JP5444821B2 - Method for recovering manganese oxide from dry cells - Google Patents

Method for recovering manganese oxide from dry cells Download PDF

Info

Publication number
JP5444821B2
JP5444821B2 JP2009109001A JP2009109001A JP5444821B2 JP 5444821 B2 JP5444821 B2 JP 5444821B2 JP 2009109001 A JP2009109001 A JP 2009109001A JP 2009109001 A JP2009109001 A JP 2009109001A JP 5444821 B2 JP5444821 B2 JP 5444821B2
Authority
JP
Japan
Prior art keywords
manganese oxide
oxide particles
treatment step
particles
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009109001A
Other languages
Japanese (ja)
Other versions
JP2010253432A (en
Inventor
陽一 吉永
成治 榎枝
和成 石野
正法 北濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009109001A priority Critical patent/JP5444821B2/en
Publication of JP2010253432A publication Critical patent/JP2010253432A/en
Application granted granted Critical
Publication of JP5444821B2 publication Critical patent/JP5444821B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Primary Cells (AREA)

Description

この発明は、乾電池からマンガン酸化物を回収する方法に関する。   The present invention relates to a method for recovering manganese oxide from a dry battery.

一次電池である乾電池は二次電池と異なり繰り返し使用ができないため、従来より、廃棄された乾電池(廃乾電池)を回収して、再利用可能な金属材料を回収することが提案されている。
下記の特許文献1には、廃乾電池を一軸せん断タイプの破砕機で破砕し、破砕物を篩い分け処理して篩上物を磁力選別処理し、鉄成分含有粒片と亜鉛成分および銅成分含有粒片とに分類することが記載されている。篩下物は、そのまま亜鉛および銅成分含有粒片に分類している。そして、得られた鉄成分含有粒片は鉄源原料とし、亜鉛成分および銅成分含有粒片は、非鉄精錬プロセス向けの亜鉛および銅源原料としている。この方法において、二酸化マンガンは、外装鉄缶、亜鉛缶、集電棒、合剤とともに、篩い分け処理によって篩上物とされるが、二酸化マンガンを単独で回収することについては記載されていない。
Since a dry battery, which is a primary battery, cannot be used repeatedly unlike a secondary battery, it has conventionally been proposed to collect a discarded dry battery (waste dry battery) and collect a reusable metal material.
In Patent Document 1 below, waste dry batteries are crushed with a uniaxial shear type crusher, the crushed material is sieved and the material on the sieve is magnetically sorted, and the iron component-containing particles, zinc component and copper component are contained. It is described that it is classified into particle pieces. The under-sieving material is classified as it is into pieces containing zinc and copper components. And the obtained iron component containing particle piece is made into an iron source raw material, and the zinc component and copper component containing particle piece are made into the zinc and copper source material for non-ferrous refining processes. In this method, manganese dioxide is made into a sieve top by a sieving process together with an outer iron can, a zinc can, a current collecting rod, and a mixture, but there is no description about recovering manganese dioxide alone.

下記の特許文献2には、廃乾電池から二酸化マンガン(MnO2 )と塩化亜鉛(ZnCl2 )を分離回収する方法が記載されている。この方法では、先ず、マンガン乾電池を破砕した後に篩い分け処理し、アンダーサイズ品(篩下物)を塩酸に溶解し、その溶液から不純物成分を除去した後に加熱濃縮する。次に、この濃縮物に過塩素酸を加えて加熱することで二酸化マンガンと塩化亜鉛の固形混合物を得、得られた固形混合物に水を加えて塩化亜鉛を溶解した後に濾過することで、固形の二酸化マンガンと水溶性の塩化亜鉛を分離している。 Patent Document 2 below describes a method for separating and recovering manganese dioxide (MnO 2 ) and zinc chloride (ZnCl 2 ) from waste dry batteries. In this method, first, a manganese dry battery is crushed and then subjected to a sieving treatment. An undersized product (undersieving material) is dissolved in hydrochloric acid, and after removing impurities from the solution, the solution is concentrated by heating. Next, by adding perchloric acid to this concentrate and heating, a solid mixture of manganese dioxide and zinc chloride is obtained, and water is added to the obtained solid mixture to dissolve zinc chloride, followed by filtration to obtain a solid mixture. Of manganese dioxide and water-soluble zinc chloride.

