JP2020184487A - Recovering method for positive electrode material for lithium-ion battery - Google Patents

Recovering method for positive electrode material for lithium-ion battery Download PDF

Info

Publication number
JP2020184487A
JP2020184487A JP2019089072A JP2019089072A JP2020184487A JP 2020184487 A JP2020184487 A JP 2020184487A JP 2019089072 A JP2019089072 A JP 2019089072A JP 2019089072 A JP2019089072 A JP 2019089072A JP 2020184487 A JP2020184487 A JP 2020184487A
Authority
JP
Japan
Prior art keywords
lithium
ion secondary
secondary battery
crushed
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019089072A
Other languages
Japanese (ja)
Inventor
省吾 内海
Shogo Uchiumi
省吾 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019089072A priority Critical patent/JP2020184487A/en
Publication of JP2020184487A publication Critical patent/JP2020184487A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Disintegrating Or Milling (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a collection method of controlling processing costs by using fuel such as heavy oil or electric power required for heating, and recovering highly valuable metals such as cobalt, nickel, and lithium from a lithium-ion secondary battery without being subject to legal restrictions on the installation and operation of industrial heating furnaces.SOLUTION: A recovering method of a positive electrode material from a lithium ion secondary battery includes a salt water discharge step S01 of immersing a lithium ion secondary battery containing cobalt, nickel and lithium as a positive electrode material in salt water to remove residual charges, a crushing step S02 of crushing the lithium-ion secondary battery whose residual charge has been removed in the salt water discharge step to a maximum size of 10 mm or less, a magnetic force sorting step S03 of sorting and removing an iron material from the crushed material crushed in the crushing step by magnetic force, and a sieve sorting step S04 of sieving the crushed material from which the iron material has been removed in the magnetic force sorting step to sort and collect the crushed material having a maximum size of 2.8 mm or less.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、製造過程で発生した不良品のリチウムイオン二次電池、あるいは、ノートパソコンまたは家電製品に搭載され電池の寿命に伴い廃棄されたリチウムイオン二次電池の正極から、コバルト、ニッケル、リチウムなどの有価の高い金属材料を多く含む正極材料の回収方法に関する。 The present invention relates to, for example, cobalt, nickel from a defective lithium ion secondary battery generated in the manufacturing process, or a positive electrode of a lithium ion secondary battery mounted on a notebook computer or a home appliance and discarded at the end of the battery life. , A method for recovering a positive electrode material containing a large amount of a valuable metal material such as lithium.

リチウムイオン二次電池は、鉛蓄電池、ニッカド二次電池、ニッケル水素二次電池等と比較して、軽量かつ高容量な二次電池であり、ハイブリッド自動車、電気自動車、携帯電話、ノートパソコン等に広く使用されている。近年のリチウムイオン二次電池の大幅な需要によって、将来、大量廃棄が想定される使用済のリチウムイオン二次電池の処理が問題になりつつある。また、リチウムイオン二次電池の正極材料には、コバルト酸リチウム、ニッケル酸リチウム、ニッケル−マンガン−コバルト系酸化物等が使用されている。これらの材料にはコバルト、ニッケル、及びリチウム等の有価性金属が含まれており、安価な処理と共にリサイクル利用を図ることが望まれている。 Lithium-ion secondary batteries are lighter and higher-capacity secondary batteries than lead-acid batteries, NiCad secondary batteries, nickel-metal hydride secondary batteries, etc., and are used in hybrid vehicles, electric vehicles, mobile phones, laptop computers, etc. Widely used. Due to the great demand for lithium-ion secondary batteries in recent years, the treatment of used lithium-ion secondary batteries, which are expected to be discarded in large quantities in the future, is becoming a problem. Further, lithium cobalt oxide, lithium nickel oxide, nickel-manganese-cobalt oxide and the like are used as the positive electrode material of the lithium ion secondary battery. These materials contain valuable metals such as cobalt, nickel, and lithium, and it is desired to recycle them together with inexpensive treatment.

特許文献1には、リチウムイオン二次電池をロータリーキルン炉、流動床炉、ストーカー炉等の炉を用いて、摂氏500度〜摂氏650度に加熱した後に、機械式破砕機および振動篩選別機を用いて正極材料を回収し、再利用する処理方法が提案されている。 Patent Document 1 describes a mechanical crusher and a vibrating sieve sorter after heating a lithium ion secondary battery to 500 degrees Celsius to 650 degrees Celsius using a furnace such as a rotary kiln furnace, a fluidized bed furnace, or a stalker furnace. A treatment method has been proposed in which the positive electrode material is recovered and reused.

