WO2023189211A1 - Cobalt and nickel recovery method - Google Patents

Cobalt and nickel recovery method Download PDF

Info

Publication number
WO2023189211A1
WO2023189211A1 PCT/JP2023/008091 JP2023008091W WO2023189211A1 WO 2023189211 A1 WO2023189211 A1 WO 2023189211A1 JP 2023008091 W JP2023008091 W JP 2023008091W WO 2023189211 A1 WO2023189211 A1 WO 2023189211A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
xanthate
nickel
ions
solution
Prior art date
Application number
PCT/JP2023/008091
Other languages
French (fr)
Japanese (ja)
Inventor
晃一郎 高次
史人 田中
尚也 佐藤
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP2023050686A priority Critical patent/JP2023145408A/en
Publication of WO2023189211A1 publication Critical patent/WO2023189211A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • C22B3/46Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering cobalt and nickel contained in wastewater and the like.
  • the present invention relates to a method for efficiently recovering cobalt-nickel from a solution containing high concentrations of impurities such as iron but low concentrations of cobalt and nickel.
  • Patent Document 1 describes a method for recovering metal ions from a metal-containing solution obtained by wet-processing lithium ion battery waste.
  • the metal-containing solution contains magnesium ions and at least one of cobalt ions and nickel ions
  • a solvent containing a carboxylic acid-based extractant is used to remove the cobalt ions and the magnesium ions while leaving the magnesium ions in the metal-containing solution.
  • Nickel ions are extracted into the solvent.
  • cobalt ions and nickel ions are back-extracted and recovered from the solvent.
  • Patent Document 2 describes a method for recovering cobalt from acid leaching liquid obtained by acid leaching a lithium ion waste battery and containing cobalt and the like. Utilizing the difference in solubility products of metal hydroxides, impurities are removed through multi-stage neutralization and cobalt is recovered. Furthermore, the precipitate is redissolved and multistage neutralization is repeated. Through the above steps, high purity cobalt salt crystals are obtained.
  • Non-Patent Document 1 describes a method of recovering cobalt as a precipitate by neutralizing the liquid after copper extraction in hydrometallurgical copper smelting of copper-cobalt sulfide ore in stages. Furthermore, Non-Patent Document 2 describes the use of methyl xanthate or ethyl xanthate as a selective precipitant for cobalt or nickel.
  • cobalt is selected because cobalt co-precipitates with iron and aluminum as impurities for solutions containing high concentrations of iron and aluminum together with cobalt. There is a problem that it cannot be precipitated. Furthermore, if the cobalt concentration in the solution is low, the cobalt recovery rate will decrease, making it impossible to efficiently recover cobalt.
  • Non-Patent Document 2 describes the following matters.
  • xanthate ions do not form precipitates with ferrous ions, manganese ions, chromium ions, etc., but xanthate ions react selectively with cobalt ions and nickel ions to form precipitates. generate. This precipitate can be separated by flotation using its hydrophobicity.
  • wastewater from the hydrometallurgical process of copper ore contains many metal ions, and metal ions (hereinafter referred to as inhibiting metal ions) that form precipitates along with cobalt and nickel due to xanthate. If they are present, cobalt and nickel cannot be selectively precipitated by the xanthate method.
  • inhibiting metal ions are not clear in the disclosure content of Non-Patent Document 2, and it is difficult to apply the xanthate method to actual operation based only on the disclosure content of Non-Patent Document 2.
  • An object of the present invention is to provide a cobalt-nickel recovery method that can be applied to actual operations.
  • the present inventors have clarified the inhibiting metal ions in the xanthate method.
  • Cobalt and nickel can then be selectively recovered from various solutions, such as wastewater from the hydrometallurgical process of copper ore, by pre-treating them to remove the inhibiting metal ions. made it possible to do so.
  • various solutions such as wastewater from the hydrometallurgical process of copper ore, by pre-treating them to remove the inhibiting metal ions. made it possible to do so.
  • the present invention is a cobalt-nickel recovery method that solves the above problems with the following requirements.
  • a reduction treatment is performed by a cementation reaction,
  • the raw solution contains copper ions
  • adding metallic aluminum to the raw solution to precipitate the copper ions in the raw solution into metallic copper
  • metal aluminum is added to the raw solution to reduce the iron (III) ions in the raw solution to iron (II) ions, as described in [1] above.
  • Cobalt and nickel recovery method [3]
  • the xanthate treatment step the xanthate salt is selectively precipitated by using a flotation equipment to add the xanthate salt to the solution after the pretreatment, and the precipitate is collected as froth. [1] or the cobalt-nickel recovery method described in [2] above.
  • the method for recovering cobalt-nickel according to any one of [1] to [3] above, further comprising the step of thermally decomposing the xanthate salt of the recovered precipitate to obtain cobalt-nickel slag.
  • the raw solution is a leachate noble liquid of a hydrometallurgical process of copper ore, a liquid after copper extraction, or a waste liquid after copper extraction treatment,
  • a step of recycling the liquid after the xanthate treatment after collecting the precipitate by returning it to the leachate used in the leaching step of the hydrometallurgical smelting step. Cobalt and nickel recovery method.
  • the recovery method it is only necessary to add xanthate in an amount necessary to form xanthate salts of cobalt and nickel, so even if the concentrations of cobalt and nickel in the raw solution are low, the recovery method can be efficiently carried out. Cobalt and nickel can be recovered.
  • the amount of metal ions that are more likely to precipitate than cobalt and nickel xanthate salts is smaller in the raw solution such as the wastewater from the hydrometallurgical process of copper ore, so it is practical to remove copper ions from the raw solution during pretreatment. What is necessary is to remove iron (III) ions.
  • iron (III) ions Using a cementation reaction as a pretreatment, copper ions are precipitated as metallic copper and iron(III) ions are reduced to iron(II) ions, so that the amount of substituted metal (e.g. aluminum) required for these reactions is It is efficient. Further, since the substitution metal aluminum does not coprecipitate with cobalt or nickel, pretreatment can be performed without adversely affecting the next step of xanthate treatment.
  • the recovery method according to one embodiment of the present invention impurities such as copper ions and iron (III) ions are removed without using a neutralization reaction, so liquid properties such as pH are hardly changed. Therefore, the liquid after xanthate treatment can be returned to the source and reused.
  • the raw solution is the leached noble liquor of the hydrometallurgical process of copper ore
  • the liquor after copper extraction, or the waste liquor after copper extraction treatment after the xanthate treatment obtained by the recovery method according to one embodiment of the present invention.
  • the liquid can be recycled and reused by returning it to the leachate used in the leaching process of the copper ore hydrometallurgical smelting process, and wastewater treatment is not required.
  • the recovery method according to one embodiment of the present invention can be performed using simpler steps and equipment compared to the neutralization method and the solvent extraction method.
  • the recovery method of the present embodiment includes the steps of preparing a raw solution containing one or both of cobalt and nickel, and removing one or both of copper ions and iron (III) ions contained in the raw solution. a pretreatment step, and a xanthate treatment step of adding a xanthate to the solution after the pretreatment to selectively precipitate one or both of cobalt and nickel xanthate salts and recovering the precipitate. .
  • An example of the collection method of this embodiment is shown in FIG.
  • the raw solution containing either one or both of cobalt and nickel is, for example, the leached precious liquid in the hydrometallurgical process of copper ore, the liquid after copper extraction, the acid leached precious liquid of lithium ion waste batteries, etc.
  • This is a solution containing liquid or waste liquid after these treatments (copper extraction treatment, acid leaching treatment).
  • the raw solution contains one or both of cobalt and nickel, and one or both of copper ions and iron (III) ions.
  • the solution is prepared as a stock solution.
  • the copper ore is brought into contact with a leachate to leach out the copper, thereby obtaining a leachate precious liquid (leaching process).
  • copper extraction step copper extraction step
  • the solution before copper is leached will be referred to as a "lixiviant" or "leach solution”.
  • the solution obtained by the leaching process and containing a high concentration of copper is called a "pregnant leach solution.”
  • the solution after copper has been selectively removed by the copper extraction process is called a "raffinate”.
  • the solution after copper has been selectively removed by the solvent extraction method is also called a "solvent extraction raffinate.”
  • the liquid after copper extraction can also be referred to as the waste liquid after the copper extraction process.
  • the solution remaining from a chemical or mechanical process after the desired chemical has been removed is also referred to as "process discharge.”
  • Pretreatment is performed to remove one or both of copper ions and iron (III) ions contained in the raw solution.
  • Copper ions and iron(III) ions are impurities that form xanthate salts, which have a lower solubility product than the cobalt and nickel xanthate salts.
  • one or both of copper ions and iron (III) ions are removed. Specifically, when the raw solution contains copper ions, the copper ions are removed in the pretreatment. If the raw solution contains iron (III) ions, the iron (III) ions are removed in the pretreatment. When the raw solution contains copper ions and iron (III) ions, the copper ions and iron (III) ions are removed in the pretreatment.
  • removing iron(III) ions is to significantly reduce the concentration of iron(III) ions in the raw solution.
  • metal aluminum refers to metal aluminum plates, aluminum scraps such as aluminum scraps and aluminum cans, and other metal aluminum-containing materials. Note that aluminum, which is a substitution metal in the cementation reaction, does not co-precipitate with cobalt or nickel. From the viewpoint of reaction rate, the amount (number of moles) of metallic aluminum added is preferably 60 times or more the total number of moles of copper ions and iron (III) ions in the raw solution.
  • the copper ions in the raw solution are reduced to become metallic copper and precipitate, and the iron (III) ions are reduced to iron (II) ions. If the raw solution contains copper ions and iron (III) ions, these copper ions and iron (III) ions will precipitate together with cobalt and nickel when xanthate is added. cannot be selectively precipitated. Interference by copper ions and iron (III) ions in the raw solution can be prevented by removing them in advance.
  • iron (II) ions are present in the solution, the solubility product of iron (II) xanthate salts is larger than the solubility product of cobalt or nickel xanthate salts, and in the next step, iron (II) ions are converted to cobalt. and nickel. Therefore, by reducing the iron (III) ions in the raw solution to iron (II) ions, cobalt and nickel can be selectively precipitated in the next step.
  • iron(II) ions remain in the solution during the pretreatment, if the solution after the xanthate treatment described below is reused as the leachate used in the leaching process of the hydrometallurgical smelting process of copper ore, this iron (II) ion can be reused.
  • Ions can act as oxidizing agents for copper ore and increase the leaching rate.
  • iron (II) ions remain in the solution and do not precipitate together with copper ions, which prevents iron from being mixed into the metallic copper precipitate produced by the cementation reaction, allowing the recovered metallic copper to be reused as a product. be able to.
  • metal ions whose solubility product of xanthate salt is smaller than that of cobalt or nickel are, for example, Au, Ag, Hg, Cd, Pb, Bi, Sb, Sn, etc. Since these become inhibitory metals, it is usually preferable to remove them from the solution by pretreatment. However, in solutions such as leached precious liquor, post-copper extraction liquor, and wastewater from the hydrometallurgical process of copper ore, the concentration of these is much lower than that of cobalt and nickel, while copper ions and iron(III) ions is contained in higher concentrations than cobalt and nickel.
  • ⁇ Xanthate treatment process A xanthate salt is added to the pretreated solution to precipitate cobalt and nickel as xanthate salts.
  • the xanthate for example, alkyl xanthates such as methyl xanthate and ethyl xanthate can be used.
  • potassium amyl xanthate (PAX), potassium ethyl xanthate (PEX), potassium isopropyl xanthate (PIPX), etc. can be used.
  • PAX potassium amyl xanthate
  • PEX potassium ethyl xanthate
  • PIPX potassium isopropyl xanthate
  • SAX sodium isobutyl xanthate
  • potassium propyl xanthate etc.
  • the amount of xanthate added is 1 to 3 equivalents relative to the amount of cobalt or nickel, a sufficient amount of precipitation can be obtained.
  • the amount of xanthate added may be 1 to 4.5 equivalents based on the total amount of cobalt and nickel in the solution after pretreatment.
  • the amount of xanthate compound added is preferably 2.5 equivalents or more. Further, the amount of the xanthate compound added is preferably 3 equivalents or less. If the amount of xanthate added exceeds 4.5 equivalents, the recovery rate of cobalt per amount of xanthate added will decrease, which is not preferable.
  • polymer flocculants include nonionic polymer flocculants.
  • roasting the recovered cobalt-nickel xanthate salt precipitate at a temperature of 150°C or higher and 400°C or lower organic matter is removed and a roasted slag (cobalt-nickel slag) in which cobalt and nickel are concentrated can be obtained.
  • roasted slag is also called sintered ore, and slag is a calcined product.
  • the liquid after separating the xanthate salt aggregate froth can be reused by being returned to the leachate used in the leaching process of the hydrometallurgical process of copper ore.
  • the metal concentration in the liquid and the slag was measured by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy).
  • the iron (II) ion concentration in the liquid was measured according to the JIS standard (JIS K 0400-57-10, "1,10-phenanthroline absorption spectrophotometry").
  • the iron (III) ion concentration in the solution was calculated by subtracting the iron (II) ion concentration from the total iron concentration in the original solution.
  • the thermal decomposition behavior of the slag was measured by a thermogravimetric-differential thermal analyzer (TG-DTA).
  • the raw solution used in Examples and the like was a liquid (raffinate) after copper extraction in a hydrometallurgical process of copper ore.
  • the components of this stock solution are shown in Table 1. Note that the pH of the original solution was 1.5.
  • the unit of concentration "%” is mass %, and the unit “ppm” is mass ppm.
  • Example 1 Pretreatment: reduction treatment by cementation reaction
  • the raw solution was stirred for 24 hours with 8 g of a metal aluminum plate immersed in 200 ml of the raw solution. The precipitate was then removed. After 24 hours, the copper ion concentration and Fe(II) ion concentration in the solution were measured. Table 2 shows the copper ion concentration and Fe(II) ion concentration. Test No. The copper removal rate in the raw solution of No. 1 was 99.8%, and the proportion of Fe(II) ions was 100%.
  • use aluminum can scraps obtained by crushing aluminum beverage cans into 3 mm pieces, or heated aluminum can scraps obtained by heating the aluminum can scraps at 500°C for 1 hour in an electric furnace to remove the surface coating.
  • Example 2 (xanthate treatment) Test No. 1 of Example 1, which was pretreated by cementation. 50 ml of the solution of No. 1 was taken, and an aqueous solution of xanthate drugs (PAX, PEX, PIPX, SIPX) shown in Tables 3 and 4 was added to 50 ml of this solution, and the mixture was stirred. The residual liquid after stirring for 30 minutes was filtered, and the concentrations of cobalt ions and nickel ions in the filtrate (rear liquid) were measured. Then, the distribution ratio of cobalt and nickel to the generated precipitate was calculated. The results are shown in Tables 3 and 4.
  • the “residual solution” is a solution after adding the xanthate drug but before filtration, and is a solution in which precipitates are suspended.
  • “After-liquid” is the filtrate after addition of xanthate drug and filtration. That is, the after-liquid is the filtrate obtained by filtering the residual liquid and removing the precipitate. The after-liquid is also called the filtrate of the residual liquid.
  • the equivalent amount of xanthate drug added is the equivalent of the amount of xanthate drug added to the total amount of cobalt and nickel in the solution.
  • the distribution ratio to the precipitate is the ratio (%) of the weight (g) of cobalt or nickel in the precipitate to the weight (g) of cobalt or nickel in the original solution, and was determined by the following formula [2].
  • Distribution rate to the precipitate (%) 100 - [Concentration of Co or Ni in the filtrate of the residual solution (%) x Weight (g) of the filtrate of the residual solution (rear solution) / (in the raw solution Concentration of Co or Ni (%) x initial weight of stock solution] x 100...[2]
  • the amount of xanthate agent added in order to obtain a recovery rate of 90% or more for cobalt and nickel, the amount of xanthate agent added must be 2.5 equivalents or more based on the total amount of cobalt and nickel in the solution. be.
  • the stability of Ni xanthate in the liquid depending on the type of xanthate drug used, and when PIPX was used (Test Nos. 30 and 31), Ni xanthate was produced before Co xanthate. Which test no.
  • the distribution ratio of Al, Mg, and Fe in the solution to the precipitate was 1% or less.
  • Table 4 shows the equivalent amount of SIPX added, the pH of the solution, and the distribution rate of Co to the precipitate when SIPX was used as the xanthate agent.
  • the cobalt recovery rate is slightly affected by the pH of the solution, but from the results in Tables 3 and 4, the amount of xanthate agent added is 2.5 equivalents or more and 4.5 equivalents relative to the total amount of cobalt and nickel in the solution. It has been found that a recovery rate of 90% or more can be obtained in the following cases.
  • Example 3 Test No. of Example 1 Regarding 5 L of the solution of No. 1, a small flotation machine was used to generate a precipitate of xanthate salt and concentrate and recover it. PAX, PIPX, and PEX were used as xanthate agents, and 2.5 equivalents of xanthate agents were added to the total amount of cobalt and nickel in the solution. The solution was stirred for about 15 minutes to allow the metal ions and xanthate to react. Then, a polymer flocculant (Cliffrock PN161 manufactured by Kurita Industries, Ltd.) was added to perform flotation method. Flotation was carried out under the conditions of air blowing rate of 1 to 10 L/min and flotation time of 10 to 15 minutes.
  • a polymer flocculant (Cliffrock PN161 manufactured by Kurita Industries, Ltd.) was added to perform flotation method. Flotation was carried out under the conditions of air blowing rate of 1 to 10 L/min and flotation time of 10 to 15 minutes.
  • the condition of the froth was visually confirmed, and flotation was performed until no aggregates adhered to the froth, and this state was defined as the end point of flotation.
  • the overflowed aggregate froth was collected and then filtered to separate the precipitate aggregate and filtrate.
  • the concentrations of cobalt and nickel in the filtrate of the aggregate froth were measured.
  • the residual liquid in the flotation machine after collecting the aggregate froth was a suspension of fine precipitates.
  • the concentrations of cobalt and nickel in the suspended liquid were measured.
  • the residual liquid was then filtered and separated into a fine precipitate and a filtrate.
  • the concentrations of cobalt and nickel in the residual filtrate (after-liquid) were measured.
  • the distribution ratio shown in Table 5 is determined by the following formula.
  • A Metal concentration in raw solution (%)
  • B Weight of stock solution (g)
  • C Weight of aggregate floc overflowed by flotation (g)
  • D Metal concentration (%) in the filtrate of aggregate froth
  • E Residual liquid weight (g)
  • F Metal concentration in suspension of residual liquid (%)
  • G Metal concentration (%) in the residual filtrate (after-liquid)
  • each distribution rate is calculated using the following formula.
  • the distribution ratio to unreacted metal in the liquid indicates the proportion of cobalt or nickel that remains in the liquid as metal ions without forming a precipitate.
  • the distribution ratio to precipitates in the residual liquid indicates the proportion of cobalt or nickel that becomes fine precipitates suspended in the residual liquid.
  • the distribution ratio to the precipitate in the froth indicates the proportion of cobalt or nickel that becomes an aggregate of the precipitate attached to the floss.
  • Example 4 The weight change due to thermal decomposition of the solid precipitate collected in Example 2 was measured using TG-DTA. Regardless of which xanthate agent was used, most of the organic matter was thermally decomposed at 150°C to 250°C, and the sample weight decreased by 70% to 75%. That is, the weight after heating was 25 to 30% of the weight before heating.
  • Table 6 shows an example of the composition of the cobalt-nickel slag after thermal decomposition. The elements other than those listed in Table 6 were mainly oxygen (O).
  • Example 5 Leaching test of copper ore using liquid after recovering Co, Ni
  • Test No. of Example 2 Sulfuric acid was added to the solution after recovering Co and Ni in No. 22 to adjust the pH to 1.5.
  • the resulting solution was added as a leachate to a copper ore slurry with a pulp concentration of 10%, and was shaken (vigorously shaken) for 8 hours.
  • the leaching rate of copper in the ore was determined from the amount of copper leached into the solution (leaching solution).
  • the pH was measured 1, 2, and 4 hours after the start of the test, and sulfuric acid was added to maintain the pH at 1.5.
  • the recovery method of this embodiment collects cobalt from raw solutions such as the solution after copper extraction in the hydrometallurgical process of copper ore, the acid leaching noble solution of lithium ion waste batteries, and the waste solution after copper extraction treatment and acid leaching treatment. It can also be applied to the process of recovering nickel.
  • the after-liquid after cobalt-nickel is recovered by the recovery method of the present embodiment has almost no change in liquid properties from the original solution, so the after-liquid can be reused as a leachate for copper ore. Therefore, the recovery method of this embodiment is highly useful in actual operations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

This cobalt and nickel recovery method comprises: a pretreatment step for removing either/both copper ions or/and iron(III) ions contained in a raw solution containing either/both cobalt or/and nickel; and a xanthate treatment step for adding a xanthide to the pretreated solution to selectively precipitate a xanthate of either/both cobalt or/and nickel, and recovering the precipitate.