特開2004−871号公報JP 2004-871 A 特開平11−191439号公報Japanese Patent Laid-Open No. 11-191439

上述のように、特許文献1には、乾電池から二酸化マンガンを単独で回収する記載はなく、特許文献2の方法は、化学反応を伴う手法で二酸化マンガンと塩化亜鉛を分離回収しているため、溶媒コストや廃水コストが大きいという問題点がある。
本発明の課題は、コストの低い方法で乾電池から二酸化マンガン(MnO2 )などのマンガン酸化物を回収することである。
As described above, Patent Document 1 does not have a description of recovering manganese dioxide alone from a dry battery, and the method of Patent Document 2 separates and recovers manganese dioxide and zinc chloride by a method involving a chemical reaction. There is a problem that solvent cost and waste water cost are large.
An object of the present invention is to recover a manganese oxide such as manganese dioxide (MnO 2 ) from a dry battery by a low cost method.

上記課題を解決するために、本発明は、乾電池を破砕処理した後に篩い分け処理をして、マンガン酸化物粒子と亜鉛酸化物粒子を含む破砕物を篩下物として得る破砕・篩い分け処理工程と、破砕・篩い分け処理工程後の前記篩下物を液体に入れ、この液体中に存在するマンガン酸化物粒子と亜鉛酸化物粒子を含む粒子の凝集体を、各粒子に分離して、各粒子を前記液体中に分散させる分散処理工程と、分散処理工程後の、マンガン酸化物粒子と亜鉛酸化物粒子の凝集が防止された状態の前記液体から、重さの違いによりマンガン酸化物粒子と亜鉛酸化物粒子を分離する重量差分離処理工程と、を有する乾電池からのマンガン酸化物回収方法を提供する。 In order to solve the above-mentioned problems, the present invention provides a crushing / sieving treatment step for obtaining a crushed material containing manganese oxide particles and zinc oxide particles as a sieving material by performing a sieving treatment after crushing the dry battery. And the sieving material after the crushing / sieving treatment step is put in a liquid, and an aggregate of particles containing manganese oxide particles and zinc oxide particles present in the liquid is separated into each particle, A dispersion treatment step of dispersing the particles in the liquid, and the liquid in a state in which aggregation of the manganese oxide particles and the zinc oxide particles after the dispersion treatment step is prevented ; There is provided a method for recovering manganese oxide from a dry battery, comprising a weight difference separation treatment step for separating zinc oxide particles.

本発明の方法においては、前記分散処理工程後の前記液体から、低磁力により鉄粒子を分離する低磁力選別処理工程を行った後に、前記重量差分離処理工程を行うことが好ましい。低磁力とは、3000ガウス以下の磁力を意味する。
前記分散処理工程は前記液体に超音波振動を付与して行うことが好ましい。前記分散処理工程は前記液体に分散剤を投入して行うこともできるが、超音波振動を付与して行う方が薬剤を取り扱う必要がないので手間がかからない。
In the method of the present invention, it is preferable to perform the weight difference separation treatment step after performing the low magnetic force separation treatment step of separating iron particles with a low magnetic force from the liquid after the dispersion treatment step. Low magnetic force means a magnetic force of 3000 gauss or less.
The dispersion treatment step is preferably performed by applying ultrasonic vibration to the liquid. The dispersion treatment step can be performed by adding a dispersant to the liquid. However, it is not time-consuming to apply the ultrasonic vibration because it is not necessary to handle the medicine.

本発明の方法で回収されたマンガン酸化物粒子に対して改質処理を行って得られた酸化マンガン(MnO)は、高炉製鉄方法で製鋼副原料として使用することができる。   Manganese oxide (MnO) obtained by modifying the manganese oxide particles recovered by the method of the present invention can be used as a steelmaking auxiliary material in the blast furnace ironmaking method.

本発明の乾電池からのマンガン酸化物回収方法は、化学反応を伴わない手法であるため、コストを低く抑えることができる。   Since the method for recovering manganese oxide from the dry battery of the present invention is a technique that does not involve a chemical reaction, the cost can be kept low.

