JP2020196913A - Recovery method of tin - Google Patents

Recovery method of tin Download PDF

Info

Publication number
JP2020196913A
JP2020196913A JP2019102451A JP2019102451A JP2020196913A JP 2020196913 A JP2020196913 A JP 2020196913A JP 2019102451 A JP2019102451 A JP 2019102451A JP 2019102451 A JP2019102451 A JP 2019102451A JP 2020196913 A JP2020196913 A JP 2020196913A
Authority
JP
Japan
Prior art keywords
tin
leaching
arsenic
tellurium
selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019102451A
Other languages
Japanese (ja)
Other versions
JP7243458B2 (en
Inventor
浩一郎 平田
Koichiro Hirata
浩一郎 平田
宏行 櫻井
Hiroyuki Sakurai
宏行 櫻井
史人 田中
Fumito Tanaka
史人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019102451A priority Critical patent/JP7243458B2/en
Publication of JP2020196913A publication Critical patent/JP2020196913A/en
Application granted granted Critical
Publication of JP7243458B2 publication Critical patent/JP7243458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a recovery method of tin, which can selectively separate, and recover only tin at low cost from a solution containing at least one kind among tin, arsenic, tellurium, and selenium.SOLUTION: A recovery method of tin includes the step of recovering tin by adding calcium carbonate to a solution containing at least one kind among tin, and arsenic, tellurium, and selenium, and recovering tin contained in the solution as a compound containing calcium stannate, in which in the tin recovery step, the pH is set to within the range of 11.0 or larger and 13.5 or smaller.SELECTED DRAWING: Figure 1

Description

本発明は、錫と、砒素、テルル、セレンのうち少なくとも一種とを含む溶液から、錫を分離、回収する錫の回収方法に関する。 The present invention relates to a method for recovering tin, which separates and recovers tin from a solution containing tin and at least one of arsenic, tellurium, and selenium.

例えば、銅の製錬工程や鉛を含む製品のリサイクル工程で産出される鉛製錬原料から鉛を乾式製錬する際には、鉛製錬原料を溶鉱炉等で溶融して粗鉛を得る。そして、この粗鉛をハリス炉に導入して溶融し、水酸化ナトリウムや硝酸ナトリウムなどを加えて粗鉛をハリス法による処理(ハリス処理:粗鉛精製)を行うことにより、電解精製用の鉛陽極材を製造する。 For example, when lead is pyrometallurgical from a lead smelting raw material produced in a copper smelting process or a product recycling process containing lead, the lead smelting raw material is melted in a smelting furnace or the like to obtain crude lead. Then, this crude lead is introduced into a Harris furnace, melted, and sodium hydroxide, sodium nitrate, etc. are added to treat the crude lead by the Harris method (Harris treatment: crude lead purification), thereby leading lead for electrolytic refining. Manufacture anode material.

こうした粗鉛のハリス処理を行う過程において、ハリスドロス(粗鉛をハリス処理した際に生じる固体残渣)が生じる。こうしたハリスドロスは、例えば、20〜30wt%程度の鉛、15〜25wt%程度の錫、5〜10wt%程度のアンチモン、および10wt%以下の砒素、テルル、セレンなどを含む固体である。 In the process of Harris treatment of crude lead, Harris dross (solid residue generated when crude lead is Harris treated) is generated. Such Harris dross is, for example, a solid containing about 20 to 30 wt% lead, about 15 to 25 wt% tin, about 5 to 10 wt% antimony, and 10 wt% or less of arsenic, tellurium, selenium and the like.

ハリスドロスは、錫の含有率が比較的高いため、ハリスドロスから錫を選択的に回収ができれば、その錫半製品は錫の製錬原料として用いることができる。しかしながら、ハリスドロスから錫を分離、回収する際には、錫と錫以外の不純物元素、例えば砒素、テルル、セレンなどを高精度に分離する必要がある。 Since Harris dross has a relatively high tin content, if tin can be selectively recovered from Harris dross, the tin semi-finished product can be used as a raw material for tin smelting. However, when separating and recovering tin from Harris dross, it is necessary to separate tin and impurity elements other than tin, such as arsenic, tellurium, and selenium, with high accuracy.

従来、錫と砒素、テルル、セレンなどが共存した固体やこれを含む溶液から、錫を選択的に分離して回収する方法として、例えば、特許文献1には、錫含有アルカリ性溶液に対して硫化処理、および還元用金属、例えば金属錫を添加することにより不純物を除去したのち、電解分離によって錫を回収する方法が記載されている。 Conventionally, as a method for selectively separating and recovering tin from a solid in which tin and arsenic, tellurium, selenium, etc. coexist or a solution containing the same, for example, Patent Document 1 describes sulfide for a tin-containing alkaline solution. A method of removing impurities by adding a metal for treatment and reduction, for example, metallic tin, and then recovering tin by electrolytic separation is described.

