦形剤である。Remington’s Pharmaceutical Sciences、E.W.Martin著、Mack Publishing Co.,Easton,PA,15th Edition(1975)は、1つまたは複数の治療用組成物の薬学的送達のための好適な組成物及び製剤を記載している。薬学的に許容され得る賦形剤として機能することができる材料のいくつかの例には:糖、例えばラクトース、グルコース及びスクロース;デンプン、例えばコーンスターチ及びジャガイモデンプン;セルロース及びその誘導体、例えばカルボキシメチルセルロースナトリウム、エチルセルロース及び酢酸セルロース;麦芽;ゼラチン;賦形剤、例えばココアバター及び坐剤ワックス;油、例えばピーナッツ油、綿実油、ベニバナ油、ゴマ油、オリーブ油、トウモロコシ油及びダイズ油;緩衝剤、例えば水酸化マグネシウム及び水酸化アルミニウム;(等張食塩水;リンゲル液);エチルアルコール;pH緩衝液;ポリオール、例えばグリセロール、プロピレングリコール、ポリエチレングリコール、等;ならびに医薬製剤に採用される他の非毒性適格物質が含まれる。
剤形
医薬組成物は、従来の賦形剤を用いて、任意の意図される投与経路用に製剤化され得る。
典型的には、β−カテニン核酸阻害剤分子を含有する本開示の医薬組成物は、例えば、皮下、筋肉内、静脈内または硬膜外注射による非経口投与用に液体形態に製剤化される。典型的には、免疫療法剤、例えば阻害性免疫チェックポイント分子のアンタゴニスト(例えば、抗CTLA−4、抗PD−1、または抗PD−L1抗体のうちの1つまたは複数)または共刺激チェックポイント分子のアゴニストを含有する医薬組成物は、例えば、皮下、筋肉内、静脈内または硬膜外注射による非経口投与用に液体形態に製剤化される。
非経口投与に好適な剤形は、典型的には、非経口投与用の1つまたは複数の好適なビヒクルを含み、例として、滅菌水溶液、食塩水、低分子量アルコール、例えばプロピレングリコール、ポリエチレングリコール、植物油、ゼラチン、脂肪酸エステル、例えばエチルオレイン酸塩、などが挙げられる。非経口製剤は、糖、アルコール、抗酸化剤、緩衝剤、静菌薬、製剤を意図されるレシピエントの血液と等張にする溶質または懸濁剤もしくは増粘剤を含有してよい。適切な流動性は、例えば、界面活性剤の使用により維持することができる。液体製剤は、凍結され、滅菌注射液を用いて再構成して後で使用するために保管されることができる。
医薬組成物は、局所もしくは経皮投与、直腸もしくは膣内投与、眼内投与、経鼻投与、バッカル投与、または舌下投与を含む他の投与経路用に製剤化されてもよい。
送達薬剤
β−カテニン核酸阻害剤分子は、例えば、リポソーム及び脂質、例えば米国特許第6,815,432号、同第6,586,410号、同第6,858,225号、同第7,811,602号、同第7,244,448号及び同第8,158,601号に開示されるもの;ポリマー物質、例えば米国特許第6,835,393号、同第7,374,778号、同第7,737,108号、同第7,718,193号、同第8,137,695号及び米国公開特許出願第2011/0143434号、同第2011/0129921号、同第2011/0123636号、同第2011/0143435号、同第2011/0142951号、同第2012/0021514号、同第2011/0281934号、同第2011/0286957号及び同第2008/0152661号に開示されるもの;カプシド、カプソイド、または摂取、分配もしくは吸収を補助するための受容体を標的とする分子を含む、他の分子、分子構造物、または化合物の混合物と混合され、それらでカプセル化され、それらとコンジュゲートされるか、さもなければそれらと会合され得る。
ある特定の実施形態では、β−カテニン核酸阻害剤分子は、脂質ナノ粒子(LNP)中に製剤化される。脂質−核酸ナノ粒子は、典型的には、脂質と核酸を混合すると自然に形成されて、複合体を形成する。所望の粒度分布に応じて、得られるナノ粒子混合物は、ポリカーボネート膜(例えば、100nmカットオフ)を通して、例えば、LIPEX(登録商標)Extruder(Northern Lipids,Inc)などのサーモバレル押出機(thermobarrel extruder)を使用して、任意選択的に、押し出されることができる。治療用の脂質ナノ粒子を調製するためには、ナノ粒子を形成するために使用された溶媒(例えば、エタノール)を除去する及び/または緩衝液を交換することが望ましくあり得、これは、例えば、透析またはタンジェンシャルフローろ過により成すことができる。核酸干渉分子を含有する脂質ナノ粒子を作成する方法は、当該技術分野で公知であり、例えば、米国公開特許出願第2015/0374842号及び同第2014/0107178号に開示されている。
ある特定の実施形態では、LNPは、カチオン性リポソーム及びペグ化脂質を含むコア脂質構成要素を含む。LNPは、1つまたは複数のエンベロープ脂質、例えばカチオン性脂質、構造または中性脂質、ステロール、ペグ化脂質、またはそれらの混合物をさらに含むことができる。
LNPにおいて使用するためのカチオン性脂質は、当該技術分野で公知であり、例えば、米国公開特許出願第2015/0374842号及び同第2014/0107178号にて論じられている。典型的には、カチオン性脂質は、生理学的pHで正味正電荷を有する脂質である。ある特定の実施形態では、カチオン性リポソームは、DODMA、DOTMA、DL−048、またはDL−103である。ある特定の実施形態では、構造脂質は、DSPC、DPPCまたはDOPCである。ある特定の実施形態では、ステロールは、コレステロールである。ある特定の実施形態では、ペグ化脂質は、DMPE−PEG、DSPE−PEG、DSG−PEG、DMPE−PEG2K、DSPE−PEG2K、DSG−PEG2K、またはDSG−MPEGである。一実施形態では、カチオン性脂質は、DL−048であり、ペグ化脂質は、DSG−MPEGであり、1つまたは複数のエンベロープ脂質は、DL−103、DSPC、コレステロール、及びDSPE−MPEGである。例えば、図11を参照されたく、β−カテニン核酸阻害剤分子を製剤化するために使用することができるLNPの一非限定的実施形態を示している。
ある特定の実施形態では、β−カテニン核酸阻害剤分子は、オリゴヌクレオチドの送達を目的の組織へと指向させるリガンドに共有結合的にコンジュゲートする。多くのこのようなリガンドが探索されている。例えば、Winkler,Ther.Deliv.4(7):791−809(2013)を参照されたい。例えば、β−カテニン核酸阻害剤分子を、1つまたは複数の糖リガンド部分(例えば、N−アセチルガラクトサミン(GalNAc))にコンジュゲートさせて、オリゴヌクレオチドの肝臓内への取り込みを指示することができる。例えば、米国特許第5,994,517号;米国特許第5,574,142号;WO2016/100401を参照されたい。典型的には、β−カテニン核酸阻害剤分子は、3つまたは4つの糖リガンド部分(例えば、GalNAc)にコンジュゲートする。使用することができる他のリガンドには、マンノース−6−リン酸塩、コレステロール、葉酸、トランスフェリン、及びガラクトースが含まれるがこれらに限定されない(他の具体的に例示的なリガンドに関しては、例えば、WO2012/089352を参照されたい)。典型的には、オリゴヌクレオチドがリガンドにコンジュゲートするとき、オリゴヌクレオチドは、ネイキッドオリゴヌクレオチドとして投与され、ここでオリゴヌクレオチドは、LNPまたは他の保護コーティングにも製剤化されていない。ある特定の実施形態では、ネイキッドオリゴヌクレオチド内の各ヌクレオチドは、糖部分の2’位で、典型的には2’−F、2’−OMe、及び/または2’−MOEで修飾されている。
投与/処置の方法
β−カテニン核酸阻害剤分子または免疫療法剤を含有する本明細書に記載の医薬組成物は、典型的には非経口投与される。β−カテニン核酸阻害剤分子を含有する医薬組成物は、典型的には、静脈内または皮下投与される。免疫療法剤を含有する医薬組成物は、典型的には静脈内投与される。しかしながら、本明細書に開示される医薬組成物はまた、当該技術分野で公知の、例えば、バッカル、舌下、直腸、経膣、尿道内、局所、眼内、鼻内、及び/または耳介内を含む任意の方法により投与され得て、その投与には、錠剤、カプセル剤、顆粒剤、水性懸濁液剤、ゲル剤、スプレー剤、坐剤、膏剤、軟膏剤等が含まれ得る。