Description

コバルト・ニッケルの回収方法How to recover cobalt and nickel
 本発明は、排液などに含まれるコバルトやニッケルを回収する方法に関する。特に本発明は、鉄などの不純物を高濃度に含むがコバルトやニッケルを低濃度に含む溶液からコバルト・ニッケルを効率よく回収する方法に関する。
 本願は、2022年3月28日に、日本に出願された特願2022-052432号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for recovering cobalt and nickel contained in wastewater and the like. In particular, the present invention relates to a method for efficiently recovering cobalt-nickel from a solution containing high concentrations of impurities such as iron but low concentrations of cobalt and nickel.
This application claims priority based on Japanese Patent Application No. 2022-052432 filed in Japan on March 28, 2022, the contents of which are incorporated herein.
 廃電池、ニッケルラテライト鉱、または銅コバルト鉱石などから溶液に浸出したコバルトを回収する技術として、コバルト抽出溶媒を用いた回収法や、種々の金属水酸化物の溶解度積の差を利用した段階中和による回収法が用いられている。 As a technology to recover cobalt leached into solution from waste batteries, nickel laterite ore, or copper-cobalt ore, etc., we are currently at the stage where recovery methods using cobalt extraction solvents and the differences in solubility products of various metal hydroxides are utilized. The sum recovery method is used.
 例えば、特許文献1には、リチウムイオン電池廃棄物を湿式処理して得られた金属含有溶液から金属イオンを回収する方法が記載されている。金属含有溶液がコバルトイオンおよびニッケルイオンの少なくとも一種の金属イオンとマグネシウムイオンとを含む場合、カルボン酸系抽出剤を含む溶媒を使用して、マグネシウムイオンを金属含有溶液中に残しつつ、コバルトイオンおよびニッケルイオンを前記溶媒に抽出する。次いで、前記溶媒からコバルトイオンおよびニッケルイオンを逆抽出して回収する。 For example, Patent Document 1 describes a method for recovering metal ions from a metal-containing solution obtained by wet-processing lithium ion battery waste. When the metal-containing solution contains magnesium ions and at least one of cobalt ions and nickel ions, a solvent containing a carboxylic acid-based extractant is used to remove the cobalt ions and the magnesium ions while leaving the magnesium ions in the metal-containing solution. Nickel ions are extracted into the solvent. Next, cobalt ions and nickel ions are back-extracted and recovered from the solvent.
 また、特許文献2には、リチウムイオン廃電池を酸浸出して得られ、かつコバルト等を含む酸浸出貴液などからコバルトを回収する方法が記載されている。金属水酸化物の溶解度積の差を利用し、多段中和によって不純物を除去し、コバルトを回収する。さらに沈殿物を再溶解して多段中和を繰返す。以上により、高純度コバルト塩結晶を得る。 Further, Patent Document 2 describes a method for recovering cobalt from acid leaching liquid obtained by acid leaching a lithium ion waste battery and containing cobalt and the like. Utilizing the difference in solubility products of metal hydroxides, impurities are removed through multi-stage neutralization and cobalt is recovered. Furthermore, the precipitate is redissolved and multistage neutralization is repeated. Through the above steps, high purity cobalt salt crystals are obtained.
 非特許文献1には、銅-コバルト硫化鉱の湿式銅製錬の銅抽出後液を段階的に中和してコバルトを沈殿物として回収する方法が記載されている。また、非特許文献2には、コバルトやニッケルの選択的沈殿剤として、メチルザンセートやエチルザンセートを用いることが記載されている。 Non-Patent Document 1 describes a method of recovering cobalt as a precipitate by neutralizing the liquid after copper extraction in hydrometallurgical copper smelting of copper-cobalt sulfide ore in stages. Furthermore, Non-Patent Document 2 describes the use of methyl xanthate or ethyl xanthate as a selective precipitant for cobalt or nickel.
 特許文献2および非特許文献1に記載されている段階中和法では、コバルトと共に鉄やアルミニウムを高濃度に含む溶液については、不純物である鉄やアルミニウムと共にコバルトが共沈するので、コバルトを選択的に沈殿できない問題がある。また、溶液中のコバルト濃度が低いと、コバルトの回収率が低下し、コバルトを効率よく回収することができない。 In the step neutralization method described in Patent Document 2 and Non-Patent Document 1, cobalt is selected because cobalt co-precipitates with iron and aluminum as impurities for solutions containing high concentrations of iron and aluminum together with cobalt. There is a problem that it cannot be precipitated. Furthermore, if the cobalt concentration in the solution is low, the cobalt recovery rate will decrease, making it impossible to efficiently recover cobalt.
 一方、特許文献1に記載されている溶媒抽出法では、コバルト抽出溶媒に鉄や銅が抽出されてしまうので、これを避けるためには多段の溶媒抽出工程を必要とし、処理が煩雑である。しかも溶液中のコバルト濃度が低いと、コバルト回収量当たりの溶媒ロスが増大して処理コストが嵩む問題がある。 On the other hand, in the solvent extraction method described in Patent Document 1, iron and copper are extracted by the cobalt extraction solvent, so in order to avoid this, a multi-stage solvent extraction process is required and the process is complicated. Moreover, if the cobalt concentration in the solution is low, there is a problem that the solvent loss per amount of cobalt recovered increases and the processing cost increases.
 また、非特許文献2には、以下の事項が記載されている。ザンセート法において、キサントゲン酸イオンは、第一鉄イオン、マンガンイオン、クロムイオン等とは沈殿物を生じないが、キサントゲン酸イオンは、コバルトイオンやニッケルイオンとは選択的に反応して沈殿物を生成する。この沈殿物は、その疎水性を利用して浮選分離が可能である。 Additionally, Non-Patent Document 2 describes the following matters. In the xanthate method, xanthate ions do not form precipitates with ferrous ions, manganese ions, chromium ions, etc., but xanthate ions react selectively with cobalt ions and nickel ions to form precipitates. generate. This precipitate can be separated by flotation using its hydrophobicity.
 しかし、例えば、銅鉱石の湿式製錬工程の排液などには多数の金属イオンが含まれており、キサントゲン酸によってコバルトやニッケルと共に沈殿物を生じる金属イオン(以下、阻害金属イオンと云う)が含まれていると、ザンセート法によってコバルトやニッケルを選択的に沈殿させることができない。非特許文献2の開示内容ではこのような阻害金属イオンが明らかではなく、非特許文献2の開示内容だけではザンセート法を実操業に適用することは難しい。 However, for example, wastewater from the hydrometallurgical process of copper ore contains many metal ions, and metal ions (hereinafter referred to as inhibiting metal ions) that form precipitates along with cobalt and nickel due to xanthate. If they are present, cobalt and nickel cannot be selectively precipitated by the xanthate method. Such inhibiting metal ions are not clear in the disclosure content of Non-Patent Document 2, and it is difficult to apply the xanthate method to actual operation based only on the disclosure content of Non-Patent Document 2.
特開2021-172856号公報Japanese Patent Application Publication No. 2021-172856 特開2021-139030号公報JP 2021-139030 Publication
 本発明は、実操業に適用できるコバルト・ニッケルの回収方法を提供することを目的とする。 An object of the present invention is to provide a cobalt-nickel recovery method that can be applied to actual operations.
 本発明者等は、ザンセート法における阻害金属イオンを明らかにした。そして、銅鉱石の湿式製錬工程の排液などの種々の溶液に対して、前記阻害金属イオンを除去する前処理を行うことによって、前記排液などの溶液からコバルト・ニッケルを選択的に回収することを可能にした。以上により、実操業にザンセート法によるコバルト・ニッケルの回収方法を適用できるようにした。 The present inventors have clarified the inhibiting metal ions in the xanthate method. Cobalt and nickel can then be selectively recovered from various solutions, such as wastewater from the hydrometallurgical process of copper ore, by pre-treating them to remove the inhibiting metal ions. made it possible to do so. As a result of the above, it has become possible to apply the cobalt and nickel recovery method using the xanthate method to actual operations.
 本発明は、以下の要件によって上記問題を解決したコバルト・ニッケルの回収方法である。
[1]コバルトおよびニッケルのいずれか一方または両方を含む原溶液に含まれる銅イオンおよび鉄(III)イオンのいずれか一方または両方を除去する前処理工程と、
 前記前処理後の溶液にザンセート化物を添加して、コバルトおよびニッケルのいずれか一方または両方のザンセート塩を選択的に沈殿させ、沈殿物を回収するザンセート処理工程と、を有することを特徴とするコバルト・ニッケルの回収方法。
[2]前記前処理工程では、セメンテーション反応による還元処理を行い、
 前記原溶液が銅イオンを含む場合、前記原溶液に金属アルミニウム類を添加して、前記原溶液中の銅イオンを金属銅にして沈殿させ、
 前記原溶液が鉄(III)イオンを含む場合、前記原溶液に金属アルミニウム類を添加して、前記原溶液中の鉄(III)イオンを鉄(II)イオンに還元する前記[1]に記載のコバルト・ニッケルの回収方法。
[3]前記ザンセート処理工程では、浮遊選鉱設備を用い、前記前処理後の溶液に前記ザンセート化物を添加して、前記ザンセート塩を選択的に沈殿させ、前記沈殿物をフロスにして回収する前記[1]または前記[2]に記載のコバルト・ニッケルの回収方法。
[4]回収した前記沈殿物の前記ザンセート塩を加熱分解してコバルト・ニッケル滓を得る工程を更に有する前記[1]~前記[3]の何れかに記載のコバルト・ニッケルの回収方法。
[5]前記原溶液が銅鉱石の湿式製錬工程の浸出貴液、銅抽出後液、または銅抽出処理後の排液であり、
 前記沈殿物を回収した後のザンセート処理の後液を前記湿式製錬工程の浸出工程で用いられる浸出液に戻して再利用する工程を更に有する前記[1]~前記[4]の何れかに記載のコバルト・ニッケルの回収方法。
The present invention is a cobalt-nickel recovery method that solves the above problems with the following requirements.
[1] A pretreatment step of removing one or both of copper ions and iron (III) ions contained in the raw solution containing one or both of cobalt and nickel;
A xanthate treatment step of adding a xanthate to the solution after the pretreatment to selectively precipitate one or both of cobalt and nickel xanthate salts and recovering the precipitate. How to recover cobalt and nickel.
[2] In the pretreatment step, a reduction treatment is performed by a cementation reaction,
When the raw solution contains copper ions, adding metallic aluminum to the raw solution to precipitate the copper ions in the raw solution into metallic copper,
When the raw solution contains iron (III) ions, metal aluminum is added to the raw solution to reduce the iron (III) ions in the raw solution to iron (II) ions, as described in [1] above. Cobalt and nickel recovery method.
[3] In the xanthate treatment step, the xanthate salt is selectively precipitated by using a flotation equipment to add the xanthate salt to the solution after the pretreatment, and the precipitate is collected as froth. [1] or the cobalt-nickel recovery method described in [2] above.
[4] The method for recovering cobalt-nickel according to any one of [1] to [3] above, further comprising the step of thermally decomposing the xanthate salt of the recovered precipitate to obtain cobalt-nickel slag.
