JP2011161386A - Method for treating thioarsenite - Google Patents
Method for treating thioarsenite Download PDFInfo
- Publication number
- JP2011161386A JP2011161386A JP2010028018A JP2010028018A JP2011161386A JP 2011161386 A JP2011161386 A JP 2011161386A JP 2010028018 A JP2010028018 A JP 2010028018A JP 2010028018 A JP2010028018 A JP 2010028018A JP 2011161386 A JP2011161386 A JP 2011161386A
- Authority
- JP
- Japan
- Prior art keywords
- thioarsenite
- thioarsenate
- arsenic
- alkaline solution
- treating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本発明は、非鉄製錬における鉱石から所望の金属又は除去対象金属を浸出する処理において発生するチオ亜ヒ酸塩の処理方法に関する。 The present invention relates to a method for treating thioarsenite generated in a process of leaching a desired metal or a metal to be removed from ore in nonferrous smelting.
従来より、非鉄製錬における銅精鉱中の不純物として、ヒ素(As)を高濃度に含有するものがある。そこで、産業上の要請及び資源確保の観点から、ヒ素を高濃度に含有する精鉱を処理できる技術の開発が求められている。
例えば、銅精鉱をアルカリ等の薬剤によって直接浸出する方法がある。この方法は、銅精鉱を硫化ナトリウムと苛性ソーダとにより浸出し、硫化銅として銅製錬を行うものである(特許文献1参照)。
また、本願出願人は、先に、NaHS(水硫化ソーダ)とNaOH(苛性ソーダ)を用いた高ヒ素濃度の精鉱からヒ素を除去する技術について提案している(特願2008−260091号明細書)。
Conventionally, as impurities in copper concentrate in non-ferrous smelting, there are those containing arsenic (As) at a high concentration. Therefore, development of technology capable of processing concentrates containing arsenic in high concentration is required from the viewpoint of industrial demand and securing of resources.
For example, there is a method of directly leaching copper concentrate with a chemical such as alkali. In this method, copper concentrate is leached with sodium sulfide and caustic soda, and copper smelting is performed as copper sulfide (see Patent Document 1).
The applicant of the present application has previously proposed a technique for removing arsenic from concentrate having a high arsenic concentration using NaHS (sodium hydrosulfide) and NaOH (caustic soda) (Japanese Patent Application No. 2008-260091). ).
このように銅精鉱をアルカリ等の浸出液により浸出すると、ヒ素(As)は、ヒ素化合物になり、チオ亜ヒ酸ナトリウム(Na3AsS3)のような可溶性のチオ亜ヒ酸塩として浸出液中に高濃度に溶存するチオ亜ヒ酸溶液となる。一方、銅は硫化銅として沈殿するため銅との分離は可能となる。しかし、製錬工程では、発生する他の元素も回収されるので、安全に保管し、又は廃棄することが重要となる。このため、浸出液中のチオ亜ヒ酸塩を回収することが望まれている。
しかし、アルカリ等で浸出した浸出液中のチオ亜ヒ酸塩、又はチオ亜ヒ酸溶液は、単純な濃度上昇や、冷却晶析等による溶解度を利用した析出反応では析出物(固体結晶物)とすることが困難であり、その効率のよい処理方法の速やかな提供が望まれているのが現状である。
Thus, when copper concentrate is leached with a leachate such as an alkali, arsenic (As) becomes an arsenic compound and is dissolved in the leachate as a soluble thioarsenite such as sodium thioarsenite (Na 3 AsS 3 ). The thioarsenite solution is dissolved in a high concentration. On the other hand, since copper precipitates as copper sulfide, it can be separated from copper. However, in the smelting process, other generated elements are also recovered, so it is important to store or discard them safely. For this reason, it is desired to recover the thioarsenite in the leachate.
However, the thioarsenate or thioarsenite solution in the leachate leached with an alkali or the like does not react with the precipitate (solid crystalline material) in a precipitation reaction utilizing solubility by simple concentration increase or cooling crystallization. The present situation is that it is difficult to quickly provide an efficient processing method.
本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、非鉄製錬における銅精鉱をアルカリ等で浸出した浸出液中のチオ亜ヒ酸塩を、固体結晶状のチオヒ酸塩として効率よく析出させて分離することができるチオ亜ヒ酸塩の処理方法を提供することを目的とする。 An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention is capable of efficiently depositing and separating thioarsenite in a leachate obtained by leaching copper concentrate in non-ferrous smelting with alkali or the like as a solid crystalline thioarsenate. It aims at providing the processing method of an acid salt.
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> チオ亜ヒ酸塩を含むアルカリ性溶液に硫黄を加え、チオヒ酸塩に酸化する酸化工程を少なくとも含むことを特徴とするチオ亜ヒ酸塩の処理方法である。
<2> チオ亜ヒ酸塩を含むアルカリ性溶液を冷却してチオヒ酸塩を析出させる析出工程を含む前記<1>に記載のチオ亜ヒ酸塩の処理方法である。
<3> チオヒ酸塩が析出したアルカリ性溶液を固液分離する固液分離工程を含む前記<1>から<2>のいずれかに記載のチオ亜ヒ酸塩の処理方法である。
<4> 硫黄の添加量が、アルカリ性溶液中のヒ素の全質量に対し、1/4以上である前記<1>から<3>のいずれかに記載のチオ亜ヒ酸塩の処理方法である。
<5> チオ亜ヒ酸塩を含むアルカリ性溶液が、銅精鉱をNaHS及びNaOHで浸出して得られたものである前記<1>から<4>のいずれかに記載のチオ亜ヒ酸塩の処理方法である。
<6> アルカリ性溶液中のチオ亜ヒ酸塩が、チオ亜ヒ酸ナトリウム(Na3AsS3)である前記<1>から<5>のいずれかに記載のチオ亜ヒ酸塩の処理方法である。
<7> 析出したチオヒ酸塩が、チオヒ酸ナトリウム(Na3AsS4)である前記<1>から<6>のいずれかに記載のチオ亜ヒ酸塩の処理方法である。
<8> 固液分離後のアルカリ性溶液を銅精鉱の浸出液として再利用できる前記<3>から<7>のいずれかに記載のチオ亜ヒ酸塩の処理方法である。
Means for solving the problems are as follows. That is,
<1> A method for treating thioarsenite, comprising at least an oxidation step of adding sulfur to an alkaline solution containing thioarsenite to oxidize to thioarsenate.
