JP2020513690A - マイクロパターンおよび/またはナノパターンをエンボス加工するための方法 - Google Patents

マイクロパターンおよび/またはナノパターンをエンボス加工するための方法 Download PDF

Info

Publication number
JP2020513690A
JP2020513690A JP2019528677A JP2019528677A JP2020513690A JP 2020513690 A JP2020513690 A JP 2020513690A JP 2019528677 A JP2019528677 A JP 2019528677A JP 2019528677 A JP2019528677 A JP 2019528677A JP 2020513690 A JP2020513690 A JP 2020513690A
Authority
JP
Japan
Prior art keywords
embossing
radiation
embossing roll
roll
crosslinking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019528677A
Other languages
English (en)
Other versions
JP6998377B2 (ja
Inventor
クロール ヨージェフ
クロール ヨージェフ
ポヴァジャイ ボリス
ポヴァジャイ ボリス
Original Assignee
エーファウ・グループ・エー・タルナー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーファウ・グループ・エー・タルナー・ゲーエムベーハー filed Critical エーファウ・グループ・エー・タルナー・ゲーエムベーハー
Publication of JP2020513690A publication Critical patent/JP2020513690A/ja
Application granted granted Critical
Publication of JP6998377B2 publication Critical patent/JP6998377B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F19/00Apparatus or machines for carrying out printing operations combined with other operations
    • B41F19/02Apparatus or machines for carrying out printing operations combined with other operations with embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0017Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor for the production of embossing, cutting or similar devices; for the production of casting means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

マイクロパターンおよび/またはナノパターンをエンボス加工するための方法。本発明は、マイクロパターンおよび/またはナノパターンをエンボス加工するための方法に関する。