[5] The raw solution is a leachate noble liquid of a hydrometallurgical process of copper ore, a liquid after copper extraction, or a waste liquid after copper extraction treatment,
According to any one of [1] to [4] above, further comprising a step of recycling the liquid after the xanthate treatment after collecting the precipitate by returning it to the leachate used in the leaching step of the hydrometallurgical smelting step. Cobalt and nickel recovery method.
 本発明の一態様に係る回収方法では、コバルトおよびニッケルのザンセート塩の形成に必要な量だけザンセート化物を添加すればよいので、原溶液中のコバルトおよびニッケルの濃度が低くても、効率的にコバルトおよびニッケルを回収することができる。 In the recovery method according to one embodiment of the present invention, it is only necessary to add xanthate in an amount necessary to form xanthate salts of cobalt and nickel, so even if the concentrations of cobalt and nickel in the raw solution are low, the recovery method can be efficiently carried out. Cobalt and nickel can be recovered.
 銅鉱石の湿式製錬工程の排液などの原溶液中には、コバルトおよびニッケルのザンセート塩よりも沈殿しやすい金属イオンの量は少ないので、実用的には前処理において原溶液から銅イオンと鉄(III)イオンを除去すればよい。前処理としてセメンテーション反応を用いると、銅イオンは金属銅として沈殿され、鉄(III)イオンは鉄(II)イオンに還元されるので、これらの反応に必要な量の置換金属(例えばアルミニウム)を供給すればよく、効率的である。また、置換金属のアルミニウムはコバルトやニッケルと共沈しないので、次工程のザンセート処理に悪影響を及ぼさずに前処理を行うことができる。 The amount of metal ions that are more likely to precipitate than cobalt and nickel xanthate salts is smaller in the raw solution such as the wastewater from the hydrometallurgical process of copper ore, so it is practical to remove copper ions from the raw solution during pretreatment. What is necessary is to remove iron (III) ions. Using a cementation reaction as a pretreatment, copper ions are precipitated as metallic copper and iron(III) ions are reduced to iron(II) ions, so that the amount of substituted metal (e.g. aluminum) required for these reactions is It is efficient. Further, since the substitution metal aluminum does not coprecipitate with cobalt or nickel, pretreatment can be performed without adversely affecting the next step of xanthate treatment.
 さらに、本発明の一態様に係る回収方法では、中和反応を利用せずに銅イオンや鉄(III)イオンなどの不純物を除去するので、pHなどの液性が殆ど変わらない。このためザンセート処理の後液を発生元に戻して再利用することができる。例えば、原溶液が銅鉱石の湿式製錬工程の浸出貴液、銅抽出後液、または銅抽出処理後の排液であれば、本発明の一態様に係る回収方法で得られるザンセート処理の後液を、銅鉱石の湿式製錬工程の浸出工程で用いられる浸出液に戻して循環、再利用することができ、廃水処理が不要である。また、本発明の一態様に係る回収方法は、中和法や溶媒抽出法と比べ、単純な工程および設備によって実施することができる。 Furthermore, in the recovery method according to one embodiment of the present invention, impurities such as copper ions and iron (III) ions are removed without using a neutralization reaction, so liquid properties such as pH are hardly changed. Therefore, the liquid after xanthate treatment can be returned to the source and reused. For example, if the raw solution is the leached noble liquor of the hydrometallurgical process of copper ore, the liquor after copper extraction, or the waste liquor after copper extraction treatment, after the xanthate treatment obtained by the recovery method according to one embodiment of the present invention. The liquid can be recycled and reused by returning it to the leachate used in the leaching process of the copper ore hydrometallurgical smelting process, and wastewater treatment is not required. Furthermore, the recovery method according to one embodiment of the present invention can be performed using simpler steps and equipment compared to the neutralization method and the solvent extraction method.
本実施形態の回収方法の一例を示す工程図A process diagram showing an example of the collection method of this embodiment
 以下、本実施形態のコバルト・ニッケルの回収方法の詳細を説明する。
 本実施形態の回収方法は、コバルトおよびニッケルのいずれか一方または両方を含む原溶液を用意する工程と、前記原溶液に含まれる銅イオンおよび鉄(III)イオンのいずれか一方または両方を除去する前処理工程と、前記前処理後の溶液にザンセート化物を添加して、コバルトおよびニッケルのいずれか一方または両方のザンセート塩を選択的に沈殿させ、沈殿物を回収するザンセート処理工程と、を有する。
 本実施形態の回収方法の一例を図1に示す。
Hereinafter, details of the cobalt-nickel recovery method of this embodiment will be explained.
The recovery method of the present embodiment includes the steps of preparing a raw solution containing one or both of cobalt and nickel, and removing one or both of copper ions and iron (III) ions contained in the raw solution. a pretreatment step, and a xanthate treatment step of adding a xanthate to the solution after the pretreatment to selectively precipitate one or both of cobalt and nickel xanthate salts and recovering the precipitate. .
An example of the collection method of this embodiment is shown in FIG.
<原溶液を用意する工程>
 本実施形態の回収方法において、コバルトおよびニッケルのいずれか一方または両方を含む原溶液は、例えば、銅鉱石の湿式製錬工程の浸出貴液、銅抽出後液、リチウムイオン廃電池の酸浸出貴液、またはこれら処理(銅抽出処理、酸浸出処理)後の排液などを含む溶液である。
 原溶液は、コバルトおよびニッケルのいずれか一方または両方と、銅イオンおよび鉄(III)イオンのいずれか一方または両方を含む。前記溶液を原溶液として用意する。
 銅鉱石の湿式製錬工程では、まず銅鉱石に浸出液を接触させて銅を侵出させ、浸出貴液を得る(浸出工程)。次いで、溶媒抽出法や沈殿法などにより、浸出貴液から銅を抽出する(銅抽出工程)。
 以下、銅を侵出させる前の溶液を“浸出液”(lixiviantまたはleach solution)と呼ぶ。侵出工程により得られ、銅を高濃度に含む溶液を“浸出貴液”(pregnant leach solution)と呼ぶ。銅抽出工程により銅が選択的に除去された後の溶液を“銅抽出後液”(raffinate)と呼ぶ。厳密には、溶媒抽出法により銅が選択的に除去された後の溶液は、“銅溶媒抽出後液”(solvent extraction raffinate)とも呼ばれる。銅抽出後液は、銅抽出処理後の排液と言うこともできる。
 また、所望の化学物質が除去された後に、化学プロセスまたは機械プロセスで残った溶液を“後液”(process discharge)と呼ぶ。
<Process of preparing stock solution>
In the recovery method of the present embodiment, the raw solution containing either one or both of cobalt and nickel is, for example, the leached precious liquid in the hydrometallurgical process of copper ore, the liquid after copper extraction, the acid leached precious liquid of lithium ion waste batteries, etc. This is a solution containing liquid or waste liquid after these treatments (copper extraction treatment, acid leaching treatment).
The raw solution contains one or both of cobalt and nickel, and one or both of copper ions and iron (III) ions. The solution is prepared as a stock solution.
In the hydrometallurgical smelting process for copper ore, first, the copper ore is brought into contact with a leachate to leach out the copper, thereby obtaining a leachate precious liquid (leaching process). Next, copper is extracted from the leached liquid by a solvent extraction method or a precipitation method (copper extraction step).
Hereinafter, the solution before copper is leached will be referred to as a "lixiviant" or "leach solution". The solution obtained by the leaching process and containing a high concentration of copper is called a "pregnant leach solution." The solution after copper has been selectively removed by the copper extraction process is called a "raffinate". Strictly speaking, the solution after copper has been selectively removed by the solvent extraction method is also called a "solvent extraction raffinate." The liquid after copper extraction can also be referred to as the waste liquid after the copper extraction process.
The solution remaining from a chemical or mechanical process after the desired chemical has been removed is also referred to as "process discharge."
<前処理工程>
 前記原溶液に含まれる銅イオンおよび鉄(III)イオンのいずれか一方または両方を除去する前処理を行う。銅イオンおよび鉄(III)イオンは、コバルトおよびニッケルのザンセート塩よりも溶解度積が低いザンセート塩を形成する不純物である。
 前処理では、銅イオンおよび鉄(III)イオンのいずれか一方または両方を除去する。詳細には、原溶液が銅イオンを含む場合、前処理で銅イオンを除去する。原溶液が鉄(III)イオンを含む場合、前処理で鉄(III)イオンを除去する。原溶液が銅イオン及び鉄(III)イオンを含む場合、前処理で銅イオン及び鉄(III)イオンを除去する。本実施形態では、鉄(III)イオンを除去することは、原溶液中の鉄(III)イオンの濃度を大幅に低減することである。
 前処理として、例えば、金属アルミニウム類を原溶液に添加してセメンテーション反応による還元処理を行う。金属アルミニウム類とは、金属アルミニウム板、アルミニウム屑やアルミニウム缶などのアルミニウムスクラップ、その他の金属アルミニウム含有物である。なお、セメンテーション反応での置換金属であるアルミニウムはコバルトやニッケルと共沈しない。
 反応速度の観点から、金属アルミニウム類の添加量(モル数)は、原溶液中の銅イオンと鉄(III)イオンの合計モル数の60倍以上であることが好ましい。
<Pre-treatment process>
Pretreatment is performed to remove one or both of copper ions and iron (III) ions contained in the raw solution. Copper ions and iron(III) ions are impurities that form xanthate salts, which have a lower solubility product than the cobalt and nickel xanthate salts.
In the pretreatment, one or both of copper ions and iron (III) ions are removed. Specifically, when the raw solution contains copper ions, the copper ions are removed in the pretreatment. If the raw solution contains iron (III) ions, the iron (III) ions are removed in the pretreatment. When the raw solution contains copper ions and iron (III) ions, the copper ions and iron (III) ions are removed in the pretreatment. In this embodiment, removing iron(III) ions is to significantly reduce the concentration of iron(III) ions in the raw solution.
As a pretreatment, for example, metal aluminum is added to the raw solution and reduction treatment is performed by cementation reaction. Metal aluminum refers to metal aluminum plates, aluminum scraps such as aluminum scraps and aluminum cans, and other metal aluminum-containing materials. Note that aluminum, which is a substitution metal in the cementation reaction, does not co-precipitate with cobalt or nickel.
From the viewpoint of reaction rate, the amount (number of moles) of metallic aluminum added is preferably 60 times or more the total number of moles of copper ions and iron (III) ions in the raw solution.