ある特定の実施形態では、本明細書に開示の医薬組成物は、がんなどのWnt活性化疾患または障害に関連する症状の処置または予防に有用であり得る。他の実施形態では、本明細書に開示の医薬組成物は、がんなどの非Wnt活性化疾患または障害に関連する症状の処置または予防に有用であり得る。
一実施形態は、がんを処置する方法であって、対象に、治療有効量のβ−カテニン核酸阻害剤分子及び治療有効量の免疫療法剤を含む医薬組成物を投与することを含む、方法に関する。いくつかの実施形態では、β−カテニン核酸阻害剤分子は、RNAi阻害剤分子であり、これには、ssRNAi阻害剤分子またはdsRNAi阻害剤分子が含まれる。いくつかの実施形態では、免疫療法剤は、阻害性免疫チェックポイント分子のアンタゴニストまたは共刺激チェックポイント分子のアゴニストである。ある特定の実施形態では、阻害性免疫チェックポイント分子のアンタゴニストは、抗CTLA−4、抗PD−1、抗PD−L1抗体、またはその組み合わせである。
このようながんの非限定的な例には、胆道(bilary tract)癌、膀胱癌、移行上皮癌腫、尿路上皮癌腫、脳癌、神経膠腫、星細胞腫、乳癌腫、化生性癌腫、子宮頸癌、子宮頸部扁平上皮癌腫、直腸癌、結腸直腸癌腫、結腸癌腫、遺伝性非ポリポーシス結腸直腸癌、結腸直腸腺癌、消化管間質性腫瘍(GIST)、子宮内膜癌腫、子宮内膜間質肉腫、食道癌、食道扁平上皮癌腫、食道腺癌、眼内黒色腫、ブドウ膜黒色腫、胆嚢癌腫、胆嚢腺癌、腎細胞癌腫、淡明細胞腎細胞癌腫、移行上皮癌腫、尿路上皮癌腫、ウィルムス腫瘍、白血病、急性リンパ性白血病(ALL)、急性骨髄性白血病(AML)、慢性リンパ性白血病(CLL)、慢性骨髄性白血病(CML)、慢性骨髄単球性白血病(CMML)、肝臓癌、肝臓癌腫、肝細胞癌、肝細胞癌腫、胆管癌腫、肝芽腫、肺癌、非小細胞肺癌(NSCLC)、中皮腫、B細胞リンパ腫、非ホジキンリンパ腫、びまん性大細胞型B細胞リンパ腫、マントル細胞リンパ腫、T細胞リンパ腫、非ホジキンリンパ腫、前駆Tリンパ芽球性リンパ腫/白血病、末梢性T細胞リンパ腫、多発性骨髄腫、鼻咽頭癌腫(NPC)、神経芽細胞腫、口腔咽頭癌、口腔扁平上皮癌、骨肉腫、卵巣癌腫、膵臓癌、膵管腺癌、偽乳頭状腫瘍、腺房細胞癌が含まれる。前立腺癌、前立腺腺癌、皮膚癌、黒色腫、悪性黒色腫、皮膚黒色腫、小腸癌腫、胃癌、胃癌腫、消化管間質腫瘍(GIST)、子宮癌、または子宮肉腫。ある特定の実施形態では、本開示は、肝臓癌、肝臓癌腫、肝細胞癌、肝細胞癌腫、胆管癌腫及び肝芽腫を処置する方法に関する。本処置方法のある特定の実施形態では、がんは、結腸直腸癌、肝細胞癌腫、または黒色腫である。本処置方法のある特定の実施形態では、癌は、黒色腫、神経芽細胞腫、または腎癌である。
本処置方法のある特定の実施形態では、β−カテニン核酸阻害剤分子の投与の前、がんは、免疫療法、例えば阻害性免疫チェックポイント分子のアンタゴニスト(例えば、抗CTLA−4、抗PD−1、または抗PD−L1抗体のうちの1つまたは複数)または共刺激チェックポイント分子のアゴニスト、例えば抗CD28抗体に対して応答しない。
いくつかの実施形態では、がんは、活性化Wnt/β−カテニン経路に関連する。他の実施形態では、がんは、非Wnt活性化がんである。ある特定の実施形態では、対象は、β−カテニン核酸阻害剤分子を投与する前に非Wnt活性化がんを有すると同定されている。対象は、当業者が利用可能な任意の方法を使用して非Wnt活性化がんを有すると同定されていてよい。典型的には、しかしながら、対象からの試料を分析して、対象が非Wnt活性化がんを有するか否かを決定する。ある特定の実施形態では、試料は、組織、細胞、血液、または尿を含む。ある特定の実施形態では、試料は、活性化Wnt/β−カテニン経路、不活性Wnt/β−カテニン経路及び/または非T細胞炎症性表現型に関連する1つまたは複数のバイオマーカーに関して分析される。核酸(例えば、mRNA)、タンパク質、及びペプチドを含むがこれらに限定されない任意の適切なバイオマーカーを任意の好適なアッセイまたは技術を使用して分析することができる。ある特定の実施形態では、バイオマーカーは、活性化Wnt/β−カテニン経路に関連する遺伝子突然変異、例えば、β−カテニンもしくはAPCをコードする遺伝子またはWnt/β−カテニン経路に関与する1つもしくは複数の他の要素、例えば、Axin、LEF、及びICATにおける突然変異に関連する。
ある特定の実施形態では、非Wnt活性化がんは、免疫療法に耐性を示すが、免疫療法に対する耐性は、免疫療法をβ−カテニン核酸阻害剤分子と組み合わせて投与することにより逆転させることができる。
いくつかの実施形態では、本開示は、がんに対するin vivo免疫応答を強化する方法であって、がんを有する対象にβ−カテニン核酸阻害剤分子を、がんに対する免疫療法の治療効果を強化するまたはそうでなければ免疫療法に対してがんを感受性にするのに十分な量で投与することを含む、方法を提供する。典型的には、β−カテニン核酸阻害剤分子を投与する前に、がんを、免疫療法に対して耐性を示す非T細胞炎症性表現型に関連付け、β−カテニン核酸阻害剤分子を投与することが非T細胞炎症性表現型をT細胞炎症性表現型へと変換し、そしてがんを免疫療法に対して応答性にする。ある特定の実施形態では、対象は、β−カテニン核酸阻害剤分子及び免疫療法を用いた処置の後で腫瘍退縮を経験する。ある特定の実施形態では、免疫療法に対して耐性を示すがんは、Wnt活性化がんである。他の実施形態では、免疫療法に対して耐性を示すがんは、非Wnt活性化がんである。典型的には、対象は、β−カテニン核酸阻害剤分子の投与の開始の後に免疫療法剤を使用し始める。他の実施形態では、対象は、β−カテニン核酸阻害剤分子の投与の開始時に免疫療法剤をすでに使用している場合がある。なおも他の実施形態では、対象は、免疫療法剤及びβ−カテニン核酸阻害剤分子の両方の投与をほぼ同時に開始する場合がある。
投薬及び計画
典型的には、β−カテニン核酸阻害剤分子は、免疫療法剤と別々に、及び異なる計画で投与される。例えば、単剤として使用されるとき、イピリムマブ(抗CTLA−4抗体)が、90分かけて3mg/kgの推奨用量で3週間毎に合計で4用量にわたって、静脈内投与される。同様に、単剤として使用されるとき、ニボルマブ(抗PD−1抗体)が、240mg(または3mg/kg)の推奨用量で60分かけて2週間毎に静脈内投与される。ニボルマブが、イピリムマブと組み合わせて投与されるとき、ニボルマブの推奨用量は1mg/kgであり、60分かけて静脈内投与され、その後、イピリムマブを同日に3mg/kgの推奨用量で3週間毎に合計で4用量にわたって、次いでニボルマブを240mgの推奨用量で2週間毎に投与する。ペムブロリズマブが単剤として使用されるとき、それは、典型的には、疾患進行、許容不可能な毒性まで、または疾患進行を伴わずに最大で24カ月まで、30分かけて200mgの推奨投与量で3週間毎に静脈内投与される。
ある特定の実施形態では、β−カテニン核酸阻害剤分子は、免疫療法剤の前に投与される。ある特定の実施形態では、β−カテニン核酸阻害剤分子は、免疫療法剤の後に投与される。ある特定の実施形態では、患者は、β−カテニン核酸阻害剤分子を用いた処置を開始する前に治療剤を用いて以前に処置されている。治療有効量のβ−カテニン核酸阻害剤分子または免疫療法剤は、投与経路及び患者の身体的特徴、例えば対象の大きさ及び体重、疾患進行または浸透の程度、対象の年齢、健康状態、及び性別に依存し得、これら及び他の因子に依存して必要に応じて調整することができる。
典型的には、β−カテニン核酸阻害剤分子は、非経口的に(例えば静脈内、筋肉内、または皮下投与を介して)投与される。ある特定の実施形態では、β−カテニン核酸阻害剤分子は、20マイクログラムから10ミリグラム/レシピエントの体重キログラム/日、100マイクログラムから5ミリグラム/キログラム、0.25ミリグラムから2.0ミリグラム/キログラム、または0.5から2.0ミリグラム/キログラムの投与量で投与される。典型的には、β−カテニン核酸阻害剤分子は、約0.25から2.0ミリグラム/レシピエントの体重キログラム/日の投与量で投与される。