特開2012−248323号公報Japanese Unexamined Patent Publication No. 2012-248323

しかし、特許文献1の技術では、リチウムイオン二次電池を、炉を用いて加熱するため、処理費用が高くなる。このため、回収される有価性金属の価値との比較において経済的合理性が低いと推測される。また、工業用加熱炉の設置に際しては、設置場所や安全対策に法的な規制があるため、リチウムイオン二次電池を回収して処理を行う業者は限定されている。このため、将来的に増加が予想される使用済リチウムイオン二次電池を処理するためには処理能力の不足が問題になることが推測される。 However, in the technique of Patent Document 1, since the lithium ion secondary battery is heated by using a furnace, the processing cost is high. Therefore, it is presumed that the economic rationality is low in comparison with the value of the recovered valuable metal. In addition, when installing an industrial heating furnace, there are legal restrictions on the installation location and safety measures, so the number of companies that collect and process lithium-ion secondary batteries is limited. Therefore, it is presumed that insufficient processing capacity becomes a problem in order to process the used lithium ion secondary battery, which is expected to increase in the future.

本発明は、加熱工程を使用する回収方法の課題を解決するもので、加熱に必要な重油あるいは電力等の燃料を使用することによる処理費用を抑制し、工業用加熱炉の設置および操業に関する法的な規制を受ける事なく、リチウムイオン二次電池からコバルト、ニッケル、リチウム等の有価性の高い金属を回収することができる回収方法を提供することを目的とする。 The present invention solves the problem of the recovery method using a heating process, suppresses the processing cost due to the use of fuel such as heavy oil or electric power required for heating, and is a method relating to the installation and operation of an industrial heating furnace. It is an object of the present invention to provide a recovery method capable of recovering highly valuable metals such as cobalt, nickel and lithium from a lithium ion secondary battery without being subject to various restrictions.

上記目的を達成するための処理フローは以下の通りである。すなわち、本発明の1つの態様の回収方法は、正極材料としてコバルト、ニッケルおよびリチウムを含有するリチウムイオン二次電池を塩水に浸漬させて残留電荷を除去する塩水放電工程と、塩水放電工程で残留電荷が除去された前記リチウムイオン二次電池を最大寸法10mm以下に破砕する破砕工程と、破砕工程で破砕された破砕物から鉄材料を磁力により選別して除去する磁力選別工程と、磁力選別工程で鉄材料が除去された破砕物を篩に掛けて、最大寸法2.8mm以下の破砕物を選別して回収する篩選別工程とを有する。 The processing flow for achieving the above object is as follows. That is, one aspect of the recovery method of the present invention is a salt water discharge step of immersing a lithium ion secondary battery containing cobalt, nickel and lithium as a positive electrode material in salt water to remove residual charges, and a salt water discharge step of residual charges. A crushing step of crushing the lithium ion secondary battery from which the electric charge has been removed to a maximum size of 10 mm or less, a magnetic force sorting step of sorting and removing an iron material from the crushed material crushed in the crushing step by magnetic force, and a magnetic force sorting step. The crushed material from which the iron material has been removed is sieved, and the crushed material having a maximum size of 2.8 mm or less is sorted and collected.

前記態様の回収方法によれば、費用を抑制しつつ、リチウムイオン二次電池から、ニッケル、コバルトおよびリチウム等の有価性の高い金属材料を多く含む正極材料を回収することが可能である。 According to the recovery method of the above aspect, it is possible to recover a positive electrode material containing a large amount of highly valuable metal materials such as nickel, cobalt and lithium from a lithium ion secondary battery while suppressing costs.

本発明の一実施形態の回収方法を示す処理フロー図。The processing flow diagram which shows the recovery method of one Embodiment of this invention. 図1の回収方法に使用される一軸破砕機の図。The figure of the uniaxial crusher used for the recovery method of FIG. 加熱工程を有しない図1の回収方法の破砕物の粒度分布と加熱工程を有する特許文献1の回収方法の破砕物の粒度分布との比較を示すグラフ。FIG. 5 is a graph showing a comparison between the particle size distribution of the crushed product of the recovery method of FIG. 1 having no heating step and the particle size distribution of the crushed product of the recovery method of Patent Document 1 having a heating step. 図2の一軸破砕機のスクリーン目開きと破砕物の重量比率との関係を示すグラフ。The graph which shows the relationship between the screen opening of the uniaxial crusher of FIG. 2 and the weight ratio of a crushed material. 加熱工程を有しない図1の回収方法の破砕物の組成分析結果と加熱工程を有する特許文献1の回収方法の破砕物の組成分析結果とを示す図。The figure which shows the composition analysis result of the crushed matter of the recovery method of FIG. 1 which does not have a heating step, and the composition analysis result of the crushed matter of the recovery method of Patent Document 1 which has a heating step. 図1の回収方法および特許文献1の回収方法について、図5の組成分析結果に基づく粒度範囲と有価性金属の回収率との関係を示す図。The figure which shows the relationship between the particle size range and the recovery rate of a valuable metal based on the composition analysis result of FIG. 5 about the recovery method of FIG. 1 and the recovery method of Patent Document 1.

本発明のリチウムイオン二次電池からの正極材料回収方法について、図1を用いて詳細に説明する。図1は、本発明の一実施形態のリチウムイオン二次電池からの正極材料の回収方法を示す処理フロー図である。 The method for recovering the positive electrode material from the lithium ion secondary battery of the present invention will be described in detail with reference to FIG. FIG. 1 is a processing flow chart showing a method of recovering a positive electrode material from a lithium ion secondary battery according to an embodiment of the present invention.