 対象金属より電気的に碑な金属を原溶液中に投入すればセメンテーション反応が生じるので、コバルトやニッケルよりも碑な亜鉛粉を用いる可能性もある。しかし、一般に銅鉱石の湿式製錬工程の銅抽出後液や排液などは強酸性(pHは1.5前後)であり、酸性下での亜鉛粉は反応性が高く、亜鉛粉自体が全て溶解して溶液中の亜鉛濃度を高めるので、本実施形態でのセメンテーション反応には適さない。 If a metal that is electrically more expensive than the target metal is added to the raw solution, a cementation reaction will occur, so there is a possibility that zinc powder, which is more expensive than cobalt or nickel, may be used. However, in general, the liquid and wastewater after copper extraction in the hydrometallurgical process of copper ore is strongly acidic (pH around 1.5), and zinc powder is highly reactive under acidic conditions, and the zinc powder itself is Since it dissolves and increases the zinc concentration in the solution, it is not suitable for the cementation reaction in this embodiment.
 原溶液に金属アルミニウム類を添加すると、原溶液中の銅イオンは還元されて金属銅になって沈殿し、鉄(III)イオンは鉄(II)イオンに還元される。原溶液中に銅イオンおよび鉄(III)イオンが含まれていると、ザンセート化物を添加したときに、これら銅イオンおよび鉄(III)イオンは、コバルトやニッケルと共に沈殿するので、コバルトやニッケルを選択的に沈殿させることができない。原溶液中の銅イオンおよび鉄(III)イオンをあらかじめ除去することによって、これらによる妨害を防ぐことができる。 When metallic aluminum is added to the raw solution, the copper ions in the raw solution are reduced to become metallic copper and precipitate, and the iron (III) ions are reduced to iron (II) ions. If the raw solution contains copper ions and iron (III) ions, these copper ions and iron (III) ions will precipitate together with cobalt and nickel when xanthate is added. cannot be selectively precipitated. Interference by copper ions and iron (III) ions in the raw solution can be prevented by removing them in advance.
 鉄(II)イオンは溶液中に存在しても、この鉄(II)のザンセート塩の溶解度積はコバルトやニッケルのザンセート塩の溶解度積よりも大きく、次工程で、鉄(II)イオンはコバルトやニッケルと共沈しない。このため、原溶液中の鉄(III)イオンを鉄(II)イオンに還元することによって、次工程でコバルトやニッケルを選択的に沈殿させることができる。 Even if iron (II) ions are present in the solution, the solubility product of iron (II) xanthate salts is larger than the solubility product of cobalt or nickel xanthate salts, and in the next step, iron (II) ions are converted to cobalt. and nickel. Therefore, by reducing the iron (III) ions in the raw solution to iron (II) ions, cobalt and nickel can be selectively precipitated in the next step.
 一方、前処理において鉄(II)イオンが溶液中に残る場合、後述するザンセート処理の後液を、銅鉱石の湿式製錬工程の浸出工程で用いられる浸出液に戻して再利用すると、この鉄(II)イオンが銅鉱石の酸化剤として働き、浸出速度を高めることができる。さらに、鉄(II)イオンは溶液中に残り、銅イオンと共に沈殿しないため、セメンテーション反応によって生じた金属銅の沈殿物に鉄が混入するのを防ぎ、回収した金属銅を製品として再利用することができる。 On the other hand, if iron(II) ions remain in the solution during the pretreatment, if the solution after the xanthate treatment described below is reused as the leachate used in the leaching process of the hydrometallurgical smelting process of copper ore, this iron (II) ion can be reused. II) Ions can act as oxidizing agents for copper ore and increase the leaching rate. Furthermore, iron (II) ions remain in the solution and do not precipitate together with copper ions, which prevents iron from being mixed into the metallic copper precipitate produced by the cementation reaction, allowing the recovered metallic copper to be reused as a product. be able to.
 なお、一般に、ザンセート塩の溶解度積がコバルトやニッケルのザンセート塩の溶解度積よりも小さい金属イオンは、例えば、Au、Ag、Hg、Cd、Pb、Bi、Sb、Snなどであり、これら金属イオンは阻害金属になるので、通常は前処理によって溶液中から除去するのが好ましい。しかし、銅鉱石の湿式製錬工程の浸出貴液、銅抽出後液や排液などの溶液では、コバルトやニッケルに比べてこれらの濃度は格段に小さく、一方、銅イオンや鉄(III)イオンはコバルトやニッケルよりも高濃度に含まれている。このため、銅イオンや鉄(III)イオンを除去すれば、次工程のザンセート処理によってコバルトやニッケルを十分に沈殿させることができる。アルミニウムイオン、マグネシウムイオン、クロムイオンは阻害金属にはならないので、これらは原溶液中に含まれていてもよい。 In general, metal ions whose solubility product of xanthate salt is smaller than that of cobalt or nickel are, for example, Au, Ag, Hg, Cd, Pb, Bi, Sb, Sn, etc. Since these become inhibitory metals, it is usually preferable to remove them from the solution by pretreatment. However, in solutions such as leached precious liquor, post-copper extraction liquor, and wastewater from the hydrometallurgical process of copper ore, the concentration of these is much lower than that of cobalt and nickel, while copper ions and iron(III) ions is contained in higher concentrations than cobalt and nickel. Therefore, if copper ions and iron (III) ions are removed, cobalt and nickel can be sufficiently precipitated by the xanthate treatment in the next step. Aluminum ions, magnesium ions, and chromium ions do not become inhibitory metals, so they may be included in the raw solution.
<ザンセート処理工程>
 前記前処理後の溶液に、ザンセート化物を添加してコバルトやニッケルをザンセート塩として沈殿させる。ザンセート化物として、例えば、メチルザンセートやエチルザンセートなどのアルキルザンセートを用いることができる。具体的には、カリウムアミルザンセート(Potassium Amyl Xanthate、PAX)、カリウムエチルザンセート(Potassium Ethyl Xanthate、PEX)、カリウムイソプロピルザンセート(Potassium Isopropyl Xanthate、PIPX)などを用いることができる。また、前記化合物のカリウムがナトリウムに置き換わったもの(SAX、SEX、SIPX)、ナトリウムイソブチルザンセート(Sodium Isobutyl Xanthate)、カリウムプロピルザンセート(Potassium Propyl Xanthate)なども用いることができる。
<Xanthate treatment process>
A xanthate salt is added to the pretreated solution to precipitate cobalt and nickel as xanthate salts. As the xanthate, for example, alkyl xanthates such as methyl xanthate and ethyl xanthate can be used. Specifically, potassium amyl xanthate (PAX), potassium ethyl xanthate (PEX), potassium isopropyl xanthate (PIPX), etc. can be used. Further, compounds in which potassium is replaced with sodium in the above compounds (SAX, SEX, SIPX), sodium isobutyl xanthate, potassium propyl xanthate, etc. can also be used.
 ザンセート化物の添加量は、コバルトやニッケルの量に対して1~3当量であれば十分な沈殿量を得ることができる。溶液中にコバルトおよびニッケルが含まれるときは、ザンセート化物の添加量は、前処理の後液中のコバルトとニッケルの合計量に対して1~4.5当量であればよい。なお、コバルトやニッケルの回収率を90%以上に高めるには、ザンセート化物の添加量は2.5当量以上が好ましい。またザンセート化物の添加量は3当量以下が好ましい。ザンセート化物の添加量が4.5当量超の場合、ザンセート化物の添加量当たりのコバルトの回収率が低下するため、好ましくない。
 なお、コバルトとニッケルの合計量に対するザンセート化物の添加量の当量は、以下の式で算出される値である。
 ザンセート化物の添加量の当量=ザンセート化物のモル数/コバルトとニッケルの合計モル数
If the amount of xanthate added is 1 to 3 equivalents relative to the amount of cobalt or nickel, a sufficient amount of precipitation can be obtained. When the solution contains cobalt and nickel, the amount of xanthate added may be 1 to 4.5 equivalents based on the total amount of cobalt and nickel in the solution after pretreatment. In addition, in order to increase the recovery rate of cobalt and nickel to 90% or more, the amount of xanthate compound added is preferably 2.5 equivalents or more. Further, the amount of the xanthate compound added is preferably 3 equivalents or less. If the amount of xanthate added exceeds 4.5 equivalents, the recovery rate of cobalt per amount of xanthate added will decrease, which is not preferable.
Note that the equivalent amount of the xanthate compound added to the total amount of cobalt and nickel is a value calculated by the following formula.
Equivalent amount of added amount of xanthate = number of moles of xanthate / total number of moles of cobalt and nickel
 コバルトやニッケルのザンセート塩の沈殿物は、分子量が大きいほど油状に近い性状になる。これらの沈殿物は微粒子なので溶液中に浮遊している。この溶液に高分子凝集剤を加えて沈殿物を凝集させて粗大化させ、フロス(froth)にして回収することができる。例えば、浮遊選鉱設備を用い、ザンセート処理後の溶液を撹拌しながら、溶液に空気を吹き込み、フロスを発生させる。次いで、高分子凝集剤を溶液に加えて、浮遊する沈殿物を凝集させて粗大化させる。そして、沈殿物の凝集体をフロスに付着させて、浮遊して溶液からあふれた凝集物フロスを回収する(オーバーフローとして回収する)。フロスへの凝集物(沈殿物の凝集体)の付着が認められない状態になったら、空気の吹込みを止めてフロスの発生を停止し、それまでにオーバーフローした凝集物フロスを回収する。そして、凝集物フロスを濾過してコバルト・ニッケルザンセート塩を回収する。
 高分子凝集剤の具体例として、ノニオン性高分子凝集剤が挙げられる。
The larger the molecular weight of the precipitate of xanthate salts of cobalt or nickel, the more oily it becomes. Since these precipitates are fine particles, they are suspended in the solution. A polymer flocculant is added to this solution to flocculate and coarsen the precipitate, which can then be collected as froth. For example, using flotation equipment, air is blown into the solution while stirring the solution after xanthate treatment to generate froth. Next, a polymer flocculant is added to the solution to flocculate and coarsen the floating precipitate. Then, the aggregates of the precipitate are attached to the floss, and the aggregates that float and overflow from the solution are collected (recovered as overflow). When no flocs (agglomerates of precipitates) are observed to adhere to the floss, the air blowing is stopped to stop the generation of froth, and the flocs that have overflowed so far are collected. The cobalt-nickel xanthate salt is then recovered by filtering the aggregate froth.
Specific examples of polymer flocculants include nonionic polymer flocculants.
 回収したコバルト・ニッケルザンセート塩の沈殿物を150℃以上400℃以下で焙焼すると、有機物が取り除かれてコバルト、ニッケルが濃縮した焙焼滓(コバルト・ニッケル滓)を得ることができる。なお、焙焼滓は、焼鉱とも言い、滓はか焼物(calcine)である。一方、前記ザンセート塩の凝集物フロスを分離した後液は、銅鉱石の湿式製錬工程の浸出工程で用いられる浸出液に戻して再利用することができる。 By roasting the recovered cobalt-nickel xanthate salt precipitate at a temperature of 150°C or higher and 400°C or lower, organic matter is removed and a roasted slag (cobalt-nickel slag) in which cobalt and nickel are concentrated can be obtained. Incidentally, roasted slag is also called sintered ore, and slag is a calcined product. On the other hand, the liquid after separating the xanthate salt aggregate froth can be reused by being returned to the leachate used in the leaching process of the hydrometallurgical process of copper ore.