<2> The method for treating a thioarsenite according to <1>, further including a precipitation step of cooling the alkaline solution containing the thioarsenite to precipitate the thioarsenate.
<3> The method for treating a thioarsenite according to any one of <1> to <2>, further including a solid-liquid separation step of solid-liquid separation of the alkaline solution on which the thioarsenate is precipitated.
<4> The method for treating a thioarsenite according to any one of <1> to <3>, wherein the addition amount of sulfur is ¼ or more of the total mass of arsenic in the alkaline solution. .
<5> The thioarsenite according to any one of <1> to <4>, wherein the alkaline solution containing thioarsenite is obtained by leaching copper concentrate with NaHS and NaOH. It is a processing method.
<6> The method for treating thioarsenite according to any one of <1> to <5>, wherein the thioarsenite in the alkaline solution is sodium thioarsenite (Na 3 AsS 3 ). is there.
<7> The method for treating a thioarsenite according to any one of <1> to <6>, wherein the precipitated thioarsenate is sodium thioarsenate (Na 3 AsS 4 ).
<8> The thioarsenite treatment method according to any one of <3> to <7>, wherein the alkaline solution after solid-liquid separation can be reused as a copper concentrate leachate.
本発明によると、従来の課題を解決することができ、銅精鉱の浸出液からのヒ素の分離が可能となり、分離後の固体結晶状のチオヒ酸塩は、浸出液と比べ、保管体積が少なく、保管が簡便になるチオ亜ヒ酸塩の処理方法を提供することができる。
また、本発明によると、固体結晶状のチオヒ酸塩を固液分離後の浸出液は、再度精鉱の浸出液として利用可能である。
According to the present invention, the conventional problems can be solved, arsenic can be separated from the copper concentrate leachate, and the solid crystalline thioarsenate after separation has a smaller storage volume than the leachate, A method for treating thioarsenite that can be easily stored can be provided.
Further, according to the present invention, the leachate after solid-liquid separation of the solid crystalline thioarsenate can be used again as the concentrate leachate.
本発明のチオ亜ヒ酸塩の処理方法は、酸化工程を少なくとも含み、浸出工程、析出工程、固液分離工程、更に必要に応じてその他の工程を含んでなる。 The method for treating thioarsenite according to the present invention includes at least an oxidation step, and further includes a leaching step, a precipitation step, a solid-liquid separation step, and other steps as necessary.
前記チオ亜ヒ酸塩の処理方法は、特に制限はなく、目的に応じて適宜選択することができるが、精鉱のアルカリ性溶液での浸出工程で生じたチオ亜ヒ酸塩を処理するものであることが好ましい。 The method for treating the thioarsenite is not particularly limited and can be appropriately selected depending on the purpose. However, the thioarsenite produced in the leaching step of the concentrate with an alkaline solution is treated. Preferably there is.
−精鉱−
前記精鉱としては、非鉄金属を得るために製錬の原料として用いられるものであれば特に制限なく、目的に応じて適宜選択することができ、鉱石における所望の金属を濃縮したものなどが挙げられ、例えば、硫化銅精鉱、亜鉛精鉱、エナジャイト(硫砒銅鉱)などが挙げられる。なお、精鉱以外でも硫化ヒ素等のヒ素の硫化物でも構わない。
前記精鉱中のヒ素濃度は、特に制限はなく、目的に応じて適宜選択することができ、0.5質量%以上が好ましく、1質量%以上がより好ましく、3質量%〜8質量%が更に好ましい。
-Concentrate-
The concentrate is not particularly limited as long as it is used as a raw material for smelting in order to obtain non-ferrous metals, and can be appropriately selected according to the purpose, such as a concentrate of a desired metal in the ore. Examples thereof include copper sulfide concentrate, zinc concentrate, and enagite (arsenous pyrite). Arsenic sulfides such as arsenic sulfide may be used other than concentrate.
The concentration of arsenic in the concentrate is not particularly limited and can be appropriately selected according to the purpose, preferably 0.5% by mass or more, more preferably 1% by mass or more, and 3% by mass to 8% by mass. Further preferred.