また、特許文献2には、錫を含むアルカリ性溶液に、還元剤として錫よりもイオン化傾向が高い金属、例えば金属アルミニウムを添加することで、砒素等の不純物と錫を分離して、錫を選択的に回収する方法が記載されている。 Further, in Patent Document 2, tin is selected by adding a metal having a higher ionization tendency than tin, for example, metallic aluminum, as a reducing agent to an alkaline solution containing tin to separate impurities such as arsenic from tin. The method of collecting the metal is described.

また、特許文献3には、錫を主成分とするはんだなどから錫を含む酸性溶液を生成し、これを中和することで錫を含む中和残滓を回収し、その中和残滓をアルカリで溶解して錫含有アルカリ液を生成し、電解分離により錫を回収する方法が記載されている。 Further, in Patent Document 3, an acidic solution containing tin is generated from a solder containing tin as a main component, and the neutralized residue is recovered by neutralizing the solution, and the neutralized residue is alkaline. A method of dissolving to generate a tin-containing alkaline solution and recovering tin by electrolytic separation is described.

特開平4−191340号公報Japanese Unexamined Patent Publication No. 4-191340 特開2001−279344号公報Japanese Unexamined Patent Publication No. 2001-279344 特開2004−315865号公報Japanese Unexamined Patent Publication No. 2004-315865

しかしながら、特許文献1に開示された方法では、硫化処理及び還元用金属の添加において複数の処理工程が必要であり、また、こうした処理工程において、硫化剤や還元用金属などの高コストな添加物が必要になる。このため、低コストで効率的に錫含有溶液から錫を高精度に分離することが困難であった。 However, the method disclosed in Patent Document 1 requires a plurality of treatment steps in the sulfurization treatment and the addition of the reducing metal, and in such treatment steps, high-cost additives such as a sulfurizing agent and a reducing metal are added. Is required. Therefore, it has been difficult to efficiently separate tin from the tin-containing solution at low cost with high accuracy.

また、特許文献2に開示された方法では、還元用金属としてアルミニウムを添加することで、錫と砒素とを分離することは可能であるが、テルル、セレンなどは錫と共に還元されるため分離ができないという課題があった。 Further, in the method disclosed in Patent Document 2, it is possible to separate tin and arsenic by adding aluminum as a reducing metal, but tellurium, selenium and the like are reduced together with tin, so that separation is possible. There was a problem that it could not be done.

また、特許文献3に開示された方法では、処理工程が中和やアルカリ溶解という複数の操作が必要であるため、高コストで手間が掛かるという課題があった。 Further, the method disclosed in Patent Document 3 has a problem that it is costly and time-consuming because the treatment step requires a plurality of operations such as neutralization and alkali dissolution.

本発明は、このような事情を考慮してなされたものであり、錫と、砒素、テルル、セレンのうち少なくとも一種とを含む溶液から、錫だけを選択的に、かつ低コストに分離、回収することが可能な錫の回収方法を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and only tin is selectively and low-cost separated and recovered from a solution containing tin and at least one of arsenic, tellurium, and selenium. It is an object of the present invention to provide a method for recovering tin that can be obtained.

上記課題を解決するために、この発明は以下の手段を提案している。
即ち、本発明の錫の回収方法は、錫と、砒素、テルル、セレンのうち少なくとも一種とを含む溶液に、炭酸カルシウムを添加して、前記溶液に含まれる錫を、錫酸カルシウムを含む化合物にして沈殿回収する錫回収工程を有し、前記錫回収工程では、pHを11.0以上、13.5以下の範囲にすることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
That is, in the method for recovering tin of the present invention, calcium carbonate is added to a solution containing tin and at least one of arsenic, tellurium, and selenium, and the tin contained in the solution is a compound containing calcium tinate. The tin recovery step is characterized in that the pH is set to a range of 11.0 or more and 13.5 or less.

本発明によれば、錫回収工程において、水に難溶性の炭酸カルシウムを前記第1溶液に加えることにより、Ca2+イオンが生じない。錫は炭酸カルシウムとの固液反応により、難溶性の錫酸カルシウムを生成するが、錫以外の不純物元素は炭酸カルシウムと反応することがなく、難溶性の沈殿物を生成しない。よって、錫と、不純物である砒素、テルル、セレンとを確実に分離することが可能になる。 According to the present invention, Ca 2+ ions are not generated by adding calcium carbonate, which is sparingly soluble in water, to the first solution in the tin recovery step. Tin produces sparingly soluble calcium tinate by a solid-liquid reaction with calcium carbonate, but impurity elements other than tin do not react with calcium carbonate and do not form a sparingly soluble precipitate. Therefore, it is possible to reliably separate tin from impurities such as arsenic, tellurium, and selenium.