本発明の一実施形態に相当する、乾電池からのマンガン酸化物回収方法を示す工程図である。It is process drawing which shows the manganese oxide collection | recovery method from a dry cell corresponding to one Embodiment of this invention. 篩下物をEPMAで面分析した結果を示す図である。It is a figure which shows the result of having surface-analyzed the sieving thing by EPMA. 実施形態の方法を実施可能な装置構成を示す概略図である。It is the schematic which shows the apparatus structure which can implement the method of embodiment.

以下、本発明の実施の形態について説明する。
図1は、本発明の一実施形態に相当する、乾電池からのマンガン酸化物回収方法を示す工程図である。
[破砕・篩い分け処理工程]
先ず、回収された使用済み乾電池の中に二次電池が入っていないかを確認し、入っていた場合には二次電池を取り出した残りの使用済み乾電池に対して、破砕処理を行う。この破砕処理では、一軸せん断タイプの破砕機を用いて乾電池を一次破砕する。次に、一次破砕により生じた乾電池の破砕物を篩い分け処理する。この篩い分け処理は、例えば、篩い目が5mm以下のものを用いて行う。篩上物は磁力選別処理して鉄片と残渣に分離する。篩下物は、ほとんどが1mm以下の粒子となる。
Embodiments of the present invention will be described below.
FIG. 1 is a process diagram showing a method for recovering manganese oxide from a dry battery, corresponding to one embodiment of the present invention.
[Crushing / sieving process]
First, it is confirmed whether or not a secondary battery is contained in the collected used dry battery. If it is contained, a crushing process is performed on the remaining used dry battery from which the secondary battery has been taken out. In this crushing process, a dry cell is primarily crushed using a uniaxial shear type crusher. Next, the crushed material of the dry battery generated by the primary crushing is sieved. This sieving process is performed using, for example, a sieve having a sieve mesh of 5 mm or less. The sieve top is separated into iron pieces and residues by magnetic separation. Most of the sieving materials are particles of 1 mm or less.

図2は、この篩下物をEPMAで面分析した結果(どの場所にどの元素が分布しているか)を示す図である。図2から、マンガン(Mn)元素と亜鉛(Zn)元素は別々に存在しており、化学結合はしていないと推測される。また、マンガン(Mn)元素の分布が濃い部分と亜鉛(Zn)元素の分布が濃い部分とでは大きさが異なり、マンガン酸化物粒子は亜鉛酸化物粒子より大きいことが分かる。   FIG. 2 is a diagram showing the results of surface analysis of this under-sieving material by EPMA (which elements are distributed in which locations). From FIG. 2, it is estimated that the manganese (Mn) element and the zinc (Zn) element exist separately and are not chemically bonded. In addition, it can be seen that the manganese oxide particles are larger in size than the zinc oxide particles because the manganese (Mn) element distribution and the zinc (Zn) element distribution are different in size.

MnO2 の比重は5.0g/cm3 、MnOの比重は5.2g/cm3 、Mn2 3 の比重は4.8g/cm3 、ZnOの比重は5.6g/cm3 であり、マンガン酸化物(MnO2 、MnO、Mn2 3 など)と亜鉛酸化物(ZnO)の比重はほぼ同じである。そして、マンガン酸化物粒子は亜鉛酸化物粒子より大きいことから、マンガン酸化物粒子は亜鉛酸化物粒子より重いことが分かる。また、マンガン酸化物粒子の周囲に亜鉛酸化物粒子が凝集していることが分かる。
この篩下物に対して、さらに破砕する粉砕(二次破砕)処理を行う。この粉砕処理により、例えば、ほとんどが100μm以下の粒子となるようにする。
The specific gravity of MnO 2 is 5.0 g / cm 3 , the specific gravity of MnO is 5.2 g / cm 3 , the specific gravity of Mn 2 O 3 is 4.8 g / cm 3 , and the specific gravity of ZnO is 5.6 g / cm 3 , The specific gravity of manganese oxide (MnO 2 , MnO, Mn 2 O 3 etc.) and zinc oxide (ZnO) is almost the same. And since a manganese oxide particle is larger than a zinc oxide particle, it turns out that a manganese oxide particle is heavier than a zinc oxide particle. Moreover, it turns out that the zinc oxide particle has aggregated around the manganese oxide particle.
The sieving material is further crushed (secondary crushing). By this pulverization treatment, for example, most of the particles are 100 μm or less.

