JP2015195129A - Treatment method for used lithium ion battery - Google Patents

Treatment method for used lithium ion battery Download PDF

Info

Publication number
JP2015195129A
JP2015195129A JP2014072876A JP2014072876A JP2015195129A JP 2015195129 A JP2015195129 A JP 2015195129A JP 2014072876 A JP2014072876 A JP 2014072876A JP 2014072876 A JP2014072876 A JP 2014072876A JP 2015195129 A JP2015195129 A JP 2015195129A
Authority
JP
Japan
Prior art keywords
lithium ion
crushed
ion battery
mixture
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014072876A
Other languages
Japanese (ja)
Other versions
JP6238070B2 (en
Inventor
大輔 原口
Daisuke HARAGUCHI
大輔 原口
平田浩一郎
Koichiro Hirata
英範 鶴巻
Hidenori Tsurumaki
英範 鶴巻
林 浩志
Hiroshi Hayashi
浩志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014072876A priority Critical patent/JP6238070B2/en
Publication of JP2015195129A publication Critical patent/JP2015195129A/en
Application granted granted Critical
Publication of JP6238070B2 publication Critical patent/JP6238070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method which exerts excellent treatment effect on a used lithium ion battery, is excellent in economical efficiency, produces only a small amount of environmental load and is easy to implement.SOLUTION: A treatment method for a lithium ion battery comprises: crushing a mixture of positive electrode material and negative electrode material of a used lithium ion battery into pieces of a few millimeters or less to peel off active material from a collector of the electrode material; sieving the crushed mixture to separate the same into middle grains formed mainly of the crushed collector material and fine grains formed mainly of the crushed active material; and collecting the fine grains and meanwhile, performing gravity sorting for the medium grains and separating the same into light weight grains formed mainly of aluminum and heavy weight grains formed mainly of copper. In the method, for example, a roughly crushed mixture of the mixture of the positive electrode material and the negative electrode material is further processed through secondary crushing to sieve the mixture into coarse grains of 5 mm or more, middle grains of 5 mm or less and 0.5 mm or more, and fine grains of less than 0.5 mm.

Description

本発明は、リチウムイオン電池に使用される電極材料の選別回収法に関し、より詳しくは、リチウムイオン電池の正極および負極の集電体や該集電体に塗布されている活物質を材質に応じて効果的に分別して回収する処理方法に関する。 The present invention relates to a method for sorting and recovering electrode materials used in lithium ion batteries, and more specifically, according to the material, the positive and negative electrode current collectors of lithium ion batteries and the active material applied to the current collectors. It is related with the processing method which sorts and collects effectively.

リチウムイオン電池などの二次電池の電極集電体はアルミニウムや銅などよって製造されており、その上にはコバルト、ニッケル、マンガン、リチウムなどの化合物またはグラファイトなどの炭素化合物からなる活物質が塗布されている。これらの集電体や活物質として用いられている金属成分は高品位であり、使用済みの電池を処理する際にはこれらの金属成分を各々回収することが望ましい。 The electrode current collector of a secondary battery such as a lithium ion battery is made of aluminum or copper, and an active material made of a compound such as cobalt, nickel, manganese, lithium, or a carbon compound such as graphite is coated thereon. Has been. The metal components used as these current collectors and active materials are of high quality, and it is desirable to recover each of these metal components when processing used batteries.

従来、リチウムイオン電池の処理方法として以下の方法が知られている。
(イ)使用済み電池から回収した正極材を切断し、加熱してバインダーを揮発させた後に、衝撃破砕して活物質を剥離し、振動篩によって集電体と活物質とに分離する(特許第5269228号)。
(ロ)使用済み電池を加熱処理して有機物を除去した後に外装体を切断して取除き、正極材と負極材を目視で手選し、正極負極を選別後に各々破砕し、振動篩で集電体と活物質に選別する(特開2013−80595号)。
(ハ)使用済み電池を破砕し、洗浄して有機溶剤および電解質を除去した後に正極材と他の部分に分離し、正極材にアルカリを添加して活物質を剥離して集電体との混合スラリーにし、この残渣を回収し篩分けして集電体と活物質に分離する(特開2012−126945号)
(二)使用済み電池を予備焙焼して有機物を除去した後に破砕して主に集電体の塊状物と主に活物質の粉状物とに篩分けし、粉状物を酸化焙焼した後に還元焙焼してCoやNiをメタルにし、鉄やマンガンの酸化物にしてスラリーにし、残渣を磁選して磁着物(Co,Ni)を分離回収する(特開2012−229481号)。
Conventionally, the following methods are known as processing methods for lithium ion batteries.
(B) After the positive electrode material collected from the used battery is cut and heated to volatilize the binder, the active material is separated by impact crushing and separated into a current collector and an active material by a vibrating sieve (patent) No. 5269228).
(B) The used battery is heat-treated to remove organic matter, and then the exterior body is cut and removed. The positive electrode material and the negative electrode material are visually selected by hand, and the positive and negative electrodes are crushed and collected by a vibrating sieve. Sorting into electric material and active material (Japanese Patent Laid-Open No. 2013-80595).
(C) The used battery is crushed and washed to remove the organic solvent and electrolyte, and then separated into the positive electrode material and other parts, and the active material is peeled off by adding alkali to the positive electrode material and the current collector. A mixed slurry is obtained, and the residue is collected and sieved to separate into a current collector and an active material (Japanese Patent Laid-Open No. 2012-126945).
(2) Pre-roasting used batteries to remove organic substances and then crushing them to screen mainly into current collector lump and active material powder, and then oxidative roasting the powder After that, reduction roasting is performed to make Co or Ni into metal, iron or manganese oxide to make a slurry, and the residue is magnetically separated to separate and recover the magnetic deposit (Co, Ni) (Japanese Patent Laid-Open No. 2012-229481).