−浸出工程−
前記浸出工程は、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅精鉱を水等でスラリーとし、NaHS及びNaOHを加えて、前記精鉱からヒ素を浸出する工程である。即ち、精鉱を含有するスラリーに、ヒ素を選択的に浸出するためのNaHS及びNaOHを加える。このようにアルカリ浸出で行うため、浸出後の液はpH7以上のアルカリ性であり、pH10以上の強アルカリ性を示す場合がほとんどである。本発明は、アルカリ性の液であることが好ましい。アルカリ性において析出させるためである。即ち、浸出液が酸性の場合は、アルカリを添加しアルカリ性にすればよい。また、浸出液におけるヒ素濃度は高い方が好ましい。析出反応の効率が向上するからである。40g/L以上であることが好ましい。
-Leaching process-
The leaching step is not particularly limited and can be appropriately selected according to the purpose. For example, the copper concentrate is made into a slurry with water or the like, and NaHS and NaOH are added to leach arsenic from the concentrate. is there. That is, NaHS and NaOH for selectively leaching arsenic are added to a slurry containing concentrate. Since alkaline leaching is performed in this manner, the liquid after leaching is alkaline with a pH of 7 or more, and in most cases exhibits strong alkalinity with a pH of 10 or more. The present invention is preferably an alkaline liquid. This is because the alkali is precipitated. That is, when the leachate is acidic, alkali may be added to make it alkaline. Further, it is preferable that the arsenic concentration in the leachate is high. This is because the efficiency of the precipitation reaction is improved. It is preferable that it is 40 g / L or more.
前記NaHS及びNaOHは、スラリー1Lに対して、NaHSが60g〜200g添加され、NaOHが50g〜200g添加されれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、NaHS及びNaOHを固体のままスラリーに、同時乃至順次添加してもよく、また、NaHSとNaOHとを含有する水溶液を添加してもよい。NaHSとNaOHとを含有する水溶液は、事前にNaHSを含む水溶液とNaOHを含む水溶液との両方を混合してもよく、NaOHを含む水溶液とNaHSを含む水溶液とを個別に加えながら浸出してもよい。 The NaHS and NaOH are not particularly limited as long as 60 g to 200 g of NaHS and 50 g to 200 g of NaOH are added to 1 L of slurry, and can be appropriately selected according to the purpose. NaOH may be added to the slurry as a solid simultaneously or sequentially, or an aqueous solution containing NaHS and NaOH may be added. The aqueous solution containing NaHS and NaOH may be mixed in advance with both an aqueous solution containing NaHS and an aqueous solution containing NaOH, or may be leached while separately adding an aqueous solution containing NaOH and an aqueous solution containing NaHS. Good.
前記NaHSの添加量は、スラリー1Lに対して60g〜200gであることが好ましい。
前記NaOHの添加量は、スラリー1Lに対して50g〜200gであることが好ましい。
前記NaHSの添加量がスラリー1Lに対して60g未満であると、ヒ素の浸出率が下降してしまうことがある。また、スラリー1Lに対するNaHS及びNaOHの添加量をそれぞれ100g程度とした場合が最もヒ素の浸出率が高く、NaHS添加量及びNaOH添加量のいずれかが低くても浸出率は低下する。この条件下ではいろんな鉱種を用いても同様に良好な浸出率が得られる。
The amount of NaHS added is preferably 60 g to 200 g with respect to 1 L of slurry.
The addition amount of the NaOH is preferably 50 g to 200 g with respect to 1 L of the slurry.
If the amount of NaHS added is less than 60 g with respect to 1 L of slurry, the arsenic leaching rate may decrease. Further, when the amount of NaHS and NaOH added to 1 L of slurry is about 100 g, the arsenic leaching rate is the highest, and the leaching rate decreases even if either the NaHS addition amount or the NaOH addition amount is low. Under these conditions, a good leaching rate can be obtained even if various mineral species are used.
また、NaHS添加量とNaOH添加量との質量比(NaHS:NaOH)は、1:1〜2:1であることが好ましい。
前記NaOH添加量は、NaHS添加量との組み合わせで重要である。NaOH添加量とNaHS添加量との組合せにおいて、例えば、銅精鉱であれば、ヒ素を選択的にスラリー液に移行する浸出が可能となり、銅が殆どスラリー液に移行しない画期的な浸出が可能となる。
Moreover, it is preferable that mass ratio (NaHS: NaOH) of NaHS addition amount and NaOH addition amount is 1: 1-2: 1.
The NaOH addition amount is important in combination with the NaHS addition amount. In the combination of the added amount of NaOH and the added amount of NaHS, for example, copper concentrate enables leaching to selectively transfer arsenic to the slurry liquid, and epoch-making leaching that hardly transfers copper to the slurry liquid is possible. It becomes possible.
前記浸出工程における浸出反応液の温度、即ち浸出温度は、60℃〜100℃であることが好ましく、80℃〜100℃であることがより好ましい。例えば、浸出反応液の温度を80℃とすることは、高山地帯での操業を考えても適切である。
また、浸出工程においては、大気圧下で浸出可能である。
また、浸出時間は、原料精鉱にも依存するが、1時間以上が好ましく、1〜8時間であることがより好ましい。
前記浸出工程によって得た浸出液等はろ過により、銅は硫化銅などで析出物の残渣として、ヒ素は浸出液中にあるため、液として銅と分離される。浸出液中にあるヒ素は、チオ亜ヒ酸塩であり、前記アルカリがNaOH及びNaHSである場合は、チオ亜ヒ酸ナトリウム(Na3AsSx)となっている。前記化学式中xとあるのは、液中であるため、xは特定できないからであり、xは3〜4の間にある自然数である。
The temperature of the leaching reaction solution in the leaching step, that is, the leaching temperature is preferably 60 ° C. to 100 ° C., and more preferably 80 ° C. to 100 ° C. For example, setting the temperature of the leaching reaction liquid to 80 ° C. is appropriate even in consideration of operation in an alpine region.
In the leaching step, leaching can be performed under atmospheric pressure.
Moreover, although the leaching time depends on the raw material concentrate, it is preferably 1 hour or longer, more preferably 1 to 8 hours.
The leachate obtained by the leaching step is separated by filtration, copper is copper sulfide or the like as a residue of precipitates, and arsenic is in the leachate. Arsenic in the leachate is thioarsenite, and when the alkali is NaOH and NaHS, it is sodium thioarsenite (Na 3 AsSx). The reason x in the chemical formula is because it is in a liquid, so x cannot be specified, and x is a natural number between 3 and 4.