[分散処理工程]
粉砕処理後の粒子を水(液体)に入れて、この水に超音波振動を付与する。粉砕処理後の粒子を水に入れると、マンガン酸化物粒子と亜鉛酸化物粒子を含む粒子の凝集体が水中に存在した状態となり、この凝集体が超音波振動により各粒子に分離され、各粒子が水中に分散した状態となる。
[Distributed processing step]
The pulverized particles are put in water (liquid), and ultrasonic vibration is applied to the water. When the pulverized particles are put into water, aggregates of particles containing manganese oxide particles and zinc oxide particles are present in the water, and the aggregates are separated into individual particles by ultrasonic vibration. Becomes dispersed in water.

[低磁力選別処理工程]
次に、この各粒子が分散している水に1000ガウス程度(低磁力)の磁石を入れて、強磁性体である鉄(Fe)を取り出す。これにより、この水中には弱磁性体であるマンガン酸化物(MnO2 など)粒子と、非磁性体である亜鉛酸化物(ZnO)粒子が存在することになる。
[Low magnetic force sorting process]
Next, a magnet of about 1000 gauss (low magnetic force) is put in the water in which each particle is dispersed, and iron (Fe) as a ferromagnetic material is taken out. Thus, manganese oxide (MnO 2 or the like) particles that are weak magnetic substances and zinc oxide (ZnO) particles that are nonmagnetic substances exist in the water.

[重量差分離処理工程]
次に、この水を例えばサイクロン選別機にかけて、重さの違いにより、重量物であるマンガン酸化物(MnO2 など)粒子と軽量物である亜鉛酸化物(ZnO)粒子を分離する。
[Weight difference separation process]
Next, this water is applied to, for example, a cyclone sorter to separate manganese oxide (MnO 2 or the like) particles that are heavy and zinc oxide (ZnO) particles that are lightweight, due to the difference in weight.

[改質処理工程]
分離して取り出したマンガン酸化物粒子は、改質処理を行って酸化マンガン(MnO)とし、製鋼副原料として使用する。亜鉛酸化物(ZnO)粒子も回収して、亜鉛精錬メーカーなどに提供する。
[Modification process]
The manganese oxide particles separated and taken out are subjected to a modification treatment to make manganese oxide (MnO), which is used as a steelmaking auxiliary material. Zinc oxide (ZnO) particles are also collected and provided to zinc refining manufacturers.

粉砕(二次破砕)処理工程および低磁力選別処理工程は省略してもよい。低磁力選別処理工程を省略すると、重量物である鉄(Fe)は、重量差分離処理工程でマンガン酸化物とともに重量物側に分離されるため、改質処理工程の前にマンガン酸化物から分離する。
この実施形態の方法は、化学反応を伴わない手法で乾電池からマンガン酸化物(MnO2 など)を回収できるため、コストを低く抑えることができる。
The crushing (secondary crushing) processing step and the low magnetic force sorting processing step may be omitted. If the low magnetic separation process is omitted, heavy iron (Fe) is separated from the manganese oxide together with the manganese oxide in the weight difference separation process and separated from the manganese oxide before the reforming process. To do.
In the method of this embodiment, manganese oxide (MnO 2 or the like) can be recovered from the dry battery by a technique that does not involve a chemical reaction, so that the cost can be kept low.

この実施形態の方法は、例えば図3に示すように、回転磁石11と、水槽21,22と、超音波振動子3と、スクレーパ4と、サイクロン選別機7とを用いて構成した装置で行うことができる。
上流側の水槽21の前段部分21Aには超音波振動子3が設置され、後段部分21Bには回転磁石11とスクレーパ4が設置されている。水槽22の水面位置となる部分が、水槽21の後段部分21Bの底側部分と配管5で接続されている。水槽21の前段部分21Aおよび水槽22の水中には、超音波振動子3による超音波振動が付与されている。回転磁石11は1000ガウス程度(低磁力)の磁石である。
For example, as shown in FIG. 3, the method of this embodiment is performed by an apparatus configured using a rotating magnet 11, water tanks 21 and 22, an ultrasonic transducer 3, a scraper 4, and a cyclone sorter 7. be able to.
The ultrasonic vibrator 3 is installed in the front part 21A of the upstream water tank 21, and the rotating magnet 11 and the scraper 4 are installed in the rear part 21B. The portion of the water tank 22 that is the water surface position is connected to the bottom portion of the rear portion 21 </ b> B of the water tank 21 by the pipe 5. Ultrasonic vibration by the ultrasonic vibrator 3 is applied to the water in the front portion 21A of the water tank 21 and the water in the water tank 22. The rotating magnet 11 is a magnet of about 1000 gauss (low magnetic force).