特許第5269228号公報Japanese Patent No. 5269228 特開2013−80595号公報JP 2013-80595 A 特開2012−126945号公報JP 2012-126945 A 特開2012−229481号公報JP 2012-229481 A

従来の上記処理方法は、正極材を主な対象にして処理する方法が多く、電池全体を処理する場合でも負極を分離した後に正極材を中心にして処理している。また、正極材と負極材を同時に処理する場合でも、活物質はコバルトなどの希少金属を含むので、集電体から分離した活物質については種々の処理方法によってこれらの金属を回収しているが、残った集電体の混合物の処理工程はあまり細緻ではない。特に集電体はシート状であるので直接的な物理選別が難しく、効果的な処理方法が求められている。また、集電体や活物質の処理を主として湿式で行うと、固液分離操作や廃水処理操作などの負担が生じる。さらに、電池粉砕物を焙焼して有機物を除去する方法は排ガスによる環境負荷が問題になる。また、目視による手選を行う処理方法は負担が大きい。 Many of the conventional processing methods described above are performed mainly on the positive electrode material, and even when the entire battery is processed, after the negative electrode is separated, the positive electrode material is mainly processed. Even when the positive electrode material and the negative electrode material are processed at the same time, the active material contains a rare metal such as cobalt. Therefore, the active material separated from the current collector is recovered by various processing methods. The treatment process of the remaining current collector mixture is not very detailed. In particular, since the current collector is in the form of a sheet, direct physical sorting is difficult, and an effective treatment method is required. In addition, when the current collector and the active material are processed mainly in a wet state, burdens such as a solid-liquid separation operation and a wastewater treatment operation occur. Furthermore, the environmental load caused by the exhaust gas becomes a problem in the method of removing the organic matter by baking the pulverized battery. Further, the processing method for performing manual selection by visual inspection is heavy.

本発明は、従来の処理方法における上記課題を解決したものであり、処理効果に優れおり、経済性に優れ、環境負荷が小さく、実施しやすい処理方法を提供する。 The present invention solves the above-mentioned problems in conventional processing methods, and provides a processing method that is excellent in processing effect, excellent in economic efficiency, small in environmental load, and easy to implement.

〔1〕使用済みリチウムイオン電池の正極材と負極材の混合物を数mm以下に破砕処理して電極材の集電体から活物質を剥離させ、この破砕混合物を篩分けして、集電体破砕物が主体の中粒物と活物質破砕物が主体の細粒物に分離し、該細粒物を回収する一方、該中粒物を比重選別してアルミニウム主体の軽量物と銅主体の重量物に分離して回収することを特徴とする使用済みリチウムイオン電池の処理方法。
〔2〕正極材と負極材の混合物を粗破砕した粗破砕混合物をさらに二次破砕して、粒径が5mmより大きい粗粒物と、5mm以下〜0.5mm以上の中粒物と、0.5mm未満の細粒物に篩分けする上記[1]に記載する使用済みリチウムイオン電池の処理方法。
〔3〕中粒物を、(イ)そのまま比重選別するか、あるいは、(ロ)2mm以下〜0.5mm以上に分級して比重選別するか、あるいは、(ハ)1mm以下〜0.5mm以上に分級して比重選別する上記[1]または上記[2]に記載する使用済みリチウムイオン電池の処理方法。
〔4〕使用済みリチウムイオン電池の正極材と負極材の混合物を粗破砕して無害化し、あるいは該混合物を無害化した後に粗破砕し、さらに水簸あるいは風力選別して樹脂類を除去し、残った粗破砕混合物をさらに二次破砕して、粒径が5mmより大きい粗粒物と、5mm以下〜0.5mm以上の中粒物と、0.5mm未満の細粒物に篩分けする上記[1]〜上記[3]の何れかに記載する使用済みリチウムイオン電池の処理方法。
〔5〕磁着物を含む電池について、粗破砕後の粗破砕混合物を磁選して磁着物を取り除いた後に二次粉砕する上記[1]〜上記[4]の何れかに記載する使用済みリチウムイオン電池の処理方法。
〔6〕電池に含まれる可燃物を粗粒物に篩分けする上記[1]〜上記[5]の何れかに記載する使用済みリチウムイオン電池の処理方法。
〔7〕回収した細粒物をコバルト、ニッケル、マンガン、およびリチウムの原料とし、回収した軽量物をアルミニウム原料とし、回収した重量物を銅原料としておのおの再利用する上記[1]〜上記[6]の何れかに記載する使用済みリチウムイオン電池の処理方法。
[1] A mixture of a positive electrode material and a negative electrode material of a used lithium ion battery is crushed to a few mm or less, the active material is peeled from the current collector of the electrode material, and the crushed mixture is sieved to obtain a current collector. The crushed material is mainly divided into medium-sized material and the active material crushed material is mainly divided into fine particles, and the fine particles are collected. A method for treating a used lithium ion battery, characterized in that it is separated and collected into heavy objects.
[2] The coarsely crushed mixture obtained by roughly crushing the mixture of the positive electrode material and the negative electrode material is further subjected to secondary crushing to obtain coarse particles having a particle size of more than 5 mm, medium particles of 5 mm or less to 0.5 mm or more, 0 The method for treating a used lithium ion battery according to the above [1], wherein sieving into fine particles of less than 5 mm is performed.
[3] Medium particles are either (a) screened for specific gravity as is, or (b) classified into specific gravity by classification to 2 mm or less to 0.5 mm or more, or (c) 1 mm or less to 0.5 mm or more. The method for treating a used lithium ion battery according to the above [1] or [2], wherein the specific gravity is classified and classified.
[4] Roughly crushing a mixture of a positive electrode material and a negative electrode material of a used lithium ion battery, or detoxifying the mixture and then crushing the mixture, and further removing the resin by water tank or wind sorting, The remaining coarsely crushed mixture is further subjected to secondary crushing, and sieved to coarse particles having a particle size of more than 5 mm, medium particles of 5 mm or less to 0.5 mm or more, and fine particles of less than 0.5 mm. [1] A method for treating a used lithium ion battery according to any one of [3] above.
[5] The used lithium ion according to any one of [1] to [4] above, wherein the coarsely crushed mixture is subjected to magnetic separation and the secondary pulverization is performed after the coarsely crushed mixture is removed. Battery processing method.
[6] The method for treating a used lithium ion battery according to any one of the above [1] to [5], wherein the combustible material contained in the battery is sieved into coarse particles.
[7] The above-mentioned [1] to [6], wherein the recovered fine particles are reused as raw materials of cobalt, nickel, manganese, and lithium, the recovered lightweight materials are used as aluminum materials, and the recovered heavy materials are reused as copper materials. ] The processing method of the used lithium ion battery described in any of the above.