<酸化工程>
前記酸化工程は、チオ亜ヒ酸塩を含むアルカリ性溶液に硫黄を加え、チオヒ酸塩(As:5価)に酸化する工程である。
<Oxidation process>
The oxidation step is a step of adding sulfur to an alkaline solution containing thioarsenite to oxidize to thioarsenate (As: pentavalent).
前記硫黄としては、粉末状、塊状などの形態は問わず、いわゆる単体硫黄であればよく、S0と表すこともある。
前記硫黄の添加量は、アルカリ性溶液中のヒ素の全質量に対し、1/4以上であることが好ましく、1/2〜1/1であることがより好ましく、1/2〜2/3であることが更に好ましい。前記硫黄の添加量が、1/4以上であればヒ素の除去率は30%以上となり、1/2以上であれば、ヒ素の除去率はほぼ安定して70%以上に達する反面、前記硫黄の添加量が、1/4未満であると、ヒ素の除去率が大きく低下してしまうことがある。
なお、前記硫黄のアルカリ性溶液への添加時には、撹拌を伴うことが好ましい。
前記硫黄を添加する際のチオ亜ヒ酸塩を含むアルカリ性溶液の液温は50℃〜100℃であることが好ましい。
また、硫黄を添加することで、チオ亜ヒ酸塩をチオヒ酸塩に酸化する際のアルカリ性溶液の液温は、80℃〜95℃であることが好ましい。酸化反応は大気圧下で反応が行われるため液温の上昇に限りがあることと、高温による硫黄の昇華を抑えるためである。
As the sulfur, powdered, form, such as bulk regardless may be a so-called elemental sulfur, may represent a S 0.
The amount of sulfur added is preferably 1/4 or more, more preferably 1/2 to 1/1, more preferably 1/2 to 2/3 with respect to the total mass of arsenic in the alkaline solution. More preferably it is. If the amount of sulfur added is ¼ or more, the arsenic removal rate is 30% or more, and if it is ½ or more, the arsenic removal rate almost stably reaches 70% or more, the sulfur If the added amount is less than ¼, the removal rate of arsenic may be greatly reduced.
In addition, it is preferable to accompany stirring at the time of adding the sulfur to the alkaline solution.
The liquid temperature of the alkaline solution containing thioarsenite when adding sulfur is preferably 50 ° C to 100 ° C.
Moreover, it is preferable that the liquid temperature of the alkaline solution at the time of oxidizing a thio arsenite to a thio arsenate by adding sulfur is 80 to 95 degreeC. This is because the oxidation reaction is performed under atmospheric pressure, so that the rise in liquid temperature is limited, and sulfur sublimation due to high temperature is suppressed.
<析出工程>
前記析出工程は、チオヒ酸塩を含むアルカリ性溶液を冷却してチオヒ酸塩を析出させる工程である。
<Precipitation process>
The said precipitation process is a process of cooling the alkaline solution containing a thioarsenate and depositing a thioarsenate.
前記析出工程においては、上記酸化工程後のチオヒ酸塩を含むアルカリ性溶液の液温を低下させ、チオヒ酸塩の析出を促進させる。前記液温は、20℃〜40℃であることが好ましく、室温程度がより好ましい。 In the said precipitation process, the liquid temperature of the alkaline solution containing the thioarsenate after the said oxidation process is reduced, and precipitation of a thioarsenate is promoted. The liquid temperature is preferably 20 ° C. to 40 ° C., more preferably about room temperature.
−固液分離工程−
前記固液分離工程は、チオヒ酸塩が析出したアルカリ性溶液を固液分離する工程である。
析出した固体物であるチオヒ酸塩は、固液分離手段により分離可能である。
前記固液分離手段としては、特に制限はなく、一般的な固形物の脱水、固液分離装置等を使用することができ、例えば真空ろ過、フィルタープレス、ドラムフィルター、スクリュープレスなどが挙げられる。また、遠心分離による分離も可能である。
固液分離されたチオヒ酸塩は、乾燥等により粉末状にて保管できる。粉末状であるため容器の形状を選ばず浸出液の数十分の1の減容となる。また、得られたチオヒ酸塩は、ヒ素の原料、試薬としても利用可能である。
-Solid-liquid separation process-
The solid-liquid separation step is a step of solid-liquid separation of the alkaline solution in which the thioarsenate is precipitated.
The precipitated thioarsenate, which is a solid, can be separated by solid-liquid separation means.
The solid-liquid separation means is not particularly limited, and general solid dehydration, solid-liquid separation devices, and the like can be used. Examples thereof include vacuum filtration, filter press, drum filter, screw press and the like. Separation by centrifugation is also possible.
The solid-liquid separated thioarsenate can be stored in powder form by drying or the like. Since it is in powder form, the volume of the leachate is reduced by a factor of 1 regardless of the shape of the container. The obtained thioarsenate can also be used as an arsenic raw material and reagent.