図1に示すように、本発明の一実施形態のリチウムイオン二次電池からの正極材料の回収方法は、塩水放電工程S01、破砕工程S02、磁力選別工程S03および篩選別工程S04を少なくとも備える。この回収方法は、更に必要に応じてその他の工程を備えることができる。 As shown in FIG. 1, the method for recovering the positive electrode material from the lithium ion secondary battery according to the embodiment of the present invention includes at least a salt water discharge step S01, a crushing step S02, a magnetic force sorting step S03, and a sieve sorting step S04. This recovery method can further include other steps as needed.

処理の対象となるリチウムイオン二次電池に、特に制限はない。前記回収方法により、例えば、家電製品やノートパソコンに搭載された電池であって、寿命により廃棄されて回収された使用済のリチウムイオン二次電池、あるいは、リチウムイオン二次電池の製造過程で発生した不良品のリチウムイオン二次電池から正極材料を回収できる。 The lithium ion secondary battery to be treated is not particularly limited. By the above recovery method, for example, a battery mounted on a home appliance or a notebook computer, which is generated in the manufacturing process of a used lithium ion secondary battery that has been discarded and recovered due to its life, or a lithium ion secondary battery. The positive electrode material can be recovered from the defective lithium ion secondary battery.

リチウムイオン二次電池の形状に、特に制限はない。前記回収方法により、例えば、円筒型、ボタン型、コイン型、角型などの形状のリチウムイオン二次電池から正極材料を回収できる。 The shape of the lithium ion secondary battery is not particularly limited. According to the recovery method, the positive electrode material can be recovered from a lithium ion secondary battery having a shape such as a cylinder, a button, a coin, or a square.

リチウムイオン二次電池を構成する正極材料としては、例えば、コバルト酸リチウム、コバルトニッケル酸リチウム等が挙げられる。 Examples of the positive electrode material constituting the lithium ion secondary battery include lithium cobalt oxide, lithium cobalt nickel oxide, and the like.

塩水放電工程S01では、回収されたリチウムイオン電池の内部電荷を除去する。これにより、次の破砕工程S02でリチウムイオン二次電池を破砕したときに、加熱、発火等の原因となる内部短絡の発生を防止する。具体的な方法としては、塩水が貯留されたドラム缶あるいは樹脂製の容器に、回収されたリチウムイオン二次電池を投入し、一定時間、浸漬させて放電を促す。塩水の濃度については、特に制限はない。本実施形態では、一例として、水道水100リットルに対して1kg程度の食塩を混合した食塩水を用いている。 In the salt water discharge step S01, the internal charge of the recovered lithium ion battery is removed. This prevents the occurrence of an internal short circuit that causes heating, ignition, etc. when the lithium ion secondary battery is crushed in the next crushing step S02. As a specific method, the recovered lithium ion secondary battery is put into a drum can or a resin container in which salt water is stored and immersed for a certain period of time to promote discharge. There is no particular limitation on the concentration of salt water. In this embodiment, as an example, a salt solution obtained by mixing about 1 kg of salt with 100 liters of tap water is used.

浸漬時間については、気温やリチウムイオン電池の種類により適宜選択することが好ましいが、14日間以上、浸漬させれば残留電荷をほとんど除去することが可能である。 The immersion time is preferably selected as appropriate depending on the air temperature and the type of lithium ion battery, but it is possible to remove most of the residual charge by immersing the battery for 14 days or more.

破砕工程S02では、塩水放電工程S01により残留電荷が除去されたリチウムイオン二次電池を機械式破砕機により破砕する。破砕工程S02で使用する破砕機としては、図2に示すような一軸式の破砕機が好ましい。図2に示す一軸式の破砕機の投入口2より投入されたリチウムイオン二次電池1は、回転刃3および固定刃4によって破砕される。詳しくは、リチウムイオン二次電池1は、プッシャー5により回転刃3に押し付けられることで少しずつ削り取られるように破砕される。すなわち、リチウムイオン二次電池1の正極材料を内包する鉄材料で作られたケースを回転刃3が引っ掻くことで、ケースを引き千切り、後の篩選別工程S04で、リチウムイオン二次電池1内部の正極材料およびケースを精度よく分離することが可能になる。また、一軸式の破砕機の回転刃3の下方には、スクリーン6が設けられている。リチウムイオン二次電池1は、このスクリーン6の目開き以下の大きさになるまで繰り返し回転刃3および固定刃4にて破砕される。スクリーン6の目開き以下になった破砕物7は、スクリーン6の下方に排出される。 In the crushing step S02, the lithium ion secondary battery from which the residual charge has been removed by the salt water discharge step S01 is crushed by a mechanical crusher. As the crusher used in the crushing step S02, a uniaxial crusher as shown in FIG. 2 is preferable. The lithium ion secondary battery 1 charged from the charging port 2 of the uniaxial crusher shown in FIG. 2 is crushed by the rotary blade 3 and the fixed blade 4. Specifically, the lithium ion secondary battery 1 is crushed so as to be scraped off little by little by being pressed against the rotary blade 3 by the pusher 5. That is, when the rotary blade 3 scratches the case made of the iron material containing the positive electrode material of the lithium ion secondary battery 1, the case is torn off, and in the subsequent sieve sorting step S04, the inside of the lithium ion secondary battery 1 It is possible to accurately separate the positive electrode material and the case. Further, a screen 6 is provided below the rotary blade 3 of the uniaxial crusher. The lithium ion secondary battery 1 is repeatedly crushed by the rotary blade 3 and the fixed blade 4 until the size of the screen 6 is equal to or smaller than the opening of the screen 6. The crushed material 7 that is below the opening of the screen 6 is discharged below the screen 6.