 以下、本実施形態の実施例を示す。実施例等において、液中および滓中の金属濃度はICP発光分光分析法(Inductively Coupled Plasma Atomic Emission Spectroscopy、ICP-AES)によって測定した。液中の鉄(II)イオン濃度はJIS規格(JIS K 0400-57-10、“1,10-フェナントロリン吸光光度法”)に従って測定した。液中の鉄(III)イオン濃度は、原溶液中の全鉄濃度から鉄(II)イオン濃度を引いて算出した。滓の熱分解挙動は、熱重量-示差熱分析装置(TG-DTA)によって測定した。
 また、実施例等において用いた原溶液は、銅鉱石の湿式製錬工程での銅抽出後液(ラフィネート)であった。この原溶液の成分を表1に示す。なお、原溶液のpHは、1.5であった。
 以下、表において、濃度の単位“%”は、質量%であり、単位“ppm”は、質量ppmである。
Examples of this embodiment will be shown below. In Examples and the like, the metal concentration in the liquid and the slag was measured by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy). The iron (II) ion concentration in the liquid was measured according to the JIS standard (JIS K 0400-57-10, "1,10-phenanthroline absorption spectrophotometry"). The iron (III) ion concentration in the solution was calculated by subtracting the iron (II) ion concentration from the total iron concentration in the original solution. The thermal decomposition behavior of the slag was measured by a thermogravimetric-differential thermal analyzer (TG-DTA).
In addition, the raw solution used in Examples and the like was a liquid (raffinate) after copper extraction in a hydrometallurgical process of copper ore. The components of this stock solution are shown in Table 1. Note that the pH of the original solution was 1.5.
In the following tables, the unit of concentration "%" is mass %, and the unit "ppm" is mass ppm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔実施例1〕
(前処理:セメンテーション反応による還元処理)
 原溶液200mlに金属アルミニウム板8gを浸漬した状態で原溶液を24時間、撹拌した。次いで、沈殿物を除去した。24時間経過後の溶液中の銅イオン濃度、Fe(II)イオン濃度を測定した。銅イオン濃度、Fe(II)イオン濃度を表2に示す。試験No.1の原溶液中の銅除去率は99.8%、Fe(II)イオンの割合は100%であった。
 金属アルミニウム板に代えて、アルミニウム飲料缶を3mmの大きさに破砕したアルミニウム缶屑、またはこのアルミニウム缶屑を電気炉にて500℃で1時間加熱し、表面塗装を除去した加熱アルミニウム缶屑を用いたこと以外は、試験No.1と同様にセメンテーション反応による還元処理を行った(試験No.2,3)。この結果を表2に示した。試験No.2,3の何れの場合も、銅の大部分は除去され、Fe(III)イオンの殆どはFe(II)イオンに還元された。
 なお、溶液中のFe(II)の割合は、溶液中の全鉄濃度〔Fe(II)濃度+Fe(III)濃度〕に対するFe(II)濃度の比であり、次式[1]に従って求めた。
 Fe(II)割合=Fe(II)濃度/(Fe(II)濃度+Fe(III)濃度)×100・・・[1]
[Example 1]
(Pretreatment: reduction treatment by cementation reaction)
The raw solution was stirred for 24 hours with 8 g of a metal aluminum plate immersed in 200 ml of the raw solution. The precipitate was then removed. After 24 hours, the copper ion concentration and Fe(II) ion concentration in the solution were measured. Table 2 shows the copper ion concentration and Fe(II) ion concentration. Test No. The copper removal rate in the raw solution of No. 1 was 99.8%, and the proportion of Fe(II) ions was 100%.
Instead of the metal aluminum plate, use aluminum can scraps obtained by crushing aluminum beverage cans into 3 mm pieces, or heated aluminum can scraps obtained by heating the aluminum can scraps at 500°C for 1 hour in an electric furnace to remove the surface coating. Test No. was used except that it was used. Reduction treatment by cementation reaction was performed in the same manner as in 1 (Test Nos. 2 and 3). The results are shown in Table 2. Test No. In both cases 2 and 3, most of the copper was removed and most of the Fe(III) ions were reduced to Fe(II) ions.
The proportion of Fe(II) in the solution is the ratio of the Fe(II) concentration to the total iron concentration in the solution [Fe(II) concentration + Fe(III) concentration], and was determined according to the following formula [1]. .
Fe(II) ratio = Fe(II) concentration/(Fe(II) concentration + Fe(III) concentration)×100...[1]
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔実施例2〕
(ザンセート処理)
 セメンテーションによる前処理を行った実施例1の試験No.1の溶液を50ml採取し、この溶液50mlに表3,4に示すザンセート薬剤(PAX、PEX、PIPX、SIPX)の水溶液を添加し、撹拌した。30分撹拌後の残液を濾過し、濾液(後液)中のコバルトイオンおよびニッケルイオンの濃度を測定した。そして、生成した沈殿物へのコバルトおよびニッケルの分配率を算出した。この結果を表3,4に示す。
 “残液”は、ザンセート薬剤を添加後であって濾過前の溶液であり、沈殿物が浮遊した状態の溶液である。
 “後液”は、ザンセート薬剤を添加して濾過後の濾液である。すなわち、後液は、残液を濾過して沈殿物を除去した後の濾液である。後液は、残液の濾液とも言う。
 ザンセート薬剤の添加当量は、溶液中のコバルトおよびニッケルの合計量に対するザンセート薬剤の添加量の当量である。
 沈殿物への分配率は、原溶液中のコバルトまたはニッケルの重量(g)に対する沈殿物中のコバルトまたはニッケルの重量(g)の比(%)であり、次式[2]によって求めた。
 沈殿物への分配率(%)=100-[残液の濾液(後液)中のCo又はNiの濃度(%)×残液の濾液(後液)の重量(g)/(原溶液中のCo又はNiの濃度(%)×原溶液の初期重量]×100・・・[2]
[Example 2]
(xanthate treatment)
Test No. 1 of Example 1, which was pretreated by cementation. 50 ml of the solution of No. 1 was taken, and an aqueous solution of xanthate drugs (PAX, PEX, PIPX, SIPX) shown in Tables 3 and 4 was added to 50 ml of this solution, and the mixture was stirred. The residual liquid after stirring for 30 minutes was filtered, and the concentrations of cobalt ions and nickel ions in the filtrate (rear liquid) were measured. Then, the distribution ratio of cobalt and nickel to the generated precipitate was calculated. The results are shown in Tables 3 and 4.
The "residual solution" is a solution after adding the xanthate drug but before filtration, and is a solution in which precipitates are suspended.
"After-liquid" is the filtrate after addition of xanthate drug and filtration. That is, the after-liquid is the filtrate obtained by filtering the residual liquid and removing the precipitate. The after-liquid is also called the filtrate of the residual liquid.
The equivalent amount of xanthate drug added is the equivalent of the amount of xanthate drug added to the total amount of cobalt and nickel in the solution.
The distribution ratio to the precipitate is the ratio (%) of the weight (g) of cobalt or nickel in the precipitate to the weight (g) of cobalt or nickel in the original solution, and was determined by the following formula [2].
Distribution rate to the precipitate (%) = 100 - [Concentration of Co or Ni in the filtrate of the residual solution (%) x Weight (g) of the filtrate of the residual solution (rear solution) / (in the raw solution Concentration of Co or Ni (%) x initial weight of stock solution] x 100...[2]
 表3に示すように、コバルトおよびニッケルについて、90%以上の回収率を得るには、ザンセート薬剤の添加量は、溶液中のコバルトとニッケルの合計量に対して2.5当量以上が必要である。また、使用するザンセート薬剤の種類によってNiザンセートの液中での安定性に差があり、PIPXを用いた場合(試験No.30,31)では、Coザンセートに先んじてNiザンセートが生成した。何れの試験No.10~12,20~22,30,31においても、溶液中のAl、Mg、Feの沈殿物への分配率は1%以下であった。 As shown in Table 3, in order to obtain a recovery rate of 90% or more for cobalt and nickel, the amount of xanthate agent added must be 2.5 equivalents or more based on the total amount of cobalt and nickel in the solution. be. In addition, there are differences in the stability of Ni xanthate in the liquid depending on the type of xanthate drug used, and when PIPX was used (Test Nos. 30 and 31), Ni xanthate was produced before Co xanthate. Which test no. Also in samples Nos. 10-12, 20-22, 30, and 31, the distribution ratio of Al, Mg, and Fe in the solution to the precipitate was 1% or less.
 表4は、ザンセート薬剤としてSIPXを用いた場合のSIPXの添加当量、溶液のpH、及び沈殿物へのCoの分配率を示す。溶液のpHによってコバルトの回収率が若干影響されるが、表3,4の結果より、溶液中のコバルトとニッケルの合計量に対してザンセート薬剤の添加量が2.5当量以上4.5当量以下の場合、90%以上の回収率が得られることが分かった。 Table 4 shows the equivalent amount of SIPX added, the pH of the solution, and the distribution rate of Co to the precipitate when SIPX was used as the xanthate agent. The cobalt recovery rate is slightly affected by the pH of the solution, but from the results in Tables 3 and 4, the amount of xanthate agent added is 2.5 equivalents or more and 4.5 equivalents relative to the total amount of cobalt and nickel in the solution. It has been found that a recovery rate of 90% or more can be obtained in the following cases.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
〔実施例3〕
 実施例1の試験No.1の溶液5Lについて、小型浮選機を用いてザンセート塩の沈殿物の生成と濃縮回収を行った。ザンセート薬剤としてPAX、PIPX、PEXを用い、溶液中のコバルトとニッケルの合計量に対して2.5当量のザンセート薬剤を添加した。溶液を15分程度撹拌して金属イオンとザンセートを反応させた。次いで、高分子凝集剤(栗田工業株式会社製のクリフロックPN161)を添加して浮遊選鉱(flotation method)を実施した。浮遊選鉱は、空気吹込み量1~10L/min、浮選時間10~15分の条件で行った。フロスの状態を目視で確認し、フロスに凝集物が付着しない状態まで、浮遊選鉱を行い、前記状態を浮遊選鉱の終点とした。
 オーバーフローした凝集物フロスを回収し、次いで、凝集物フロスを濾過して、沈殿物の凝集物と濾液に分別した。凝集物フロスの濾液中のコバルトとニッケルの濃度を測定した。凝集物フロスを回収した後の浮選機内の残液は、微細な沈殿物が懸濁した懸濁液であった。懸濁状態の残液中のコバルトとニッケルの濃度を測定した。次いで、残液を濾過して、微細な沈殿物と濾液に分別した。残液の濾液(後液)中のコバルトとニッケルの濃度を測定した。測定されたコバルトとニッケルの濃度から、後述する計算式により、コバルトとニッケルの分配率を算出した。この結果を表5に示す。
 PAXを用いた場合、ザンセート塩の沈殿物が油状となって浮選機の内壁に付着したため、浮遊選鉱での濃縮回収はできなかった。一方、PEX、PIPXを用いた場合は、浮遊選鉱での濃縮回収が可能であった。なお、PEXを用いた場合、沈殿物は容易に凝集し、フロス中の沈殿凝集物のCo分配率は89.9%であった。
[Example 3]
Test No. of Example 1 Regarding 5 L of the solution of No. 1, a small flotation machine was used to generate a precipitate of xanthate salt and concentrate and recover it. PAX, PIPX, and PEX were used as xanthate agents, and 2.5 equivalents of xanthate agents were added to the total amount of cobalt and nickel in the solution. The solution was stirred for about 15 minutes to allow the metal ions and xanthate to react. Then, a polymer flocculant (Cliffrock PN161 manufactured by Kurita Industries, Ltd.) was added to perform flotation method. Flotation was carried out under the conditions of air blowing rate of 1 to 10 L/min and flotation time of 10 to 15 minutes. The condition of the froth was visually confirmed, and flotation was performed until no aggregates adhered to the froth, and this state was defined as the end point of flotation.