−分離後の液の再利用−
チオヒ酸塩を分離したろ液は、再度、上記浸出工程にて浸出液として利用可能である。ろ過によってもアルカリ成分が液に残存するため浸出液として利用できるからである。利用できる回数は、アルカリ濃度にもよるが、数回以上は可能である。なお、その他の工程にて中和剤等として用いることができる。
チオ亜ヒ酸塩は、酸性液に溶解であり、浸出液を酸性にすると、例えば米国特許第3911078号明細書のようにヒ素を硫化物として回収可能である。しかし、この方法ではアルカリ浸出において、ろ過後のろ液の再利用は困難になる。なぜなら、ろ液を浸出に戻すとアルカリ性の低下を招き、精鉱の浸出を妨げるからである。
本発明のチオ亜ヒ酸塩の処理方法においては、アルカリ性溶液のアルカリ性を維持したまま析出したチオヒ酸塩を分離できるので、浸出液の工程内での循環が可能となり、製造コスト、装置費を大幅に抑えることができる。
-Reuse of liquid after separation-
The filtrate from which the thioarsenate has been separated can be used again as a leaching solution in the leaching step. This is because the alkaline component remains in the liquid even by filtration and can be used as a leachate. The number of usable times depends on the alkali concentration, but several times or more are possible. In addition, it can use as a neutralizing agent etc. in another process.
Thioarsenite is soluble in an acidic solution, and when the leachate is acidified, arsenic can be recovered as a sulfide, as in US Pat. No. 3,911,078, for example. However, this method makes it difficult to reuse the filtrate after filtration in alkali leaching. This is because returning the filtrate to leaching causes a decrease in alkalinity and hinders leaching of concentrate.
In the method for treating thioarsenite according to the present invention, the precipitated thioarsenate can be separated while maintaining the alkalinity of the alkaline solution, so that the leachate can be circulated in the process, greatly increasing the production cost and the equipment cost. Can be suppressed.
ここで、図1は、本発明のチオ亜ヒ酸塩の処理方法を示すフロー図である。非鉄製錬における銅精鉱をNaHS及びNaOHで浸出した浸出液中のチオ亜ヒ酸ナトリウム(Na3AsS3)を、硫黄で酸化し、チオヒ酸ナトリウム(Na3AsS4、As:5価)とし、冷却して析出し、ろ過することにより、チオヒ酸ナトリウム粉末を分離することができる。ろ液は、非鉄製錬における銅精鉱の浸出液として再利用できる。 Here, FIG. 1 is a flowchart showing the method for treating thioarsenite of the present invention. Sodium thioarsenite (Na 3 AsS 3 ) in the leachate obtained by leaching copper concentrate in non-ferrous smelting with NaHS and NaOH is oxidized with sulfur to form sodium thioarsenate (Na 3 AsS 4 , As: pentavalent) The sodium thioarsenate powder can be separated by cooling, precipitating and filtering. The filtrate can be reused as a copper concentrate leachate in non-ferrous smelting.
以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
(実施例1)
−原料の調製−
原料としては、擬似的な精鉱中のヒ素として調製済みの硫化ヒ素(As2S3)を用意した。
この硫化ヒ素に対し、NaHSを250g/L、及びNaOHを100g/L含む水溶液を加え、90℃で1時間溶解した。ヒ素は溶液中に溶解し、チオ亜ヒ酸ナトリウム(Na3AsS3)となった。この時のヒ素濃度は56.4g/Lであった。pHは13前後を示し強アルカリ溶液であった。なお、容器は200mLのビーカーで行い。全液量は100mLであった。
Example 1
-Preparation of raw materials-
As a raw material, prepared arsenic sulfide (As 2 S 3 ) was prepared as arsenic in pseudo concentrate.
An aqueous solution containing 250 g / L of NaHS and 100 g / L of NaOH was added to this arsenic sulfide and dissolved at 90 ° C. for 1 hour. Arsenic dissolved in the solution and became sodium thioarsenite (Na 3 AsS 3 ). The arsenic concentration at this time was 56.4 g / L. The pH was around 13 and was a strong alkaline solution. The container is a 200 mL beaker. The total liquid volume was 100 mL.
前記溶液を90℃で維持し、硫黄粉末を28g/Lとなる量を加えた。この硫酸濃度は、溶液中のヒ素全質量に対して1/2となる量であった。
その後、液温90℃を維持して撹拌し、1時間反応を行った。反応後は、液温を30℃まで放置冷却し、30℃で5時間放置すると沈殿が生じた。生じた沈殿をフィルターでろ過し、乾燥すると、図2に示すような、粉末が得られた。
得られた粉末は、X線回折(XRD)測定(Rigaku社製、RINT−2200)により、図3に示すように、チオヒ酸ナトリウム(Na3AsS4、As:5価)、及びNa3AsS4・8H2Oであることが確認できた。
ろ過後のろ液は、ICP(高周波誘導結合プラズマ発光分析装置、エスアイアイ・ナノテクノロジー株式会社製、SPS3000)で分析し、ヒ素濃度は17.3g/L、回収率は69%であった。
このように、チオ亜ヒ酸塩溶液からチオヒ酸ナトリウム(Na3AsS4、As:5価)を分離できることが分かった。また、銅精鉱をアルカリ浸出した液からのヒ素の分離も可能であることも分かった。
The solution was maintained at 90 ° C. and sulfur powder was added in an amount of 28 g / L. This sulfuric acid concentration was an amount that was halved with respect to the total mass of arsenic in the solution.
Then, the liquid temperature was maintained at 90 ° C., and the reaction was performed for 1 hour. After the reaction, the liquid temperature was allowed to cool to 30 ° C, and when left at 30 ° C for 5 hours, precipitation occurred. The resulting precipitate was filtered through a filter and dried to obtain a powder as shown in FIG.
The obtained powder was measured by X-ray diffraction (XRD) (Rigaku, RINT-2200), as shown in FIG. 3, sodium thioarsenate (Na 3 AsS 4 , As: pentavalent), and Na 3 AsS. it is a 4 · 8H 2 O was confirmed.