β−カテニン核酸阻害剤分子は、毎日または間欠的に投与され得る。例えば、β−カテニン核酸阻害剤分子または免疫療法剤の間欠投与は、1週間毎に1から6日間、1月毎に1から6日間、週1回、1週間おきに1回、月1回、1月おきに1回、1年毎に1回もしくは2回、または複数年次、月次、週次または日次用量に分割される投与であり得る。典型的には、β−カテニン核酸阻害剤分子は、毎週または2週間毎に投与される。いくつかの実施形態では、間欠投薬は、初回β−カテニン核酸阻害剤分子または免疫療法剤投与、その後最大で1週間、最大で1カ月、最大で2カ月、最大で3カ月または最大で6カ月またはそれ以上)にわたる無投与休薬期間が続くサイクルでの投与を意味し得る、または数日、数週間、数ヶ月、または数年おきに投与することを意味し得る。
β−カテニン核酸阻害剤分子は、典型的には、免疫療法剤と別々に、異なる計画で投与される。
治療有効量のβ−カテニン核酸阻害剤分子または免疫療法剤は、投与経路及び患者の身体的特徴、例えば対象の大きさ及び体重、疾患進行または浸透の程度、対象の年齢、健康状態、及び性別に依存し得、これら及び他の因子に依存して必要に応じて調節することができる。
実施例1:BCAT1構築物
β−カテニン遺伝子を標的とする核酸阻害剤分子を構築物した(「BCAT1」)。BCAT1は、26塩基対からなる二重鎖領域を形成する26塩基対パッセンジャー鎖及び38塩基対ガイド鎖を有する。図10。ガイド鎖の5’端は、10塩基対、一本鎖オーバーハングからなり、ガイド鎖の3’端は、2塩基対一本鎖、オーバーハングからなる。図10。
BCAT1構築物は、EnCore脂質ナノ粒子(LNP)内に製剤化される。LNP製剤化BCAT1は、核酸ペイロードを複数の腫瘍型に有効に送達することが示されており(下の表Iを参照されたい)、それには、皮下、同所性、播種性及び転移性異種移植片腫瘍、患者由来異種移植片(PDX)、及び遺伝子操作されたモデル(GEM)が含まれる。
実施例2:腫瘍試験
6〜8週齢の免疫応答性マウス(C57BL/6またはA/JまたはBalb/C)に、1×106個のB16F10、2×106個のNeuro2A、1×106個のRenca、または2×106個の4T1細胞を右肩の下で皮下注射した。腫瘍体積を、2〜3日毎に測定して、腫瘍増殖をモニターした。投薬は、腫瘍が約100mm3に達したときに開始した。腫瘍増殖阻害試験に関しては、動物を無作為化し、異なるコホートに割り当て、投薬サイクルを施した。BCAT1またはプラセボ(スクランブルしたCTNNB1dsRNAi阻害剤分子を伴うLNP)を、外側尾静脈を介して、10ml/kgの総量で静脈内投与した。免疫療法処置(抗PD−1及び抗CTLA−4抗体)を、10ml/kgの体積で腹腔内投与した。
マウス細胞株B16F10、Neuro2A、Renca及び4T1細胞は、ATCC(Manassas,VA)から獲得し、10%FBSを補充したRPMI/DMEM培地にて増殖させた。B16F10は、Wnt活性化を伴わないマウス黒色腫細胞株である。Neuro2Aは、Wnt活性化を伴わないマウス神経芽細胞腫細胞株である。Rencaは、Wnt活性化を伴わないマウス腎癌細胞株である。4T1は、活性化Wnt経路を有するマウス乳房細胞株である。MMTV−Wnt乳房腫瘍は、Wnt経路活性化を伴い、生後3〜6カ月のマウスにて自然に増殖させた。β−カテニンの核染色は、活性化Wnt/β−カテニン経路の際だった特徴である。Kawakami et al.,2013,Frontiers in Oncology,3(136):1−7;Segditsas and Tomlinson,2006,Oncogene,25:7531−37;Clevers,H.,2006,Cell 127:469−480。B16F10、Neuro2A、及びRenca細胞は、免疫組織化学により測定して、β−カテニンの核局在化が無く、一方で4T1細胞株及び自然発生MMTV−Wnt腫瘍は、両方ともβ−カテニンの核局在化を呈した。図2A〜B。
実施例3:β−カテニンを阻害することは、Wnt活性化を伴わない腫瘍におけるT細胞浸潤を亢進させる。
Neuro2A
Ctnnb1mRNAの特異的な薬理学的阻害が、免疫細胞分集団に影響を与えるか否かを調査するために、Neuro2A腫瘍細胞をA/Jマウスに皮下移植した。上述のように、Neuro2Aは、Wnt活性化を伴わないマウス神経芽細胞腫細胞株である。Neuro2A腫瘍細胞移植の6日後に、平均腫瘍サイズは100mm3であり、腫瘍を有するA/Jマウスを2群(n=5)に分別し、PBSまたはBCAT1を5mg/kgのいずれかで用いて2日間にわたって(qd×2,5mg/kg)処置した。これを図3Aに示す。
最後の用量の24時間後、腫瘍を採取し、qPCRにより、Wnt/β−カテニン応答性マーカー(cMyc)、免疫細胞マーカー(CD8及びCD3)、ケモカイン(CCL4)、及び免疫チェックポイント(PD−1及びPD−L1)のmRNAレベルに関して分析した。BCAT1を用いて処置したマウスからの腫瘍では、cMycのmRNAレベルにおける変化はなかった。図3B。cMycは、活性Wnt/β−カテニン経路を有する腫瘍において上方制御されると知られているβ−カテニン標的遺伝子であり(Scholer−Dahirel et al.,2011,PNAS,108(41):17135−40)、ゆえに、Wnt/β−カテニンマーカーとして機能する。β−カテニン遺伝子(Ctnnb1)の発現レベルは、BCATを用いて処置したマウスの腫瘍において対照レベルと比較して約50〜60%低減したが(図3B)、cMyc発現レベルにおいて変化はなかった。Neuro2A細胞が活性Wnt/β−カテニン経路を有するとしたら、β−カテニン発現が下方制御されたときにこれらの腫瘍におけるcMyc発現が下方制御されることになると予想された。しかし、そうではなかった。加えて、β−カテンチンの核局在化は、Neuro2A細胞において観察されず(図2A〜B)、β−カテンチンのBCAT1媒介性減少は腫瘍増殖におけるいずれの減少とも関連しなかった(図4A)。cMyc発現のレベルが変化しなかったことと組み合わせて、これらの結果により、Neuro2A細胞が活性化Wnt経路を有さないことが示された。従って、これらの腫瘍におけるβ−カテニンのBCAT1媒介性減少は、腫瘍増殖におけるいずれの減少とも関連すると予想されない。
BCAT1処置腫瘍は、分析された免疫細胞マーカー、腫瘍細胞マーカー、及びチェックポイント分子のレベルを有意に増加させた。より具体的には、BCAT1処置の後、CD8、CCL4、PD−1及びPD−L1のレベルが有意に増加した。図3B。Neuro2A腫瘍モデルからのこれらのデータは、β−カテニンの阻害が、主要T細胞マーカー(CD8)、ケモカイン(CCL4)及びチェックポイント分子(PD−1及びPD−L1)の発現を増加させることを実証し、予想外なことに、活性化Wnt/β−カテニン経路を有さない腫瘍においてさえも、β−カテニン発現を阻害することが、非T細胞炎症性表現型をT細胞炎症性表現型へと変換することができることを示す。
B16F10
上述のように、B16F10は、非Wnt活性化腫瘍である。B16F10腫瘍は、免疫チェックポイント療法に対して難治性であるとも知られている。ゆえに、B16F10腫瘍を使用して、Ctnnb1mRNAの特異的な薬理学的阻害が、マウス黒色腫のモデルにおける免疫細胞分集団及び関連するシグナル伝達中間体にどのように影響するかをさらに調査した。B16F10腫瘍を、免疫応答性C57BL/6マウスの皮下に同種移植した。腫瘍が250mm3の体積に達した後、BCAT1またはプラセボ(適合した化学物質及び製剤を用いたスクランブルDsiRNA)を、別々のビヒクル対照を伴って、図12Aに示す投薬レジメンに従って、尾静脈を介して静脈内投与した(n=5〜6/コホート)。