〔具体的な説明〕
本発明の処理方法は、使用済みリチウムイオン電池の正極材と負極材の混合物を数mm以下に破砕処理して電極材の集電体から活物質を剥離させ、この破砕混合物を篩分けして、集電体破砕物が主体の中粒物と活物質破砕物が主体の細粒物に分離し、該細粒物を回収する一方、該中粒物を比重選別してアルミニウム主体の軽量物と銅主体の重量物に分離して回収する使用済みリチウムイオン電池の処理方法である。
本発明の処理方法の一例を図1に示す。
[Specific description]
In the treatment method of the present invention, a mixture of a positive electrode material and a negative electrode material of a used lithium ion battery is crushed to a few mm or less to separate the active material from the current collector of the electrode material, and the crushed mixture is sieved. In addition, the current collector crushed material is mainly divided into medium-sized material and the active material crushed material is mainly divided into fine-grained material, and the fine-grained material is recovered, while the medium-grained material is subjected to specific gravity sorting to make the lightweight material mainly composed of aluminum. And a processing method for a used lithium ion battery that is separated into a heavy weight mainly composed of copper and collected.
An example of the processing method of the present invention is shown in FIG.

本発明の処理方法は、使用済みリチウムイオン電池の正極材と負極材の混合物を破砕処理する。正極材と負極材の混合物とは、セパレータや外装体などのプラスチック類(樹脂類)を分離除去して正極材と負極材のみの混合物にしたもの、あるいはセパレータや外装体などを含有した状態のものなど何れでも良い。プラスチック類は粗破砕(一次破砕)後に水簸や風力選別などによって除去することができる。 The treatment method of the present invention crushes a mixture of a positive electrode material and a negative electrode material of a used lithium ion battery. The mixture of the positive electrode material and the negative electrode material is a mixture of only the positive electrode material and the negative electrode material by separating and removing plastics (resins) such as a separator and an outer package, or a state in which a separator or an outer package is contained. Any of these may be used. Plastics can be removed by water tank or wind sorting after rough crushing (primary crushing).

本発明の処理対象である使用済みリチウムイオン電池は、無害化処理しないものを用いることができるが、無害化処理したものが好ましい。無害化処理と粗破砕は、例えば、以下のように行うと良い。
(イ)内部の電解液を洗浄除去して無害化した後に粗破砕する。(ロ)内部の電解液を洗浄除去して無害化した後に乾燥して粗破砕する。(ハ)電池を粗破砕した後に内部の電解液を洗浄除去して無害化処理する。(ニ)電池を粗破砕した後に内部の電解液を洗浄除去して無害化処理して乾燥する。(ホ)電池を高温処理して電解液を気化または分解して無害化した後に粗破砕する。(ヘ)電池を粗破砕した後に電解液を気化または分解して無害化処理する。上記(イ)〜上記(ヘ)の処理において、電池の残留電圧が2V以上のものはあらかじめ放電処理しておくとよい。
As the used lithium ion battery which is a treatment target of the present invention, a non-detoxified battery can be used, but a detoxified battery is preferable. Detoxification treatment and rough crushing may be performed as follows, for example.
(A) The internal electrolyte solution is washed away to make it harmless and then roughly crushed. (B) The internal electrolyte is washed away and rendered harmless, and then dried and roughly crushed. (C) After roughly crushing the battery, the internal electrolyte solution is washed away and detoxified. (D) After roughly crushing the battery, the internal electrolyte is washed away, detoxified, and dried. (E) The battery is treated at a high temperature to vaporize or decompose the electrolyte to render it harmless, and then roughly crushed. (F) After roughly crushing the battery, the electrolyte solution is vaporized or decomposed to be detoxified. In the processes (a) to (f), a battery having a residual voltage of 2 V or more may be subjected to a discharge process in advance.

洗浄する場合には洗浄液の主溶媒は有機溶媒や水が好ましい。さらに有機系洗浄液を使用するときは、リチウムイオン電池に含まれる電解液の有機成分を回収して利用すると洗浄液の購入コストや廃液処理が不要になるので好ましい。乾燥手段は通気式、熱風式、気流式、赤外線式、ドラム式、真空乾燥などの乾燥機を用いることができる。このときの排ガスは後燃焼して大気解放してもよく、また気化した溶媒を回収して再利用することもできる。 In the case of washing, the main solvent of the washing liquid is preferably an organic solvent or water. Further, when an organic cleaning solution is used, it is preferable to collect and use the organic components of the electrolyte contained in the lithium ion battery because the purchase cost of the cleaning solution and the waste liquid treatment are unnecessary. As the drying means, a ventilation type, hot air type, air current type, infrared type, drum type, vacuum dryer or the like can be used. The exhaust gas at this time may be post-combusted and released to the atmosphere, or the vaporized solvent can be recovered and reused.

洗浄処理しない場合や洗浄が不十分な場合には、電池に水を添加することによって電解質のヘキサフルオロリン酸リチウム(LiPF6)を分解、無害化することができる。水は電池破砕物に直接噴霧ないし塗布するか、水蒸気や湿気の気流中に電池を曝して水を添加すると良い。なお、ヘキサフルオロリン酸リチウムが分解して生成したフッ化水素(HF)は炭酸カルシウムと反応させてフッ化カルシウム(CaF2)にして回収することができる。 When the washing treatment is not performed or when the washing is insufficient, the electrolyte lithium hexafluorophosphate (LiPF 6 ) can be decomposed and rendered harmless by adding water to the battery. Water may be sprayed or applied directly to the battery crushed material, or water may be added by exposing the battery to a stream of water vapor or moisture. Note that hydrogen fluoride (HF) generated by decomposition of lithium hexafluorophosphate can be recovered by reacting with calcium carbonate to form calcium fluoride (CaF 2 ).

また、電池に酸やアルカリを添加すると集電体と活物質の結着力が弱くなり、表面に付着している活物質の剥離が容易になる。ただし、水および酸やアルカリが過剰になると集電体が脆化、変質しすぎるなどして剥離が困難になる場合がある。 Further, when an acid or alkali is added to the battery, the binding force between the current collector and the active material becomes weak, and the active material attached to the surface can be easily peeled off. However, if water, acid, or alkali is excessive, the current collector may become too brittle or denatured, making peeling difficult.

粗破砕は、例えば、使用済みリチウムイオン電池を二軸破砕機など用いて2〜10cm程度の断片に粗破砕(一次破砕)する。 For rough crushing, for example, a used lithium ion battery is roughly crushed (primary crushing) into pieces of about 2 to 10 cm using a biaxial crusher or the like.