The filtrate after filtration was analyzed by ICP (high-frequency inductively coupled plasma emission analyzer, manufactured by SII Nanotechnology Inc., SPS3000), and the arsenic concentration was 17.3 g / L and the recovery rate was 69%.
Thus, it was found that sodium thioarsenate (Na 3 AsS 4 , As: pentavalent) can be separated from the thioarsenite solution. It has also been found that arsenic can be separated from the alkali leached copper concentrate.
(実施例2)
−浸出液の再利用−
実施例1で得たろ過後の溶液に硫化ヒ素を添加し、NaHSを200g/L及びNaOHを80g/Lの濃度となるように硫化ヒ素を溶解させ、ヒ素濃度で54.4g/Lのチオ亜ヒ酸ナトリウム(Na3AsS3)を含んだ溶液を得た。
得られた溶液に対し、実施例1と同様にして、硫黄末を添加し、チオヒ酸ナトリウム(Na3AsS4、As:5価)の粉末が得られた。ろ過後の溶液は、ヒ素濃度が11.3g/L、回収率は79%であった。
以上の結果から、ろ過後の液は、浸出に再利用できることが分かった。また、繰り返しによってもヒ素は効率よく分離できることも分かった。
(Example 2)
-Reuse of leachate-
Arsenic sulfide was added to the filtered solution obtained in Example 1, and arsenic sulfide was dissolved to a concentration of 200 g / L of NaHS and 80 g / L of NaOH, and thiol having an arsenic concentration of 54.4 g / L. A solution containing sodium arsenite (Na 3 AsS 3 ) was obtained.
To the obtained solution, sulfur powder was added in the same manner as in Example 1 to obtain a powder of sodium thioarsenate (Na 3 AsS 4 , As: pentavalent). The solution after filtration had an arsenic concentration of 11.3 g / L and a recovery rate of 79%.
From the above results, it was found that the liquid after filtration can be reused for leaching. It was also found that arsenic can be separated efficiently by repetition.
(実施例3)
−浸出液の再利用−
実施例1で得たろ過後の溶液に硫化ヒ素を添加し、NaHSを150g/L及びNaOHを60g/Lの濃度となるように硫化ヒ素を溶解させ、ヒ素濃度が50.0g/Lのチオ亜ヒ酸ナトリウム(Na3AsS3)を含んだ溶液を得た。
得られた溶液に対し、実施例1と同様にして、硫黄粉末を添加し、チオヒ酸ナトリウム(Na3AsS4、As:5価)の粉末が得られた。ろ過後の溶液は、ヒ素濃度が14.1g/L、回収率は72%であった。
この実施例3の結果から、浸出時の各アルカリ濃度は、ヒ素の回収率に影響するが、実用面においては、問題のないレベルであった。
(Example 3)
-Reuse of leachate-
Arsenic sulfide was added to the filtered solution obtained in Example 1, arsenic sulfide was dissolved so that the concentration of NaHS was 150 g / L and NaOH was 60 g / L, and the thiol concentration was 50.0 g / L. A solution containing sodium arsenite (Na 3 AsS 3 ) was obtained.
To the obtained solution, sulfur powder was added in the same manner as in Example 1 to obtain a powder of sodium thioarsenate (Na 3 AsS 4 , As: pentavalent). The solution after filtration had an arsenic concentration of 14.1 g / L and a recovery rate of 72%.
From the results of Example 3, each alkali concentration at the time of leaching affects the arsenic recovery rate, but in practical terms, it was at a level with no problem.
(実施例4)
−浸出液の再々利用−
実施例3で得たろ過後の溶液に、NaHSを100g/L及びNaOHを50g/Lの濃度となるように硫化ヒ素を溶解させ、ヒ素濃度が46.0g/Lのチオ亜ヒ酸ナトリウム(Na3AsS3)を含んだ溶液を得た。
得られた溶液に対し、実施例1と同様にして、硫黄粉末を添加し、チオヒ酸ナトリウム(Na3AsS4、As:5価)の粉末が得られた。ろ過後の溶液は、ヒ素濃度が9.32g/L、回収率は80%であった。
この実施例4の結果から、ろ過後の液を複数回に渡り、浸出に繰り返して利用可能であることが分かった。
Example 4
-Reuse of leachate-
Arsenic sulfide was dissolved in the filtered solution obtained in Example 3 to a concentration of 100 g / L of NaHS and 50 g / L of NaOH, and sodium thioarsenite having an arsenic concentration of 46.0 g / L ( A solution containing Na 3 AsS 3 ) was obtained.
Sulfur powder was added to the resulting solution in the same manner as in Example 1 to obtain a powder of sodium thioarsenate (Na 3 AsS 4 , As: pentavalent). The solution after filtration had an arsenic concentration of 9.32 g / L and a recovery rate of 80%.
From the results of Example 4, it was found that the filtered solution could be used repeatedly for leaching multiple times.
(実施例5)
−アンチモンの影響−
実施例1において、チオ亜ヒ酸ナトリウム(Na3AsS3)を含む溶液にアンチモン(Sb)を50g/L添加した以外は、実施例1と同様にして、チオ亜ヒ酸塩の処理を行った。
その結果、チオヒ酸ナトリウム(Na3AsS4、As:5価)の粉末が得られた。ろ過後の溶液は、ヒ素濃度が16.0g/L、回収率はヒ素とアンチモンの合計で73%であった。
この実施例5の結果から、処理対象溶液中にアンチモン(Sb)が存在していても処理に問題ないことが分かった。
(Example 5)
-Influence of antimony-
In Example 1, the thioarsenite was treated in the same manner as in Example 1 except that 50 g / L of antimony (Sb) was added to a solution containing sodium thioarsenite (Na 3 AsS 3 ). It was.