The overflowed aggregate froth was collected and then filtered to separate the precipitate aggregate and filtrate. The concentrations of cobalt and nickel in the filtrate of the aggregate froth were measured. The residual liquid in the flotation machine after collecting the aggregate froth was a suspension of fine precipitates. The concentrations of cobalt and nickel in the suspended liquid were measured. The residual liquid was then filtered and separated into a fine precipitate and a filtrate. The concentrations of cobalt and nickel in the residual filtrate (after-liquid) were measured. From the measured concentrations of cobalt and nickel, the distribution ratio of cobalt and nickel was calculated using the formula described below. The results are shown in Table 5.
When PAX was used, the precipitate of xanthate salt became oily and adhered to the inner wall of the flotation machine, so it was not possible to concentrate and recover it by flotation. On the other hand, when PEX and PIPX were used, concentrated recovery by flotation was possible. In addition, when PEX was used, the precipitate was easily aggregated, and the Co distribution rate of the precipitate aggregate in the floss was 89.9%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示す分配率は、以下の計算式によって求められる。
(A)原溶液中の金属濃度(%)
(B)原溶液重量(g)
(C)浮遊選鉱によってオーバーフローした凝集物フロス重量(g)
(D)凝集物フロスの濾液中の金属濃度(%)
(E)残液重量(g)
(F)残液の懸濁状態での金属濃度(%)
(G)残液の濾液(後液)中の金属濃度(%)
 上記のように(A)~(G)は、それぞれのパラメータを表すとすると、各分配率は、以下の式で算出される。
(H)液中未反応金属への分配率(%)=100-((C)×(D)+(E)×(G))÷((A)×(B))×100
(I)残液中沈殿への分配率(%)=((F)-(G))×(E)÷((A)×(B))×100
(J)フロス中沈殿への分配率(%)=100-(H)-(I)
 液中未反応金属への分配率とは、沈殿物とならずに金属イオンとして後液中に残ったコバルト又はニッケルの割合を示す。
 残液中沈殿への分配率とは、残液中に懸濁して存在する微細な沈殿物となったコバルト又はニッケルの割合を示す。
 フロス中沈殿への分配率とは、フロスに付着した沈殿物の凝集物となったコバルト又はニッケルの割合を示す。
The distribution ratio shown in Table 5 is determined by the following formula.
(A) Metal concentration in raw solution (%)
(B) Weight of stock solution (g)
(C) Weight of aggregate floc overflowed by flotation (g)
(D) Metal concentration (%) in the filtrate of aggregate froth
(E) Residual liquid weight (g)
(F) Metal concentration in suspension of residual liquid (%)
(G) Metal concentration (%) in the residual filtrate (after-liquid)
Assuming that (A) to (G) represent the respective parameters as described above, each distribution rate is calculated using the following formula.
(H) Distribution rate (%) to unreacted metal in the liquid = 100 - ((C) x (D) + (E) x (G)) ÷ ((A) x (B)) x 100
(I) Distribution rate to precipitate in residual liquid (%) = ((F) - (G)) x (E) ÷ ((A) x (B)) x 100
(J) Distribution rate (%) to precipitate in froth = 100-(H)-(I)
The distribution ratio to unreacted metal in the liquid indicates the proportion of cobalt or nickel that remains in the liquid as metal ions without forming a precipitate.
The distribution ratio to precipitates in the residual liquid indicates the proportion of cobalt or nickel that becomes fine precipitates suspended in the residual liquid.
The distribution ratio to the precipitate in the froth indicates the proportion of cobalt or nickel that becomes an aggregate of the precipitate attached to the floss.
〔実施例4〕
 実施例2で回収した固体沈殿物をTG-DTAを用い、加熱分解による重量変化を測定した。何れのザンセート薬剤を用いた場合でも、150℃~250℃において、有機物のほとんどが加熱分解され、試料重量は70%~75%減少した。すなわち、加熱後の重量は、加熱前の重量の25~30%であった。加熱分解後のコバルト・ニッケル滓の組成の一例を表6に示す。表6に記載の元素以外は、主に酸素(O)であった。
[Example 4]
The weight change due to thermal decomposition of the solid precipitate collected in Example 2 was measured using TG-DTA. Regardless of which xanthate agent was used, most of the organic matter was thermally decomposed at 150°C to 250°C, and the sample weight decreased by 70% to 75%. That is, the weight after heating was 25 to 30% of the weight before heating. Table 6 shows an example of the composition of the cobalt-nickel slag after thermal decomposition. The elements other than those listed in Table 6 were mainly oxygen (O).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〔実施例5〕
(Co,Ni回収後の後液による銅鉱石の浸出試験)
 実施例2の試験No.22のCo,Ni回収後の後液に硫酸を添加してpH1.5に調整した。得られた溶液を浸出液として、パルプ濃度10%の銅鉱石スラリーに加えて、8時間振とうした(激しく振った)。次いで、溶液(浸出貴液)中への銅の浸出量から鉱石の銅の浸出率を求めた。なお、試験開始1、2、4時間後にpHを測定し、硫酸を添加してpH1.5に維持した。
 対照試験として、実操業での浸出液に相当する銅湿式製錬の銅抽出後液(ラフィネート)を用いて同様の試験を行った。これらの結果を表7に示す。
 銅鉱石からの浸出率は、ラフィネート、及びCo,Ni回収後の後液の何れについても90%以上を示した。この結果から、Co,Ni回収後の後液は、通常のラフィネートと同様に、銅鉱石の浸出液として利用できることが確認された。
[Example 5]
(Leaching test of copper ore using liquid after recovering Co, Ni)
Test No. of Example 2. Sulfuric acid was added to the solution after recovering Co and Ni in No. 22 to adjust the pH to 1.5. The resulting solution was added as a leachate to a copper ore slurry with a pulp concentration of 10%, and was shaken (vigorously shaken) for 8 hours. Next, the leaching rate of copper in the ore was determined from the amount of copper leached into the solution (leaching solution). The pH was measured 1, 2, and 4 hours after the start of the test, and sulfuric acid was added to maintain the pH at 1.5.
As a control test, a similar test was conducted using a liquid after copper extraction (raffinate) from copper hydrometallurgy, which corresponds to the leachate in actual operation. These results are shown in Table 7.
The leaching rate from the copper ore was 90% or more for both the raffinate and the liquid after recovering Co and Ni. From this result, it was confirmed that the liquid after recovering Co and Ni can be used as a leachate for copper ore in the same way as normal raffinate.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
〔参考例1〕
 表1と同様の組成の模擬液を作製した。ただし、Feイオンは全てFe(III)イオンとした。模擬液150mlを撹拌しながら、水酸化カルシウム粉末を添加し、pHを段階的に上昇させて沈殿物を生成させた。溶液中の金属イオン濃度から金属イオンの沈殿物への分配率を求めた。
 pH2.5付近から鉄水酸化物が析出を開始し、pH3.5付近でアルミ水酸化物が析出した。溶液中のCo濃度は、FeおよびAlの濃度と同様な挙動で減少しており、不純物の中和除去の過程でCoは共沈していることが確認された。pH4.2で99%以上のFeおよびAlを溶液中から除去したが、その際の溶液中のCoの残留率は4.5%であった。
[Reference example 1]
A simulated liquid having the same composition as in Table 1 was prepared. However, all Fe ions were Fe(III) ions. Calcium hydroxide powder was added to 150 ml of the simulated solution while stirring, and the pH was raised stepwise to form a precipitate. The distribution ratio of metal ions to the precipitate was determined from the metal ion concentration in the solution.
Iron hydroxide started to precipitate around pH 2.5, and aluminum hydroxide started to precipitate around pH 3.5. The Co concentration in the solution decreased in the same manner as the Fe and Al concentrations, and it was confirmed that Co was co-precipitated in the process of neutralizing and removing impurities. Although 99% or more of Fe and Al were removed from the solution at pH 4.2, the residual rate of Co in the solution at that time was 4.5%.
〔比較例1〕
 表1に示す組成の銅抽出後液(ラフィネート)について、実施例1に示す前処理を行わずに、ザンセート薬剤PEXを、前記ラフィネートのCoとNiの合計量に対して、3当量の量で添加した。それ以外は実施例2と同様のザンセート処理を行った。この結果を表8に示す。比較例1の沈殿物へのCo,Niの分配率は、実施例2の沈殿物へのCo,Niの分配率より大幅に低下しており、沈殿物中にCuおよびFe(III)が含まれていると思われる。
[Comparative example 1]
Regarding the copper extraction solution (raffinate) having the composition shown in Table 1, the xanthate drug PEX was added in an amount of 3 equivalents based on the total amount of Co and Ni in the raffinate without performing the pretreatment shown in Example 1. Added. Other than that, the same xanthate treatment as in Example 2 was performed. The results are shown in Table 8. The distribution ratio of Co and Ni to the precipitate of Comparative Example 1 is significantly lower than that of Co and Ni to the precipitate of Example 2, and the precipitate contains Cu and Fe(III). It seems that it is.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本実施形態の回収方法は、銅鉱石の湿式製錬工程の銅抽出後液、リチウムイオン廃電池の酸浸出貴液、及び銅抽出処理や酸浸出処理の後の排液などの原溶液からコバルトおよびニッケルを回収する工程に適用することができる。本実施形態の回収方法にてコバルト・ニッケルを回収した後の後液は、液性が原溶液からほとんど変化していないので、後液を銅鉱石の浸出液として再利用することができる。このため、本実施形態の回収方法は実操業において有用性が高い。 The recovery method of this embodiment collects cobalt from raw solutions such as the solution after copper extraction in the hydrometallurgical process of copper ore, the acid leaching noble solution of lithium ion waste batteries, and the waste solution after copper extraction treatment and acid leaching treatment. It can also be applied to the process of recovering nickel. The after-liquid after cobalt-nickel is recovered by the recovery method of the present embodiment has almost no change in liquid properties from the original solution, so the after-liquid can be reused as a leachate for copper ore. Therefore, the recovery method of this embodiment is highly useful in actual operations.