風力選別や磁選などによって樹脂類や磁着物などを取り除いた粗破砕物を、さらに2cm以下、好ましくは5mm以下に破砕(二次破砕)して正極集電体および負極集電体からそれぞれ活物質を剥離させる。破砕手段はハンマーミルなど、あるいはカッターミル、ミキサー、アトライターなど衝撃破砕、せん断破砕や表面粉砕やシート状の集電体の丸まりを促進させる破砕などを効果的に実施できる手段を用いると良い。なお、過粉砕を避けるために、破砕機に一定粒度以下の破砕物を系外に排出するスクリーンなどを設置してもよい。 Crude crushed material from which resins and magnetic deposits have been removed by wind sorting or magnetic separation is further crushed to 2 cm or less, preferably 5 mm or less (secondary crushing) to obtain active materials from the positive electrode current collector and the negative electrode current collector, respectively. To peel off. As the crushing means, it is preferable to use a hammer mill or the like, or a means capable of effectively performing impact crushing, shear crushing, surface crushing or crushing for promoting the curling of the sheet-like current collector, such as a cutter mill, a mixer, or an attritor. In order to avoid excessive pulverization, a crusher may be provided with a screen or the like for discharging crushed material having a predetermined particle size or less out of the system.

一般に正極の集電体は高純度のアルミニウム製、負極の集電体は高純度の銅製であり、いずれの集電体も10μm程度の厚みのシートないし箔である。これらのシートないし箔の集電体は展性があるため微細には破砕されずに中粒の破砕物になる。一方、集電体に付着している活物質は1〜50μm程度の粒子の集合体であるため細かく破砕されて細粒の破砕物になり、集電体から剥離する。 In general, the current collector of the positive electrode is made of high-purity aluminum, and the current collector of the negative electrode is made of high-purity copper. Each current collector is a sheet or foil having a thickness of about 10 μm. Since these sheet or foil current collectors are malleable, they are not crushed finely, but become medium-sized crushed materials. On the other hand, since the active material adhering to the current collector is an aggregate of particles of about 1 to 50 μm, it is finely crushed into fine particles and peeled off from the current collector.

具体的には、正極材と負極材の混合物を粗破砕(一次破砕)した粗破砕混合物を数ミリ以下、例えば5mm以下に二次破砕すると、集電体は概ね5mm以下〜0.5mm以上の中粒の破砕物になり、活物質は概ね0.5mm未満の細粒の破砕物になるので、これらを篩分けして選別することができる。なお、電池の構成物によっては粗破砕物に含まれるアルミラミネートや除去しきれなかったプラスチック類などのその他可燃物は二次破砕の段階でもほとんど破砕されないため、粗破砕(一次破砕)の粒度、例えば5mmより大きいまま残る。 Specifically, when the coarsely crushed mixture obtained by roughly crushing (primary crushing) the mixture of the positive electrode material and the negative electrode material is secondary crushed to several millimeters or less, for example, 5 mm or less, the current collector is approximately 5 mm or less to 0.5 mm or more. Since it becomes a medium-sized crushed material and the active material is generally a fine-sized crushed material of less than 0.5 mm, these can be screened and selected. In addition, depending on the battery components, other combustible materials such as aluminum laminate and plastics that could not be removed are not crushed even in the secondary crushing stage. For example, it remains larger than 5 mm.

この二次破砕物を篩分けして、集電体破砕物が主体の中粒物と、活物質破砕物が主体の細粒物に分離し、電池の構成物によってはその他可燃物を含む粗粒に分離する。例えば、細粒物と中粒物の分離においては、目開き0.5mmの振動篩を用いて篩分けするとよい。この篩分けによって、例えば、正極活物質の約98wt%、負極活物質の100wt%を集電体から剥離して分離することができる。 This secondary crushed material is sieved to separate the current collector crushed material into medium-sized material and active material crushed material as main material. Depending on the battery components, other combustible materials may be used. Separate into grains. For example, in the separation of fine particles and medium particles, sieving may be performed using a vibrating sieve having an aperture of 0.5 mm. By this sieving, for example, about 98 wt% of the positive electrode active material and 100 wt% of the negative electrode active material can be separated from the current collector and separated.

プラスチック類などのその他可燃物は二次破砕の段階でもほとんど破砕されず、粗破砕の粒度、例えば5mmより大きいまま残るので、二次破砕後の篩分けでは、5mm以上〜一次破砕粒度の間の適当な目開きの振動篩を用いて篩分けするとよい。 Other combustible materials such as plastics are hardly crushed even at the stage of secondary crushing, and remain in a coarse crushing particle size, for example, larger than 5 mm. It is good to screen using a vibration sieve having an appropriate opening.

分離した細粒物(粒径0.5mm未満)はコバルト、ニッケル、マンガン、またはリチウムなどの高品位化合物であるので、これらを上記金属のリサイクル原料として再利用することができる。 Since the separated fine particles (particle size of less than 0.5 mm) are high-grade compounds such as cobalt, nickel, manganese, or lithium, they can be reused as recycling materials for the above metals.

一方、分離した中粒物(粒径5mm以下〜0.5mm以上)を、(イ)そのまま比重選別するか、あるいは、(ロ)2mm以下〜0.5mm以上に分級(粒度調整)して比重選別するか、あるいは、(ハ)1mm以下〜0.5mm以上に分級(粒度調整)して比重選別する。分級する場合には振動篩を用いると良い。この比重選別によって軽量物と重量物に選別することができる。上記〔ハ〕のように分級して比重選別すれば、アルミニウム主体の軽量物と、銅主体の重量物とに分離しやすい。このとき粒径が1mmより大きいまま残るものは二次破砕に戻して再度破砕するとよい。 On the other hand, the separated medium particles (particle size of 5 mm or less to 0.5 mm or more) are either (i) directly selected for specific gravity, or (b) classified to 2 mm or less to 0.5 mm or more (particle size adjustment) for specific gravity. Or (c) Classifying (grain size adjustment) to 1 mm or less to 0.5 mm or more to select specific gravity. In the case of classification, a vibrating sieve is preferably used. By this specific gravity sorting, it is possible to sort into lightweight and heavy items. If classification and specific gravity selection are performed as in [c] above, it is easy to separate into a light weight mainly made of aluminum and a heavy weight mainly made of copper. At this time, what remains with a particle size larger than 1 mm may be returned to the secondary crushing and crushed again.

比重選別において、乾式選別を行う場合には風力選別、揺動テーブル、エアーテーブルを用いてもよい。例えば、エアーテーブルでは比重の大きい粒子は空気流の影響をあまり受けずに振動・摩擦によってテーブル面を運搬されるが、比重の小さい粒子は空気流の影響を受けてテーブル面から浮遊し滑落するので、重量物と軽量物とに容易に分離することができる。また、湿式選別を行う場合にはジグ選別や薄流選別、重選などを利用することができる。 In the specific gravity sorting, a wind sorting, a rocking table, or an air table may be used when dry sorting is performed. For example, in an air table, particles with a large specific gravity are transported on the table surface by vibration and friction without much influence of the air flow, but particles with a small specific gravity float from the table surface and slide down under the influence of the air flow. Therefore, it can be easily separated into a heavy object and a light object. Moreover, when performing wet sorting, jig sorting, thin flow sorting, multiple sorting, or the like can be used.