下流側の水槽22には超音波振動子3とポンプ8が設置されている。ポンプ8からの配管81がサイクロン選別機7に接続されている。サイクロン選別機7の下方に重量物を受ける容器71が設置されている。サイクロン選別機7の上部に配管72が接続され、この配管72を通ったオーバーフロー分を回収する容器73が設置されている。なお、重量物を受ける容器71の内容物を水槽22に戻す配管78を設けてもよい。   An ultrasonic transducer 3 and a pump 8 are installed in the downstream water tank 22. A pipe 81 from the pump 8 is connected to the cyclone sorter 7. A container 71 for receiving heavy objects is installed below the cyclone sorter 7. A pipe 72 is connected to the upper part of the cyclone sorter 7, and a container 73 for collecting the overflow through the pipe 72 is installed. In addition, you may provide the piping 78 which returns the contents of the container 71 which receives a heavy article to the water tank 22. FIG.

粉砕処理後の篩下物6を水槽21の前段部分21Aに投入することで、マンガン酸化物粒子と亜鉛酸化物粒子を含む粒子の凝集体が水中に存在した状態となる。この凝集体が超音波振動により各粒子に分離され、各粒子が水中に分散した状態となる。前段部分21Aの内容物は後段部分21Bに移動し、後段部分21Bで回転磁石11に水中の強磁性体(鉄)が付着する。付着した強磁性体(鉄)はスクレーパ4で回収される。   By putting the sieving material 6 after the pulverization treatment into the front part 21A of the water tank 21, an aggregate of particles including manganese oxide particles and zinc oxide particles is present in water. This aggregate is separated into each particle by ultrasonic vibration, and each particle is dispersed in water. The contents of the front part 21A move to the rear part 21B, and the ferromagnetic material (iron) in water adheres to the rotating magnet 11 in the rear part 21B. The adhered ferromagnetic material (iron) is recovered by the scraper 4.

後段部分21Bの内容物は配管5を通って水槽22に移動する。これにより、水槽22内には、マンガン酸化物粒子と亜鉛酸化物粒子の分散水が導入される。水槽22内では、超音波振動により、水中に存在するマンガン酸化物粒子と亜鉛酸化物粒子が凝集することが防止された状態となり、マンガン酸化物粒子と亜鉛酸化物粒子の分散水がポンプ8により汲み上げられて、配管81からサイクロン選別機7に導入される。   The contents of the rear stage portion 21 </ b> B move to the water tank 22 through the pipe 5. Thereby, dispersed water of manganese oxide particles and zinc oxide particles is introduced into the water tank 22. In the water tank 22, the state where the manganese oxide particles and the zinc oxide particles present in the water are prevented from aggregating by ultrasonic vibration, and the dispersed water of the manganese oxide particles and the zinc oxide particles is supplied by the pump 8. Pumped up and introduced into the cyclone sorter 7 from the pipe 81.