As a result, a powder of sodium thioarsenate (Na 3 AsS 4 , As: pentavalent) was obtained. The filtered solution had an arsenic concentration of 16.0 g / L and a recovery rate of 73% in total of arsenic and antimony.
From the results of Example 5, it was found that there was no problem in the treatment even when antimony (Sb) was present in the solution to be treated.
(実施例6〜8)
実施例1において、硫黄粉末の添加量を表1に示す硫黄濃度となるように変えた以外は、実施例1と同様にして、実施例6〜8の処理を行った。比較例1及び実施例1の結果と合わせて表1に示す。なお、実施例6〜8の硫黄の添加量は、硫黄とヒ素の質量比(S/As)で、それぞれ1/8、1/4、及び1/1であり、ヒ素の回収率は、それぞれ12.1%、69.2%、及び67%であった。
(Examples 6 to 8)
In Example 1, the process of Examples 6-8 was performed like Example 1 except having changed the addition amount of sulfur powder so that it might become the sulfur concentration shown in Table 1. FIG. The results are shown in Table 1 together with the results of Comparative Example 1 and Example 1. In addition, the addition amount of sulfur of Examples 6-8 is 1/8, 1/4, and 1/1, respectively, by the mass ratio (S / As) of sulfur and arsenic, and the recovery rates of arsenic are respectively 12.1%, 69.2%, and 67%.
本発明のチオ亜ヒ酸塩の処理方法は、浸出液中のチオ亜ヒ酸塩を、固体結晶状のチオヒ酸塩として効率よく分離除去することができるので、特に非鉄製錬における銅精鉱をアルカリ等で浸出した浸出液のチオ亜ヒ酸塩又はヒ素の処理に好適に用いられる。 The method for treating thioarsenite according to the present invention can efficiently separate and remove the thioarsenite in the leachate as a solid crystalline thioarsenate. It is suitably used for treatment of thioarsenite or arsenic in the leachate leached with alkali or the like.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010028018A JP2011161386A (en) | 2010-02-10 | 2010-02-10 | Method for treating thioarsenite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010028018A JP2011161386A (en) | 2010-02-10 | 2010-02-10 | Method for treating thioarsenite |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011161386A true JP2011161386A (en) | 2011-08-25 |
Family
ID=44592712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010028018A Pending JP2011161386A (en) | 2010-02-10 | 2010-02-10 | Method for treating thioarsenite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011161386A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170602A1 (en) * | 2016-03-30 | 2017-10-05 | Jx金属株式会社 | Method for recovering arsenic |
EP3825424A1 (en) * | 2014-01-31 | 2021-05-26 | Goldcorp Inc. | Process for stabilisation of an arsenic solution comprising thiosulfates |
AU2022218559B2 (en) * | 2016-10-19 | 2023-08-24 | Jetti Resources, Llc | Process for leaching metal sulfides with reagents having thiocarbonyl functional groups |
US11884993B2 (en) | 2015-04-17 | 2024-01-30 | Jetti Resources, Llc | Process for leaching metal sulfides with reagents having thiocarbonyl functional groups |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3911078A (en) * | 1972-09-20 | 1975-10-07 | Little Inc A | Method for removing arsenic and antimony from copper ore concentrates |
JPS54160590A (en) * | 1978-06-09 | 1979-12-19 | Sumitomo Metal Mining Co | Method of separating and recovering arsenic from refining intermediate in state of sulfide containing arsenic |
JPS61151027A (en) * | 1984-12-25 | 1986-07-09 | Nippon Mining Co Ltd | Selective leaching of antimony and/or arsenic |
JP2005224686A (en) * | 2004-02-12 | 2005-08-25 | Maezawa Ind Inc | Arsenic removal method |
JP2007297240A (en) * | 2006-04-28 | 2007-11-15 | Dowa Holdings Co Ltd | Arsenic-containing material treatment method |
JP2007297243A (en) * | 2006-04-28 | 2007-11-15 | Dowa Holdings Co Ltd | Arsenic-containing material treatment method |
JP2007314865A (en) * | 2006-04-28 | 2007-12-06 | Dowa Metals & Mining Co Ltd | Method for treating arsenic-containing solution |
JP2008150659A (en) * | 2006-12-15 | 2008-07-03 | Dowa Metals & Mining Co Ltd | Method for producing arsenic liquid from copper-arsenic compound |
WO2009011320A1 (en) * | 2007-07-13 | 2009-01-22 | Dowa Metals & Mining Co., Ltd. | Method of treating arsenical matter with alkali |
JP2009242221A (en) * | 2007-07-13 | 2009-10-22 | Dowa Metals & Mining Co Ltd | Method of treating copper-arsenic compound |
JP2010090420A (en) * | 2008-10-06 | 2010-04-22 | Akita Univ | Method for removing arsenic in concentrate for non-ferrous metal smelting and concentrate for non-ferrous metal smelting obtained by the method |
JP2010168237A (en) * | 2009-01-21 | 2010-08-05 | Dowa Metals & Mining Co Ltd | Method for treating arsenic |
JP2011011155A (en) * | 2009-07-02 | 2011-01-20 | Dowa Metals & Mining Co Ltd | Method for removing copper ion from arsenic acid solution by using copper sulfide and single sulfur |
-
2010
- 2010-02-10 JP JP2010028018A patent/JP2011161386A/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3911078A (en) * | 1972-09-20 | 1975-10-07 | Little Inc A | Method for removing arsenic and antimony from copper ore concentrates |
JPS54160590A (en) * | 1978-06-09 | 1979-12-19 | Sumitomo Metal Mining Co | Method of separating and recovering arsenic from refining intermediate in state of sulfide containing arsenic |
JPS61151027A (en) * | 1984-12-25 | 1986-07-09 | Nippon Mining Co Ltd | Selective leaching of antimony and/or arsenic |