選別した軽量物は高品位のアルミニウム化合物であり、重量物は高品位の銅化合物であるので、これらをアルミニウムや銅のリサイクル原料として再利用することができる。 Since the selected lightweight material is a high-quality aluminum compound and the heavy material is a high-quality copper compound, these can be reused as a recycled raw material for aluminum and copper.

本発明の処理方法は、投入薬剤や投入エネルギー、あるいは廃水や廃ガスを削減できるため、環境負荷が相対的に低い利点を有する。また、手選など煩雑な処理が無いので実用に適しており、大量処理が可能である。さらに、電池材料をほぼ一括して破砕処理することによって、互いが粉砕媒体として作用し、破砕、粉砕、剥離が促進される。また、集電体から高品位のアルミニウムおよび銅を回収できるので電池の再資源化率を向上することができる。 Since the treatment method of the present invention can reduce the input chemicals, input energy, waste water and waste gas, it has an advantage of relatively low environmental load. In addition, since there is no complicated processing such as manual selection, it is suitable for practical use, and a large amount of processing is possible. Furthermore, by crushing the battery materials almost collectively, each other acts as a grinding medium, and crushing, grinding and peeling are promoted. Moreover, since high-grade aluminum and copper can be recovered from the current collector, the battery recycling rate can be improved.

本発明の処理方法の一例を示す工程図Process drawing which shows an example of the processing method of this invention

本発明の実施例を以下に示す。なお、銅、アルミニウム、マンガンなどの金属成分の分析は王水および硫酸を用いて全溶解した後、誘導結合プラズマ発光分光分析装置にて測定した。 Examples of the present invention are shown below. In addition, the analysis of metal components, such as copper, aluminum, manganese, was measured with the inductively coupled plasma emission spectrometer after completely dissolving using aqua regia and sulfuric acid.

〔実施例1〕
電解液を洗浄し、無害化した使用済みリチウムイオン二次電池を乾燥し、セパレータや外装体などを分離除去し、正極材と負極材のみの混合物として試料にした。この試料について、正極材と負極材の混合物を二軸破砕機に供して数cm程度の断片に粗破砕(一次破砕)した。さらに、この粗破砕物を高速ミルに供し、14000rpmで5mm以下に二次破砕した。この二次破砕物を、目開き0.5mmの振動篩を用い、0.5mm以下の細粒の破砕物(細粒物)と、0.5mm以上の中粒の破砕物(中粒物)に分離した。各種破砕物の成分を分析したところ、塗布された活物質の全重量に対する剥離した活物質の重量割合(剥離率)は、正極活物質は97.8wt%、負極活物質は約100wt%であることを確認した。
さらに、中粒物を振動篩に入れて0.5mm〜1mmに分級した。1mm以上の破砕物については再度高速ミルに供し、破砕を繰り返し、0.5mm〜1mmに粒度調整した。この分級した破砕物をエアーテーブルに供し、サイドスロープ角度4°、エンドスロープ角度12°、振動数10Hz、気流条件1m/secの条件下で比重選別を行った。回収した軽量物と重量物の成分を分析したところ、原料のフィード試料の組成が、Al量25.0wt%およびCu量75.0wt%であるのに対し、軽量物のAl量95.9wt%およびCu量4.1%であり、重量物のAl量1.2wt%およびCu量97.8wt%であり、軽量物にアルミニウムを濃縮させ、重量物に銅を濃縮させて回収することができた。また、この時のアルミニウム回収率(軽量物中のアルミニウム重量/投入した試料に含まれる全アルミニウム重量)は88%、銅回収率(重量物中の銅重量/投入した試料に含まれる全銅重量)は96%となり、分離の評価指標である総合分離効率(アルミニウム回収率+銅回収率−100%)は92%という高い値を示した。。この処理条件と結果を表1に示す。
[Example 1]
The electrolyte solution was washed and the used lithium ion secondary battery that had been rendered harmless was dried, and the separator and the outer package were separated and removed to prepare a sample as a mixture of only the positive electrode material and the negative electrode material. About this sample, the mixture of a positive electrode material and a negative electrode material was used for the biaxial crusher, and was roughly crushed (primary crushing) into about several cm pieces. Further, this coarsely crushed material was subjected to a high-speed mill and secondarily crushed to 1 mm or less at 5 000 rpm. This secondary crushed material is divided into fine crushed material (fine particle) of 0.5 mm or less and crushed material of medium size (medium particle) of 0.5 mm or more using a vibrating sieve having an aperture of 0.5 mm. Separated. When the components of various crushed materials were analyzed, the weight ratio (peeling rate) of the separated active material to the total weight of the applied active material was 97.8 wt% for the positive electrode active material and about 100 wt% for the negative electrode active material. It was confirmed.
Further, the medium particles were put into a vibration sieve and classified into 0.5 mm to 1 mm. The crushed material of 1 mm or more was again subjected to a high speed mill, and pulverization was repeated to adjust the particle size to 0.5 mm to 1 mm. The classified crushed material was subjected to an air table and subjected to specific gravity selection under conditions of a side slope angle of 4 °, an end slope angle of 12 °, a frequency of 10 Hz, and an airflow condition of 1 m / sec. Analysis of the components of the collected light and heavy materials showed that the composition of the feed sample of the raw material was an Al amount of 25.0 wt% and a Cu amount of 75.0 wt%, whereas the light weight Al amount of 95.9 wt% And Cu content 4.1%, Al content 1.2% by weight and Cu content 97.8% by weight, it can be recovered by concentrating aluminum in a light product and concentrating copper in a heavy product. It was. In addition, the aluminum recovery rate at this time (aluminum weight in the light material / total aluminum weight contained in the input sample) was 88%, and the copper recovery rate (copper weight in the heavy material / total copper weight contained in the input sample). ) Was 96%, and the overall separation efficiency (aluminum recovery rate + copper recovery rate−100%), which is an evaluation index for separation, was as high as 92%. . Table 1 shows the processing conditions and results.