腫瘍を、処置後に薬理学的エンドポイント分析のために切除した。腫瘍から単離した総RNAを使用した定量的PCR(qPCR)測定は、BCAT1がCtnnb1mRNAを部分的に減少させ、付随してCcl4mRNAを増加させたことを示す(図12B)。β−カテニンが免疫回避を、一部には、Ccl4の転写抑制により引き起こすと以前に示されているように、Ccl4抑制の軽減は、CD103をコードする樹状細胞mRNAマーカーItage、及び細胞傷害性T細胞mRNAマーカーCd8aにおける強力な増加と関連する(図12B)。次いで、フローサイトメトリーを行って、抽出したB16F10腫瘍から調製した単細胞浮遊液上の表面マーカーを測定した(図12C)。プラセボが腫瘍免疫コンパートメントに有意な効果を有さなかった一方で、BCAT1処置は、総T細胞(CD3)、細胞傷害性T細胞(CD8)、抗原提示樹状細胞(CD103)、及びPD−1T細胞チェックポイントにおける高度に有意な増加をもたらした(図12C)。
さらなるフローサイトメトリー分析は、CD8+T細胞内のチェックポイントであると知られている3つの異なるT細胞受容体(TCR)補因子:PD−1、TIM−3及びLAG−3における処置関連増加を示した(図13A)。腫瘍T細胞含有率における強力な増加とは対照的に、免疫療法に対する応答を調節すると知られている別の重要な分集団である腫瘍関連天然キラー(NK)細胞に対する処置関連効果は観察されなかった(図13B)。同様に、処置後の免疫抑制骨髄由来免疫抑制細胞(MDSC)及び制御性T細胞(Treg)における変化は、最小限でありばらつきがあった(図13B)。これらのデータは、細胞傷害性T細胞の動員が、β−カテニン阻害により媒介される免疫調節の支配的な作用機序であることを示す。
最後に、β−カテニン及びCD8タンパク質に関する免疫組織化学(IHC)を、ホルマリン固定、パラフィン包埋(FFPE)B16F10腫瘍組織に行い、BCAT1処置効果のさらなる確証を提供した(図12D)。BCAT1療法後のβ−カテニンタンパク質の喪失(相対強度におけるおよそ60%低減)は、腫瘍切片全体を通して均質であり、B16F10腫瘍の細胞膜及びサイトゾルの両方において観察された。天然状態では、B16F10腫瘍は、CD8に関して陰性であり、これは、その免疫学的に「コールド」な状態と一致する。BCAT1処置を2周行った後、CD8染色が腫瘍全体を通して観察された(図12D)。まとめると、qPCR、フローサイトメトリー及びIHCデータは、非Wnt活性化B16F10腫瘍においてCtnnb1発現を阻害することは、両方ともが免疫療法に対する応答に関して正の予測値を有すると知られている腫瘍関連APC及びTリンパ球の集団を増加させること実証する。BCAT1処置腫瘍は、分析された免疫細胞マーカー、腫瘍細胞マーカー、及びチェックポイント分子のレベルが有意に増加した。より具体的には、BCAT1処置後、CD8、CCL4、CD103及びPD−1のレベルが有意に増加した。
実施例4:β−カテニンを阻害することは、非Wnt活性化腫瘍において、NF−κB応答性遺伝子、Cxcl10及びCxcl11の発現を亢進する
定常状態核β−カテニンが腫瘍におけるその免疫調節機能に必要でないという所見に鑑み、間接的な、非標準作用機序の潜在的な役割を探索した。β−カテニンは、NF−κB転写複合体と直接相互作用し、肝臓、乳房及び結腸直腸腫瘍のサブセットにおける免疫抑制に寄与し得る事象である、隔離を通してその転写活性を阻害することが知られている(Deng et al;2002,Cancer cell,2(4):323−34;Du et al;2009,Cancer Res,69(9):3764−71;Moreau et al;2011,Int J Cancer,128(6):1280−92.)。ケモカインCXCL10及びCXCL11は、NF−κBシグナル伝達に対して高く応答性であると知られている(Huang et al;2015,FASEB J,29(1):227−38)。
Neuro2A及びB16F10腫瘍を有するマウスを、BCAT1を用いて、それぞれ、図3A及び12Aに明記する計画に従って、処置した。全身性BCAT1療法は、Cxcl10、Cxcl11、及びCD3をコードする対応するmRNAの上方制御をB16F10及びNeuro2A同系腫瘍の両方において引き起こした(図14A〜B)。いずれの理論に縛られることを意図しないが、非Wnt活性化設定におけるβ−カテニンの薬理学的阻害が、一部には、NF−κB活性/シグナル伝達を回復することにより、炎症性遺伝子のβ−カテニンの抑制を逆転させることは、可能である。興味深いことに、NF−κBは、ATF3転写抑制因子とクロストークすることも知られており、非Wnt活性化腫瘍の状況でさえも、CCL4に対するβ−カテニンの効果を説明する可能性がある。
実施例5:β−カテニン阻害と免疫療法を組み合わせることは、Wnt活性化を伴う及び伴わない腫瘍の増殖を有意に阻害する
BCAT1及び免疫チェックポイント阻害剤(抗PD−1及び抗CTLA4抗体)を用いた併用療法を、Wnt活性化を伴う(4T1)及びWnt活性化を伴わない腫瘍(B16F10、Neuro2A、及びRenca)において評価した。抗PD−1抗体及び抗CTLA4抗体(99%純度)は、それぞれPBS中で6.66及び5.4mg/ml濃度にて提供した。この溶液を、PBS中にさらに希釈し、上記のように腹腔内投与した。BCAT1またはプラセボ(スクランブルCTNNB1dsRNAi阻害剤分子を伴うLNP)を上記のように静脈内投与した。
B16F10細胞を、C57BL/6マウスに移植し、移植5日後、平均腫瘍サイズは100mm3であり、マウスを4群に分別した(n=5)。投薬スケジュールを図4Bにまとめる。群1及び3には、2用量のプラセボを与え、群2及び4には、2用量のBCAT1を3mg/kg(qd×2)で移植後5日目及び6日目に与えた。プラセボまたはBCAT1の最後の用量の24時間後、群3及び4に、抗PD−1/CTLA−4抗体の組み合わせを腹腔内に5mg/kgで7日目及び9日目に与えた。この併用投薬サイクルを、次いで11日目に開始して反復し、15日目まで継続した。腫瘍増殖を、処置期間の経過にわたって腫瘍サイズを測定することによりモニターした。
プラセボまたはBCAT1単独(単独療法)を受けたマウスの群は、腫瘍増殖においていずれの減少も示さなかった。B16F10腫瘍におけるβ−カテニンの阻害は、腫瘍増殖を減少させると予想されていなかった。なぜなら、これらの腫瘍細胞が活性化Wnt経路を有さないからである。プラセボ前処置とその後の抗PD1及び抗CTLA4抗体の組み合わせの併用を受けたマウスは、部分的な応答を示した。図4B。抗PD−1/CTLA−4抗体を用いた処置の前にBCAT1を投与することは、相乗効果をもたらし、ほぼ完全な腫瘍増殖阻害を実証した。図4B。これらの結果は、驚くべきことに、非Wnt活性化腫瘍におけるβ−カテニン阻害が、免疫療法に対するこれらの腫瘍の感受性を強力に増大させることができることを示す。
併用処置を、Neuro2A腫瘍(N2A、マウス神経芽細胞腫)においても評価した。A/Jマウスに、Neuro2A腫瘍細胞を移植し、移植6日後、平均腫瘍サイズは100mm3であり、マウスを4群に分別した(n=5)。投薬スケジュールを図4Aにまとめる。群1及び2には、2用量のプラセボを与え、群3及び4には、2用量のBCAT1を3mg/kg(qd×2)で移植後6日目及び7日目に与えた。最後の用量の24時間後、群3及び4に、抗PD−1/CTLA−4抗体の組み合わせを腹腔内に5mg/kgで8日目及び9日目に与えた。この併用投薬サイクルを、次いで11日目に開始して反復し、14日目まで継続した。腫瘍増殖を、処置期間の経過にわたって腫瘍サイズを測定することによりモニターした。
BCAT1単独(単独療法)または抗PD−1/CTLA−4抗体単独を受けたマウスは、腫瘍増殖においていずれの有意な減少も示さず、このことは、Neuro2A腫瘍細胞が免疫療法に対して耐性を示したことを実証し、非活性化Wnt経路と一致した。図4A。他方で、抗PD−1/CTLA−4抗体を受ける前にBCAT1を用いて処置されたマウスは、有意な腫瘍増殖阻害を実証した。図4A。併用療法は、相乗的な結果を生成し、薬剤単独の合計よりも遥かに大きな腫瘍減少を伴った。これらの結果は、驚くべきことに、2つ目の、非Wnt活性腫瘍におけるβ−カテニン阻害が、免疫療法に対するこれらの腫瘍の感受性を強力に増大させることを示す。