Description

プリントされた帯およびフィルムの製造のためには既に複数の様々な技術が公知である。その起源は、伝統的なオフセット印刷、特にウェブオフセット印刷にある。この場合、紙やフィルムのような被印刷媒体は、供給ローラから繰り出され、相応の印刷ローラで連続的に印刷され、受取ローラに巻き取られる。印刷機には、テンションローラ、変向ローラ、乾燥ローラ、またはコーティングローラのような他の部材を設けることができる。
半導体産業では、ウェブオフセット印刷を発展させた形態のものが、特に、マイクロパターンおよび/またはナノパターンを相応の支持体にエンボス加工するために使用される。
支持体、特に支持フィルム上にエンボス加工材料が塗布される、特に吹き付けられる、ラミネートされる、または浸漬される。エンボス加工材料は、パターン形成されたエンボスロールによって一次成形法で加工される。しかしながら、エンボスロール自体をパターン形成せずに、特にパターン形成された層(例えば、ベース上のかつ/またはベース内のエンボスパターン)とエンボス加工材料とを接触させることもできる。この場合、パターン形成されていないエンボスロールは、特にフィルム上に/フィルム内に形成されたパターンをエンボス加工材料内へと巻き込む。このパターンが必要な形状安定性を得るために、通常、固化を伴う物質転移が行われる。通常は、エンボス加工材料にエネルギが供給される。これは、特に、熱照射、UV照射、マイクロ波照射によって、または磁界、電界、または電磁場における処理によって行うことができる。さらに、特に超臨界の、準安定のエンボス加工材料のもとで機械的に誘発される反応も考えられ、この場合、エンボスモールドが状態変化をもたらす。この場合、準安定の統計的な多粒子系として理解されてよいエンボス加工材料は、エンボスモールドまたはエンボスロールの押圧により、液相から固体の状態にすることができ、この際、エンボスモールドの作用は状態変化のみをもたらす。さらに、一次成形直後にエンボス加工材料の形状がそれ以上変化できないように、エンボス加工材料を時間的進行(硬化)において制御することもできる。これは、エンボス加工材料において既に開始されている特に化学的な反応によって行うことができる。それは、化学者や材料学者には公知の、Bステージ材料の反応、またはエンボス加工材料中のエポキシ樹脂のような接着材成分の硬化であってよい。
硬化のためにUV照射を使用する場合、このエンボス加工法は、一種のインプリントリソグラフィであると理解されてよい。
モールドの、特にモールドのパターン形成された表面を押し込むことによりエンボス加工材料を変形させるならば、これはインプリントリソグラフィと呼ばれる。物質がモールドパターンの表面から転写される場合、これはコンタクト式リソグラフィと呼ばれる。マイクロもしくはナノという接頭辞は、モールドにおいて使用されるパターンの大きさを表している。
特徴的なエンボスパターンサイズは、10nmよりも大きく、好適には50nmよりも大きく、特に好適には500nmよりも大きい。しかしながら、10マイクロメータ、30マイクロメータ〜1ミリメータ、または10ミリメータのエンボスパターンサイズも可能である。いくつかの使用例のためには、特にディスプレイ、または自発光掲示板、または入場券や紙幣などの偽造防止印刷物の製造のためには、100mmまたは1000mmのパターンサイズも可能である。
しかしながら、1nmまたは5nmよりも大きなパターンサイズの製造も考えられる。このためには、方法パラメータと装置パラメータの相応の協働が必要である。このようなパラメータは特に、レジスト化学、エンボスパターンジオメトリおよびその製造、エンボス加工装置、環境の純度であり得る。
費用対効果の限界は、パターンサイズの技術的パラメータである。1つのエンボスロールによって第1のエンボス加工において(英語ではfirst print)正確なパターンを形成することができるものの、その特徴的なサイズが数桁も互いに異なる様々な高精度のパターンを、1つのロールによって製造するのはしばしば不可能である。
数桁、特に10のべき乗数の偏差を有する複数のパターンをエンボス加工するために、特に直列に接続された複数のエンボスロールを1つのエンボス加工装置において補助的に使用することができる。
様々な精度要件を有する様々なエンボスロールを直列で使用するならば、全体的な解像度および再現性は少なくとも悪化されず、特に向上することができる。この場合、エンボスロールの同期、支持フィルムのプリテンション、エンボス加工材料の一次成形ならびに変形過程、それらの制御、またはコンピュータ制御は、極めて重要である。
従来技術のインプリント装置は様々な欠点を有している。エンボスロール内またはエンボスロール側方のUVステーションの熱的に望ましくない位置は、エンボス加工材料ならびに支持フィルムの寸法維持性にネガティブな作用を与え、これにより、安定した熱的状態に達することができず、加熱の不均一性は、エンボスロールおよび/またはエンボスフィルムにおけるさらなる歪みを引き起こす。これはエンボス加工されるパターンにおける歪みにつながり、すなわち寸法維持性を減じることになる。
エンボスロール内に配置された放射源を有するインプリント装置にとって、放射の波長における光学的透過性は、機能実行性のための基本的な前提条件である。さらに、エンボスロールの固有安定性の基本的な前提条件も保証されるべきであり、このために、これら両条件を組み合わせて有する材料しか使用することができない。
エンボスロール内の放射源と組み合わされた装置に関して、保守整備目的でエンボスロールを取り出す手間は、統合された機能性を有していない装置の場合よりも大きい。放射源の保守整備の手間も、このためにエンボスロールを解体する場合にはより大きなものである。
したがって、本発明の課題は、従来技術の欠点を解消し、特に改善された寸法安定性を、僅かな保守整備の手間のもとで保証するような方法および装置を提供することである。
この課題は、各独立請求項の特徴により解決される。本発明の好適な別の構成は従属請求項に記載されている。明細書、請求の範囲、および/または図面に記載された少なくとも2つの特徴から成る全ての組み合わせも本発明の範囲である。数値範囲においては、記載された限界範囲内にある値も、限界値として開示されたものとみなされ、任意の組み合わせで特許請求することができる。
本発明によるマイクロパターンおよび/またはナノパターンをエンボス加工する方法は、以下のステップ:
架橋放射線を、架橋放射線透過性の、特にパターン形成されたエンボスロール内に入射させ、これによりエンボスロールを、入射する架橋放射線のための光導体として用いるステップと、
架橋放射線をエンボスロールから出射させるステップと、
エンボスロールによって押圧されたエンボス加工材料を、出射した架橋放射線によって硬化させるステップと、を有している。
さらに、本発明によれば、マイクロパターンおよび/またはナノパターンをエンボス加工する装置は:
架橋放射線を放射するための送信モジュールと、
架橋放射線透過性のエンボスロールと、を有しており、架橋放射線はエンボスロール内に入射可能であって、これによりエンボスロールは入射する架橋放射線のための光導体として使用可能であって、架橋放射線はエンボスロールから出射可能であり、エンボスロールによって押圧されたエンボス加工材料は出射した架橋放射線によって硬化可能である。
さらに、本発明による方法もしくは本発明による装置のためのエンボスロールが設けられている。
本発明による好適な実施形態では、架橋放射線を、エンボスロールの端面のうちの少なくとも1つから入射させるようになっている。
本発明による別の好適な実施形態では、少なくとも1つの送信モジュール、特に放射源および/または光導波体が、架橋放射線をエンボスロール内に入射させるようになっている。
本発明による別の好適な実施形態では、少なくとも1つの送信モジュールは入射の際にエンボスロールに接触するようになっている。本発明による選択的な好適な実施形態では、架橋放射線の送信モジュールは入射の際にエンボスロールに接触しないようになっている。
本発明による別の好適な実施形態では、架橋放射線の送信モジュールは、適切な、特にカプセル状の液体を、エンボスロールへの放射線の入射のために使用するようになっている。
本発明による別の好適な実施形態では、架橋放射線は紫外線であるようになっている。
本発明による別の好適な実施形態では、エンボスロールの内側で、架橋放射線の複数の全反射が行われるようになっている。
本発明による別の好適な実施形態では、架橋放射線を、フラストレートされた全反射によりエンボスロールから出射させ、同時にエンボス加工材料内に硬化のために入射させるようになっている。フラストレートされた全反射とは、一般的に、第1の光学的に密な媒質と第2の光学的に疎の媒質との間で全反射する光波のエバネッセント成分を、第3の光学的に密な媒質に伝達する物理的効果を意味する。第1の光学的な媒質と第3の光学的な媒質とは、この場合、ほぼ同じ光学密度を有すべきであり、第2の光学的な媒質は、前記両媒質よりも低い光学的な密度を有していなければならない。効果の詳細な説明は図面で説明されている。
本発明による別の好適な実施形態では、架橋放射線を、エンボスロールにおいて多重反射(内部の全反射および/または表面反射)により均質にするようになっている。
本発明による別の好適な実施形態では、エンボスロールのジオメトリおよび/またはその材料が、架橋放射線のエンボスロールからの流出を、そのために設けられた個所を除いては阻止するように、エンボスロールが構造化されて、形成されているようになっている。架橋放射線のこのような封じ込めは、内在的な制限(英語:intrinsic confinement)と呼ばれる。すなわち数学的には、エンボスロールのジオメトリと使用される材料は、閉じ込められる架橋放射線を記述する、電気力学のマックスウェル方程式の解につながる境界条件である。
本発明による別の好適な実施形態では、架橋放射線を散乱個所によって出射させるようになっている。
本発明による別の好適な実施形態では、エンボス加工材料をエンボスロールによって成形し、時間的に最小限の遅れを持ってまたは同時に、エンボス加工材料の硬化を架橋放射線によって行うようになっている。
本発明による別の好適な実施形態では、エンボスロールの内周面が円錐状に形成されているようになっている。
本発明による別の好適な実施形態では、エンボスロールの内周面が、ライトガイドの使用のために最適化された自由な成形面を有するようになっている。これは特に、数学的関数によってトーラスにより正確に記述可能であるか、または実験的に決定される面を意味することができる。