Claims (5)

  1.  コバルトおよびニッケルのいずれか一方または両方を含む原溶液に含まれる銅イオンおよび鉄(III)イオンのいずれか一方または両方を除去する前処理工程と、
     前記前処理後の溶液にザンセート化物を添加して、コバルトおよびニッケルのいずれか一方または両方のザンセート塩を選択的に沈殿させ、沈殿物を回収するザンセート処理工程と、を有することを特徴とするコバルト・ニッケルの回収方法。
    A pretreatment step of removing one or both of copper ions and iron (III) ions contained in the raw solution containing one or both of cobalt and nickel;
    A xanthate treatment step of adding a xanthate to the solution after the pretreatment to selectively precipitate one or both of cobalt and nickel xanthate salts and recovering the precipitate. How to recover cobalt and nickel.
  2.  前記前処理工程では、セメンテーション反応による還元処理を行い、
     前記原溶液が銅イオンを含む場合、前記原溶液に金属アルミニウム類を添加して、前記原溶液中の銅イオンを金属銅にして沈殿させ、
     前記原溶液が鉄(III)イオンを含む場合、前記原溶液に金属アルミニウム類を添加して、前記原溶液中の鉄(III)イオンを鉄(II)イオンに還元する請求項1に記載のコバルト・ニッケルの回収方法。
    In the pretreatment step, reduction treatment is performed by cementation reaction,
    When the raw solution contains copper ions, adding metallic aluminum to the raw solution to precipitate the copper ions in the raw solution into metallic copper,
    When the raw solution contains iron (III) ions, metal aluminum is added to the raw solution to reduce the iron (III) ions in the raw solution to iron (II) ions. How to recover cobalt and nickel.
  3.  前記ザンセート処理工程では、浮遊選鉱設備を用い、前記前処理後の溶液に前記ザンセート化物を添加して、前記ザンセート塩を選択的に沈殿させ、前記沈殿物をフロスにして回収する請求項1または請求項2に記載のコバルト・ニッケルの回収方法。 In the xanthate treatment step, the xanthate salt is selectively precipitated by using a flotation equipment to add the xanthate salt to the solution after the pretreatment, and the precipitate is collected as froth. The method for recovering cobalt-nickel according to claim 2.
  4.  回収した前記沈殿物の前記ザンセート塩を加熱分解してコバルト・ニッケル滓を得る工程を更に有する請求項1または請求項2に記載のコバルト・ニッケルの回収方法。 The method for recovering cobalt-nickel according to claim 1 or 2, further comprising the step of thermally decomposing the xanthate salt of the recovered precipitate to obtain cobalt-nickel slag.
  5.  前記原溶液が銅鉱石の湿式製錬工程の浸出貴液、銅抽出後液、または銅抽出処理後の排液であり、
     前記沈殿物を回収した後のザンセート処理の後液を前記湿式製錬工程の浸出工程で用いられる浸出液に戻して再利用する工程を更に有する請求項1または請求項2に記載のコバルト・ニッケルの回収方法。
    The raw solution is a leached noble liquid of a hydrometallurgical process of copper ore, a liquid after copper extraction, or a waste liquid after copper extraction treatment,
    The method of cobalt-nickel according to claim 1 or 2, further comprising a step of recycling the solution after the xanthate treatment after collecting the precipitate by returning it to the leachate used in the leaching step of the hydrometallurgical smelting step. Collection method.
PCT/JP2023/008091 2022-03-28 2023-03-03 Cobalt and nickel recovery method WO2023189211A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023050686A JP2023145408A (en) 2022-03-28 2023-03-27 Method of recovering cobalt and nickel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022052432 2022-03-28
JP2022-052432 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023189211A1 true WO2023189211A1 (en) 2023-10-05

Family

ID=88201261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008091 WO2023189211A1 (en) 2022-03-28 2023-03-03 Cobalt and nickel recovery method

Country Status (2)

Country Link
JP (1) JP2023145408A (en)
WO (1) WO2023189211A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241118A (en) * 1975-09-30 1977-03-30 Toray Ind Inc Proces for recovering coablt from residue of oxidation catalyst derive d from d from cobalt/manganese
JPH09194957A (en) * 1996-01-16 1997-07-29 Sumitomo Metal Mining Co Ltd Recovering method of valuable metal from manganese nodule
JP2001329320A (en) * 2000-05-19 2001-11-27 Mitsui Mining & Smelting Co Ltd Method for separating and recovering zinc and nickel from plating waste solution
JP2005095885A (en) * 2003-09-03 2005-04-14 Jfe Engineering Kk Method for treating cleaning liquid containing lead
JP2010285639A (en) * 2009-06-10 2010-12-24 Yokohama Kinzoku Kk Method for concentrating noble metal in refining raw material containing dental material-polished powder by floatation process
JP2011214132A (en) * 2010-03-17 2011-10-27 Jx Nippon Mining & Metals Corp Recovery method for cobalt
JP2016191119A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 Method for removing copper and collecting valuable metals from copper ion-containing solution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241118A (en) * 1975-09-30 1977-03-30 Toray Ind Inc Proces for recovering coablt from residue of oxidation catalyst derive d from d from cobalt/manganese
JPH09194957A (en) * 1996-01-16 1997-07-29 Sumitomo Metal Mining Co Ltd Recovering method of valuable metal from manganese nodule
JP2001329320A (en) * 2000-05-19 2001-11-27 Mitsui Mining & Smelting Co Ltd Method for separating and recovering zinc and nickel from plating waste solution
JP2005095885A (en) * 2003-09-03 2005-04-14 Jfe Engineering Kk Method for treating cleaning liquid containing lead
JP2010285639A (en) * 2009-06-10 2010-12-24 Yokohama Kinzoku Kk Method for concentrating noble metal in refining raw material containing dental material-polished powder by floatation process
JP2011214132A (en) * 2010-03-17 2011-10-27 Jx Nippon Mining & Metals Corp Recovery method for cobalt
JP2016191119A (en) * 2015-03-31 2016-11-10 Jx金属株式会社 Method for removing copper and collecting valuable metals from copper ion-containing solution

Also Published As

Publication number Publication date
JP2023145408A (en) 2023-10-11

Similar Documents

Publication Publication Date Title
JP5904459B2 (en) Manufacturing method of high purity nickel sulfate
CN101278064B (en) Method for processing nickel bearing raw material in chloride-based leaching
CA2685369C (en) Method of recovering metal values from ores
AU2013238535B2 (en) Method for producing high-purity nickel sulfate
JP5439997B2 (en) Method for recovering copper from copper-containing iron
CN101994008B (en) Zinc-cobalt separation process for producing nickel-cobalt slag by zinc smelting purification
AU751862C (en) Selective precipitation of nickel and cobalt
MX2014002803A (en) Process for purifying zinc oxide.
Sinha et al. Recovery of high value copper and zinc oxide powder from waste brass pickle liquor by solvent extraction
JP5934712B2 (en) Arsenic-containing material processing method
WO2020107122A1 (en) Process for the recovery of value metals from zinc-bearing ores, concentrates, intermediates and wastes
JP2010138490A (en) Method of recovering zinc
JP2020105587A (en) Treatment method of acidic solution containing noble metal, selenium and tellurium
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
WO2023189211A1 (en) Cobalt and nickel recovery method
US10689732B2 (en) Methods for controlling iron via magnetite formation in hydrometallurgical processes
JP2011161386A (en) Method for treating thioarsenite
WO2020118455A1 (en) Process for the recovery of zinc and associated value metals from various materials
JP2018109208A (en) Method of recovering valuable material
Cortina et al. Separation of arsenic from antimony and bismuth in an eluate
JP2022155328A (en) Classification method of ruthenium and iridium
JP2020147812A (en) Processing method of copper iron cobalt alloy
JPS59137307A (en) Method for recovering high purity tellurium from intermediate containing tellurium produced during smelting of lead or zinc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779240

Country of ref document: EP

Kind code of ref document: A1