併用処置を、別の非Wnt活性腫瘍であるRenca(マウス腎腺癌)においても評価した。Balb/Cマウスに、Renca細胞を移植し、移植6日後、平均腫瘍サイズは100mm3であり、マウスを、プラセボ及び抗PD−1/CTLA−4抗体の組み合わせまたはBCAT1及び抗PD−1/CTLA−4抗体の組み合わせを用いて処置した。これを図4Dに示す。マウスに2用量のプラセボまたはBCAT1を3mg/kg(qd×2)で6日目及び7日目に投与した。最後の用量の24時間後、マウスに、抗PD−1/CTLA−4抗体を腹腔内に5mg/kgで8日目及び10日目に投与した。この併用投薬サイクルを、次いで12日目に開始して反復し、16日目まで継続した。腫瘍増殖を、処置期間の経過にわたって腫瘍サイズを測定することによりモニターした。
このモデルでは、BCAT1及び抗PD−1/CTLA−4抗体を用いた併用療法を受けたマウスは、抗PD−1/CTLA−4抗体のみを受けたマウスと比較して有意な腫瘍増殖減少を示し、今一度、非Wnt活性化腫瘍においてβ−カテニンを阻害することが、驚くべきことに、免疫療法に対するこれらの腫瘍の感受性を亢進させることを実証した。図4D。
最後に、併用療法を、Wnt活性化細胞株である4T1腫瘍細胞(マウス乳房)において評価した。Balb/Cマウスに、4T1腫瘍細胞を移植し、移植4日後に、マウスを4群へと無作為化し、プラセボ/BCAT1または抗PD−1/CTLA−4抗体を用いて処置した。これを図4Cに示す。マウスに、2用量のプラセボまたはBCAT1を3mg/kg(qd×2)で4日目及び5日目に投与した。最後の用量の24時間後、マウスに抗PD−1/CTLA−4抗体を腹腔内に5mg/kgで6日目及び8日目に投与した。この併用投薬サイクルを、次いで10日目に開始して反復し、14日目まで継続した。腫瘍増殖を、処置期間の経過にわたって腫瘍サイズを測定することによりモニターした。
4T1腫瘍がWnt活性であるため、マウスをBCAT1単独で処置することは、腫瘍増殖阻害を引き起こした。図4C。しかしながら、BCAT1を抗PD−1/CTLA−4抗体と組み合わせることは、各薬剤単独と比較して、有意な腫瘍増殖阻害をもたらした。図4C。これらの結果は、Wnt活性化腫瘍においてβ−カテニン阻害を阻害することは、免疫療法に対するこれらの腫瘍の感受性を亢進することを実証する。興味深いことに、Wnt活性化4T1腫瘍からのフローサイトメトリーデータは、BCAT1処置が、CD8+T細胞内のチェックポイントであると知られているTCR補因子:PD−1、TIM−3及びLAG−3を増加させることを示し(図15A)、これは同様に非Wnt活性化腫瘍、B16F10でも観察された。同様に、腫瘍関連NK細胞または免疫抑制MDSCに対する処置関連効果は観察されなかった(図15B)が、DCR−BCAT処置の際にTREGの増加が観察された。
実施例6:β−カテニン阻害及び免疫療法の組み合わせ後の細胞傷害性T細胞マーカーの発現
B16F10腫瘍モデルにおける併用療法試験の完了後、腫瘍を採取し、免疫組織化学により分析して、グランザイムB及びパーフォリンの発現レベルを測定した。これらは、CD8+細胞傷害性T細胞により、標的細胞(例えば、腫瘍細胞)の表面上にある抗原の認識の際に放出される。放出後、グランザイムB及びパーフォリンは、腫瘍細胞内に取り込まれる。パーフォリン分子は、エンドソームの孔形成を促進し、グランザイムBがサイトゾルに入ることを可能にする。腫瘍細胞のサイトゾルに一度入ると、グランザイムBは、アポトーシス促進性Bcl−2ファミリーメンバー及びカスパーゼを、部位特異的プロテアーゼ活性を介して活性化し、アポトーシスを媒介する。パーフォリンが媒介する孔は、電子顕微鏡検査により可視化することができる。ある特定の例では、孔は、顕微鏡検査を用いずとも可視化できるほど十分に大きい。
BCAT1及び抗PD−1/CTLA4抗体の組み合わせを用いて処置したマウスからのBF16F10腫瘍は、BCAT1単独またはプラセボ及び抗PD−1/CTLA4抗体のいずれかを用いて処置したマウスからの腫瘍と比較して、高レベルの両グランザイムB及びパーフォリンを発現した。図5。プラセボ単独を用いて処置したマウスからの腫瘍は、極めて低いレベルのグランザイムまたはパーフォリン発現を有し、このことは、併用療法を受けたマウスにおいて観察される腫瘍増殖の有意な減少が、腫瘍微小環境の大量のT細胞浸潤と関連したことを示す。腫瘍を、細胞傷害性T細胞からのパーフォリンの放出によりもたらされる孔形成についても分析した。孔形成は、1)プラセボ及び抗PD−1/CTLA4抗体または2)BCAT1及び抗PD−1/CTLA4抗体のいずれかを用いて処置された腫瘍において観察されたが、BCAT1及び抗PD−1/CTLA4抗体を用いて処置されたマウスにおいてより明白であった(データは示さず)。
実施例7:β−カテニン阻害及び免疫療法の組み合わせは、大小MMTV−Wnt1腫瘍における腫瘍増殖を減少させる
β−カテニン阻害が、自然発生腫瘍において、T細胞浸潤を亢進し、免疫療法の効果を強化するか否かを確認するために、MMTV−Wnt1モデルを使用した。このモデルでは、MMTV−LTRを伴うWnt1の乳腺特異的過剰発現が、活性化Wnt/β−カテニンシグナル伝達を伴う自然発生乳房腫瘍をもたらす。
最初に、90日目(生後3カ月)で、マウスを、BCAT1を5mg/kg(qd×3)で用いて処置した。最後の注射の24時間後、腫瘍β−カテニン及びcMyc mRNAレベルを、qPCRにより決定した。非Wnt活性化腫瘍と異なり、β−カテニンmRNAレベルを減少させることは、予想通り、これらのWnt活性化腫瘍のcMyc mRNAレベルの減少をもたらした。図6。β−カテニンタンパク質レベルを、免疫組織化学により測定し、これらも予想通り、BCAT1を用いて処置した腫瘍において減少した。図6C。PBSを用いて処置した対照腫瘍は、Wnt活性化腫瘍の際だった特徴であるβ−カテニンの核局在化を示し、これは、単回サイクルのBCAT1処置により逆転され、β−カテニンタンパク質のほぼ完全な枯渇をもたらした。図6C。
加えて、β−カテニン阻害がCD8T細胞浸潤に影響するか否かを確認するために、CD8発現を、同じ腫瘍において免疫組織化学によって測定した。図6D。CD8+T細胞浸潤物は、各腫瘍切片の複数の領域で見ることができ、全動物の腫瘍で同じパターンが確認された。図6C及び6Dに示すように、β−カテニンタンパク質のほぼ完全な枯渇は、より高いレベルのCD8T細胞と相関し、これは、β−カテニン阻害が、T細胞浸潤をこれらの自然発生的に増殖した腫瘍において増大させることを示す。
BCAT1単独療法の有効性を、これらの自然発生腫瘍において、マウスの一方の群(n=4)をBCAT1で、そして別の群(n=3)をプラセボ(qd×3、3mg/kg)で処置することにより評価した。単回サイクルのBCAT1処置は、プラセボを用いて処置したマウスと比較して完全な腫瘍増殖阻害をもたらした。図6E。9日目までに、プラセボを用いて処置した腫瘍は、かなり大きく増殖した。これらの大きな腫瘍を、次いで9日目に開始して、単回サイクルのBCAT1(qd×3、3mg/kg)を用いて処置した。図6Fに示すように、これらの大きな腫瘍でさえもBCAT1に応答し、このことは、これらの大きな腫瘍におけるβ−カテニン阻害が腫瘍増殖を阻害したことを示す。
β−カテニン阻害を免疫療法と組み合わせることが、これらの自然発生腫瘍において抗腫瘍有効性をさらに改善し得るかどうかを確認するために、約500〜600mm3の平均腫瘍サイズを有するマウスを使用して、別の試験を実行した。これらの自然発生腫瘍が異なる時点で増殖するため、約500〜600mm3の平均腫瘍サイズを有するマウスは、異なる時点で試験に参加した。1日目及び2日目に、2群のマウスには、プラセボ(n=2及びn=3)を受けさせ、別の2群のマウス(n=3及びn=5)には、BCAT1を3mg/kg(qd×2)で受けさせた。BCAT1またはプラセボを用いた処置の後で、各処置からの群の一方(n=2及びn=5)に、抗PD−1/CTLA−4抗体を各抗体に関して5mg/kg(qd×2)で3日目及び4日目に受けさせた。48時間後、全4群に同じ処置計画を施し、腫瘍増殖を13日目までモニターした。これを図7に示す。