本発明による別の好適な実施形態では、エンボスロールの内周面がリフレクタ、特にレトロリフレクタを含むか、またはリフレクタ、特にレトロリフレクタとして形成されているようになっている。
本発明による別の好適な実施形態では、エンボスロールの端面のうちの少なくとも1つには、放射線入射のために、部分鏡面および/または溝および/またはノッチおよび/または湾入部が設けられているようになっている。
本発明による別の好適な実施形態では、エンボスロールにおいて、放射線入射のために、付加的な光学エレメント、特に光学的な楔、レンズ、プリズム、絞り、および/または鏡が使用されるようになっている。
本発明による別の好適な実施形態では、架橋放射線は片側で、特にエンボスロールの1つの端面に入射可能であって、対向する端面は全面鏡面化されているようになっている。
本発明による別の好適な実施形態では、架橋放射線は、エンボスロールの内周面または外周面で入射され、この場合、エンボスロールの両端面は鏡面化されていてよい。この場合、入射は端面の近傍で行うことができる。
本発明による別の好適な実施形態では、エンボスロールの外周面が円筒状に形成されていない。凹面状に湾曲した表面をエンボス加工できるように、特に転動可能な自由形状面が可能である。特に楕円の、またはいわゆるスプライン(英語、splines)によって記述可能な外周面をエンボスロールとして使用することができる。
本発明による方法ならびに本発明による装置は、架橋放射線、特に紫外線を、架橋放射線透過性のエンボスロール内に、特にエンボスロールの端面のうちの少なくとも1つに入射させる。この場合、エンボスロールは架橋放射線のための光導体として使用される。
本発明による実施形態では、放射線を、フラストレートされた全反射によりエンボスロールから出射させ、同時にエンボス加工材料内に硬化のために入射させる。
別の実施形態では、エンボスロールとエンボス加工材料との間の接触個所で全反射が生じないように、エンボスロールとエンボス加工材料の屈折率を適合させ調整しながら放射線の出射を行うことができる。
別の実施形態では、エンボス加工材料に隣接しないエンボスロールの周面に散乱個所を設けることにより架橋放射線の出射を行うことができる。
エンボスロールの、好適には内周面は、構造化されて、特に周期的なパターンを有するように、形成されていてよい。サンドブラスト、および/または研削、および/またはブラッシングの結果のような構造化が考えられる。したがって、エンボスロールの、好適には内周面は、光学的に欠損がある面として理解され、この面は散乱個所として、エンボスロールからの放射線を、エンボスロールの外周面の方向で出射させ、エンボス加工材料内に入射させる。欠損個所形成のためのエンボスロールの内周面における特徴的な構造サイズは、マイクロメータからナノメータの範囲にあり、特に、架橋放射線の波長のオーダにある。
エンボスロールの少なくとも1つの端面に架橋放射線が入射することにより、光源のサイズに関するエンボスロールの幾何学的制限、制御されない熱流束による熱的制限、摩耗を引き起こしインプリントにとって不都合である、回転する物体のための電気的および機械的結合が排除される。したがって特に、エンボスロールの直径および/または材料は、放射源の形式とは関係なく目的に合わせて設計することができる。
さらなる利点は、「機能個所における機能材料」という原理の適用である。これは、各機能個所に応じて、適切な機能材料を使用することも意味する。
例えば、エンボスロールの基体には、高い強度を有する機能材料を使用し、相応の光学的な特性を備えた機能材料は、エンボスロールの表面の所要な機能化、ならびに目的に合った均一な架橋放射線の入射および出射を保証する。
別の実施形態では、機械的かつ/または熱的かつ/または流体的かつ/または測定技術的構成要素は特に、エンボスロールの基体の外径の内側に配置することができる。特に、駆動系、温度センサを有した加熱および/または冷却系は、エンボスロールの基体内で、機能的に統合することができる。
別の実施形態では、エンボスロールはセグメント化されて形成されていてよく、これにより架橋放射線は同心的に、使用されるセグメント内で広がることができる。これにより、高い放射線強度がエンボス加工材料内へ伝えられ、これにより硬化時間が短縮され、方法もしくは装置の生産性を向上させることができる。
エンボスロール内での複数回の全反射により、エンボス加工材料の均質な照射が達成される。エンボス加工材料の架橋放射線による照射の均質性は、均質な架橋につながり、これは方法安定性のために重要な意味を成す。
均質で目的に合ったエンボス加工材料の照射のために、特に、エンボスロールの円錐状の基本形状が使用され、この場合、エンボスロールの内周面を円錐状に形成することができる。これにより、エンボスロールの明確な位置の規定、これに伴うより狭い公差が有利であり得る。エンボスロールの内周面が円筒状に形成されているならば、剛性的な基体に沿った横方向の摺動を、肩部やスペーサのような別の構造的な特徴のみによって規定することができる。
円錐状に成形された円筒体、円錐は、円錐状の穴、円錐穴を有したエンボスロール内で特にセルフロック式に位置固定することができる。したがって、インプリントに必要な回転自由度を除いて、その他全ての自由度は、このような対によって、すなわちこの場合、円錐状の穴内の円錐として理解してよい対によって、一義的に、過剰な規定ではなく、取り除くことができる。
好適には、エンボスロールの交換を著しく容易にする楔固定のない好適な実施形態が存在している。内側の円錐・円錐接触面で楔固定の境界面が存在すべき場合には、特にエンボスロールの別の固定手段および/または予荷重手段全体が省かれる。
エンボス加工材料の特性は、インプリント条件に、すなわち、インプリントの際の流れ特性もしくは形状安定性、透過性、吸収挙動、架橋挙動、架橋速度のようなインプリント条件に合わせなければならない。
透過性の、特にパターン形成されたエンボスロールは、エンボス加工材料に対してできるだけ低い付着特性を有していなければならない。結合エネルギ密度とも呼ばれる付着力は好適には、互いに結合された2つの表面を互いに分離するために必要な、単位面積(平方メートル)あたりのエネルギ(J)によって規定される。エネルギはこの場合、J/m2で記載される。この場合、単位面積あたりのエネルギは、2.5J/m2未満であり、好適には0.1J/m2未満であり、さらに好適には0.01J/m2未満であり、さらに好適には0.001J/m2未満であり、さらに好適には0.0001J/m2未満であり、最も好適には0.00001J/m2未満である。コーティング材料とポリマとの間の、経験的に測定された典型的な単位面積あたりのエネルギの平均値は、約0.1J/m2である。純粋なシリコンと同じポリマとの間の、経験的に測定された典型的な単位面積あたりのエネルギの平均値は、約1.2J/m2である。
同時に、エンボス加工材料の流れ特性は、エンボスロールのパターン形成された外周面が隙間なくかつ気泡なく形成されるように調整されなければならない。この流れ特性は、粘度によって大きく影響を受ける。粘度は、温度に大きく依存する物理的特性である。一般的に温度が上昇すると粘度は下がる。粘度は室温で、10E6mPa・s〜1mPa・sであり、好適には10E5mPa・s〜1mPa・sであり、さらに好適には10E4mPa・s〜1mPa・sであり、最も好適には10E3mPa・s〜1mPa・sである。
インプリント速度は、ロール上ではエンボス加工材料の架橋ができるだけ行われないように、したがってこれによりパターン形成されたエンボスロールが使用不能とならないように選択されなければならない。
エンボスロール上でエンボス加工材料の架橋が行われ、これが粘度の変化を、特に粘度のべき指数上昇を伴うならば、エンボス加工材料とエンボスロールとの分離可能性が保証されなければならない。
エンボス加工されたエンボス加工材料の十分な形状安定性のもとでエンボスロールからの分離を架橋なしで行う場合、架橋は後の時点で、エンボス加工材料の付着特性の変更を考慮せずに行われる。
インプリントリソグラフィの過程は、レセプトによって指示されている方法として記述される。レセプトは機能的または方法技術的に関連するパラメータの最適化された値の集合である。レセプトの利用により、生産過程の再現可能性を保証することができる。結果の再現可能性は、とりわけ品質を意味する。
インプリントリソグラフィの品質のためには、特徴を規定し、分割しなければならない。全ての方法ならびに実施する装置の品質基準は、とりわけ、エンボス加工されたパターンの均等性(均質性)、作成された層の層厚さ、残留層の厚さ、ならびに欠陥のなさ、エンボス加工されたパターンの寸法精度および形状精度等である。
品質基準は、例えば3つの上位概念に分割される:入力特徴、プロセス特徴、出力特徴である。
入力特徴には例えば、全ての支持フィルムパラメータ、不変の機械パラメータ、例えば設置場所での場所的な重力定数のような影響を与えることができない環境条件が含まれる。
通常の支持フィルムは、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリイミド(PI)、ポリテトラフルオロエチレン(PTFE)または他のプラスチックを含んでいてよい。アルミニウムまたは鉄またはモリブデンまたはタングステンまたはチタンまたはニオブまたはジルコニウムを含む金属フィルムを使用することもできる。炭素またはシリコンを含む繊維強化材料を使用することが考えられる。
特別な場合、堅固で、特に平坦な面の上でのインプリントリソグラフィが考えられる。インプリントのために、エンボスロールと支持体との相対運動を利用する。したがって、特に以下の材料、または原子、または化合物を含有することができる平坦ガラス板、金属板または基板、特に半導体を、全面的に再現可能かつ安価にパターン形成することができる:GaAs、GaN、InP、InxGa1−xN、InSb、InAs、GaSb、AlN、InN、GaP、BeTe、ZnO、CuInGaSe2、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、Hg(1−x)Cd(x)Te、BeSe、HgS、AlxGa1−xAs、GaS、GaSe、GaTe、InS、InSe、InTe、CuInSe2、CuInS2、CuInGaS2、SiC、SiGe、SixNy、Si。
エンボス加工のために特に重要なのは、支持フィルムの厚さ、ならびに延性、および/または引張り強度である。
支持フィルムの厚さは、10マイクロメータよりも大きく、好適には50マイクロメータよりも大きく、特に好適には100マイクロメータよりも大きく、極めて特に好適には500マイクロメータよりも大きい。原則的には、1000マイクロメータよりも大きい支持フィルムの厚さも印刷することができる。
支持フィルムの延性は、エンボス加工されたパターンの寸法保持性の尺度である。支持フィルムが伸ばされたり、折り畳まれたり、波打っていたりすると、同一のパターンをエンボス加工することはできない。したがって、支持フィルムは、10%未満の、好適には5%未満の、特に好適には1%未満の、最も好適には0.1%未満の、理想的には0%の延性を有しているのが望ましい。
インプリント装置の生産性のためには、送り速度が重要である。送り速度は、0.01m/分よりも高く、好適には0.1m/分よりも高く、特に好適には0.5m/分よりも高く、特に好適には1m/分よりも高く、最も好適には10m/分よりも高く、理想的には20m/分よりも高くてよい。
例えば米国特許第5425848号明細書(US5425848)は従来技術である。産業的に標準的な方法では、硬化のための放射線はエンボス円筒体の内側で発生させることができ、この場合、この円筒体はこの放射線を透過性でなければならない。別の産業的に標準的な装置では、エンボス加工後の硬化は照明ユニット内で行われる。
方法の特徴は、支持フィルム上のエンボス加工材料の塗布に関する全ての特徴を意味する:例えば、支持フィルムの準備およびエンボス加工材料の準備、塗布工程自体、ならびに次の処理ステップまで支持フィルムに接続したままであるエンボス加工されたパターンの後処理。
出力特徴は、それが、エネルギ的変更であるか、材料的変更であるか、または例えばパターンジオメトリ内にコード化されている情報内容であるかに関わらず、インプリントリソグラフィ法によってエンボス加工材料が変化した全ての特徴である。
品質基準の達成は、出力特徴に再現可能に到達するために、全ての入力特徴と方法特徴とが協働することが前提である。このような協働は、すなわち、インプリント装置、方法、使用材料(エンボス加工材料、ならびに支持フィルム、エンボスロール、装置材料)、ならびに例えば支持フィルム特性、支持フィルム材料、清浄度、周辺条件から影響を受ける。
無端支持フィルムに塗布されるエンボス加工材料のインプリントリソグラフィに関する、インプリント装置によって実施することができる一般的な方法は、実質的に以下の部分ステップから成り、この場合、部分ステップの公知の下位分類は、当業者の周知事項として前提となっている。
1つのレセプトには、方法の特徴が目的に合わせてまとめられていて、好適に組み合わされて部分ステップを成している。レセプトは、機械可動な形態の指示セットとして、またはオペレータのための指示セットとして提供され得る。インプリントリソグラフィで行われる方法の特徴を実施するために、レセプトの説明を本明細書に記載する。方法ステップの準備の説明は、ここでは省く。
エンボスロールの製造
エンボスロールは、刊行物、欧州特許第2761371明細書(EP2761371)の説明により製作されてよい。本発明により開示されたさらなる実施形態では、ネガ型としてパターン形成されたマスタを、電子ビームリソグラフィ、原子力顕微鏡、LIGAプロセスによって、またはX線リソグラフィ、またはその他の第1の部分的方法としての製造法によって形成することができる。
第2の部分的方法では、このマスタを、開示された方法によるエンボス加工法で、エンボスロールの外周面に転写することができる。このためには、マスタとエンボスロールとを互いに相対的に転動させ、架橋させる。
第3の部分的方法では、端面のうちの少なくとも1つを放射線入射のために機能化する:部分鏡面、および/または溝、および/またはノッチが形成されてよい。放射線を片側から入射すべき場合には、エンボスロールの対向する端面は全面鏡面化されていてよい。放射線入射のための機能化により、放射源とエンボスロールとの間の光学的損失は最小にされ、好適にはなくなる。
放射源のための特徴は接続電力であり、電力は1W〜10kW、好適には100W〜7kW、特に好適には500W〜5kWのオーダにある。
放射源のための光学出力は、1mW〜1kW、好適には1W〜1kW、特に好適には100W〜1kWのオーダにある。
接続電力と光学出力との間の差は、損失出力として、主に熱として、当業者には公知の相応の冷却剤ならびに冷却装置によって導出される。放射源のための通常の波長は、高圧水銀アークランプのg線および/またはh線および/またはi線である。このような公知の波長の発生は、半導体レーザ、またはLED、その他のガス放電ランプのような、任意の目的に合った手段により可能である。例えば本発明による実施形態においては、放射線の波長変更もしくは周波数変更のための光学的な変換器を使用することができる。特に本発明によれば、エンボス加工材料の架橋波長、粘度、組成、屈折率、硬化による屈折率変更、ガラス転移温度等の化学的特性に関して規定された放射源を、240nm〜約1000nmの波長範囲で使用することが可能である。エンボス加工材料の化学的特性と、好適には365nmの波長を有するLED放射源の調整は、僅かな発熱量で高い放射線収量が得られるので有利である。
第4の部分的方法では、完成したエンボスロールを、特に光学的に、好適には単色のコヒーレント放射によって、好適にはスペックル干渉法によって測定することができる。
本発明による方法の実施例
第1のステップでは、特にロールに巻き付けられた支持フィルムをインプリント装置に取り付ける。さらに、必要な媒体(例えば、圧縮空気、真空、エンボス加工材料)の現存、脱イオン化、エアフィルタの機能性、測定機器および制御機器のセンサ値の妥当性のような初期チェックも行わなければならない。
このステップでは、支持フィルムのリーダー、その初期張力、位置、光透過性も管理することができる。
このステップでは、位置、出力強度、またはその他のパラメータが、レセプトで規定されたパラメータ範囲内にあるかどうか、放射源を特に自動的にチェックすることが考えられる。エラーが生じると、方法は本発明により終了することができる。
次のステップでは、エンボス加工材料を、支持フィルムの、エンボス加工すべき側に、またはエンボス加工すべき両側に塗布する。オプションとしては、ラミネート加工されたエンボス加工材料が使用される。
次のステップでは、放射線を、特に回転するエンボスロールに、時間経過に関して継続的に、または所定のサイクルで、すなわち間欠的に導入する。
次のステップでは、エンボス加工材料をエンボスロールによって成形する。時間的に最小限の遅れをもって、または同時に、本発明による第4のステップでは、特に紫外線によるエネルギ供給たまは状態変更によるエンボス加工材料の架橋を行う。この場合、均一なエネルギ供給を保証することが特に重要である。特に、紫外線の光学的な均一性は、70%〜100%の、好適には80%〜100%の、特に好適には90%〜100%の、極めて特に好適には95%〜100%の値範囲にあるべきである。
エンボス加工の結果のためには特に、架橋放射線のエネルギ密度が重要である。したがって、エンボス加工フィルムまたは一般的に基板におけるエンボス加工材料によって測定された、5mW/cm2〜2000mW/cm2の、好適には10mW/cm2〜1000mW/cm2の、特に好適には100〜700mW/cm2のエネルギ密度が、照射密度として使用される。
次のステップでは、エンボスロールと、製作されたパターンを有するエンボス加工された支持フィルムとを、特に継続的に分離する。
次のステップでは、次のプロセスのために支持フィルムを受取ローラに巻き付ける。
方法の別の構成では、複数のエンボスロールを相前後してエンボス加工材料へと作用させることができる。
本発明による方法の別の構成では、2つのエンボスロールが特に同時に、両側に塗布されたエンボス加工材料を加工することができる。エンボスロールの場所的な分離も考えられ、これにより各エンボスロールはエンボス加工材料を支持フィルムで、明確には示さない支持ロールまたは支持面に押し付けることができる。
本発明のその他の利点、特徴、詳細は、以下の好適な実施例の説明および図面により明らかである。
エンボスロールの、本発明による第1の実施形態の概略図である。 エンボスロールの、本発明による第2の実施形態の概略図である。 エンボスロールの、本発明による第3の実施形態の概略図である。 エンボスロールの、本発明による第4の実施形態の概略図である。 エンボスロールの、本発明による第5の実施形態の概略図である。 エンボスロールの、本発明による第6の実施形態の概略図である。 エンボスロールの、本発明による第7の実施形態の概略図である。 エンボスロールの、本発明による第8の実施形態の概略図である。 フラストレートされた全反射による、本発明による1つの実施形態の概略図である。 欠損個所出射を用いる、本発明による1つの実施形態の概略図である。 全反射を概略的に示す図である。 境界面における強度変化を概略的に示す図である。 フラストレートされた全反射を概略的に示す図である。 フラストレートされた全反射による境界面における強度変化を概略的に示す図である。 本発明による方法の流れを示す概略的なブロック図である。 本発明による装置を概略的に示す図である。
図面では、同じ構成部分または同じ機能を有する構成部分には同じ符号が付与されている。
図1aは、エンボスモジュール2の、特にエンボスロール2の、本発明による第1の実施形態の概略図である。左側には平面図が、右側には側面図が、下方には区分Aの拡大図が示されている。エンボスロール2は、支持材料の幅に適合させることができる特徴的な幅bpを有している。エンボスロール2の外径Dには、特にパターン形成された外周面2aが位置している。外周面2aは、エンボス幅として理解されてよい特徴的な幅bpよりも幅広であってよい。
外周面2aは、好適にはエンボス加工材料に対して極めて僅かな付着特性を有している。付着力は好適には、互いに結合された2つの表面を互いに分離するために必要な、単位面積(平方メートル)あたりのエネルギ(J)によって規定される。エネルギはこの場合、J/m2の単位で記載される。この場合、単位面積あたりのエネルギは、2.5J/m2未満であり、好適には0.1J/m2未満であり、さらに好適には0.01J/m2未満であり、さらに好適には0.001J/m2未満であり、さらに好適には0.0001J/m2未満であり、最も好適には0.00001J/m2未満である。低い付着力は、周面材料自体の表面特性に起因するものであるか、または周面が、相応に低い付着力を有する材料によって被覆されることによる。
細部Aを示す図には、パターン形成された表面が概略的に示されている。外周面2aは、別の構成では、パターン形成されずに形成されていてもよい。
周面は、極めて軟質のまたは極めて硬質の材料から成っている。硬さについては、様々な技術的特性値が存在している。正確な硬さ測定法は、多数の影響ファクタに依存している。最も重要なファクタは、検査したい材料ならびに検査体である。金属およびセラミック、すなわち、相応に高い強度および/または相応の塑性能力を有する固体は、必ずというわけではないが、殆どが、ロックウェル硬さ、ブリネル硬さ、およびビッカーズ硬さによる試験法によってテストされる。
個々の硬さ測定値の換算は条件付きでのみ可能である。相応の表と公式があり、当業者には公知である。しかしながら、正確な換算は必ずしも可能ではない、もしくは不正確であることを述べておかねばならない。以下の硬さ測定値は、ビッカーズ硬さに基づく。
硬質の材料から製造された周面のビッカーズ硬さは、10よりも大きく、好適には100よりも大きく、さらに好適には500よりも大きく、さらに好適には2000よりも大きく、最も好適には4000よりも大きい。
軟質の材料から製造された周面のビッカーズ硬さは、4000未満であり、好適には2000未満であり、さらに好適には500未満であり、さらに好適には100未満であり、最も好適には10未満である。
弾性は、弾性率によって示される。この場合、周面の弾性率は、1GPa〜1000GPaであり、好適には10GPa〜1000GPaであり、さらに好適には25GPa〜1000GPaであり、さらに好適には50GPa〜1000GPaであり、最も好適には75GPa〜1000GPaである。いくつかの種類の鋼を含む場所の弾性率は例えば、200GPa前後である。SiO2の弾性率は60GPa〜80GPaである。
エンボスロール2の端面2sは、架橋放射線(硬化放射線とも呼ばれる)を入射するために用いられる。エンボスロール2の他方の端面2spは、効率向上のために鏡面状に形成することができる。エンボスロール2の内径dで、特に円筒状の内周面2iが、特に堅固な円筒体16の外周面16aに、同心的に接続されていて、この円筒体は、エンボスモジュール2の形状、安定性、主な機械的および熱的な特性を規定する。
円筒体16を、機械的駆動装置に連結することができ、円筒体16の内部には、熱的かつ/または誘導的加熱器、温度プローブのようなセンサ、圧力センサ、撓みセンサ、冷却装置、特に液体冷却装置、特に水冷装置のようなヒートシンクが収容されていてよい。これらは図面には、明示されていない。
エンボスロール2の温度は、好適には、特に電磁放射の入射中、一定に維持される。所望の温度からのエンボスロール2の温度のずれは、10℃未満、好適には5℃未満、さらに好適には2℃未満、さらに好適には1℃未満、最も好適には0℃である。
エンボスロール2の特徴的な幅bpと円筒体16の特徴的な支持長さ(特別には図示しない)は同じであってよい。別の実施形態では、bpは、円筒体16の特徴的な支持長さよりも小さくてもよい。別の実施形態では、bpは、円筒体16の特徴的な支持長さよりも大きくてよい。
この実施形態の光学的特性はここでは、簡単に示される。エンボスロール2の外周面2aは、光学的には境界面Gとみなすことができる。エンボスロール2の材料は、屈折率n1の光学的に疎である媒質M1を有する周囲よりも、光学的により密である屈折率n2の媒質M2から成っている、これについては図2aも参照。
外側シェル、すなわち表面2a,2i,2s,2spによって画定される容積体は、40%よりも大きい、好適には60%よりも大きい、さらに好適には80%よりも大きい、さらに好適には99.5%よりも大きい、最も好適には99.9%よりも大きい透過性を有している。
本発明による別の特別な実施形態では、エンボスロール2が相応の特性を有しているならば、駆動装置を、エンボスロール2の外周面2aに装着することが考えられる。したがって、内側が中空に形成されたエンボスロール2の空間区分をセンサ等のために使用することができる。この場合、円筒体16を省くことができる。
図1bは、エンボスロール2’の、本発明による第2の実施形態の概略図である。図1aと同様に、エンボスロール2’は、円筒状の外周面2aを有していて、この外周面は、エンボス加工すべきパターンのネガ型を有していてよいが、別の実施形態ではパターン形成されていなくてもよい。相違点は、エンボスロール2’の端面に存在し得る:一方の端面2spは、図1aの端面と同一であってよく、他方の端面2kは、同心的な円として形成された部分鏡面sを有することができ、この場合、鏡面ではない周囲を取り囲む円環lkが光結合部として使用される。このような実施形態は、端面が、両側で少なくとも部分的に鏡面化されていることにより、望ましくない放射損失を減じることによって向上された光学的効率を有している。
図1cは、エンボスロール2’’の、本発明による第3の実施形態の概略図である。この実施形態でも、図1a、図1bに関する説明が当てはまる。相違点は、円筒体16の外周面16kが円錐状に形成されている点にある。通常の円錐角度は、0度よりも大きく、好適には1度よりも大きく、さらに好適には5度よりも大きく、さらに好適には10度よりも大きく、最も好適には15度よりも大きい。この角度は、エンボスロール2’’の強度の減少に依存して設計されるべきである。エンボスロール2’’の内周面2ikは、周面16aと同様に円錐状に形成されているので、両表面間に完全に一致する接触平面が生じる。エンボスロール2’’の外周面2aは、依然として円筒状に形成されている。端面は、図1aまたは図1bのように、鏡面として2sp、非鏡面として2s、または部分鏡面2kとして形成されていてよい。
図示されていない本発明による別の実施形態では、円筒体とエンボスロールとが、数学的に記述可能な最適な自由形状面に相応して相当の接触平面を成すように互いに結合されていれば好適である。
図1dは、エンボスロール2’’’の、本発明による第4の実施形態の概略図である。図1a〜図1cとは異なり、エンボスロール2’’’はセグメント状に形成されている。セグメントは、放射線不透過性の分離壁t,t’,t’’,t’’’によって互いに分離されており、放射線の広がりを常に1つのセグメント内に制限することができる。この実施形態は、エンボスロール2’’’の改変により形成することができる。別の実施形態では、特に鏡面状のエレメントをエンボスロール2’’’に取り付けることができる。これにより、入射放射線出力ならびに出射放射線出力を高めることができ、場合によっては様々なスペクトルを有する複数の放射源のもとで様々なエンボス加工プロセスが可能である。
図1eは、エンボスロール2’’’’の、本発明による第5の実施形態の概略図である。図1dに加えて付加的に、セグメント化されたエンボスロール2’’’’の端部は、図1bと同様に、鏡面部分sと光結合部分lkとを含み、部分鏡面状に形成されている。分離壁t,t’,t’’,t’’’の数は、集合M{0,1,2,3,4,5,6,7,8,9,10,10以上}から決定されてよい。
エンボスロール2’’’’の外周面は、パターン形成されて、またはパターン形成されずに、形成されていてよい。
図1fは、エンボスロール2’’’’’の、本発明による第6の実施形態の概略図であって、この場合エンボスロール2’’’’’は中実なものとしてコアなしに形成されている。しかしながら、エンボス加工のために転動せず直線運動を利用する、ローラ状ではなくモールド状の別の押圧体を、エンボスロール2’’’’’として規定することもできる。したがって、エンボスロール2’’’’’の外周面を、平坦なモールド面に変更することができる。
図1gは、エンボスロール2’’’’’’の、本発明による第7の実施形態の概略図であって、この実施形態は、図1dと図1fもしくは図1eとの組み合わせとして理解されてよい。したがって、エンボスロール2’’’’’’は、特にエンボスロール2’’’’’’の外周面は、分離壁t,t’,t’’,t’’’によって互いに分離された複数の部分から成っている。そこで挙げられた特徴は同様に当てはまる。
図1hは、エンボスロール2’’’’’’’の、本発明による第8の実施形態の概略図である。エンボスロールの機能的な内周面2iである表面に、かつ/または近傍に、放射線入射のための、および放射線入射の際のビーム形成のための光学エレメント18が、特に光学的な楔として概略的に示されている。放射線入射は、好適にはフラストレートされた全反射によって行うことができる。円筒体16は、エンボスロールの機能層へ架橋放射線を入射させることができるように相応に成形することができる。
さらに、エンボスロールの円筒体16および/または機能的な内周面2iは構造化されていてよい。構造としては、特にリトロリフレクタ、猫の目構造を、内部の全反射または表面反射のガイドのために使用することができる。個々の構造体の典型的なサイズは、0.1mmよりも大きく、好適には0.5mmよりも大きく、好適には1mmよりも大きく、特に好適には2mmよりも大きく、理想的には5mmよりも大きい。選択的に、0.1mm未満の、または10mmよりも大きいリフレクタを使用することも考えられる。
リトロリフレクタの開放角度は、架橋放射線および構造サイズに依存して目的に応じて、0.01°〜180°のオーダで設計可能である。リトロリフレクタのための好適な角度は90°±5°である。計算は当業者には公知である。本発明の別の実施形態では、架橋放射線は、エンボスロールの機能的な外周面2aへと入射することができる。
別の本発明による実施形態では、架橋放射線の並列結合が原則的には考えられ、この場合、機能的な内周面2iにも、機能的な外周面2aにも入射する。
図2aは、フラストレートされた全反射による、本発明による1つの実施形態の概略図である。この場合、図1a〜図1hの実施形態に例としての放射線経路Lが補足される。特に広がるビームを含む数回の全反射が概略的に示されており、この場合、エンボスロールの均一な照射、ならびにエンボス加工材料17への放射線の均一な出射が行われる。さらに、エンボスロール2には、円筒体16、入射のための端面2k,2s、並びに鏡面化された端面2spが配属されている。均整をとることなく、エンボス加工材料17は象徴として示されおり、放射線の入射も示されている。内周面は鏡面化されている、または内側の全反射によって放射線不透過性である。
図2bは、欠損個所出射を用いる、本発明による1つの実施形態の概略図である。本発明により開示されたエンボスロール2は、図1a〜図1hに例示されているような実施形態で使用される。放射線の入射は、前述した図と同様に行われる。
見易さのため、エンボスロールにおけるビーム経路は完全には示されていない。エンボスロールの円筒外周面2aに接触する、エンボス加工材料の図示は省く。ビームの入射はLで示される。エンボスロール内に確率的に延在するビーム経路は図示されていない。統計的に均等に分布させた出射放射を示す円錐によって、欠損個所16sによる出射が概略的にのみ示される。出射する放射線の均一性は、欠損個所の分布、形状、ならびにサイズのパラメータにより決定される。欠損個所の設計は、当業者には公知であることを前提とする。欠損個所は散乱中心として解釈することができる。
円筒体16の周面16aは、ポリシングもラッピングもされておらず、すなわち高い表面品質を有しているのではなく、欠損個所16sが設けられている。円筒体の周面は特に、ブラシをかけられた表面として形成されてよい。目標に合わせて、サンドブラストまたはエッチングされた粒界によって形成される構造の軌道を設けることもできる。表面16aは、放射線波長のオーダにあるべき数学的に最適な面の形状から、確率的に均等に分布した微細な周期的偏差を有することが許容される。したがって、エンボス加工材料への均一な照射が達成される。放射線Lのビーム経路は、図2aの場合と同様に理解されるべきである。
図3aには、境界面Gにおける全反射と強度変化とが概略的に示されている。この場合、単純化して、ジオメトリックな光学系のアプローチを使用する。これによると、屈折率n2を有する光学的に密な媒質M2から、屈折率n1を有する光学的に疎な媒質M1への光線の出射の際に存在する臨界角はθcであり、この角度を超えると全反射が起こり、放射線は光学的に疎な媒質内には出射されない。このような規則は、専門のエンジニアや物理学者には知られている。さらに、斜めのビームのビーム経路が示されており、これは、光学的に密な媒質において垂線に対して角度αだけずれており、すなわち出射の場合は垂線から角度βだけ屈曲する。
隣に示されているグラフ図3bは、全反射されるビームの強度分布を示しており、この強度Iは、表面に対する垂直な間隔xの関数であるが、正確な縮尺では示されていない。
光学的に密な媒質M2における全反射されるビームの強度は、一定なものとして大きさI2で示されている。当業者には公知の、「ライトスキン(light-skin)」と言われる波動光学的現象が、境界面近くで観察される。したがって、屈折率n1を有する媒質M1における強度I1は、指数関数eの逆数に比例する。このことは、エバネッセント波に起因するものである。
図3bには、エバネッセント波の質的な強度変化I1と、境界面Gにおける全反射されるビームの強度変化I2とが概略的に示されている。
図3cによれば、境界面G近傍に、間隔kをおいて、屈折率n3を有する対象物Oが存在している。屈折率n1は屈折率n3よりも小さい。間隔kが十分に小さいならば(0以上)、屈折率n3を有する対象物Oはライトスキン(light-skin)にある。したがって、放射線の少なくとも一部は(相応の吸収特性を前提として)Oで吸収される。したがって、全反射される放射線の媒質M1からOへの出射が可能である。
フラストレートされた全反射ビームの強度分布は、質的にのみ図3dに示されており、強度Iは、拡散方向xの関数として示される。
媒質M2では、強度I2は一定であるとみなされる。境界面G以降は、屈折率n1を有する媒質M1における強度は、指数関数eの逆数に比例する。境界面Hでは、残留強度I3が媒質O内に入射し、媒質Oで一定であると仮定されてさらに伝達される。
図4は、本発明によるインプリント法を示す概略的なブロック図である。
第1のステップ101では、放射線をエンボスロールに入射させる。
第2のステップ102では、エンボス加工材料とエンボスロールの接触を開始する。
第3のステップ103では、エンボスロールからの放射線の出射と同時に、エンボス加工材料への放射線の入射を行う。これにより硬化が開始する。
第4のステップ104では、エンボス加工材料からエンボスロールを分離する。
第5のステップ105では、エンボスロールを継続的にクリーニングし、繰り返しエンボス加工のために準備をし、これにより特にステップ101を再度開始することができる。
ステップ101と102とは互いに入れ換えてもよい。
図5は、本発明によるインプリント装置のシーケンスを示す図である。インプリント装置15は、説明したモジュールの組み合わせおよび連結から成っている: 支持材料5、特に支持フィルムは、送信モジュール1から受信モジュール4までを通ってエンボス加工法を実施する。エンボス加工は、エンボスロール2として形成することができるエンボスモジュール2表面で、かつ/またはエンボスモジュール2内で行われる。エンボス力Fが作用し、このエンボス力は特に支持モジュール3によって受けられ、このことは反力F’により示されている。
エンボス加工材料と、エンボスモジュール、特にエンボスロールとの間の相対運動を行わせるために駆動装置8(伝動装置を含むまたは含まない原動機)を使用することができる。特に、エンボス加工材料を備えた支持フィルムとエンボスロールとは互いに転動することができる。さらなる力もしくは圧力生成エレメント8は、力(圧力)を生成することができる。これは、液圧的に、かつ/またはニューマチック的に、かつ/または機械的に、かつ/または電子的に、かつ/または電磁的に行われてよい。
硬化放射線を発生させるために、放射モジュール9がエンボスモジュールに接続される。放射モジュールには、少なくとも1つの放射源(LEDまたはLEDアレイ、または水銀灯、またはハロゲンエミッタ、またはレーザ、またはマグネトロン、またはその他のドリフトチューブ)と、鏡、半透過性鏡、レンズ、プリズム、光導体、絞りのようなビーム形成エレメントと、冷却装置のようなその他の補助ユニットとが含まれてよい。
送信モジュール1の後、支持材料5は、特に、ガイドおよび/または予荷重および/または接合モジュール10を通り、このモジュールは、場合によっては生じる支持体の静電荷に対処し、ならびに場合によっては生じるパーティクルを支持体から除去する、クリーニングおよび/または脱イオンステーションのための下方モジュールを含んでいてよい。次のモジュールとしては、上方のコーティングモジュール6および/またはオプションとして下方のコーティングモジュール7が続く。別の実施形態では、これらのモジュールは、カバーフィルムを除去することができ、かつエンボス加工材料を露出させることができる。モジュール6および7は、エンボス加工材料を調量して、成形し、余剰の溶剤を除去し、かつ/またはエンボス加工の準備をする。
それに続くモジュールとして、エンボスモジュール2には、本発明の方法によれば、補助ユニットが設けられていてよい。
特に、保護層および/または保護フィルムを塗布することができ、かつ/または完全な硬化を実施することができるモジュール12およびモジュール13のような後続のモジュールが続くことができる。
受信モジュール4の手前に、別の脱イオンステーションおよび/または予荷重および/または閉ループ制御および/またはガイドモジュール11を接続することもできる。インプリント装置15は、例えばスループット、品質、プロセス均一性、ならびに安定性を維持するために、1つ以上の測定モジュールおよび/または開ループ制御モジュールおよび/または閉ループ制御モジュール14によって制御および影響されてよい。全てのモジュールが開ループ制御および/または閉ループ制御モジュール14にネットワークでつながっていることは、破線で示されている。
インプリント装置15の別の図示されていない実施形態では、個々のモジュールを互いに組み合わせることもできる。例えばインプリントモジュール2、駆動モジュール8、および/または放射モジュール9を互いに統合することができる。さらに、送信モジュール1を、ガイドおよび/または予荷重および/または接合モジュール10に組み合わせることもできる。別の可能性は、送信モジュール1を、ガイドモジュール10ならびにコーティングモジュール6および/またはコーティングモジュール7に多重統合することである。このことは、モジュール11,12,13,14について同様に当てはまる。
モジュール構成形式により、機能分離も、機能統合も可能であるので、機能および/またはコストに関して最適化されたインプリント装置15が製造される。したがって、インプリント装置の別の本発明による実施形態では、エンボスモジュール2のみを含むこともできる。さらに、別の本発明による実施形態では、エンボスモジュール2と閉ループ制御モジュール14との組み合わせが考えられる。インプリント装置15のためのモジュールのうちの少なくとも1つ(特にモジュール2)から成る全ての組み合わされた構成が、開示されたものとしてみなされるべきである。
A 区分
n1,n2,n3 屈折率
G,H 境界面
M1,M2,O 様々な屈折率を有する媒質、固体
I,I1,I2,I3 放射線、特に光の強度
x,k 間隔
e 指数関数
c 全反射の境界角度
α,β 屈折角度
F エンボス力
F’ 反力
bp エンボスロールの幅
D エンボスロールの外径
L 入射放射線、特に光
d エンボスロールの内径
s 鏡面
lk 光結合面、特にキャビティ
t,t’,t’’,t’’’ セグメント間の分離壁
1 送信モジュール
2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’ エンボスモジュール、特にエンボスロール
2a エンボスロールの円筒状の外周面
2i エンボスロールの機能的な内周面
2ik 円錐状に形成されたエンボスロールの機能的な内周面
2k 結合エレメントおよび部分鏡面を備えた結合面(エンボスロールの端面)
2s (放射線入射のための)エンボスロールの端面
2sp エンボスロールの鏡面化された端面
3 支持モジュール
4 受信モジュール
5 支持材料
6 上方のコーティングモジュール
7 下方のコーティングモジュール
8 力もしくは圧力生成エレメント、特に駆動装置、モータ
9 少なくとも1つの放射源を備えた放射モジュール
10 クリーニングおよび/または調量のためのガイドおよび/または予荷重および/または接合モジュール
11 閉ループ制御および/またはガイドモジュール
12,13 保護層および/または保護フィルム塗布のためのモジュール及び/又は完全硬化モジュールおよび/または予荷重および/または調量モジュール
14 測定および/または開ループ制御および/または閉ループ制御モジュール
15 インプリント装置
16 円筒体
16a 円筒体の外周面
16k 円錐状に形成された円筒体の外周面
16s 円筒体の外周面16aにおける放射線出射を促進するための欠損個所
17 エンボス加工材料
18,18’ 入射のためのビーム形成体、特に光学的な楔、レンズ、プリズム、鏡、絞り

Claims (13)

  1. マイクロパターンおよび/またはナノパターンをエンボス加工する方法であって、以下のステップ:
    架橋放射線(L)を、前記架橋放射線透過性の、特にパターン形成されたエンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)内に入射させ、これにより前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)を、入射する架橋放射線(L)のための光導体として用いるステップと、
    前記架橋放射線(L)を前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)から出射させるステップと、
    前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)によって押圧されたエンボス加工材料(17)を、出射した前記架橋放射線(L)によって硬化させるステップと、
    を有する、方法。
  2. 前記架橋放射線(L)を、前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)の端面(2k)のうちの少なくとも1つに入射させる、請求項1記載の方法。
  3. 少なくとも1つの送信モジュール(1)が前記架橋放射線(L)を前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)内に入射させる、請求項1または2記載の方法。
  4. 前記架橋放射線(L)は紫外線である、請求項1から3までのいずれか1項記載の方法。
  5. 前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)の内側で、前記架橋放射線(L)の複数の全反射が行われる、請求項1から4までのいずれか1項記載の方法。
  6. 前記架橋放射線(L)をフラストレートされた全反射によって前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)から出射させ、同時にエンボス加工材料(17)内に硬化のために入射させる、請求項1から5までのいずれか1項記載の方法。
  7. 前記架橋放射線(L)を、散乱個所(16s)によって出射させる、請求項1から6までのいずれか1項記載の方法。
  8. 前記エンボス加工材料(17)を前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)によって成形し、時間的に最小限の遅れを持ってまたは同時に、前記エンボス加工材料(17)の硬化を前記架橋放射線(L)によって行う、請求項1から7までのいずれか1項記載の方法。
  9. マイクロパターンおよび/またはナノパターンをエンボス加工する装置(15)であって、
    架橋放射線(L)を放射するための送信モジュール(1)と、
    架橋放射線透過性のエンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)と、
    を有しており、
    前記架橋放射線(L)は前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)内に入射可能であって、これにより前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)は入射する架橋放射線(L)のための光導体として使用可能であって、前記架橋放射線(L)は前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)から出射可能であり、前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)によって押圧されたエンボス加工材料(17)は出射した前記架橋放射線(L)によって硬化可能である、マイクロパターンおよび/またはナノパターンをエンボス加工する装置(15)。
  10. 請求項1記載の方法のためのエンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)。
  11. 前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)の内周面(2ik)が円錐状に形成されている、請求項1記載の方法のためのエンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)。
  12. 前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)の端面(2s,2sk)のうちの少なくとも1つには、放射線入射のために、部分鏡面および/または溝および/またはノッチが設けられている、請求項1記載の方法のためのエンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)。
  13. 前記架橋放射線(L)は前記エンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)の片側の1つの端面(2s,2k)に入射可能であって、対向する端面(2sp)は全面鏡面化されている、請求項1記載の方法のためのエンボスロール(2,2’,2’’,2’’’,2’’’’,2’’’’’,2’’’’’’,2’’’’’’’)。
JP2019528677A 2016-12-06 2017-10-23 マイクロパターンおよび/またはナノパターンをエンボス加工するための方法 Active JP6998377B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016123538.5 2016-12-06
DE102016123538.5A DE102016123538A1 (de) 2016-12-06 2016-12-06 Verfahren zum Prägen von Mikro- und/oder Nanostrukturen
PCT/EP2017/076978 WO2018103940A1 (de) 2016-12-06 2017-10-23 Verfahren zum prägen von mikro- und/oder nanostrukturen

Publications (2)

Publication Number Publication Date
JP2020513690A true JP2020513690A (ja) 2020-05-14
JP6998377B2 JP6998377B2 (ja) 2022-01-18

Family

ID=60186272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019528677A Active JP6998377B2 (ja) 2016-12-06 2017-10-23 マイクロパターンおよび/またはナノパターンをエンボス加工するための方法

Country Status (7)

Country Link
US (1) US11040525B2 (ja)
EP (1) EP3552058B9 (ja)
JP (1) JP6998377B2 (ja)
KR (1) KR102487231B1 (ja)
CN (1) CN109997078B (ja)
DE (1) DE102016123538A1 (ja)
WO (1) WO2018103940A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018114009A1 (de) * 2018-06-12 2019-12-12 Volkswagen Aktiengesellschaft Aktivmaterialkörper für einen Akkumulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085965A (ja) * 2003-09-08 2005-03-31 Canon Inc 近接場露光用マスク、近接場露光方法、及び近接場露光装置
JP2010199401A (ja) * 2009-02-26 2010-09-09 Hitachi Maxell Ltd 成形体の製造方法及び製造装置
US20120070623A1 (en) * 2010-09-17 2012-03-22 Sony Corporation Manufacturing method of laminated body, stamper, transfer device, laminated body, molding element, and optical element
JP2012061832A (ja) * 2010-09-17 2012-03-29 Sony Corp 積層体の製造方法、原盤および転写装置
JP2013207060A (ja) * 2012-03-28 2013-10-07 Sony Corp 構造物形成装置、構造物の製造方法及び構造物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69405451T2 (de) 1993-03-16 1998-03-12 Koninkl Philips Electronics Nv Verfahren und Vorrichtung zur Herstellung eines strukturierten Reliefbildes aus vernetztem Photoresist auf einer flachen Substratoberfläche
US20080229950A1 (en) * 2007-03-19 2008-09-25 Ping Mei Seamless imprint roller and method of making
US8071277B2 (en) * 2007-12-21 2011-12-06 3M Innovative Properties Company Method and system for fabricating three-dimensional structures with sub-micron and micron features
US8518633B2 (en) * 2008-01-22 2013-08-27 Rolith Inc. Large area nanopatterning method and apparatus
NL2005254A (en) * 2009-09-22 2011-03-23 Asml Netherlands Bv Imprint lithography method and apparatus.
KR100988935B1 (ko) 2009-10-28 2010-10-20 한국기계연구원 롤 임프린트 장치
EP2761371B1 (de) 2011-12-06 2015-08-12 Ev Group E. Thallner GmbH Verfahren zur herstellung eines nanostrukturstempels
KR102243425B1 (ko) * 2012-05-02 2021-04-22 메타머트리얼 테크놀러지스 유에스에이, 인크. 원통형 고분자 마스크 및 제작 방법
DE102015120535A1 (de) * 2015-11-26 2017-06-01 Leibniz-Institut für Oberflächenmodifizierung e.V. Vorrichtung und Verfahren zur Herstellung einer beidseitig mikrostrukturierten Folie

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085965A (ja) * 2003-09-08 2005-03-31 Canon Inc 近接場露光用マスク、近接場露光方法、及び近接場露光装置
JP2010199401A (ja) * 2009-02-26 2010-09-09 Hitachi Maxell Ltd 成形体の製造方法及び製造装置
US20120070623A1 (en) * 2010-09-17 2012-03-22 Sony Corporation Manufacturing method of laminated body, stamper, transfer device, laminated body, molding element, and optical element
JP2012061832A (ja) * 2010-09-17 2012-03-29 Sony Corp 積層体の製造方法、原盤および転写装置
JP2013207060A (ja) * 2012-03-28 2013-10-07 Sony Corp 構造物形成装置、構造物の製造方法及び構造物

Also Published As

Publication number Publication date
US11040525B2 (en) 2021-06-22
EP3552058A1 (de) 2019-10-16
EP3552058B9 (de) 2022-09-28
EP3552058B1 (de) 2022-07-20
CN109997078A (zh) 2019-07-09
DE102016123538A1 (de) 2018-06-07
JP6998377B2 (ja) 2022-01-18
WO2018103940A1 (de) 2018-06-14
US20200070496A1 (en) 2020-03-05
CN109997078B (zh) 2023-03-31
KR102487231B1 (ko) 2023-01-10
KR20190090792A (ko) 2019-08-02

Similar Documents

Publication Publication Date Title
JP6884515B2 (ja) 位置検出方法、インプリント装置及び物品の製造方法
US9507256B2 (en) Imprint method, imprint apparatus, and process for producing chip
JP4317375B2 (ja) ナノプリント装置、及び微細構造転写方法
CN107305322A (zh) 测量设备、压印装置和制造产品、光量确定及调整的方法
TWI426353B (zh) 壓印微影系統及壓印方法
JP4090374B2 (ja) ナノプリント装置、及び微細構造転写方法
Tang et al. Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication
JP6998377B2 (ja) マイクロパターンおよび/またはナノパターンをエンボス加工するための方法
US20100190340A1 (en) Methods of forming fine patterns using a nanoimprint lithography
Kirchner et al. Benchmarking surface selective vacuum ultraviolet and thermal postprocessing of thermoplastics for ultrasmooth 3-D-printed micro-optics
Ferm et al. High volume manufacturing of polymer planar waveguides via UV embossing
US20170210036A1 (en) Mold replicating method, imprint apparatus, and article manufacturing method
Kirchner et al. Direct UV-imprinting of hybrid-polymer photonic microring resonators and their characterization
JP7360064B2 (ja) フィラー充填フィルム、枚葉フィルム、積層フィルム、貼合体、及びフィラー充填フィルムの製造方法
Kim et al. Nanoimprinting of soda–lime glass using vitreous carbon nanomold for high-temperature stable nanophotonic crystal filter
Korhonen et al. Multilayer single-mode polymeric waveguides by imprint patterning for optical interconnects
CN111971590B (zh) 树脂层叠光学体及其制造方法
JP7179655B2 (ja) インプリント装置、インプリント方法、および物品の製造方法
JP2006064455A (ja) 基準格子製造方法及び基準格子製造装置
Van Erps et al. Deep proton writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics
Kim et al. Replication of micro-optical components by ultraviolet-molding process
Thanner et al. Optimized UV nanoimprinting processes for fabrication of high fidelity patterns
Miao et al. Design and fabrication of microlens arrays as beam relay for free-space optical interconnection
JP2019158516A (ja) 位置検出装置、位置検出方法、インプリント装置及び物品の製造方法
JP7374666B2 (ja) インプリント方法、前処理装置、インプリント用基板、および基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 6998377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150