JP2005224686A (en) * | 2004-02-12 | 2005-08-25 | Maezawa Ind Inc | Arsenic removal method |
JP2007297240A (en) * | 2006-04-28 | 2007-11-15 | Dowa Holdings Co Ltd | Arsenic-containing material treatment method |
JP2007297243A (en) * | 2006-04-28 | 2007-11-15 | Dowa Holdings Co Ltd | Arsenic-containing material treatment method |
JP2007314865A (en) * | 2006-04-28 | 2007-12-06 | Dowa Metals & Mining Co Ltd | Method for treating arsenic-containing solution |
JP2008150659A (en) * | 2006-12-15 | 2008-07-03 | Dowa Metals & Mining Co Ltd | Method for producing arsenic liquid from copper-arsenic compound |
WO2009011320A1 (en) * | 2007-07-13 | 2009-01-22 | Dowa Metals & Mining Co., Ltd. | Method of treating arsenical matter with alkali |
JP2009242935A (en) * | 2007-07-13 | 2009-10-22 | Dowa Metals & Mining Co Ltd | Method for alkali-treating substance containing arsenic |
JP2009242221A (en) * | 2007-07-13 | 2009-10-22 | Dowa Metals & Mining Co Ltd | Method of treating copper-arsenic compound |
JP2010090420A (en) * | 2008-10-06 | 2010-04-22 | Akita Univ | Method for removing arsenic in concentrate for non-ferrous metal smelting and concentrate for non-ferrous metal smelting obtained by the method |
JP2010168237A (en) * | 2009-01-21 | 2010-08-05 | Dowa Metals & Mining Co Ltd | Method for treating arsenic |
JP2011011155A (en) * | 2009-07-02 | 2011-01-20 | Dowa Metals & Mining Co Ltd | Method for removing copper ion from arsenic acid solution by using copper sulfide and single sulfur |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3825424A1 (en) * | 2014-01-31 | 2021-05-26 | Goldcorp Inc. | Process for stabilisation of an arsenic solution comprising thiosulfates |
US11124857B2 (en) | 2014-01-31 | 2021-09-21 | Goldcorp Inc. | Process for separation of antimony and arsenic from a leach solution |
EP3933057A1 (en) * | 2014-01-31 | 2022-01-05 | Goldcorp Inc. | A process for separation of antimony and arsenic from leach solution |
US11884993B2 (en) | 2015-04-17 | 2024-01-30 | Jetti Resources, Llc | Process for leaching metal sulfides with reagents having thiocarbonyl functional groups |
US12049680B2 (en) | 2015-04-17 | 2024-07-30 | Jetti Resources, Llc | Process for leaching metal sulfides with reagents having thiocarbonyl functional groups |
US12049681B2 (en) | 2015-04-17 | 2024-07-30 | Jetti Resources, Llc | Process for leaching metal sulfides with reagents having thiocarbonyl functional groups |
WO2017170602A1 (en) * | 2016-03-30 | 2017-10-05 | Jx金属株式会社 | Method for recovering arsenic |
AU2022218559B2 (en) * | 2016-10-19 | 2023-08-24 | Jetti Resources, Llc | Process for leaching metal sulfides with reagents having thiocarbonyl functional groups |
US11859263B2 (en) | 2016-10-19 | 2024-01-02 | Jetti Resources, Llc | Process for leaching metal sulfides with reagents having thiocarbonyl functional groups |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2915394C (en) | Wastewater treatment process for containing aluminium and manganese | |
KR101853255B1 (en) | Process for purifying zinc oxide | |
AU2014282527B2 (en) | Hematite manufacturing method and hematite manufactured by same | |
JP5138737B2 (en) | Method for producing waste acid gypsum | |
JP2013139595A (en) | Method for recovering valuables from impurity lump containing copper derived from lead smelting | |
Sinha et al. | Recovery of high value copper and zinc oxide powder from waste brass pickle liquor by solvent extraction | |
CN105197982A (en) | Method for producing electronic-grade zinc oxide from high-chloride zinc hypoxide | |
CN113677813A (en) | Lithium recovery and purification | |
JP5934712B2 (en) | Arsenic-containing material processing method | |
JP2011161386A (en) | Method for treating thioarsenite | |
JP2020530530A (en) | Recovery of metals from pyrite | |
AU2019290870B2 (en) | Nickel sulfate compound manufacturing method | |
WO2015081368A1 (en) | Process for producing refined nickel and other products from a mixed hydroxide intermediate | |
US20090291307A1 (en) | Iron arsenate powder | |
WO2023189211A1 (en) | Cobalt and nickel recovery method | |
JP2012001414A (en) | Method for producing nickel/cobalt sulfate solution with low chlorine concentration | |
JP2020196913A (en) | Recovery method of tin | |
JP6779980B2 (en) | How to recover arsenic | |
JP6086801B2 (en) | Separation method of gallium and zinc | |
JP2009167442A (en) | Method for separating arsenic and antimony in arsenic acid aqueous solution | |
JP6780563B2 (en) | How to recover rhenium sulfide | |
JP2008184653A (en) | Method for producing antimony oxide and method for producing metal antimony | |
JPS59137307A (en) | Method for recovering high purity tellurium from intermediate containing tellurium produced during smelting of lead or zinc | |
CA3205590A1 (en) | Method for recovering lead from copper smelting dust | |
JP2007231334A (en) | Indium recovery method and recovered indium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131028 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140401 |