Figure 2015195129
Figure 2015195129

〔実施例2〕
実施例1の粗破砕物(一次破砕物)を高速ミルに供し、20mm以下、10mm以下までおのおの二次破砕した。この二次破砕物を、目開き0.5mmの振動篩を用い、0.5mm以下の細粒物と、0.5mmより大きい中粒物に分離した。この場合の正極活物質の剥離率を表2に示す。20mm以下、および10mm以下までの二次破砕では正極活物質の剥離率は90%以下であり、5mm以下まで二次破砕すれば剥離率は97%以上になる。なお、集電体が過剰に破砕されて粒度が0.5mm以下になることを防止するため、二次破砕は5mm基準で留めておくことが好ましい。なお、正極活物質の剥離率は剥離した正極活物質の重量/集電体に塗布されている正極活物質の全重量である。
[Example 2]
The coarsely crushed material (primary crushed material) of Example 1 was subjected to a high-speed mill and secondarily crushed to 20 mm or less and 10 mm or less. This secondary crushed material was separated into fine particles having a size of 0.5 mm or less and medium particles having a size larger than 0.5 mm using a vibrating sieve having an opening of 0.5 mm. Table 2 shows the peeling rate of the positive electrode active material in this case. In the secondary crushing to 20 mm or less and 10 mm or less, the peeling rate of the positive electrode active material is 90% or less, and when the secondary crushing to 5 mm or less, the peeling rate is 97% or more. In order to prevent the current collector from being excessively crushed and the particle size to be 0.5 mm or less, the secondary pulverization is preferably kept on a 5 mm basis. The peel rate of the positive electrode active material is the weight of the peeled positive electrode active material / the total weight of the positive electrode active material applied to the current collector.

Figure 2015195129
Figure 2015195129

〔実施例3〕
実施例1の中粒物を、分級や繰り返し破砕することなくそのまま0.5mm〜5mmの粒度を保持した状態で、実施例1と同様の条件下で比重選別を行った。あるいは実施例1の中粒物を、振動篩に入れて0.5mm〜2mmに分級し、2mm以上の破砕物については再度高速ミルに供し、破砕を繰り返して0.5mm〜2mmに粒度調整し、実施例1と同様にして比重選別を行った。この結果を表3に示す。0.5mm〜1mm分級品は総合分離効率が最も高く、従って、0.5mm〜1mmのように試料を限定的な粒度で比重選別に供することが好ましい。
なお、総合分離効率は(アルミニウム回収率+銅回収率−100%)である。アルミニウム回収率は(軽量物中のアルミニウム重量/投入した試料に含まれる全アルミニウム重量)である。銅回収率は(重量物中の銅重量/投入した試料に含まれる全銅重量)である。
Example 3
Specific gravity selection was performed under the same conditions as in Example 1 while maintaining the particle size of 0.5 mm to 5 mm as it was without categorizing and repeatedly crushing the medium particles in Example 1. Alternatively, the medium-sized product of Example 1 is put into a vibrating sieve and classified into 0.5 mm to 2 mm, and crushed material of 2 mm or more is again subjected to a high-speed mill, and crushing is repeated to adjust the particle size to 0.5 mm to 2 mm. Specific gravity sorting was performed in the same manner as in Example 1. The results are shown in Table 3. The 0.5 mm to 1 mm classified product has the highest overall separation efficiency. Therefore, it is preferable to subject the sample to specific gravity sorting with a limited particle size such as 0.5 mm to 1 mm.
The total separation efficiency is (aluminum recovery rate + copper recovery rate-100%). The aluminum recovery rate is (the weight of aluminum in the lightweight material / the total weight of aluminum contained in the charged sample). The copper recovery rate is (copper weight in heavy article / total copper weight contained in sample put in).

Figure 2015195129
Figure 2015195129

本発明のリチウムイオン電池の処理方法は、自動車産業などから発生する多量の使用済み電池の処理事業において有益である。 The method for treating a lithium ion battery of the present invention is useful in the treatment business of a large amount of used batteries generated from the automobile industry and the like.

Claims (7)

使用済みリチウムイオン電池の正極材と負極材の混合物を数mm以下に破砕処理して電極材の集電体から活物質を剥離させ、この破砕混合物を篩分けして、集電体破砕物が主体の中粒物と活物質破砕物が主体の細粒物に分離し、該細粒物を回収する一方、該中粒物を比重選別してアルミニウム主体の軽量物と銅主体の重量物に分離して回収することを特徴とする使用済みリチウムイオン電池の処理方法。
The mixture of the positive electrode material and the negative electrode material of the used lithium ion battery is crushed to a few mm or less, the active material is peeled off from the current collector of the electrode material, the crushed mixture is sieved, and the crushed current collector is The medium-sized material and the active material crushed material are separated into the main fine particles, and the fine particles are collected. A method for treating a used lithium ion battery, which is separated and collected.
正極材と負極材の混合物を粗破砕した粗破砕混合物をさらに二次破砕して、粒径が5mmより大きい粗粒物と、5mm以下〜0.5mm以上の中粒物と、0.5mm未満の細粒物に篩分けする請求項1に記載する使用済みリチウムイオン電池の処理方法。
The coarsely crushed mixture obtained by roughly crushing the mixture of the positive electrode material and the negative electrode material is further subjected to secondary crushing to obtain coarse particles having a particle size of more than 5 mm, medium particles of 5 mm or less to 0.5 mm or more, and less than 0.5 mm. The processing method of a used lithium ion battery according to claim 1, which is sieved to fine particles.
中粒物を、(イ)そのまま比重選別するか、あるいは、(ロ)2mm以下〜0.5mm以上に分級して比重選別するか、あるいは、(ハ)1mm以下〜0.5mm以上に分級して比重選別する請求項1または請求項2に記載する使用済みリチウムイオン電池の処理方法。
(I) Select the specific gravity as it is, (b) Classify the specific gravity by classifying it to 2 mm or less to 0.5 mm or more, or (c) Classify it to 1 mm or less to 0.5 mm or more. The method for treating a used lithium ion battery according to claim 1 or 2, wherein the specific gravity is selected.
使用済みリチウムイオン電池の正極材と負極材の混合物を粗破砕して無害化し、あるいは該混合物を無害化した後に粗破砕し、さらに水簸あるいは風力選別して樹脂類を除去し、残った粗破砕混合物をさらに二次破砕して、粒径が5mmより大きい粗粒物と、5mm以下〜0.5mm以上の中粒物と、0.5mm未満の細粒物に篩分けする請求項1〜請求項3の何れかに記載する使用済みリチウムイオン電池の処理方法。
Roughly pulverize the mixture of the positive electrode material and negative electrode material of the used lithium ion battery, or after detoxifying the mixture, coarsely pulverize it, and further remove the resin by water tank or wind sorting. The crushed mixture is further subjected to secondary crushing, and sieved to coarse particles having a particle size of more than 5 mm, medium particles having a particle size of 5 mm or less to 0.5 mm or more, and fine particles having a particle size of less than 0.5 mm. The processing method of the used lithium ion battery in any one of Claim 3.
磁着物を含む電池について、粗破砕後の粗破砕混合物を磁選して磁着物を取り除いた後に二次粉砕する請求項1〜請求項4の何れかに記載する使用済みリチウムイオン電池の処理方法。
The processing method of a used lithium ion battery according to any one of claims 1 to 4, wherein the battery including the magnetic deposit is subjected to magnetic separation of the coarsely crushed mixture after the coarse crushing to remove the magnetic deposit and then secondary pulverized.
電池に含まれる可燃物を粗粒物に篩分けする請求項1〜請求項5の何れかに記載する使用済みリチウムイオン電池の処理方法。
The method for treating a used lithium ion battery according to any one of claims 1 to 5, wherein combustible substances contained in the battery are sieved into coarse particles.
回収した細粒物をコバルト、ニッケル、マンガン、およびリチウムの原料とし、回収した軽量物をアルミニウム原料とし、回収した重量物を銅原料としておのおの再利用する請求項1〜請求項6の何れかに記載する使用済みリチウムイオン電池の処理方法。 The recovered fine particles are used as raw materials for cobalt, nickel, manganese, and lithium, the recovered lightweight materials are used as aluminum materials, and the recovered heavy materials are reused as copper materials, respectively. A method for treating a used lithium ion battery as described.
JP2014072876A 2014-03-31 2014-03-31 Disposal of used lithium ion batteries Active JP6238070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072876A JP6238070B2 (en) 2014-03-31 2014-03-31 Disposal of used lithium ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072876A JP6238070B2 (en) 2014-03-31 2014-03-31 Disposal of used lithium ion batteries

Publications (2)

Publication Number Publication Date
JP2015195129A true JP2015195129A (en) 2015-11-05
JP6238070B2 JP6238070B2 (en) 2017-11-29

Family

ID=54433975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072876A Active JP6238070B2 (en) 2014-03-31 2014-03-31 Disposal of used lithium ion batteries

Country Status (1)

Country Link
JP (1) JP6238070B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174517A (en) * 2016-03-18 2017-09-28 三菱マテリアル株式会社 Method for collecting valuable substance from used lithium ion battery
CN107293818A (en) * 2017-06-08 2017-10-24 深圳市恒创睿能环保科技有限公司 A kind of method of copper foil aluminium foil in recovery waste lithium ion
CN107910611A (en) * 2017-11-17 2018-04-13 成都新柯力化工科技有限公司 A kind of method using sodium sulfite recycling lithium battery copper current collector
CN109193064A (en) * 2018-10-31 2019-01-11 中南大学 A kind of method of waste power lithium battery valuable constituent sorting recycling
CN109378542A (en) * 2018-11-07 2019-02-22 长沙矿冶研究院有限责任公司 A kind of method of copper aluminium and rubber in recycling waste power lithium battery
CN110199429A (en) * 2017-01-24 2019-09-03 三菱综合材料株式会社 From the method for the lithium ion battery recycling valuable material used
WO2020045596A1 (en) 2018-08-31 2020-03-05 Jx金属株式会社 Method for producing lithium carbonate
CN111001588A (en) * 2019-11-01 2020-04-14 安徽绿沃循环能源科技有限公司 Battery pack echelon recycling method
KR20200077108A (en) * 2018-12-20 2020-06-30 동우 화인켐 주식회사 Pretreatment method for recycling lithium secondary battery
JP2020184487A (en) * 2019-05-09 2020-11-12 パナソニックIpマネジメント株式会社 Recovering method for positive electrode material for lithium-ion battery
CN112292781A (en) * 2018-06-25 2021-01-29 松下知识产权经营株式会社 Electrode treatment method
CN112871991A (en) * 2021-02-03 2021-06-01 顺尔茨环保(北京)有限公司 System and method for recycling electrode powder from waste lithium battery through low-temperature evaporation
JP6990753B1 (en) 2020-09-16 2022-01-12 Dowaエコシステム株式会社 How to recover valuables from lithium-ion secondary batteries
CN114006071A (en) * 2021-10-31 2022-02-01 湖南江冶机电科技股份有限公司 Method for stripping and recovering anode plate powder of waste lithium battery
CN114151802A (en) * 2021-11-30 2022-03-08 湖南江冶机电科技股份有限公司 Method for recycling all components of waste lithium battery
JP2022049700A (en) * 2020-09-16 2022-03-29 Dowaエコシステム株式会社 Recovery method of valuable from lithium-ion secondary battery
CN115007614A (en) * 2022-07-22 2022-09-06 北辰先进循环科技(青岛)有限公司 Sorting method for broken materials of positive and negative pole pieces of waste lithium ion battery
WO2022249615A1 (en) * 2021-05-28 2022-12-01 Dowaエコシステム株式会社 Sorting method for valuable materials
CN115780058A (en) * 2023-02-09 2023-03-14 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Lithium ion battery retrieves crushing and drying magnetic separation device who recycles
CN115832498A (en) * 2022-11-24 2023-03-21 厦门海辰储能科技股份有限公司 Recovery equipment and recovery method for battery electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346160A (en) * 1993-06-04 1994-12-20 Sumitomo Metal Mining Co Ltd Method for recovering valuable material from used lithium secondary battery
WO2012169073A1 (en) * 2011-06-10 2012-12-13 日本磁力選鉱株式会社 Method for recovering valuable metals from waste lithium-ion secondary batteries
JP2013004299A (en) * 2011-06-16 2013-01-07 Mitsubishi Materials Corp Recycling method of lithium ion secondary battery
JP2013211234A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Method for separating and recovering positive electrode active material from lithium ion battery positive electrode material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346160A (en) * 1993-06-04 1994-12-20 Sumitomo Metal Mining Co Ltd Method for recovering valuable material from used lithium secondary battery
WO2012169073A1 (en) * 2011-06-10 2012-12-13 日本磁力選鉱株式会社 Method for recovering valuable metals from waste lithium-ion secondary batteries
JP2013004299A (en) * 2011-06-16 2013-01-07 Mitsubishi Materials Corp Recycling method of lithium ion secondary battery
JP2013211234A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Method for separating and recovering positive electrode active material from lithium ion battery positive electrode material

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174517A (en) * 2016-03-18 2017-09-28 三菱マテリアル株式会社 Method for collecting valuable substance from used lithium ion battery
CN110199429A (en) * 2017-01-24 2019-09-03 三菱综合材料株式会社 From the method for the lithium ion battery recycling valuable material used
CN107293818A (en) * 2017-06-08 2017-10-24 深圳市恒创睿能环保科技有限公司 A kind of method of copper foil aluminium foil in recovery waste lithium ion
CN107910611A (en) * 2017-11-17 2018-04-13 成都新柯力化工科技有限公司 A kind of method using sodium sulfite recycling lithium battery copper current collector
CN112292781A (en) * 2018-06-25 2021-01-29 松下知识产权经营株式会社 Electrode treatment method
KR20210043700A (en) 2018-08-31 2021-04-21 제이엑스금속주식회사 Method for producing lithium carbonate
WO2020045596A1 (en) 2018-08-31 2020-03-05 Jx金属株式会社 Method for producing lithium carbonate
CN109193064A (en) * 2018-10-31 2019-01-11 中南大学 A kind of method of waste power lithium battery valuable constituent sorting recycling
CN109378542A (en) * 2018-11-07 2019-02-22 长沙矿冶研究院有限责任公司 A kind of method of copper aluminium and rubber in recycling waste power lithium battery
KR20200077108A (en) * 2018-12-20 2020-06-30 동우 화인켐 주식회사 Pretreatment method for recycling lithium secondary battery
KR102269326B1 (en) * 2018-12-20 2021-06-25 동우 화인켐 주식회사 Pretreatment method for recycling lithium secondary battery
JP2020184487A (en) * 2019-05-09 2020-11-12 パナソニックIpマネジメント株式会社 Recovering method for positive electrode material for lithium-ion battery
CN111001588A (en) * 2019-11-01 2020-04-14 安徽绿沃循环能源科技有限公司 Battery pack echelon recycling method
JP6990753B1 (en) 2020-09-16 2022-01-12 Dowaエコシステム株式会社 How to recover valuables from lithium-ion secondary batteries
JP7236524B2 (en) 2020-09-16 2023-03-09 Dowaエコシステム株式会社 Method for collecting valuables from lithium ion secondary battery
EP4215291A4 (en) * 2020-09-16 2024-03-13 Dowa Eco System Co Ltd Method for recovering valuable materials from lithium ion secondary battery
TWI790740B (en) * 2020-09-16 2023-01-21 日商同和永續環境股份有限公司 Method for recovering valuable materials from lithium ion secondary cell
WO2022059565A1 (en) * 2020-09-16 2022-03-24 Dowaエコシステム株式会社 Method for recovering valuable materials from lithium ion secondary battery
JP2022049700A (en) * 2020-09-16 2022-03-29 Dowaエコシステム株式会社 Recovery method of valuable from lithium-ion secondary battery
JP2022049364A (en) * 2020-09-16 2022-03-29 Dowaエコシステム株式会社 Method for recovering valuable materials from lithium ion secondary battery
CN112871991A (en) * 2021-02-03 2021-06-01 顺尔茨环保(北京)有限公司 System and method for recycling electrode powder from waste lithium battery through low-temperature evaporation
CN112871991B (en) * 2021-02-03 2024-01-12 顺尔茨环保(北京)有限公司 System and method for recycling electrode powder by low-temperature evaporation of waste lithium batteries
WO2022249615A1 (en) * 2021-05-28 2022-12-01 Dowaエコシステム株式会社 Sorting method for valuable materials
CN114006071A (en) * 2021-10-31 2022-02-01 湖南江冶机电科技股份有限公司 Method for stripping and recovering anode plate powder of waste lithium battery
CN114151802A (en) * 2021-11-30 2022-03-08 湖南江冶机电科技股份有限公司 Method for recycling all components of waste lithium battery
CN115007614A (en) * 2022-07-22 2022-09-06 北辰先进循环科技(青岛)有限公司 Sorting method for broken materials of positive and negative pole pieces of waste lithium ion battery
CN115832498A (en) * 2022-11-24 2023-03-21 厦门海辰储能科技股份有限公司 Recovery equipment and recovery method for battery electrode
CN115832498B (en) * 2022-11-24 2024-01-26 厦门海辰储能科技股份有限公司 Recovery equipment and recovery method for battery electrode
CN115780058A (en) * 2023-02-09 2023-03-14 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) Lithium ion battery retrieves crushing and drying magnetic separation device who recycles

Also Published As

Publication number Publication date
JP6238070B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6238070B2 (en) Disposal of used lithium ion batteries
Kim et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling
CN108615956B (en) Discharge power lithium battery recovery process
US9780419B2 (en) Method for reclaiming active material from a galvanic cell, and an active material separation installation, particularly an active metal separation installation
EP2406843B1 (en) Battery recycling
JP6748274B2 (en) How to recover valuables from lithium-ion secondary batteries
JP2581891B2 (en) Method of treating nickel-cadmium battery or nickel-hydride battery
US8807466B2 (en) Method and system for reclamation of battery constituents
Widijatmoko et al. Selective liberation in dry milled spent lithium-ion batteries
CN109473747A (en) A kind of waste and old lithium ion battery dismantling recovery method
JP5206662B2 (en) Method for recovering manganese oxide from dry cells
KR101359866B1 (en) Separating and recovering method of current collector and positive electrode active material from positive electrode material for lithium ion battery
Zhan et al. A cycling-insensitive recycling method for producing lithium transition metal oxide from Li-ion batteries using centrifugal gravity separation
JP3828461B2 (en) Waste treatment system and waste dry battery treatment method
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
JP6966960B2 (en) Lithium-ion battery waste disposal method
Han et al. A promising method for recovery of LiMn2O4 and graphite from waste lithium-ion batteries: Roasting enhanced flotation
JP3448392B2 (en) Method for recovering cobalt, copper and lithium from used lithium secondary batteries
JP2020129505A (en) Method of processing used lithium-ion battery
CN115156243A (en) Recovery process of anode and cathode materials of waste battery
JP5444821B2 (en) Method for recovering manganese oxide from dry cells
KR100665626B1 (en) Dry-method of separating Co from battery scarp
JP6938414B2 (en) How to dispose of parts waste
JPH1024282A (en) Method for recovering fine-grain nonferrous metal or the like contained in waste incineration ash and shredder dust
WO2022263812A1 (en) Battery recycling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171018

R150 Certificate of patent or registration of utility model

Ref document number: 6238070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150