プラセボを受けたマウスは、有意な腫瘍増殖を有したが、プラセボ及び抗PD−1/CTLA−4抗体を受けたマウスは、プラセボ単独と比較して腫瘍増殖がわずかに減少した。図8。BCAT1単独を受けたマウスは、腫瘍増殖において中程度の有効性を示したが、BCAT1及び抗PD−1/CTLA−4抗体の両方を用いて処置されたマウスは、腫瘍増殖の強力な阻害を示した。これを図8に示す。注目すべきことには、BCAT1及び免疫療法の組み合わせを用いて処置された5匹のうち3匹のマウスで、腫瘍は完全に退縮した。その群における残りの動物は、他の群のいずれのマウスと比較しても有意に応答したものの、併用療法を受けた他の3マウスほどには作用しなかった。これは、自然発生腫瘍増殖設定において予想される不均一性を反映している可能性があり、臨床設定においても存在する可能性がある。
第一サイクルの処置の後に大きな腫瘍を有する4マウス(図9A)に、より高い用量でBCAT1及び免疫療法を用いた第二サイクルの処置を施して、これらの大きな腫瘍が併用療法にどのように応答したかを確認した。これらのマウスは、13日目に開始して、BCAT1を用いて10mg/kgで、その後抗PD−1/CTLA−4抗体を各抗体に関して10mg/kg(qd×2)で用いて、14日目及び15日目に処置した。処置計画を、17日目及び21日目に開始して、さらに2回繰り返し、腫瘍増殖を24日目までモニターした。これを図7に示す。全4マウスの腫瘍は応答し、併用処置の後で退縮した(図9B)、このことは、BCAT1により媒介されたβ−カテニンの阻害が、おそらく腫瘍部位でのT細胞の浸潤を亢進することにより、これらの大きな腫瘍をチェックポイント阻害剤に対して感作したことを示す。
第一サイクルの処置の後に完全な退縮を有した3マウス(図9Aを参照されたい)に、16日目に開始して、維持用量を施した。マウスを、BCAT1を3mg/mg(qd×2)で用いて16日目及び17日目に、その後抗PD−1/CTLA−4抗体を各抗体に関して5mg/kg(qd×2)で用いて18日目及び19日目に処置した。図7。マウスに、26日目に開始して同じ処置計画を施し、腫瘍増殖を31日目までモニターした。これを図9A及び9Cに示す。維持用量を受けたマウスは、試験の経過全体を通して、無腫瘍のままであった。これを図9Aに示す。これらのマウスにおける腫瘍退縮の動態学を、図9AにおけるBCAT1+抗PD−1/CTLA−4データの拡張版である、図9Cにも示す。
実施例8:間接的Wnt経路標的は、コールド非Wnt活性化腫瘍をホット腫瘍へと変換するのに十分でない
BCAT1が、β−カテニンを、転写後mRNAサイレンシングを介して直接標的とする一方で、いくつかの臨床段階のWnt経路モジュレーターは、間接的なβ−カテニン阻害を通した抗腫瘍有効性を促進するその能力について評価されている((Zhan et al;2017,Oncogene,36(11):1461−73;Schatoff et al;2017,Curr Colorectal Cancer Rep,13(2):101−10;Novellasdemunt et al;2015,Am J Physiol Cell Physiol,309(8):C511−21及びZhang et al;2015,Am J Cancer Res,5(8):2344−60)。そのような治験薬の1つ(そしておそらく最も臨床的に進んでいるもの)である、LGK−974は、Wntリガンドの分泌に必要とされる酵素であるPORCNアセチルトランスフェラーゼの阻害剤である(Liu et al;2013,Proceedings of the National Academy of Sciences of the United States of America,110(50):20224−9)。LGK−974は、複数の臨床治験に用いられており、それには、免疫チェックポイント阻害の強化剤としての評価のための抗PD−(L)1との併用が含まれる。
LGK−974及びBCAT1の、T細胞浸潤を促進することによりコールド腫瘍をホット腫瘍へと変換する能力を比較した。この比較を実行するために、2つの関連する腫瘍型を有するマウスを使用した:Wntリガンドの過剰発現により駆動され、それゆえLGK−974に対して応答性であると予測されるWnt活性腫瘍(MMTV−Wnt1モデル)、及び非Wnt活性化腫瘍(B16F10)。この分析には、ヒトのWntシグネチャー及び核β−カテニンとのその優れた相関のためにAxin2mRNAをWnt活性のサロゲートとして、ならびに腫瘍T細胞含有率をモニターするためにCd8a mRNAを利用した。
MMTV−Wnt1腫瘍では、WntエフェクターAxin2は、有効であると以前に報告されている用量レベルでBCAT1及びLGK−974の両方により抑制される(図16A)。LGK−974に対する薬理学的応答は、しかしながら、以前に示されるように非常に一過性であり(Liu et al;2013,Proceedings of the National Academy of Sciences of the United States of America,110(50):20224−9)、これはおそらくその薬物動態特性に起因する;Axin2mRNAは、処置の24時間後までにベースラインに戻る(図16A〜B)。LGK−974投薬の頻度の増加は様々な結果をもたらすが、Axin2阻害の持続期間をいくらか改善するように思われる(図16C)。予想通り、BCAT1のみがCtnnb1mRNAレベルに直接影響し、LGK−974はCtnnb1mRNAまたはβ−カテニンタンパク質を直接的に標的としない(図16A〜C)。重要なことに、Cd8a mRNA上昇が、それぞれ、BCAT1及びLGK−974を用いた直接及び関節阻害の両方の後で観察された。T細胞上昇は、変動するように見受けられるがLGK−974処置の24時間後に持続しており、このことは、たとえWnt活性の減衰が一過性でも、この作用機序には十分であることを示す(図16A〜C)。しかしながら、T細胞応答は、単回投与と比較して、LGK−974の反復投薬後の動物の間で遥かに強力及び一貫している(図16B〜C)。これらのデータは、直接的または間接的な薬理学的介入によるβ−カテニンの抑制が、Wntリガンド欠損により駆動される腫瘍におけるその免疫回避機能を克服するのに十分であることを示す。ただし、このような遺伝的病変はヒトにおいては比較的まれである(Zhan et al;2017,Oncogene,36(11):1461−73)。
LGK−974の一制限は、Wntリガンド分泌の阻害剤としては、大多数のWnt活性化腫瘍に対して概して有効でないと予想されることである。これは、このカテゴリ内の大半の腫瘍が、結腸直腸腫瘍で見られる最も一般的な突然変異であるAPCなどの下流の遺伝的病変によって引き起こされるためである。実際、BCAT1が、CTNNB1(67%)及びAXIN2(58%)の両方の発現を、APC機能喪失突然変異を有するヒト腫瘍異種移植片において減少させる一方で、LGK−974は、かかる腫瘍において、1日9用量の3mg/kgの高く誇張した用量レベルでさえも、AXIN2(19%)のほんのわずかな一過性の減少しかもたらさなかった(図17)。これらのデータは、β−カテニン発現を直接阻害することの広い可能性をさらに強調する。
非Wnt活性化B16F10腫瘍では、BCAT1処置は、Ctnnb1mRNAの同様の減少を示したが、Axin2mRNAには作用せず、これは定常状態核β−カテニンの欠如を考慮すると、予期した通りであった(図18A)。直接的な転写作用の欠如にもかかわらず、BCAT1によるβ−カテニンの直接的阻害は、B16F10腫瘍におけるCd8a mRNA発現を亢進した。反対に、LGK−974は、Cd8a mRNAの増加を促進することはできず、このことは、Wntリガンド分泌レベルでの経路攪乱は、β−カテニン機能が調節不全でない状況では免疫調節を促進しないことを示す(図18B)。これらの明確な違いは、本明細書に記載のβ−カテニン核酸阻害剤分子のような直接的なβ−カテニン阻害剤の、多様な遺伝的起源の腫瘍にわたる免疫療法の強化における、広範な適用性は、LGK−974のような間接的なWnt経路モジュレーターには及ばないことを示す。