また、前記溶液は、ハリスドロスを水で浸出する浸出工程により得られた浸出液であり、前記浸出工程では、pHを11.0以上、13.5以下の範囲にして浸出を行ってもよい。 Further, the solution is an leaching solution obtained by an leaching step of leaching Harris dross with water, and in the leaching step, leaching may be performed with a pH in the range of 11.0 or more and 13.5 or less.

また、前記錫回収工程では、前記炭酸カルシウムの添加量(mol)を、前記溶液に含まれる錫の含有量(mol)の1倍以上、4倍以下にしてもよい。 Further, in the tin recovery step, the amount of calcium carbonate added (mol) may be 1 times or more and 4 times or less of the tin content (mol) contained in the solution.

本発明によれば、錫と、砒素、テルル、セレンのうち少なくとも一種とを含む溶液から、錫だけを選択的に、かつ低コストに分離、回収することが可能な錫の回収方法を提供することができる。 According to the present invention, there is provided a method for recovering tin, which can selectively and inexpensively separate and recover only tin from a solution containing tin and at least one of arsenic, tellurium, and selenium. be able to.

本発明の錫の回収方法を段階的に示したフローチャートである。It is a flowchart which showed the tin recovery method of this invention step by step.

以下、図面を参照して、本発明の一実施形態の錫の回収方法について説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。 Hereinafter, a method for recovering tin according to an embodiment of the present invention will be described with reference to the drawings. It should be noted that the embodiments shown below are specifically described in order to better understand the gist of the invention, and do not limit the present invention unless otherwise specified.

図1は、本発明の一実施形態の錫の回収方法を段階的に示したフローチャートである。
本実施形態に係る錫の回収方法は、図1に示すように、例えば、ハリスドロスを水で浸出する浸出工程S1で得られた、錫と、砒素、テルル、セレンのうち少なくとも一種とを含む浸出液に、炭酸カルシウムを反応させて錫酸カルシウムを含む化合物を沈殿させる錫回収工程S2を有している。なお、前記溶液を得る工程は、上述したハリスドロスを水で浸出する浸出工程S1に限定されるものではない。
FIG. 1 is a flowchart showing a stepwise method for recovering tin according to an embodiment of the present invention.
As shown in FIG. 1, the method for recovering tin according to the present embodiment is, for example, an exudate containing tin and at least one of arsenic, tellurium, and selenium obtained in the leaching step S1 in which Harris dross is leached with water. It also has a tin recovery step S2 in which calcium carbonate is reacted to precipitate a compound containing calcium tinate. The step of obtaining the solution is not limited to the leaching step S1 in which the above-mentioned Harris dross is leached with water.

<ハリスドロス>
本実施形態の錫の回収方法における原料となるハリスドロスは、例えば、銅の製錬工程や、鉛を含む製品のリサイクル工程で産出される鉛製錬原料から鉛を乾式製錬する際に、粗鉛を水酸化ナトリウムや硝酸ナトリウムなどによって処理する際に生じるものであり、乾燥状態では不定形の粒状固体である。
<Harris Dross>
Harris dross, which is a raw material in the tin recovery method of the present embodiment, is crude in, for example, when lead is dry-smelted from a lead smelting raw material produced in a copper smelting process or a lead-containing product recycling process. It is produced when lead is treated with sodium hydroxide, sodium nitrate, etc., and is an amorphous granular solid in a dry state.

こうしたハリスドロスは、再生利用に有用な金属や非金属を多く含んでおり、具体的には、鉛及び錫を主体とし、その他にアンチモン、砒素、テルル、セレンなどを含んでいる。これら元素のハリスドロスに含まれる組成比の一例としては、鉛24.4wt%、錫18.3wt%、アンチモン7.8wt%、砒素4.1wt%、テルル1.8wt%、セレン0.3wt%である。 Such Harris dross contains a large amount of metals and non-metals useful for recycling, and specifically, it is mainly composed of lead and tin, and also contains antimony, arsenic, tellurium, selenium and the like. As an example of the composition ratio contained in Harris dross of these elements, lead is 24.4 wt%, tin is 18.3 wt%, antimony is 7.8 wt%, arsenic is 4.1 wt%, tellurium is 1.8 wt%, and selenium is 0.3 wt%. is there.

<浸出工程>
本実施形態の錫の回収方法のうち浸出工程S1では、上述したハリスドロスから、鉛、およびアンチモンと、その他の元素とを分離する。
浸出工程S1は、ハリスドロスに水を加えて、例えば8時間以上撹拌する。そして、減圧ろ過、加圧ろ過、遠心分離等の固液分離手段、例えばフィルタープレスなどを用いて固液分離を行い、鉛、アンチモン以外の元素である錫、砒素、テルル、セレン等が水に浸出した浸出液と、鉛、アンチモンを含む浸出残渣とを分離、回収する。
<Leaching process>
In the leaching step S1 of the tin recovery method of the present embodiment, lead, antimony, and other elements are separated from the above-mentioned Harris dross.
In the leaching step S1, water is added to Harris dross and stirred for, for example, 8 hours or more. Then, solid-liquid separation is performed using solid-liquid separation means such as vacuum filtration, pressure filtration, and centrifugation, such as a filter press, and tin, arsenic, tellurium, selenium, and other elements other than lead and antimony are added to water. The exudate and the exudate residue containing lead and antimony are separated and recovered.