前記回収方法は、焼却炉による加熱工程を使用しない点で、特許文献1の回収方法と異なっている。特許文献1に記載の回収方法では、リチウムイオン二次電池を摂氏500度〜摂氏650度の範囲で加熱する。これは、正極材料と正極材料を塗布しているアルミ箔とを結着させているバインダー成分、例えば、フッ化ビリニデン、四フッ化エチレン、アクリロニトリル、エチレンオキシド等の単独重合体または共重合体、スチレンブタジエンゴム等の樹脂結着剤を炭化させて結着力を弱めることにより、破砕工程および篩選別工程で、アルミ箔からの正極材料の剥離を促進させて正極材料の回収率を高めるためである。 The recovery method is different from the recovery method of Patent Document 1 in that a heating step by an incinerator is not used. In the recovery method described in Patent Document 1, the lithium ion secondary battery is heated in the range of 500 degrees Celsius to 650 degrees Celsius. This is a binder component that binds the positive electrode material and the aluminum foil coated with the positive electrode material, for example, homopolymers or copolymers such as bilinidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide, and styrene. This is because the resin binder such as butadiene rubber is carbonized to weaken the binding force, thereby promoting the peeling of the positive electrode material from the aluminum foil in the crushing step and the sieve sorting step, and increasing the recovery rate of the positive electrode material.

図3は、加熱工程を有しない本発明の一実施形態の方法の破砕物7の粒度分布と、加熱工程を有する特許文献1の方法の破砕物7の粒度分布とを比較したグラフである。 FIG. 3 is a graph comparing the particle size distribution of the crushed product 7 of the method of one embodiment of the present invention having no heating step with the particle size distribution of the crushed product 7 of the method of Patent Document 1 having a heating step.

前記回収方法および特許文献1の回収方法を用いて、塩水放電工程S01で2週間塩水に浸漬させた後、天日干しにて72時間、残留水分を乾燥させた50kgのリチウムイオン二次電池を破砕する実験を行った。図3は、その実験の結果得られた破砕物7の粒度分布を示している。図3において、有価性金属が多く含まれると考えられる最大寸法0.25mm以下の破砕物7の重量比率を比べると、加熱工程を有する特許文献1の回収方法が、43.2%であるのに対し、加熱工程を有しない前記回収方法が、51%であった。すなわち、破砕物7を最大寸法0.25mm以下まで破砕すると、破砕物7の重量比率の差は僅かであり、加熱工程の有無は、正極材料の回収率に大きく影響しないことがわかった。 Using the above recovery method and the recovery method of Patent Document 1, a 50 kg lithium ion secondary battery in which the residual water was dried for 72 hours in the sun after being immersed in salt water for 2 weeks in the salt water discharge step S01 was crushed. An experiment was conducted. FIG. 3 shows the particle size distribution of the crushed product 7 obtained as a result of the experiment. In FIG. 3, comparing the weight ratio of the crushed material 7 having the maximum size of 0.25 mm or less, which is considered to contain a large amount of valuable metal, the recovery method of Patent Document 1 having a heating step is 43.2%. On the other hand, 51% of the recovery methods did not have a heating step. That is, when the crushed material 7 was crushed to the maximum size of 0.25 mm or less, the difference in the weight ratio of the crushed material 7 was small, and it was found that the presence or absence of the heating step did not significantly affect the recovery rate of the positive electrode material.

図4は、図2の一軸式の破砕機のスクリーン6の目開きと、破砕物7の重量比率との関係を示すグラフである。塩水放電工程S01で内部電荷を除去した50kgのリチウムイオン二次電池を一軸式の破砕機を用いて破砕する実験を行った。この実験では、一軸式の破砕機のスクリーン6の目開き寸法を直径6mm、直径10mm、直径15mm、直径20mmに変更して、スクリーン6の目開きと破砕された破砕物7の重量比率との関係を調べた。破砕に使用したリチウムイオン二次電池は、直径18mm、長さ65mmの円筒型のリチウムイオン二次電池であり、塩水放電工程S01で2週間塩水に浸漬させた後、天日干しにて72時間、残留水分を乾燥させたものを使用した。 FIG. 4 is a graph showing the relationship between the opening of the screen 6 of the uniaxial crusher of FIG. 2 and the weight ratio of the crushed material 7. An experiment was conducted in which a 50 kg lithium ion secondary battery from which the internal charge had been removed in the salt water discharge step S01 was crushed using a uniaxial crusher. In this experiment, the opening dimensions of the screen 6 of the uniaxial crusher were changed to 6 mm in diameter, 10 mm in diameter, 15 mm in diameter, and 20 mm in diameter, and the opening of the screen 6 and the weight ratio of the crushed crushed material 7 were changed. I investigated the relationship. The lithium ion secondary battery used for crushing is a cylindrical lithium ion secondary battery having a diameter of 18 mm and a length of 65 mm. After being immersed in salt water for 2 weeks in the salt water discharge step S01, it was dried in the sun for 72 hours. The one obtained by drying the residual water was used.

図4に示すように、スクリーン6の目開きが大きくなればなるほど、最大寸法の大きな破砕物7の重量比率が増え、スクリーン6の目開きが小さくなればなるほど、最大寸法の小さな破砕物7の重量比率が増える傾向があることが、この実験により分かった。破砕物7の最大寸法が小さいということは、リチウムイオン二次電池の外装であるケースと内包される正極材料が十分に分離されていることを意味する。 As shown in FIG. 4, the larger the opening of the screen 6, the larger the weight ratio of the crushed material 7 having the largest size, and the smaller the opening of the screen 6, the smaller the crushed material 7 having the maximum size. This experiment showed that the weight ratio tended to increase. The small maximum size of the crushed material 7 means that the case that is the exterior of the lithium ion secondary battery and the positive electrode material contained therein are sufficiently separated.

図4を参照すると、スクリーン6の目開きが、直径6mmおよび直径10mmであるとき、0.25mm以下の破砕物7の重量比率が、50%以上になっている。このため、一軸式の破砕機のスクリーン6の目開きは、直径6mm以上でかつ10mm以下であるのが好ましいと言える。 Referring to FIG. 4, when the opening of the screen 6 is 6 mm in diameter and 10 mm in diameter, the weight ratio of the crushed material 7 of 0.25 mm or less is 50% or more. Therefore, it can be said that the opening of the screen 6 of the uniaxial crusher is preferably 6 mm or more in diameter and 10 mm or less in diameter.

なお、10mmを超える目開きのスクリーン6を有する一軸式の破砕機を用いて破砕工程S02を行った場合、リチウムイオン二次電池1のケースと正極材料との分離が不十分なままの破砕物7が排出されてしまう。このため、後の磁力選別工程S03で表面に正極材料が貼りついたままのケースが回収されてしまうことになり、正極材料の回収率が極端に低くなる。また、スクリーン6の目開きが直径6mmより小さい場合は、正極材料の回収率を低下させることには直接繋がらないが、破砕工程S02の処理時間が長くなる。 When the crushing step S02 is performed using a uniaxial crusher having a screen 6 having an opening of more than 10 mm, the crushed product in which the case of the lithium ion secondary battery 1 and the positive electrode material are not sufficiently separated. 7 is discharged. Therefore, in the subsequent magnetic force sorting step S03, the case in which the positive electrode material is still attached to the surface is collected, and the recovery rate of the positive electrode material becomes extremely low. Further, when the opening of the screen 6 is smaller than 6 mm in diameter, it does not directly lead to a decrease in the recovery rate of the positive electrode material, but the processing time in the crushing step S02 becomes long.

磁力選別工程S03では、破砕工程S02で破砕されたリチウムイオン二次電池の破砕物から、磁力により鉄材料を選別して除去する。磁力選別工程に使用する装置に特に制限はなく、例えば、ドラム回転式磁力選別機あるいは吊り下げ式磁力選別機を使用することができる。 In the magnetic force sorting step S03, the iron material is sorted and removed by magnetic force from the crushed material of the lithium ion secondary battery crushed in the crushing step S02. The apparatus used in the magnetic force sorting step is not particularly limited, and for example, a drum rotary magnetic force sorter or a suspended magnetic force sorter can be used.

篩選別工程S04は、磁力選別工程S03により、鉄材料が除去された後のリチウムイオン二次電池の破砕物7に含まれる正極材料以外の材料を篩に掛けて選別して除去する工程である。正極材料以外の材料としては、正極材料を塗布しているアルミ箔、負極材料が塗布されている銅箔、磁力選別工程S03で取り残された鉄材料等が挙げられる。篩選別工程に使用する装置に特に制限はなく、目的に応じて適宜選択することができる。例えば、篩選別工程には、振動篩、多段式振動篩、サイクロン式篩等を使用することができる。篩選別工程に使用する装置の篩の目開きに特に制限はなく、目的に応じて適宜選択することができるが、0.5mmから2.8mmの目開きの篩を使用するのが好ましい。 The sieving sorting step S04 is a step of sieving a material other than the positive electrode material contained in the crushed product 7 of the lithium ion secondary battery after the iron material is removed by the magnetic force sorting step S03 to sort and remove the material. .. Examples of the material other than the positive electrode material include an aluminum foil coated with the positive electrode material, a copper foil coated with the negative electrode material, and an iron material left behind in the magnetic force sorting step S03. The apparatus used in the sieving sorting step is not particularly limited, and can be appropriately selected according to the purpose. For example, a vibrating sieve, a multi-stage vibrating sieve, a cyclone type sieve, or the like can be used in the sieve sorting step. The mesh size of the sieve of the apparatus used in the sieve sorting step is not particularly limited and may be appropriately selected depending on the intended purpose, but it is preferable to use a sieve having a mesh size of 0.5 mm to 2.8 mm.

図5は、加熱工程を有しない図1の回収方法の破砕物の組成分析結果と加熱工程を有する特許文献1の回収方法の破砕物の組成分析結果とを示す図である。組成分析は、図3に記載の破砕物について行った。具体的には、(6)0.25mm以下の最大寸法、(5)0.25mmを超えかつ0.5mm以下の最大寸法、(4)0.5mmを超えかつ1.0mm以下の最大寸法、(3)1.0mmを超えかつ2.8mm以下の最大寸法、(2)2.8mmを超えかつ4.75mm以下の最大寸法、および(1)4.75mmを超える最大寸法の6種類の粒度範囲に選別された破砕物7からそれぞれ適量の破砕物7を採取して、ICP発光分光分析法にて、正極材料に含有されるコバルト、ニッケル、リチウム、鉄、アルミ、銅の6種類の金属の含有量を測定した。その結果、有価性の高いコバルト、ニッケルおよびリチウムは、加熱工程を有する特許文献1の回収方法、および、加熱工程を有しない図1の回収方法共に、最大寸法が0.25mm以下の破砕物7に最も多く含有されていることが分かった。特許文献1の回収方法および図1の回収方法共に、回収された有価性金属は、溶媒抽出処理によりそれぞれの単一元素にリサイクルされることになる。溶媒抽出処理は、回収された金属粉を硫酸あるいは塩酸の酸溶液に溶解させる浸出工程を経た後に、それぞれの回収元素に適した抽出剤を使用して行われる。浸出工程では、最大寸法の大きな金属粉は溶解するのに時間が必要で溶け残りが発生する可能性があるため、最大寸法はできるだけ小さい方が好ましい。 FIG. 5 is a diagram showing the composition analysis result of the crushed product of the recovery method of FIG. 1 having no heating step and the composition analysis result of the crushed product of the recovery method of Patent Document 1 having a heating step. Composition analysis was performed on the crushed material shown in FIG. Specifically, (6) maximum size of 0.25 mm or less, (5) maximum size of more than 0.25 mm and 0.5 mm or less, (4) maximum size of more than 0.5 mm and 1.0 mm or less, Six types of particle size: (3) maximum dimensions exceeding 1.0 mm and 2.8 mm or less, (2) maximum dimensions exceeding 2.8 mm and 4.75 mm or less, and (1) maximum dimensions exceeding 4.75 mm. An appropriate amount of crushed material 7 is collected from each of the crushed material 7 selected in the range, and six types of metals, cobalt, nickel, lithium, iron, aluminum, and copper, contained in the positive electrode material by ICP emission spectroscopic analysis Content was measured. As a result, the highly valuable cobalt, nickel and lithium are crushed products having a maximum size of 0.25 mm or less in both the recovery method of Patent Document 1 having a heating step and the recovery method of FIG. 1 having no heating step. It was found that it was the most contained in. In both the recovery method of Patent Document 1 and the recovery method of FIG. 1, the recovered valuable metal is recycled into each single element by the solvent extraction treatment. The solvent extraction treatment is carried out by using an extractant suitable for each recovered element after undergoing a leaching step of dissolving the recovered metal powder in an acid solution of sulfuric acid or hydrochloric acid. In the leaching step, it is preferable that the maximum size is as small as possible because it takes time to dissolve the metal powder having a large maximum size and undissolved residue may be generated.

図6は、図1の回収方法および特許文献1の回収方法について、図5の組成分析結果に基づく粒度範囲と有価性金属の回収率との関係を示す図である。有価性の高い、コバルト、ニッケルおよびリチウムの3元素の回収率は、最大寸法2.8mm以下の破砕物7では、加熱工程を有する特許文献1の回収方法では、コバルトについては94.9%、ニッケルについては93.5%、リチウムについては95.5%が回収可能である。一方、加熱工程を有しない図1の回収方法では、コバルトについては93.1%、ニッケルについては92.5%、リチウムについては92.3%が回収可能である。従って、加熱工程を有しない図1の回収方法でも、加熱工程を有する特許文献1の回収方法と同等の有価性金属の回収が可能であると言える。 FIG. 6 is a diagram showing the relationship between the particle size range based on the composition analysis result of FIG. 5 and the recovery rate of valuable metals with respect to the recovery method of FIG. 1 and the recovery method of Patent Document 1. The recovery rate of the three highly valuable elements of cobalt, nickel and lithium is 94.9% for cobalt in the recovery method of Patent Document 1 having a heating step for the crushed product 7 having a maximum size of 2.8 mm or less. 93.5% of nickel and 95.5% of lithium can be recovered. On the other hand, in the recovery method of FIG. 1 which does not have a heating step, 93.1% of cobalt, 92.5% of nickel, and 92.3% of lithium can be recovered. Therefore, it can be said that the recovery method of FIG. 1 having no heating step can recover valuable metals equivalent to the recovery method of Patent Document 1 having a heating step.

すなわち、本発明の一実施形態の回収方法は、加熱工程を有していないので、加熱工程を有する特許文献1の回収方法と比べて、加熱に必要な重油あるいは電力等の燃料を使用することによる処理費用を抑制でき、工業用加熱炉の設置および操業に関する法的な規制を受ける事がない。また、本発明の一実施形態の回収方法は、加熱工程を有する特許文献1の回収方法と同等のレベルで、有価性金属を回収することができる。 That is, since the recovery method of one embodiment of the present invention does not have a heating step, a fuel such as heavy oil or electric power required for heating is used as compared with the recovery method of Patent Document 1 having a heating step. The processing cost can be suppressed, and there are no legal restrictions on the installation and operation of industrial heating furnaces. Further, the recovery method of one embodiment of the present invention can recover valuable metals at the same level as the recovery method of Patent Document 1 having a heating step.

本発明の一実施形態の回収方法は、加熱工程を有する特許文献1の処理フローと同等のレベルで有価性金属の回収が可能でありつつ、加熱工程を有しないことから、処理コストおよび環境への負荷を抑制できるので、産業上の利用価値が大きい。 The recovery method according to the embodiment of the present invention can recover valuable metals at a level equivalent to the treatment flow of Patent Document 1 having a heating step, but does not have a heating step. Since the load can be suppressed, it has great industrial applicability.

1 リチウムイオン二次電池
2 投入口
3 回転刃
4 固定刃
5 プッシャー
6 スクリーン
7 破砕物
1 Lithium-ion secondary battery 2 Input port 3 Rotary blade 4 Fixed blade 5 Pusher 6 Screen 7 Crushed material

Claims (1)

正極材料としてコバルト、ニッケルおよびリチウムを含有するリチウムイオン二次電池を塩水に浸漬させて残留電荷を除去する塩水放電工程と、
前記塩水放電工程で残留電荷が除去された前記リチウムイオン二次電池を、最大寸法10mm以下に破砕する破砕工程と、
前記破砕工程で破砕された破砕物から鉄材料を磁力により選別して除去する磁力選別工程と、
前記磁力選別工程で鉄材料が除去された破砕物を篩に掛けて、最大寸法2.8mm以下の破砕物を選別して回収する篩選別工程と
を有するリチウムイオン二次電池からの正極材料回収方法。
A salt water discharge step in which a lithium ion secondary battery containing cobalt, nickel and lithium as a positive electrode material is immersed in salt water to remove residual charges, and
A crushing step of crushing the lithium ion secondary battery from which the residual charge has been removed in the salt water discharge step to a maximum size of 10 mm or less, and a crushing step.
A magnetic force sorting step of sorting and removing an iron material from the crushed material crushed in the crushing step by a magnetic force.
Recovery of positive electrode material from a lithium ion secondary battery having a sieving step of sieving the crushed material from which the iron material has been removed in the magnetic force sorting step to sort and recover the crushed material having a maximum size of 2.8 mm or less. Method.
JP2019089072A 2019-05-09 2019-05-09 Recovering method for positive electrode material for lithium-ion battery Pending JP2020184487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019089072A JP2020184487A (en) 2019-05-09 2019-05-09 Recovering method for positive electrode material for lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089072A JP2020184487A (en) 2019-05-09 2019-05-09 Recovering method for positive electrode material for lithium-ion battery

Publications (1)

Publication Number Publication Date
JP2020184487A true JP2020184487A (en) 2020-11-12

Family

ID=73045393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019089072A Pending JP2020184487A (en) 2019-05-09 2019-05-09 Recovering method for positive electrode material for lithium-ion battery

Country Status (1)

Country Link
JP (1) JP2020184487A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097592A (en) * 2021-03-16 2021-07-09 深圳清研装备科技有限公司 Flexible and accurate separation method and system for positive and negative electrode materials of waste lithium battery
CN114188626A (en) * 2021-11-05 2022-03-15 华中科技大学 Method for comprehensively separating and recycling materials in retired battery
CN114583303A (en) * 2022-01-12 2022-06-03 顺尔茨环保(北京)有限公司 Crushing method and system for waste lithium ion batteries
CN115069733A (en) * 2022-05-27 2022-09-20 汪洋 Waste battery disassembling and recycling system
JP2023502147A (en) * 2019-12-31 2023-01-20 オメガ ハーベスド メトラーギカル,アイエヌシー Coke dust as static neutralizer for waste battery recycling and waste battery recycling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306394A (en) * 1995-04-28 1996-11-22 Ricoh Co Ltd Processing method for used battery
JP2002184471A (en) * 2000-12-12 2002-06-28 Sumitomo Metal Mining Co Ltd Method of recovering valuable metal from used nickel- hydrogen secondary battery
JP2013004299A (en) * 2011-06-16 2013-01-07 Mitsubishi Materials Corp Recycling method of lithium ion secondary battery
JP2015195129A (en) * 2014-03-31 2015-11-05 三菱マテリアル株式会社 Treatment method for used lithium ion battery
JP2017174517A (en) * 2016-03-18 2017-09-28 三菱マテリアル株式会社 Method for collecting valuable substance from used lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306394A (en) * 1995-04-28 1996-11-22 Ricoh Co Ltd Processing method for used battery
JP2002184471A (en) * 2000-12-12 2002-06-28 Sumitomo Metal Mining Co Ltd Method of recovering valuable metal from used nickel- hydrogen secondary battery
JP2013004299A (en) * 2011-06-16 2013-01-07 Mitsubishi Materials Corp Recycling method of lithium ion secondary battery
JP2015195129A (en) * 2014-03-31 2015-11-05 三菱マテリアル株式会社 Treatment method for used lithium ion battery
JP2017174517A (en) * 2016-03-18 2017-09-28 三菱マテリアル株式会社 Method for collecting valuable substance from used lithium ion battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023502147A (en) * 2019-12-31 2023-01-20 オメガ ハーベスド メトラーギカル,アイエヌシー Coke dust as static neutralizer for waste battery recycling and waste battery recycling method
JP7295596B2 (en) 2019-12-31 2023-06-21 オメガ ハーベスド メトラーギカル,アイエヌシー Coke dust as static neutralizer for waste battery recycling and waste battery recycling method
CN113097592A (en) * 2021-03-16 2021-07-09 深圳清研装备科技有限公司 Flexible and accurate separation method and system for positive and negative electrode materials of waste lithium battery
CN114188626A (en) * 2021-11-05 2022-03-15 华中科技大学 Method for comprehensively separating and recycling materials in retired battery
CN114188626B (en) * 2021-11-05 2023-03-10 华中科技大学 Method for comprehensively separating and recycling materials in retired battery
CN114583303A (en) * 2022-01-12 2022-06-03 顺尔茨环保(北京)有限公司 Crushing method and system for waste lithium ion batteries
CN114583303B (en) * 2022-01-12 2024-04-19 顺尔茨环保(北京)有限公司 Crushing method and system for waste lithium ion batteries
CN115069733A (en) * 2022-05-27 2022-09-20 汪洋 Waste battery disassembling and recycling system
CN115069733B (en) * 2022-05-27 2023-08-25 安徽海创循环科技有限公司 Waste battery disassembly and recovery system

Similar Documents

Publication Publication Date Title
JP2020184487A (en) Recovering method for positive electrode material for lithium-ion battery
Windisch-Kern et al. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies
JP6198027B1 (en) How to recover valuable materials from used lithium ion batteries
JP6859598B2 (en) How to recover valuables from used lithium-ion batteries
US9359659B2 (en) Method for recovering valuable material from lithium-ion secondary battery, and recovered material containing valuable material
JP6748274B2 (en) How to recover valuables from lithium-ion secondary batteries
WO2013051305A1 (en) Method for recovering valuable materials from lithium ion secondary cells
JP2012079630A (en) Recovery method of valuables from lithium ion secondary battery and recovered material having valuables
JP2019130474A (en) Regenerated negative electrode active material recovered from discarded lithium ion battery containing lithium titanate and recovery method of the same
JP2016219402A (en) Recovery method of valuables from lithium ion secondary battery
WO2021177005A1 (en) Method for recovering valuable metals from waste battery
Zheng et al. Powering battery sustainability: a review of the recent progress and evolving challenges in recycling lithium-ion batteries
JP6966960B2 (en) Lithium-ion battery waste disposal method
Sun Lithium-Ion Battery Recycling: Challenges and Opportunities
JP6100991B2 (en) Method for recovering valuable material from positive electrode of lithium ion secondary battery
WO2023194506A1 (en) Lithium-ion battery recycling method
JP7413847B2 (en) Method for recovering valuable metals from waste batteries
JP7357801B2 (en) How to reuse active materials using cathode scraps
JP7316411B1 (en) Method for collecting valuables from lithium ion secondary battery
JP7389354B2 (en) Valuable metal recovery method
JP7176707B1 (en) Recycled positive electrode material precursor, recycled positive electrode material, production method thereof, and recycled lithium ion secondary battery
CN117446778B (en) Recycling process for leftover materials of positive electrode of lithium iron phosphate battery
JP7423910B2 (en) Method for recovering valuables from waste batteries, crushing equipment
TW202247521A (en) Method for separating valuable substance
EP4355921A1 (en) Battery recycling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221220