Claims (49)

  1. 対象においてがんを処置する方法であって、前記対象に:
    治療有効量のβ−カテニン核酸阻害剤分子;及び
    治療有効量の免疫療法剤を投与することを含む、前記方法。
  2. がんの処置に使用するためのβ−カテニン核酸阻害剤分子を含む医薬組成物であって、免疫療法剤と組み合わせて投与される、前記医薬組成物。
  3. 前記対象が、ヒトである、請求項1に記載の方法。
  4. 前記がんが、非Wnt活性化がんである、先行請求項のいずれか一項に記載の方法または組成物。
  5. 前記がんが、Wnt活性化がんである、先行請求項のいずれか一項に記載の方法または組成物。
  6. 前記β−カテニン核酸阻害剤分子が、二本鎖RNAi阻害剤分子である、先行請求項のいずれか一項に記載の方法または組成物。
  7. 前記β−カテニン核酸阻害剤分子が、センススタンド(sense stand)及びアンチセンス鎖ならびに前記センス鎖と前記アンチセンス鎖との間に約15〜45塩基対の相補性領域を含む二本鎖RNAi阻害剤分子である、先行請求項のいずれか一項に記載の方法または組成物。
  8. a)前記センス鎖が、15〜45、18〜26、もしくは19〜21ヌクレオチドであり、前記アンチセンス鎖が、15〜45、18〜26、もしくは19〜21ヌクレオチドである;
    b)前記センス鎖が、15〜66ヌクレオチドであり、前記アンチセンス鎖が、15〜66ヌクレオチドである;
    c)前記センス鎖が、25〜40ヌクレオチドもしくは19〜25ヌクレオチドである;
    d)前記アンチセンス鎖が、25〜40ヌクレオチドもしくは19〜25ヌクレオチドである;
    e)前記センス鎖が、19〜25ヌクレオチドであり、前記アンチセンス鎖が、19〜25ヌクレオチドである;または
    f)前記センス鎖が、34〜40ヌクレオチドであり、ステム及びテトラループを含有し、前記アンチセンス鎖が、18〜24ヌクレオチドであり、前記センス鎖及びアンチセンス鎖が、18〜24塩基対の二重鎖領域を形成する、請求項7に記載の方法または組成物。
  9. 前記β−カテニン核酸阻害剤分子が、センス及びアンチセンス鎖ならびに前記センス鎖と前記アンチセンス鎖との間に18〜34塩基対の相補性領域を含む二本鎖RNAi阻害剤分子であり、前記センス鎖が、25〜36ヌクレオチド長であり、前記アンチセンス鎖が、26〜38ヌクレオチド長であり、1〜5ヌクレオチドの一本鎖オーバーハングをその3’末端で含む、先行請求項のいずれか一項に記載の方法または組成物。
  10. 前記二本鎖RNAi阻害剤分子の前記アンチセンス鎖が、1〜10ヌクレオチドの一本鎖オーバーハングをその5’末端でさらに含む、請求項9に記載の方法または組成物。
  11. 前記β−カテニン核酸阻害剤分子が、センス及びアンチセンス鎖ならびに前記センス鎖と前記アンチセンス鎖との間に20〜30、21〜26、19〜24、または19〜21塩基対の相補性領域を含む二本鎖RNAi阻害剤分子である、先行請求項のいずれか一項に記載の方法または組成物。
  12. 前記β−カテニン核酸阻害剤分子が、センス及びアンチセンス鎖ならびに前記センス鎖と前記アンチセンス鎖との間に19塩基対の相補性領域を含む二本鎖RNAi阻害剤分子であり、前記センス鎖が、21ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’末端で含み、前記アンチセンス鎖が、21ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’末端で含む、先行請求項のいずれか一項に記載の方法または組成物。
  13. 前記β−カテニン核酸阻害剤分子が、センス及びアンチセンス鎖ならびに前記センス鎖と前記アンチセンス鎖との間に21塩基対の相補性領域を含む二本鎖RNAi阻害剤分子であり、前記センス鎖が、21ヌクレオチド長であり、前記アンチセンス鎖が、23ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’末端で含み、前記センス鎖の3’端及び前記アンチセンス鎖の5’端が、平滑末端を形成する、先行請求項のいずれか一項に記載の方法または組成物。
  14. 前記β−カテニン核酸阻害剤分子が、センス及びアンチセンス鎖ならびに前記センス鎖と前記アンチセンス鎖との間に26塩基対の相補性領域を含む二本鎖RNAi阻害剤分子であり、前記センス鎖が、26ヌクレオチド長であり、前記アンチセンス鎖が、38ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’末端で、及び10ヌクレオチドの一本鎖オーバーハングをその5’末端で含む、請求項1〜11のいずれか一項に記載の方法または組成物。
  15. 前記センス鎖が、配列番号1の配列を含むまたはからなる、請求項7に記載の方法または組成物。
  16. 前記アンチセンス鎖が、配列番号2の配列を含むまたはからなる、請求項7または15に記載の方法または組成物。
  17. 前記β−カテニン核酸阻害剤分子が、テトラループを含有する、先行請求項のいずれか一項に記載の方法または組成物。
  18. 前記β−カテニン核酸阻害剤分子が、センス鎖及びアンチセンス鎖を含むdsRNAi阻害剤分子であり、前記センス鎖が、ステム及び前記テトラループを含有し、34〜40ヌクレオチド長であり、前記アンチセンス鎖が、20〜24ヌクレオチド長であり、前記センス鎖及びアンチセンス鎖が、18〜24塩基対の二重鎖領域を形成する、請求項17に記載の方法または組成物。
  19. 前記センス鎖が、36ヌクレオチド長であり、前記センス鎖の5’端から最初の20ヌクレオチドが、前記アンチセンス鎖に対して相補的であり、前記センス鎖の後続の16ヌクレオチドが、前記ステム及び前記テトラループを形成し、前記アンチセンス鎖が、22ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’端で有し、前記アンチセンス及びセンス鎖が、隣接したオリゴヌクレオチドを形成しない、別個の鎖である、請求項18に記載の方法または組成物。
  20. 前記免疫療法剤が、阻害性免疫チェックポイント分子のアンタゴニストまたは共刺激チェックポイント分子のアゴニストである、先行請求項のいずれか一項に記載の方法または組成物。
  21. 前記免疫療法剤が、阻害性チェックポイントのアンタゴニストであり、前記阻害性チェックポイントが、PD−1またはPD−L1である、請求項20に記載の方法または組成物。
  22. 前記阻害性免疫チェックポイント分子の前記アンタゴニストまたは前記共刺激チェックポイント分子の前記アゴニストが、モノクローナル抗体である、請求項20に記載の方法または組成物。
  23. 前記モノクローナル抗体が、抗CTLA−4モノクローナル抗体、抗PD−1モノクローナル抗体、抗PD−L1モノクローナル抗体、または抗CTLA−4モノクローナル抗体及び抗PD−1モノクローナル抗体の組み合わせである、請求項22に記載の方法または組成物。
  24. ヒト対象においてがんを処置する方法であって、前記ヒト対象に:
    治療有効量のβ−カテニン核酸阻害剤分子、ここで前記β−カテニン核酸阻害剤分子は、センス及びアンチセンス鎖ならびに前記センス鎖と前記アンチセンス鎖との間に18〜34塩基対の相補性領域を含む二本鎖RNAi阻害剤分子であり、前記センス鎖は、19〜36ヌクレオチド長であり、前記アンチセンス鎖は、18〜38ヌクレオチド長であり、1〜5一本鎖ヌクレオチドをその3’末端で含む;ならびに
    治療有効量の免疫療法剤、ここで前記免疫療法剤は、抗CTLA−4モノクローナル抗体、抗PD−1モノクローナル抗体、抗PD−L1モノクローナル抗体、または抗CTLA−4モノクローナル抗体及び抗PD−1モノクローナル抗体の組み合わせを含む、を投与することを含む、前記方法。
  25. がんの処置に使用するためのβ−カテニン核酸阻害剤分子を含む医薬組成物であって、前記組成物が、免疫療法剤と組み合わせて投与され、前記β−カテニン核酸阻害剤分子が、センス及びアンチセンス鎖ならびに前記センス鎖と前記アンチセンス鎖との間に18〜34塩基対の相補性領域を含む二本鎖RNAi阻害剤分子であり、前記センス鎖が、19〜36ヌクレオチド長であり、前記アンチセンス鎖が、18〜38ヌクレオチド長であり、1〜5一本鎖ヌクレオチドをその3’末端で含み、前記免疫療法剤が、抗CTLA−4モノクローナル抗体、抗PD−1モノクローナル抗体、抗PD−L1モノクローナル抗体、または抗CTLA−4モノクローナル抗体及び抗PD−1モノクローナル抗体の組み合わせである、前記医薬組成物。
  26. 前記がんが、非Wnt活性化がんである、請求項24または25に記載の方法または組成物。
  27. 前記がんが、Wnt活性化がんである、請求項24または25に記載の方法または組成物。
  28. 前記センス鎖と前記アンチセンス鎖との間の相補性の前記領域が、21〜26塩基対であり、前記センス鎖が、21〜26ヌクレオチド長であり、前記アンチセンス鎖が、23〜38ヌクレオチド長であり、1〜2ヌクレオチドの一本鎖オーバーハングをその3’末端で含む、請求項24または25に記載の方法または組成物。
  29. 前記アンチセンス鎖が、1〜10ヌクレオチドの一本鎖オーバーハングをその5’末端でさらに含む、請求項28に記載の方法または組成物。
  30. 前記β−カテニン核酸阻害剤分子が、センス及びアンチセンス鎖ならびに前記センス鎖と前記アンチセンス鎖との間に26塩基対の相補性領域を含む二本鎖RNAi阻害剤分子であり、前記センス鎖が、26ヌクレオチド長であり、前記アンチセンス鎖が、38ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’末端で、及び10ヌクレオチドの一本鎖オーバーハングをその5’末端で含む、請求項24〜29のいずれか一項に記載の方法または組成物。
  31. 前記センス鎖が、配列番号1の配列を含むまたはからなり、前記アンチセンス鎖が、配列番号2の配列を含む、からなる、請求項24〜29のいずれか一項に記載の方法または組成物。
  32. 前記センス鎖が、34〜40ヌクレオチドであり、ステム及びテトラループを含有し、前記アンチセンス鎖が、18〜24ヌクレオチドであり、前記センス鎖及びアンチセンス鎖が、18〜24塩基対の二重鎖領域を形成する、請求項24〜27のいずれか一項に記載の方法または組成物。
  33. 前記センス鎖が、36ヌクレオチド長であり、前記センス鎖の5’端から最初の20ヌクレオチドが、前記アンチセンス鎖に対して相補的であり、前記センス鎖の後続の16ヌクレオチドが、前記ステム及びテトラループを形成し、前記アンチセンス鎖が、22ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’端で有し、前記アンチセンス及びセンス鎖が、隣接したオリゴヌクレオチドを形成しない別個の鎖である、請求項32に記載の方法または組成物。
  34. 前記センス鎖と前記アンチセンス鎖との間の相補性の前記領域が、19塩基対であり、前記センス鎖が、21ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’末端で含み、前記アンチセンス鎖が、21ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’末端で含む、請求項24〜27のいずれか一項に記載の方法または組成物。
  35. 前記センス鎖と前記アンチセンス鎖との間の相補性の前記領域が、21塩基対であり、前記センス鎖が、21ヌクレオチド長であり、前記アンチセンス鎖が、23ヌクレオチド長であり、2ヌクレオチドの一本鎖オーバーハングをその3’末端で含み、前記センス鎖の前記3’端及び前記アンチセンス鎖の前記5’端が、平滑末端を形成する、請求項24〜27のいずれか一項に記載の方法または組成物。
  36. 前記β−カテニン核酸阻害剤分子が、脂質ナノ粒子を用いて製剤化される、先行請求項のいずれかに記載の方法または組成物。
  37. 前記脂質ナノ粒子が、カチオン性脂質及びペグ化脂質を含む、請求項36に記載の方法または組成物。
  38. 前記対象が、前記非Wnt活性化がんを有すると、前記投与ステップの前に同定されている、先行請求項のいずれかに記載の方法。
  39. 前記投与ステップの前に、前記対象が前記非Wnt活性化がんを有するか否かを決定するために前記対象からの腫瘍試料を分析するステップをさらに含む、先行請求項のいずれかに記載の方法。
  40. 前記非Wnt活性化がんが、前記免疫療法剤を前記β−カテニン核酸阻害剤分子と組み合わせて投与しないときには、前記免疫療法剤を用いた処置に対して耐性を示す、先行請求項のいずれかに記載の方法または組成物。
  41. 前記非Wnt活性化がんが、黒色腫、神経芽細胞腫、または腎癌である、先行請求項のいずれかに記載の方法または組成物。
  42. がんに対する免疫療法剤の治療効果を強化する方法であって、前記がんを有する対象に、β−カテニン核酸阻害剤分子を、前記がんに対する前記免疫療法剤の前記治療効果を強化するのに十分な量で投与することを含む、前記方法。
  43. 前記がんが、Wnt活性化がんである、請求項42に記載の方法。
  44. 前記がんが、非Wnt活性化がんである、請求項42に記載の方法。
  45. 前記β−カテニン核酸阻害剤分子を投与する前に、前記がんを、免疫療法に対して耐性を示す非T細胞炎症性表現型と関連付け、前記β−カテニン核酸阻害剤分子を投与することが、前記非T細胞炎症性表現型を、免疫療法剤に対して応答性であるT細胞炎症性表現型へと変換させる、請求項42〜44のいずれか一項に記載の方法。
  46. 前記免疫療法剤が、阻害性免疫チェックポイント分子のアンタゴニストまたは共刺激チェックポイント分子のアゴニストである、請求項42〜45のいずれか一項に記載の方法。
  47. 前記免疫療法剤が、阻害性チェックポイントのアンタゴニストであり、前記阻害性チェックポイントが、PD−1またはPD−L1である、請求項46に記載の方法または組成物。
  48. 前記阻害性免疫チェックポイント分子の前記アンタゴニストまたは前記共刺激チェックポイント分子の前記アゴニストが、モノクローナル抗体である、請求項46に記載の方法。
  49. 前記モノクローナル抗体が、抗CTLA−4モノクローナル抗体、抗PD−1モノクローナル抗体、抗PD−L1モノクローナル抗体、または抗CTLA−4モノクローナル抗体及び抗PD−1モノクローナル抗体の組み合わせである、請求項48に記載の方法。
JP2019553945A 2017-03-28 2018-03-28 ベータカテニン発現を減少させて免疫療法を強化する Active JP7295804B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023029339A JP2023073256A (ja) 2017-03-28 2023-02-28 ベータカテニン発現を減少させて免疫療法を強化する

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762477783P 2017-03-28 2017-03-28
US62/477,783 2017-03-28
PCT/US2018/024728 WO2018183420A1 (en) 2017-03-28 2018-03-28 Reducing beta-catenin expression to potentiate immunotherapy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023029339A Division JP2023073256A (ja) 2017-03-28 2023-02-28 ベータカテニン発現を減少させて免疫療法を強化する

Publications (3)

Publication Number Publication Date
JP2020515618A true JP2020515618A (ja) 2020-05-28
JP2020515618A5 JP2020515618A5 (ja) 2021-05-06
JP7295804B2 JP7295804B2 (ja) 2023-06-21

Family

ID=63678261

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019553945A Active JP7295804B2 (ja) 2017-03-28 2018-03-28 ベータカテニン発現を減少させて免疫療法を強化する
JP2023029339A Pending JP2023073256A (ja) 2017-03-28 2023-02-28 ベータカテニン発現を減少させて免疫療法を強化する

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023029339A Pending JP2023073256A (ja) 2017-03-28 2023-02-28 ベータカテニン発現を減少させて免疫療法を強化する

Country Status (11)

Country Link
US (2) US11572559B2 (ja)
EP (1) EP3600423A4 (ja)
JP (2) JP7295804B2 (ja)
KR (1) KR20190128692A (ja)
CN (1) CN110461362A (ja)
AU (1) AU2018244351A1 (ja)
CA (1) CA3057679A1 (ja)
IL (1) IL269766A (ja)
MX (1) MX2019011749A (ja)
NZ (1) NZ757538A (ja)
WO (1) WO2018183420A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509669A (ja) 2018-01-05 2021-04-01 ディセルナ ファーマシューティカルズ インコーポレイテッド 免疫療法を強化するためのベータ−カテニン及びidoの発現の低減

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534425A (ja) * 2010-07-06 2013-09-05 ダイセルナ ファーマシューティカルズ, インコーポレイテッド 二本鎖rnaによるベータ−カテニンの特異的阻害に対する方法と組成物
WO2016141312A1 (en) * 2015-03-04 2016-09-09 The University Of Chicago Beta-catenin inhibitors in cancer immunotherapy
WO2017005773A1 (en) * 2015-07-07 2017-01-12 Universite de Bordeaux Use of catenin- beta 1-targeting micrornas for treating liver cancer
WO2017011831A1 (en) * 2015-07-16 2017-01-19 Bioxcel Corporation A novel approach for treatment of cancer using immunomodulation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017318A2 (en) * 2004-07-09 2006-02-16 The Regents Of The University Of California Methods for treating cancer using agents that inhibit wnt16 signaling
CN103068980B (zh) 2010-08-02 2017-04-05 瑟纳治疗公司 使用短干扰核酸(siNA)的RNA干扰介导的联蛋白(钙粘蛋白关联蛋白质),β1(CTNNB1)基因表达的抑制
US9339513B2 (en) * 2010-11-09 2016-05-17 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of Eg5 and VEGF genes
WO2013066721A2 (en) 2011-11-04 2013-05-10 Dicerna Pharmaceuticals, Inc. Methods and compositions for the specific inhibition of met by double-stranded rna
JP7097438B2 (ja) * 2017-07-11 2022-07-07 アクティム・セラピューティクス・インコーポレイテッド 遺伝子操作された免疫刺激性細菌菌株およびその使用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534425A (ja) * 2010-07-06 2013-09-05 ダイセルナ ファーマシューティカルズ, インコーポレイテッド 二本鎖rnaによるベータ−カテニンの特異的阻害に対する方法と組成物
WO2016141312A1 (en) * 2015-03-04 2016-09-09 The University Of Chicago Beta-catenin inhibitors in cancer immunotherapy
WO2017005773A1 (en) * 2015-07-07 2017-01-12 Universite de Bordeaux Use of catenin- beta 1-targeting micrornas for treating liver cancer
WO2017011831A1 (en) * 2015-07-16 2017-01-19 Bioxcel Corporation A novel approach for treatment of cancer using immunomodulation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIOCHIMICA ET BIOPHYSICA ACTA, 2015, VOL.1856, PP.244-251, JPN6022009331, ISSN: 0004725835 *
FRONTIERS IN ONCOLOGY, 2013, VOL.3, ARTICLE NO.136, JPN6022009332, ISSN: 0004725836 *
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2014, VOL.2, SUPPL.3, ARTICLE NO.O15, JPN6022009330, ISSN: 0004725834 *

Also Published As

Publication number Publication date
CA3057679A1 (en) 2018-10-04
MX2019011749A (es) 2020-01-23
CN110461362A (zh) 2019-11-15
NZ757538A (en) 2023-07-28
IL269766A (en) 2019-11-28
AU2018244351A1 (en) 2019-10-17
JP2023073256A (ja) 2023-05-25
EP3600423A4 (en) 2021-01-13
US11572559B2 (en) 2023-02-07
EP3600423A1 (en) 2020-02-05
US20200377882A1 (en) 2020-12-03
JP7295804B2 (ja) 2023-06-21
KR20190128692A (ko) 2019-11-18
US20230392148A1 (en) 2023-12-07
WO2018183420A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
CN107428813B (zh) 组合肿瘤免疫疗法
KR20230128139A (ko) 조합물
US20220154189A1 (en) Compositions and methods for the treatment of kras associated diseases or disorders
JP2023175693A (ja) βカテニン核酸阻害剤分子
US11813280B2 (en) Reducing beta-catenin and IDO expression to potentiate immunotherapy
US20230392148A1 (en) Reducing beta-catenin expression to potentiate immunotherapy
JP2022507425A (ja) Foxp3発現のモジュレータ
US20220340906A1 (en) Methods and compositions for the treatment of cancer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230228

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20230313

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230417

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230609

R150 Certificate of patent or registration of utility model

Ref document number: 7295804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150