サイクロン選別機7により、重さの違いでマンガン酸化物粒子と亜鉛酸化物粒子が分離され、重量物であるマンガン酸化物粒子は容器71に入り、軽量物である亜鉛酸化物粒子は容器73に入る。配管78を設けている場合は、容器71の内容物が水槽22に戻されて循環するため、重量物の回収純度が向上する。
この実施形態の方法では、分散処理工程を、水槽内の液体に超音波振動を付与することで行っているが、これに代えて水槽内の液体に分散剤を投入することで行ってもよい。また、超音波振動の付与とともに分散剤の投入を併用して行ってもよい。また、マンガン酸化物粒子と亜鉛酸化物粒子を含む粒子の凝集体を含む液体を、剪断剥離装置(スラリーをポンプで押出し、直交した狭い管を通過する際に発生する剪断力により凝集体を分散させる装置)や衝撃粉砕装置(スラリーをポンプで加圧し、チャンバー内で衝突させることで凝集体を破砕、分散させる装置)に導入することで行ってもよい。
The cyclone sorter 7 separates the manganese oxide particles and the zinc oxide particles due to the difference in weight. The heavy manganese oxide particles enter the container 71, and the lightweight zinc oxide particles enter the container 73. enter. In the case where the pipe 78 is provided, the contents of the container 71 are returned to the water tank 22 and circulated, so that the collection purity of heavy objects is improved.
In the method of this embodiment, the dispersion treatment step is performed by applying ultrasonic vibration to the liquid in the water tank. Alternatively, it may be performed by introducing a dispersant into the liquid in the water tank. . Moreover, you may carry out combining injection | pouring of a dispersing agent with provision of an ultrasonic vibration. In addition, a liquid containing an aggregate of particles containing manganese oxide particles and zinc oxide particles is dispersed in a shear peeling device (the slurry is extruded by a pump and dispersed by an shearing force generated when passing through an orthogonal narrow tube. And an impact crushing device (a device that crushes and disperses the aggregates by pressurizing the slurry with a pump and causing the slurry to collide with the chamber).

11 低磁力の回転磁石
12 高磁力の回転磁石
21 上流側の水槽
21A 前段部分
21B 後段部分
22 下流側の水槽
3 超音波振動子
4 スクレーパ
5 配管
6 粉砕処理後の篩下物
7 サイクロン選別機
71 容器
72 配管
73 容器
78 配管
8 ポンプ
DESCRIPTION OF SYMBOLS 11 Low-magnetism rotating magnet 12 High-magnetism rotating magnet 21 Upstream water tank 21A First stage part 21B Rear stage part 22 Downstream water tank 3 Ultrasonic vibrator 4 Scraper 5 Piping 6 Under sieve after grinding 7 Cyclone sorter 71 Container 72 Piping 73 Container 78 Piping 8 Pump

Claims (3)

乾電池を破砕処理した後に篩い分け処理をして、マンガン酸化物粒子と亜鉛酸化物粒子を含む破砕物を篩下物として得る破砕・篩い分け処理工程と、
破砕・篩い分け処理工程後の前記篩下物を液体に入れ、この液体中に存在するマンガン酸化物粒子と亜鉛酸化物粒子を含む粒子の凝集体を、各粒子に分離して、各粒子を前記液体中に分散させる分散処理工程と、
分散処理工程後の、マンガン酸化物粒子と亜鉛酸化物粒子の凝集が防止された状態の前記液体から、重さの違いによりマンガン酸化物粒子と亜鉛酸化物粒子を分離する重量差分離処理工程と、
を有する乾電池からのマンガン酸化物回収方法。
Crushing treatment after crushing the dry battery to obtain a crushed material containing manganese oxide particles and zinc oxide particles as an under-sieving material;
The sieving material after the crushing and sieving treatment step is put into a liquid, and an aggregate of particles containing manganese oxide particles and zinc oxide particles present in the liquid is separated into each particle. A dispersion treatment step of dispersing in the liquid;
A weight difference separation treatment step of separating the manganese oxide particles and the zinc oxide particles by the difference in weight from the liquid in a state where aggregation of the manganese oxide particles and the zinc oxide particles is prevented after the dispersion treatment step; ,
Method for recovering manganese oxide from a dry battery having
前記分散処理工程後の前記液体から、低磁力により鉄粒子を分離する低磁力選別処理工程を行った後に、前記重量差分離処理工程を行う請求項1記載の乾電池からのマンガン酸化物回収方法。   The method for recovering manganese oxide from a dry battery according to claim 1, wherein the weight difference separation treatment step is performed after performing the low magnetic force separation treatment step of separating iron particles with a low magnetic force from the liquid after the dispersion treatment step. 前記分散処理工程は前記液体に超音波振動を付与して行う請求項1または2記載の乾電池からのマンガン酸化物回収方法。   The method for recovering manganese oxide from a dry battery according to claim 1 or 2, wherein the dispersion treatment step is performed by applying ultrasonic vibration to the liquid.
JP2009109001A 2009-04-28 2009-04-28 Method for recovering manganese oxide from dry cells Expired - Fee Related JP5444821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109001A JP5444821B2 (en) 2009-04-28 2009-04-28 Method for recovering manganese oxide from dry cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009109001A JP5444821B2 (en) 2009-04-28 2009-04-28 Method for recovering manganese oxide from dry cells