こうした浸出工程S1では、ハリスドロスに水を加えた状態でのpHが13.5以下、好ましくは13.0以下になるようにする。ハリスドロスの浸出時にpHが13.5を超えると、鉛、アンチモンが溶出する。このため、pHを13.5以下、好ましくは13.0以下に保って浸出を行うことにより、鉛、アンチモンを含まない浸出液を得ることができる。 In such a leaching step S1, the pH of Harris dross with water added is adjusted to 13.5 or less, preferably 13.0 or less. If the pH exceeds 13.5 during the leaching of Harris dross, lead and antimony will elute. Therefore, by performing leaching while keeping the pH at 13.5 or less, preferably 13.0 or less, an leaching solution containing no lead or antimony can be obtained.

通常、ハリスドロスの多くは水酸化ナトリウムが含まれており、水を加えると液性は強アルカリ性を示す。このため、pHが13.5を超える場合には、pH調整剤を添加してpHを13.5以下にする。pHを下げるpH調整剤としては、酸を用いればよい。酸の具体例としては、例えば、塩酸、硫酸、硝酸等、汎用的な酸をpH調整剤として用いることができる。 Most of Harris dross usually contains sodium hydroxide, and when water is added, the liquid becomes strongly alkaline. Therefore, when the pH exceeds 13.5, a pH adjuster is added to bring the pH to 13.5 or less. An acid may be used as the pH adjuster for lowering the pH. As a specific example of the acid, a general-purpose acid such as hydrochloric acid, sulfuric acid, nitric acid and the like can be used as the pH adjuster.

また、浸出工程S1では、浸出時のpHを11.0以上、好ましくは12.0以上に保つとよい。
ハリスドロスの浸出時にpHが11.0未満では錫の浸出率が低下する。このため、pHを11.0以上、好ましくは12.0以上に保って浸出を行うことにより、錫の浸出率の低下を防止し、ハリスドロスに含まれる錫の多くを浸出液に移行させることができる。
Further, in the leaching step S1, the pH at the time of leaching should be maintained at 11.0 or higher, preferably 12.0 or higher.
If the pH is less than 11.0 at the time of leaching of Harris dross, the leaching rate of tin decreases. Therefore, by leaching while keeping the pH at 11.0 or higher, preferably 12.0 or higher, it is possible to prevent a decrease in the leaching rate of tin and transfer most of the tin contained in Harris dross to the leaching solution. ..

ハリスドロスに水を加えた際のpHが11.0未満である場合には、pH調整剤を添加してpHを11.0以上、好ましくは12.0以上にする。pHを上げるpH調整剤としては、一般的なアルカリを用いればよい。例えば、水酸化ナトリウムをpH調整剤として用いることができる。 If the pH when water is added to Harris dross is less than 11.0, a pH adjuster is added to bring the pH to 11.0 or higher, preferably 12.0 or higher. As a pH adjuster for raising the pH, a general alkali may be used. For example, sodium hydroxide can be used as a pH adjuster.

以上のような浸出工程S1によって得られた浸出液は、鉛、アンチモンの元素濃度が例えば500ppm未満であり、鉛、アンチモンの殆どは浸出残渣に移行する。これにより、錫と、鉛、アンチモンとの高精度な分離が行われる。 The leachate obtained by the leaching step S1 as described above has an elemental concentration of lead and antimony of less than 500 ppm, and most of the lead and antimony are transferred to the leaching residue. As a result, tin, lead, and antimony are separated with high precision.

<錫回収工程>
本実施形態の錫の回収方法のうち錫回収工程S2では、例えば、上述した浸出工程S1によって得られた浸出液から、錫と、錫以外元素とを分離する。なお、錫と、砒素、テルル、セレンのうち少なくとも一種とを含む溶液の生成は、上述したハリスドロスを原料とした浸出工程に限定されるものではない。
<Tin recovery process>
In the tin recovery step S2 of the tin recovery method of the present embodiment, for example, tin and elements other than tin are separated from the leachate obtained by the above-mentioned leaching step S1. The formation of a solution containing tin and at least one of arsenic, tellurium, and selenium is not limited to the above-mentioned leaching step using Harris dross as a raw material.

錫回収工程S2は、浸出液に炭酸カルシウム(CaCO)を加えて、例えば5時間以上撹拌し、浸出液に含まれる錫を錫滓として回収する。錫滓中の錫の形態は、水に難溶性の錫酸カルシウムを含む化合物(CaSnO、CaSn(OH))である。添加する炭酸カルシウムの性状は、粉末、顆粒、スラリーなど、どのような状態でもよい。 In the tin recovery step S2, calcium carbonate (CaCO 3 ) is added to the leachate and stirred for, for example, 5 hours or more, and tin contained in the leachate is recovered as tin residue. The form of tin in the tin slag is a compound containing calcium tinate, which is sparingly soluble in water (CaSnO 3 , CaSn (OH) 6 ). The properties of the calcium carbonate to be added may be any state such as powder, granules, and slurry.

そして、減圧ろ過、加圧ろ過、遠心分離等の固液分離手段、例えばフィルタープレスなどを用いて固液分離を行い、錫滓と、錫以外の元素である砒素、テルル、セレン等を含む残液とを分離、回収する。 Then, solid-liquid separation is performed using solid-liquid separation means such as vacuum filtration, pressure filtration, and centrifugation, for example, a filter press, and the residue containing tin slag and elements other than tin such as arsenic, tellurium, and selenium. Separate and collect the liquid.

こうした錫回収工程S2において、錫を固相に移行させるための薬剤として、水に難溶性の炭酸カルシウムを用いることによって、浸出液中にCa2+イオンが生じることを防止する。これにより、例えば水に易溶性の水酸化カルシウムや塩化カルシウムを用いた場合に生じるCa2+イオンと、浸出液に含まれる錫以外の元素である砒素、テルル、セレンが反応して生じる水に難溶性の沈殿物(Ca(AsO、CaTeO、CaSeOなど)が生成されず、砒素、テルル、セレン等を液相に留めることができる。よって、錫回収工程S2において炭酸カルシウムを用いることで、錫だけを選択的に固相(錫滓)に移行させて回収することができる。 In the tin recovery step S2, Ca 2+ ions are prevented from being generated in the leachate by using calcium carbonate, which is poorly soluble in water, as a chemical for transferring tin to the solid phase. As a result, for example, Ca 2+ ions generated when easily soluble calcium hydroxide or calcium chloride is used in water reacts with arsenic, tellurium, and selenium, which are elements other than tin contained in the leachate, and are poorly soluble in water. Precipitates (Ca 3 (AsO 4 ) 2 , Ca 3 TeO 6 , CaSeO 3, etc.) are not formed, and arsenic, tellurium, selenium and the like can be retained in the liquid phase. Therefore, by using calcium carbonate in the tin recovery step S2, only tin can be selectively transferred to the solid phase (tin residue) and recovered.

錫回収工程S2に用いる炭酸カルシウムは、他の一般的なカルシウム系薬剤である水酸化カルシウム(消石灰)や塩化カルシウムと比較して安価であり、低コストで浸出液からの錫の回収を可能にする。また、炭酸カルシウムによって生じた錫滓のろ過性は良好であり、固液分離を容易にできる。 Calcium carbonate used in the tin recovery step S2 is cheaper than other general calcium-based agents such as calcium hydroxide (slaked lime) and calcium chloride, and enables tin recovery from the leachate at low cost. .. In addition, the filterability of tin slag generated by calcium carbonate is good, and solid-liquid separation can be facilitated.

また、錫回収工程S2では、浸出液のpHを13.5以下、好ましくは13.0以下になるようにする。浸出液のpHが13.5を超えると、炭酸カルシウムを添加した際の錫酸カルシウムを含む化合物の生成率が減少し、錫の回収率が低下する虞がある。 Further, in the tin recovery step S2, the pH of the leachate is adjusted to 13.5 or less, preferably 13.0 or less. If the pH of the leachate exceeds 13.5, the production rate of the compound containing calcium tinate when calcium carbonate is added decreases, and the recovery rate of tin may decrease.

また、錫回収工程S2では、浸出液のpHを11.0以上、好ましくは12.0以上に保つとよい。
浸出液のpHが11.0未満では中和効果によって錫が水酸化物(水酸化錫、Sn(OH))として沈殿する虞がある。浸出液に含まれる砒素、テルル、セレンは、水酸化錫と共沈するため、錫と砒素、テルル、セレンとの分離を困難にする。浸出液のpHを11.0以上、好ましくは12.0以上に保ち、炭酸カルシウムを添加することにより、錫だけを固相に、砒素、テルル、セレンを液相に移行させて分離することができる。
Further, in the tin recovery step S2, the pH of the leachate may be kept at 11.0 or higher, preferably 12.0 or higher.
If the pH of the leachate is less than 11.0, tin may precipitate as hydroxides (tin hydroxide, Sn (OH) 2 ) due to the neutralizing effect. Arsenic, tellurium, and selenium contained in the leachate coprecipitate with tin hydroxide, which makes it difficult to separate tin from arsenic, tellurium, and selenium. By keeping the pH of the leachate at 11.0 or higher, preferably 12.0 or higher, and adding calcium carbonate, tin alone can be transferred to the solid phase and arsenic, tellurium, and selenium can be transferred to the liquid phase for separation. ..

なお、錫回収工程S2では、浸出液に添加する炭酸カルシウムの添加量(mol)は、浸出液の錫の含有量(mol)の1倍以上、4倍以下、好ましくは2倍以上、3倍以下にするとよい。炭酸カルシウムの添加量(mol)が、浸出液の錫の含有量(mol)未満では、浸出液に含まれる錫の全量を固相に移行させて回収することができない。一方、4倍よりも多い場合、未反応の炭酸カルシウムが錫滓に混入するため、相対的に錫滓の錫濃度が低下する虞がある。 In the tin recovery step S2, the amount of calcium carbonate added to the leachate (mol) is 1 times or more and 4 times or less, preferably 2 times or more and 3 times or less the tin content (mol) of the leachate. It is good to do. If the amount of calcium carbonate added (mol) is less than the tin content (mol) of the leachate, the entire amount of tin contained in the leachate cannot be transferred to the solid phase and recovered. On the other hand, if the amount is more than 4 times, unreacted calcium carbonate is mixed in the tin residue, so that the tin concentration of the tin residue may decrease relatively.

この後、錫回収工程S2で分離された錫滓(固相)は、錫の製錬原料として用いることができる。また、残液(液相)は、希少元素回収用の原料液として用いることができる。具体的にはテルル、セレンは還元剤の添加によりメタルとして回収ができ、砒素は鉄薬剤の添加により砒酸鉄化合物として回収ができる。 After that, the tin slag (solid phase) separated in the tin recovery step S2 can be used as a raw material for tin smelting. Further, the residual liquid (liquid phase) can be used as a raw material liquid for recovering rare elements. Specifically, tellurium and selenium can be recovered as a metal by adding a reducing agent, and arsenic can be recovered as an iron arsenate compound by adding an iron chemical.

以上、本発明の一実施形態を説明したが、この実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although one embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. This embodiment and its modifications are included in the scope and gist of the invention as well as in the scope of the invention described in the claims and the equivalent scope thereof.

本発明の効果を検証した。
(実施例1)
浸出工程として、水400gにハリスドロス100gを添加したのち、98wt%硫酸を添加してpHを13.0に調製し20時間撹拌した。撹拌終了後、減圧ろ過により固液分離し、浸出液429g、浸出残渣55.7g(乾燥重量)を回収した。次に、錫回収工程として、浸出液429gに98wt%硫酸を添加してpHを12.5に調製した。そして、浸出液中の錫の物質量に対して2倍の物質量(Ca(mol)/Sn(mol)=2)の炭酸カルシウムの粉末22.3gを添加して5時間撹拌した。その後、減圧ろ過により固液分離し、錫滓45.6g(乾燥重量)、残液383gを回収した。
(実施例2)
錫回収工程でのpHを13.2にした以外は、実施例1と同様の条件である。
(実施例3)
錫回収工程でのpHを11.3にし、浸出液中の錫の物質量に対して5倍の物質量(Ca(mol)/Sn(mol)=5)の炭酸カルシウムを添加した以外は、実施例1と同様の条件である。
(実施例4)
浸出工程のpHを13.8にした以外は、実施例1と同様の条件である。
(比較例1)
錫回収工程のpHを10.8にした以外は、実施例1と同様の条件である。
(比較例2)
錫回収工程のpHを13.8にした以外は、実施例1と同様の条件である。
(比較例3)
錫回収工程において、炭酸カルシウムでなく塩化カルシウムを添加した以外は、実施例1と同様の条件である。
以上の各実施例および比較例のそれぞれの条件を表1に纏めて示す。
The effect of the present invention was verified.
(Example 1)
As a leaching step, 100 g of Harris dross was added to 400 g of water, 98 wt% sulfuric acid was added to adjust the pH to 13.0, and the mixture was stirred for 20 hours. After completion of stirring, solid-liquid separation was performed by vacuum filtration, and 429 g of leaching solution and 55.7 g of leaching residue (dry weight) were recovered. Next, as a tin recovery step, 98 wt% sulfuric acid was added to 429 g of the leachate to adjust the pH to 12.5. Then, 22.3 g of calcium carbonate powder having twice the amount of substance (Ca (mol) / Sn (mol) = 2) with respect to the amount of substance of tin in the leachate was added and stirred for 5 hours. Then, solid-liquid separation was performed by vacuum filtration, and 45.6 g (dry weight) of tin slag and 383 g of residual liquid were recovered.
(Example 2)
The conditions are the same as in Example 1 except that the pH in the tin recovery step is set to 13.2.
(Example 3)
Conducted except that the pH in the tin recovery step was set to 11.3 and calcium carbonate was added in a substance amount (Ca (mol) / Sn (mol) = 5) that was five times the amount of substance in tin in the leachate. The conditions are the same as in Example 1.
(Example 4)
The conditions are the same as in Example 1 except that the pH of the leaching step is set to 13.8.
(Comparative Example 1)
The conditions are the same as in Example 1 except that the pH of the tin recovery step is set to 10.8.
(Comparative Example 2)
The conditions are the same as in Example 1 except that the pH of the tin recovery step is set to 13.8.
(Comparative Example 3)
The conditions are the same as in Example 1 except that calcium chloride is added instead of calcium carbonate in the tin recovery step.
Table 1 summarizes the conditions of each of the above Examples and Comparative Examples.

Figure 2020196913
Figure 2020196913

そして、各実施例および比較例で得られた錫滓に含まれる元素(Sn,As,Te,Se,Pb,Sb)の濃度(wt%)はICP−AESを用いて測定した。この結果を表2に示す。 Then, the concentration (wt%) of the elements (Sn, As, Te, Se, Pb, Sb) contained in the tin slag obtained in each Example and Comparative Example was measured using ICP-AES. The results are shown in Table 2.

Figure 2020196913
Figure 2020196913

表2に示す結果によれば、実施例1〜実施例4は、錫回収工程として炭酸カルシウムを用い、pHを11.0以上、13.5以下の範囲にしたので、砒素、セレン、テルルなどを高精度に分離、除去できることが確認された。実施例3では浸出液中の錫の物質量に対して5倍の物質量(Ca(mol)/Sn(mol)=5)の炭酸カルシウムを添加したために、未反応の炭酸カルシウムが錫滓に混入し、相対的に錫滓の錫濃度が低下しているが、残液に移行する錫のロスは殆どなく、砒素、セレン、テルルなどの濃度は低い。また、実施例4では浸出工程でのpHを13.8にしたため、浸出工程で鉛、アンチモンが溶出し、錫滓の鉛、アンチモン濃度が高くなった。比較例1は、錫回収工程のpHを10.8にしたため、錫の一部が水酸化物として沈殿した。浸出液に含まれる砒素、テルル、セレンは、錫の水酸化物と共沈するため、錫滓の砒素、テルル、セレン濃度が高くなった。比較例2は、錫回収工程のpHを13.8にしたため、錫酸カルシウムの生成率が減少し、残液に錫が移行し、錫のロスとなった。比較例3は、錫回収工程として塩化カルシウムを用いたため、錫酸カルシウムの他にCa(AsO、CaTeO、CaSeOなどが生成し、錫滓の砒素、テルル、セレン濃度が高くなった。
以上の結果から、本発明によれば、錫と、砒素、テルル、セレンのうち少なくとも一種とを含む溶液から、錫だけを高精度に分離できることが確認された。
According to the results shown in Table 2, in Examples 1 to 4, calcium carbonate was used as the tin recovery step, and the pH was set in the range of 11.0 or more and 13.5 or less, so that arsenic, selenium, tellurium, etc. It was confirmed that it can be separated and removed with high accuracy. In Example 3, unreacted calcium carbonate was mixed into the tin slag because calcium carbonate was added in an amount of substance (Ca (mol) / Sn (mol) = 5) five times the amount of substance of tin in the leachate. However, although the tin concentration in the tin slag is relatively low, there is almost no loss of tin transferred to the residual liquid, and the concentrations of arsenic, selenium, tellurium, etc. are low. Further, in Example 4, since the pH in the leaching step was set to 13.8, lead and antimony were eluted in the leaching step, and the concentration of lead and antimony in the tin slag was increased. In Comparative Example 1, since the pH of the tin recovery step was set to 10.8, a part of tin was precipitated as a hydroxide. Since arsenic, tellurium, and selenium contained in the leachate coprecipitate with the hydroxide of tin, the concentrations of arsenic, tellurium, and selenium in the tin slag increased. In Comparative Example 2, since the pH of the tin recovery step was set to 13.8, the production rate of calcium tinate decreased, tin was transferred to the residual liquid, and tin was lost. In Comparative Example 3, since calcium chloride was used as the tin recovery step, Ca 3 (AsO 4 ) 2 , Ca 3 TeO 6 , CaSeO 3 and the like were generated in addition to calcium tinate, and the arsenic, tellurium, and selenium concentrations in the tin slag Has become higher.
From the above results, it was confirmed that according to the present invention, only tin can be separated with high accuracy from a solution containing tin and at least one of arsenic, tellurium and selenium.

Claims (3)

錫を含む溶液に、炭酸カルシウムを添加して、前記溶液に含まれる錫を、錫酸カルシウムを含む化合物にして沈殿回収する錫回収工程を有し、
前記錫回収工程では、pHを11.0以上、13.5以下の範囲にすることを特徴とする錫の回収方法。
It has a tin recovery step of adding calcium carbonate to a solution containing tin to precipitate and recover the tin contained in the solution as a compound containing calcium tinate.
A method for recovering tin, which comprises setting the pH in the range of 11.0 or more and 13.5 or less in the tin recovery step.
前記溶液は、ハリスドロスを水で浸出する浸出工程により得られた浸出液であり、前記浸出工程では、pHを11.0以上、13.5以下の範囲にして浸出を行うことを特徴とする請求項1に記載の錫の回収方法。 The solution is an leaching solution obtained by an leaching step of leaching Harris dross with water, and the leaching step is characterized in that leaching is performed with a pH in the range of 11.0 or more and 13.5 or less. The method for recovering tin according to 1. 前記錫回収工程では、前記炭酸カルシウムの添加量(mol)を、前記溶液に含まれる錫の含有量(mol)の1倍以上、4倍以下にすることを特徴とする請求項1または2に記載の錫の回収方法。
The tin recovery step according to claim 1 or 2, wherein the addition amount (mol) of the calcium carbonate is 1 times or more and 4 times or less the tin content (mol) contained in the solution. The method for recovering tin described.
JP2019102451A 2019-05-31 2019-05-31 Tin recovery method Active JP7243458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019102451A JP7243458B2 (en) 2019-05-31 2019-05-31 Tin recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102451A JP7243458B2 (en) 2019-05-31 2019-05-31 Tin recovery method

Publications (2)

Publication Number Publication Date
JP2020196913A true JP2020196913A (en) 2020-12-10
JP7243458B2 JP7243458B2 (en) 2023-03-22

Family

ID=73648877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102451A Active JP7243458B2 (en) 2019-05-31 2019-05-31 Tin recovery method

Country Status (1)

Country Link
JP (1) JP7243458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314643A (en) * 2021-12-13 2022-04-12 广东先导稀贵金属材料有限公司 Preparation method and application of calcium stannate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575829A (en) * 1980-06-14 1982-01-12 Dowa Mining Co Ltd Separating and recovering method for tin in lead refining process
JPS59156915A (en) * 1983-02-25 1984-09-06 Sony Corp Manufacture of fine calcium stannate particle
JPH05501100A (en) * 1989-07-21 1993-03-04 アルカン・インターナショナル・リミテッド Method for producing metal stannate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575829A (en) * 1980-06-14 1982-01-12 Dowa Mining Co Ltd Separating and recovering method for tin in lead refining process
JPS59156915A (en) * 1983-02-25 1984-09-06 Sony Corp Manufacture of fine calcium stannate particle
JPH05501100A (en) * 1989-07-21 1993-03-04 アルカン・インターナショナル・リミテッド Method for producing metal stannate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314643A (en) * 2021-12-13 2022-04-12 广东先导稀贵金属材料有限公司 Preparation method and application of calcium stannate
CN114314643B (en) * 2021-12-13 2024-02-27 广东先导稀贵金属材料有限公司 Preparation method and application of calcium stannate

Also Published As

Publication number Publication date
JP7243458B2 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
JP4710034B2 (en) Arsenic-containing material treatment method
JP4846677B2 (en) Arsenic-containing solution processing method
WO2016031699A1 (en) Method for separating scandium
KR102556133B1 (en) Wastewater Treatment Method
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
JP4734603B2 (en) Indium recovery method
JP2014025141A (en) METHOD OF RECOVERING GALLIUM FROM InGa WASTE MATERIAL
JP3052535B2 (en) Treatment of smelting intermediates
JP4710033B2 (en) Arsenic content treatment method
JP7243458B2 (en) Tin recovery method
JP2010138490A (en) Method of recovering zinc
JP6256491B2 (en) Scandium recovery method
KR102543786B1 (en) Wastewater Treatment Method
JP6233177B2 (en) Method for producing rhenium sulfide
JP2011161386A (en) Method for treating thioarsenite
JP7347083B2 (en) Manufacturing method of high purity scandium oxide
JP2007039798A (en) Method for recovering indium, and its use
JP6163392B2 (en) Germanium recovery method
JP2018035017A (en) Manufacturing method of high quality gypsum
KR102044481B1 (en) Method of recovering cobalt from byproduct generated in smelting of zinc
JP7102876B2 (en) Fluorine removal method
JP6869053B2 (en) How to collect antimony
US20240076759A1 (en) Method for recovering lead from copper smelting dust
JP6221968B2 (en) Purification method of cobalt chloride solution
JP2008184653A (en) Method for producing antimony oxide and method for producing metal antimony

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7243458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150