Publications (2)

Publication Number Publication Date
JP2010253432A JP2010253432A (en) 2010-11-11
JP5444821B2 true JP5444821B2 (en) 2014-03-19

Family

ID=43314990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109001A Expired - Fee Related JP5444821B2 (en) 2009-04-28 2009-04-28 Method for recovering manganese oxide from dry cells

Country Status (1)

Country Link
JP (1) JP5444821B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434636B1 (en) 2013-05-03 2014-08-26 (주)화성피피아이 Washing water treatment system for hard chronium coated object
JP6070898B2 (en) * 2014-04-21 2017-02-01 Jfeスチール株式会社 Method and facility for recovering valuable components from waste dry batteries
WO2023283685A1 (en) * 2021-07-16 2023-01-19 Resource Conservation and Recycling Corporation Pty Ltd Process for recovering values from alkaline batteries

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174692A (en) * 1984-09-19 1986-04-16 Mitsui Mining & Smelting Co Ltd Treatment of waste dry cell
JPS61234981A (en) * 1985-04-08 1986-10-20 Mitsubishi Kakoki Kaisha Ltd Disposing method for waste dry cell
IT1237502B (en) * 1989-10-26 1993-06-08 Nuova Samin Spa PROCEDURE FOR THE TREATMENT OF EXHAUSTED BATTERIES
JPH0785897A (en) * 1993-06-30 1995-03-31 Tdk Corp Method for useddry battery disposal
JP3605614B2 (en) * 1996-07-03 2004-12-22 独立行政法人産業技術総合研究所 Discarded Ni-MH secondary battery and method for recovering valuable resources from waste Ni-MH secondary battery electrode plate
JPH11191439A (en) * 1997-12-25 1999-07-13 Nomura Kosan Kk Method for separately recovering manganese dioxide and zinc chloride from waste battery
JP2009006273A (en) * 2007-06-28 2009-01-15 Jfe Steel Kk Wet type magnetic separation method for separating mixture of microparticles

Also Published As

Publication number Publication date
JP2010253432A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
Hu et al. High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries
JP5504992B2 (en) Method for recovering manganese oxide from dry cells
JP6238070B2 (en) Disposal of used lithium ion batteries
JP6247681B2 (en) Magnetic separation of electrochemical cell materials
US8741023B2 (en) Ore beneficiation
JP5206662B2 (en) Method for recovering manganese oxide from dry cells
CN105671316A (en) Method for recovering valuable metals from waste lithium-ion power batteries
JP5142292B2 (en) Recycling method of sintered magnet
TW201430140A (en) Iron ore concentration process with grinding circuit, dry desliming and dry or mixed (dry and wet) concentration
CN108514949B (en) Recovery method of fine-grain ilmenite
CN102275930B (en) Recycling method for silicon powder
JP2009006273A (en) Wet type magnetic separation method for separating mixture of microparticles
JP5444821B2 (en) Method for recovering manganese oxide from dry cells
CN109909061B (en) Garnet efficient washing and selecting device and technology
TWI790740B (en) Method for recovering valuable materials from lithium ion secondary cell
JP3664586B2 (en) Method and apparatus for metal recovery from solid waste
JP2013255901A (en) Apparatus and method of recycling used electrical and electric equipment
JP2020129505A (en) Method of processing used lithium-ion battery
JP2008093509A (en) Treatment method of display panel waste
US11549155B2 (en) Reduced iron production method and production apparatus
JP5163387B2 (en) Method for nickel concentration of saprolite ore
EP4334038A1 (en) Mineral separation process
JPH08287967A (en) Method of recovering cobalt, copper, and lithium from used lithium secondary battery
JP2012178253A (en) Method for collecting manganese oxide from dry battery
JP6938414B2 (en) How to dispose of parts waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees