JP2020182352A - 回生制御装置 - Google Patents

回生制御装置 Download PDF

Info

Publication number
JP2020182352A
JP2020182352A JP2019085467A JP2019085467A JP2020182352A JP 2020182352 A JP2020182352 A JP 2020182352A JP 2019085467 A JP2019085467 A JP 2019085467A JP 2019085467 A JP2019085467 A JP 2019085467A JP 2020182352 A JP2020182352 A JP 2020182352A
Authority
JP
Japan
Prior art keywords
regenerative torque
regenerative
motor
vehicle
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019085467A
Other languages
English (en)
Inventor
山口 伸二
Shinji Yamaguchi
伸二 山口
忠一 植竹
Tadakazu Uetake
忠一 植竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to JP2019085467A priority Critical patent/JP2020182352A/ja
Priority to PCT/JP2020/009144 priority patent/WO2020217726A1/ja
Publication of JP2020182352A publication Critical patent/JP2020182352A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】ドライバビリティ及び走行安全性の低下を抑制することができる回生制御装置を提供すること。【解決手段】回生制御が可能なモータ2の回生制御装置であって、走行により得られる情報に基づいて推定重量Wesを算出する重量推定部51と、走行状態に対するモータ2の最適回生トルクTOPTを規定する回生トルク特性を予め記憶する回生トルク特性記憶部52と、アクセル開度Acに基づいて回生トルク特性から最適回生トルクTOPTを求め、モータ2を最適回生トルクTOPTに制御する回生トルク制御部53と、を備え、回生トルク特性記憶部52は、推定重量Wesが閾値WTh未満か否かでそれぞれ選択される回生トルク弱マップMwと回生トルク強マップMsとを記憶し、回生トルク制御部53は、重量推定部51が推定重量Wesを算出するまでは、回生トルク弱マップMwに基づいてモータ2を制御する。【選択図】図3

Description

本発明は、車両の回生制御装置に関する。
近年、環境負荷低減の観点から、トラック等の商用車の分野においても内燃機関を備えることなくモータのみによって駆動する電動車両の開発が行われている。電動車両においては、減速時に制動力を得ると共にモータで発電される電力をバッテリに回収することができる回生ブレーキが広く採用されている(例えば、特許文献1を参照)。このような車両においては、ドライバビリティやエネルギー効率向上の観点から、加速度や車両重量の推定によりモータの回生量を最適に設定するための制御が行われる。
特開2016−82692号公報
しかしながら、例えばトラックなど荷物の集配を役務とする車両においては、積載状態に起因する車両の重量の変化量が乗用車に比して大きい。このため、推定される車両の重量に誤差がある場合には、誤差を含む推定重量に基づいたモータ制御量と、実際の重量に見合ったモータ制御量とが乖離しやすい。これにより、不正確なモータ制御量で回生制動力が働く場合には、ドライバビリティが低下する可能性がある他、積み荷の荷崩れやスリップなどの走行安全性の低下を招く虞がある。
上記のようなトラックは、特に、配送直後のように車両の重量が変化した直後の走行時においては、車両の記憶媒体に記録されている推定重量が不正確であることから、車両の重量に応じて設定されるモータ制御量が適切ではなく、これによりドライバビリティや走行安全性の低下を招く虞がある。
本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、重量の変化量が大きい電動車両であっても、ドライバビリティ及び走行安全性の低下を抑制することができる回生制御装置を提供することにある。
<本発明の第1の態様>
本発明の第1の態様に係る回生制御装置は、車両の減速時に回生制御が可能なモータの回生制御装置であって、前記車両が走行することにより得られる情報に基づいて前記車両の推定重量を算出する重量推定部と、前記車両の走行状態に対する前記モータの最適回生トルクを規定する回生トルク特性を予め記憶する回生トルク特性記憶部と、前記車両のアクセル開度に基づいて前記回生トルク特性から前記最適回生トルクを求め、前記モータの回生トルクを前記最適回生トルクに制御する回生トルク制御部と、を備え、前記回生トルク特性記憶部は、推定される前記推定重量が所定の閾値未満の場合に選択される第1回生トルク特性と、前記閾値以上の場合に選択される第2回生トルク特性とを含む複数の前記回生トルク特性を記憶し、前記回生トルク制御部は、前記重量推定部が前記推定重量を算出するまでは、前記第1回生トルク特性に基づいて前記モータを制御する。
回生制御装置は、車両の走行情報に基づいて当該車両の推定重量を算出すると共に、算出された当該推定重量に基づいて、回生トルク特性記憶部に記憶された第1回生トルク特性又は第2回生トルク特性のいずれかを選択する。ここで、第1回生トルク特性及び第2回生トルク特性は、車両の推定重量に適した最適回生トルクを求めるために使用され、例えば車両のアクセル開度やモータの回転数などの走行状態に基づいて、減速時における最適な回生量を得ることができるモータの回生トルクを規定している。このため、回生制御装置の回生トルク制御部は、推定重量に基づく回生トルク特性を介した最適回生トルクの設定により、推定重量が比較的軽い場合には回生制動力が抑制されて走行安全性が向上し、推定重量が比較的重い場合には減速時における回生量を十分に回収することができる。
ここで、回生制御装置は、重量推定部が重量推定を開始してから推定重量が算出されるまでの推定期間においては、第1回生トルク特性に基づいて最適回生トルクを設定する。つまり、回生トルク制御部は、重量推定部が信頼性の高い推定重量を算出できない期間においては、モータの回生トルクが過大にならないように制御することができ、車両のスリップや荷崩れを抑止することができる。これにより、本発明の第1の態様に係る回生制御装置によれば、重量の変化量が大きい電動車両であっても、ドライバビリティ及び走行安全性の低下を抑制することができる。
<本発明の第2の態様>
本発明の第2の態様に係る回生制御装置においては、上記した本発明の第1の態様において、前記第1回生トルク特性及び前記第2回生トルク特性は、前記モータの回転数と回生トルクとの関係が互いに独立して設定されてもよい。
本発明の第2の態様に係る回生制御装置によれば、複数の回生トルク特性のそれぞれにおいて、モータの回転数と回生トルクとの関係が互いに独立して設定されていることにより、特にモータの回転数が低い領域において走行安全性を向上させる回生トルク設定が可能になる。
<本発明の第3の態様>
本発明の第3の態様に係る回生制御装置においては、上記した本発明の第1又は2の態様において、前記回生トルク制御部は、前記推定重量が更新された場合に、新たな前記推定重量に基づいて前記回生トルク特性を選択してもよい。
本発明の第3の態様に係る回生制御装置によれば、重量の推定期間を経て算出された推定重量の信頼性が万が一不十分であっても、車両の走行により推定重量が逐次更新されて信頼性が向上していくため、これに伴い設定される最適回生トルクも逐次より適切な値に修正されていくことになる。
<本発明の第4の態様>
本発明の第4の態様に係る回生制御装置は、上記した本発明の第3の態様において、前記回生トルク制御部は、前記回生トルク特性記憶部が3以上の前記回生トルク特性を記憶している場合に、前記回生トルク特性の選択を段階的に切り替えてもよい。
本発明の第4の態様に係る回生制御装置は、例えば推定重量の大きさに基づいて選択される第1回生トルク特性、第2回生トルク特性、及び第3回生トルク特性のように3段階以上の回生トルク特性を切り替え可能に設定されている場合であっても、第2回生トルク特性をスキップして第1回生トルク特性と第3回生トルク特性との相互の切り替えが起こらないよう、回生トルク特性の選択が段階的に切り替えられる。これにより、本発明の第4の態様に係る回生制御装置によれば、モータの回生トルクが急激に変化しないよう制御することができ、ドライバビリティ及び走行安全性の低下を更に抑制することができる。
本発明に係る回生制御装置を備える車両のシステム構成図である。 本発明に係る回生トルク特性を概念的に示すグラフである。 本発明に係る回生制御装置における回生トルク制御を示すフローチャートである。
以下、図面を参照し、本発明の実施の形態について詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。
図1は、本発明に係る回生制御装置を備える車両1のシステム構成図である。車両1は、走行駆動源としてのモータ2を備える電動車両のトラック(すなわち、電気トラック)である。尚、車両1は、トラックタイプに限定されることなく、走行駆動源としてのモータを備えていれば、一般的な乗用自動車、バス、及びその他の自動車のタイプであってもよい。
また、本実施形態に係る車両1は、モータ2、プロペラシャフト3、差動装置4、駆動軸5、駆動輪6、インバータ10、PDU11、バッテリ12、補機類13、アクセルペダル20、ブレーキペダル21、アクセルセンサ22、ブレーキスイッチ23、加速度センサ40、及び「回生制御装置」としてのVCU50を備える。尚、車両1は、上記した構成以外にも、従来の電動トラックが備えるコンポーネントを適宜備えている。
モータ2は、例えば永久磁石式同期電動機のように発電機としても作動可能な電動機である。モータ2の出力軸は、プロペラシャフト3を介して差動装置4が連結され、差動装置4には駆動軸5を介して左右の駆動輪6が連結されている。また、モータ2は、インバータ10及びPDU11を介してバッテリ12及び補機類13に接続されている。
そして、バッテリ12からPDU11を介して出力される直流電力は、インバータ10により交流電力に変換されてモータ2に供給され、モータ2が発生させた駆動力は駆動輪6に伝達されて車両1を走行させる(力行制御)。また、例えば車両1の減速時や降坂路での走行時には、駆動輪6側からの逆駆動によりモータ2が発電機として機能する(回生制御)。この場合には、モータ2が発生させた負側の駆動力は制動力として駆動輪6側に伝達されると共に、モータ2が発電させた交流電力がインバータ10で直流電力に変換されて、PDU11を介してバッテリ12に充電される。
ここで、PDU11は、車両1に搭載された各種電気機器と接続される配電ユニット(Power Distribution Unit)であり、バッテリ12から供給される高電圧の電力をモータ2や補機類13に対して分配する。尚、PDU11は、DC−DCコンバータを介して低電圧バッテリ(いずれも図示せず)が接続されていてもよく、これにより例えば後述するVCU50等の低電圧で駆動する装置に対しても適切な電力供給が可能になる。
バッテリ12は、主に車両1を走行させるためのエネルギー源として電力を供給する二次電池であり、例えばリチウムイオン電池である。また、補機類13は、例えばエアコンやパワーステアリング装置等の電気機器であり、PDU11を介して高圧電力が供給されることで動作する。
アクセルペダル20及びブレーキペダル21は、車両1の運転席に設けられ、ドライバが加速操作及び減速操作をそれぞれ行うための操作機構である。車両1のドライバがアクセルペダル20を踏込み操作すると、アクセルセンサ22は、アクセルペダル20の操作量を検出し、アクセル開度Acを後述するVCU50へ伝達する。また、車両1のドライバがブレーキペダル21を踏込み操作すると、ブレーキスイッチ23は、ブレーキペダル21の操作量を検出してVCU50へ伝達する。
加速度センサ40は、車両1のイグニションがONである期間において、随時、車両1の加速度を検出してVCU50へ伝達する。
VCU50は、入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM、RAMなど)、中央処理装置(CPU)、タイマカウンタなど(いずれも図示せず)を備え、車両1に搭載される各種コンポーネントの状態監視及び制御を行うことによって車両1の全体を統括制御するための車両制御ユニット(Vehicle Control Unit)である。
より具体的には、VCU50は、アクセルセンサ22から伝達されるアクセル開度Ac等の情報に基づいて必要な要求トルクを算出し、モータ2のトルクT及び回転数Nを制御することにより、ドライバのアクセルペダル20に対する踏込み操作に応じた加速度で車両1を加速させる。また、VCU50は、ブレーキ操作量等に基づいてモータ2を回生制御することにより、また必要に応じて図示しないブレーキ機構を併せて制御し、ドライバのブレーキペダル21に対する踏込み操作に応じた負の加速度で車両1を減速させる。更に、VCU50は、PDU11を介した電力制御の指示を行うことにより、力行制御及び回生制御によるバッテリ12の充放電を管理する。
そして、特に本実施形態に係るVCU50は、モータ2に対する回生制御を行うための機構として、重量推定部51、回生トルク特性記憶部52、及び回生トルク制御部53を含む。
重量推定部51は、加速度センサ40や、モータ2のトルクT及び回転数Nに基づいて、車両1における荷役の積載状態や乗車人員等によって変化する車両1の重量を推定する。より具体的には、重量推定部51は、上記したモータ2の各情報や、車両1が走行する道路の勾配データ等を用いて車両1に作用する力を算出すると共に、加速度センサ40で得られる加速度情報を用いることにより、車両1についての運動方程式を通して車両1の推定重量Wesを算出する。また、重量推定部51は、加速度センサ40から得られるデータに基づき、車両が走行している路面勾配を判定してもよい。この場合、モータ2の回転数変動から実際の車両の加速度を算出し、その際のトルクをもとに、運動方程式から車両1の推定重量Wesを算出してもよい。
回生トルク特性記憶部52は、車両1の走行状態としてのモータ2の回転数N及びアクセル開度Acと、減速時の回生制御により得られる回生量が最大となる場合のトルクT、すなわち最適回生トルクTOPTとの関係を規定する回生トルク特性を予め記憶している。本実施形態における回生トルク特性は、回生トルクマップとして知られているように、走行状態に対してモータ2をどのような回生トルクTで制御すれば最大回生量が得られるかを把握するために参照される曲線として、車両1の特性に合わせて事前に取得される。
また、回生トルク特性記憶部52は、本実施形態においては、車両1の推定重量Wesに応じて選択される複数の回生トルク特性を予め記憶している。より具体的には、回生トルク特性記憶部52は、重量推定部51において推定される車両1の推定重量が予め任意に設定される所定の閾値Wth未満であるか否かによって選択される「第1回生トルク特性」としての回生トルク弱マップMw、及び「第2回生トルク特性」としての回生トルク強マップMsが記憶されている。
回生トルク弱マップMwは、車両1の推定重量Wesが閾値Wth未満の場合に選択され、回生制動力を抑制して走行安全性が向上するよう最適回生トルクTOPTが相対的に小さく設定される特性曲線である。一方、回生トルク強マップMsは、車両1の推定重量Wesが閾値Wth以上の場合に選択され、減速時における回生量を十分に回収できるよう最適回生トルクTOPTが相対的に大きく設定される特性曲線である。
回生トルク制御部53は、推定重量Wesに基づいて選択された回生トルク特性から、走行時におけるモータ2の回転数N及びアクセル開度Acに対応した上記の最適回生トルクTOPTを求め、モータ2の回生トルクTが当該最適回生トルクTOPTとなるよう、車両1の減速時においてモータ2を制御する。
図2は、本発明に係る回生トルク特性を概念的に示すグラフである。図2においては、横軸をモータ2の回転数Nとし、縦軸をモータ2の回生トルクTとした場合の、アクセル開度Ac及び回転数Nごとの最適回生トルクTOPTを表す曲線である。すなわち、回生トルク制御部53は、重量推定部51において推定される車両1の推定重量Wesにより回生トルク弱マップMw、又は回生トルク強マップMsのいずれかを選択した上で、アクセル開度Ac及び回転数Nに応じた最適回生トルクTOPTを読み出すことができる。そして、回生トルク制御部53は、モータ2の回生トルクTを最適回生トルクTOPTとするよう制御することにより、車両1の減速時における回生量を最適化することができる。
より具体的には、図2において、あるタイミングにおけるアクセル開度Acが相対的に小さく且つモータ2の回転数NがNNOWであった場合に、推定重量Wesが閾値Wth未満であることを条件として、回生トルク弱マップMwに基づいて最適回生トルクTOPTがT0に設定される。また、推定重量Wesが閾値Wth以上である場合には、回生トルク強マップMsに基づいて最適回生トルクTOPTがT1に設定される。つまり、各タイミングにおけるモータ2の回転数Nとアクセル開度Acとが決定された場合に、推定重量Wesが相対的に軽ければ相対的に小さい回生トルクTに制御され、推定重量Wesが相対的に重ければ相対的に大きい回生トルクTに制御される。
ここで、アクセル開度Acが等しい場合の回生トルク弱マップMw及び回生トルク強マップMsを比較した場合、回転数Nの可動域の全体に対して総じて回生トルク強マップMsの方が高い回生トルクTとなるよう設定されている。しかし、両者は回生トルクTの大小方向に互いに平行移動したような関係にはなく、モータ2の回転数Nと回生トルクTとの関係が互いに独立して設定されている。特に、それぞれの回生トルク特性は、回転数Nが低下するほど急激に回生トルクTが減少して両者の差が縮小している。これは、モータ2の回転数Nが低い走行状態においては、両者が収束する回生トルクTにおいて走行安全性を向上させることができるためである。
尚、回生トルク特性における最適回生トルクTOPTの読み出しにおいては、モータ2の回転数Nは、モータ2におけるセンサの測定値を用いずとも、アクセル開度Acに基づいて回生トルク特性から帰納的に求めることもできる。
続いて、VCU50が車両1の重量推定及びモータ2の回生トルク制御を行う手順について説明する。図3は、本発明に係る回生制御装置における回生トルク制御を示すフローチャートである。VCU50は、図示しないイグニションがOFFからONに切り替えられて起動することにより、図3のフローチャートによる制御手順を開始する。
VCU50が起動すると、回生トルク制御部53は、回生トルク特性として回生トルク弱マップMwを選択して車両1の走行を開始する(ステップS1)。すなわち、この走行期間において車両1が減速する場合には、回生トルク制御部53は、回生トルク弱マップMwにおいて、走行状態に対応する座標から最適回生トルクTOPTを読み出し、モータ2の回生トルクが当該最適回生トルクTOPTとなるように制御する。
また、重量推定部51は、上記の方法により車両1の推定重量Wesの算出を開始する(ステップS2)。ただし、推定重量Wesに対する推定精度を確保するためには、走行状態において得られる情報を蓄積しながら車両1の推定重量Wesを算出する必要があることから、重量推定が完了するまでにはある程度の時間を要することになる。すなわち、重量推定は、車両1の走行に伴う加速度を利用して基本的には逐次連続的に推定重量Wesを算出し続けるが、重量推定を開始してから最初の推定値を算出するまでには例えば1〜2分程度の走行時間が必要となる。
そのため、VCU50は、ステップS2において車両1の推定重量Wesが取得されたか否かを判定する(ステップS3)。また、重量推定部51は、推定重量Wesが取得されるまではステップS2の重量推定を継続する(ステップS3でNo)。
推定重量Wesが取得されたと判定された場合(ステップS3でYes)、回生トルク制御部53は、推定重量Wesが上記の閾値Wth未満であるか否かを判定する(ステップS4)。
そして、回生トルク制御部53は、推定重量Wesが閾値Wth未満である場合には回生トルク弱マップMwを選択し(ステップS5)、推定重量Wesが閾値Wth以上である場合には回生トルク強マップMsを選択する(ステップS6)。すなわち、回生トルク制御部53は、車両1の推定重量Wesに応じて、減速時に設定する最適回生トルクTOPTを読み出す回生トルク特性を選択する。
ここで、重量推定部51は、上記したように、車両1の走行に伴う加速度を利用して推定重量Wesを算出し続けることから、新たに算出された推定値で推定重量Wesを継続的に更新する(ステップS7)。
また、VCU50は、車両1のイグニションがOFFに切り替えられたか否かを判定し(ステップS8)、イグニションがOFFとなった場合には回生トルク制御の制御手順を終了する(ステップS8でYes)。
一方、車両1のイグニションがONである期間においては(ステップS8でNo)、ステップS4からステップS8までのルーチンを継続する。すなわち、回生トルク制御部53は、重量推定部51において継続して更新される推定重量Wesに応じて、回生トルク弱マップMw又は回生トルク強マップMsを選択しつつ、選択した回生トルク特性から求まる最適回生トルクTOPTでモータ2を制御する。これにより、回生トルク制御部53は、重量推定部51がステップS2において算出した推定重量Wesの信頼性が万が一不十分であっても、車両1の走行により推定重量Wesが逐次更新されて信頼性が向上していくことになる。
以上のように、本発明に係る回生制御装置としてのVCU50は、車両1の推定重量に応じて、減速時の回生量を最適化するための最適回生トルクTOPTを制御している。これにより、車両1は、推定重量Wesが比較的軽い場合には回生制動力が抑制されて走行安全性が向上し、推定重量Wesが比較的重い場合には減速時における回生量を十分に回収できる。
その上で、回生トルク制御部53は、重量推定部51が重量推定を開始してから最初の推定値を算出するまでの推定期間においては、回生トルク弱マップMwに基づいて最適回生トルクTOPTを設定する。つまり、回生トルク制御部53は、重量推定部51が正確な推定重量Wesを算出できない期間においては、モータ2の回生トルクTが過大にならないように制御することができ、車両1のスリップや荷崩れを抑止することができる。従って、本発明に係る回生制御装置によれば、重量の変化量が大きい電動車両であっても、ドライバビリティ及び走行安全性の低下を抑制することができる。
以上で実施形態の説明を終えるが、本発明は上記した実施形態に限定されるものではない。例えば、上記の実施形態では、1つの閾値Wthにより回生トルク弱マップMw又は回生トルク強マップMsのいずれかを選択する形態を例示したが、例えば2つ以上の閾値により3以上の回生トルク特性の中から選択してもよい。
より具体的には、例えば、推定重量Wesに対して第1閾値Wth1及び第2閾値Wth2を設定した場合、Wes<Wth1の範囲では回生トルク弱マップMwが選択され、Wth1≦Wes<Wth2の範囲では回生トルク中マップMmが選択され、Wes≧Wth2の範囲では回生トルク強マップMsが選択されるようにしてもよい。この場合、回生トルク制御部53は、回生トルク中マップMmをスキップした回生トルク弱マップMwと回生トルク強マップMsとの相互の切り替えが起こらないよう、回生トルク特性の選択を段階的に切り替えるのが好ましい。これにより、VCU50は、モータ2の回生トルクTが急激に変化しないよう制御することができ、ドライバビリティ及び走行安全性の低下を更に抑制することができる。
1 車両
2 モータ
20 アクセルペダル
22 アクセルセンサ
40 加速度センサ
50 VCU
51 重量推定部
52 回生トルク特性記憶部
53 回生トルク制御部
Mw 回生トルク弱マップ
Ms 回生トルク強マップ
OPT 最適回生トルク

Claims (4)

  1. 車両の減速時に回生制御が可能なモータの回生制御装置であって、
    前記車両が走行することにより得られる情報に基づいて前記車両の推定重量を算出する重量推定部と、
    前記車両の走行状態に対する前記モータの最適回生トルクを規定する回生トルク特性を予め記憶する回生トルク特性記憶部と、
    前記車両のアクセル開度に基づいて前記回生トルク特性から前記最適回生トルクを求め、前記モータの回生トルクを前記最適回生トルクに制御する回生トルク制御部と、を備え、
    前記回生トルク特性記憶部は、推定される前記推定重量が所定の閾値未満の場合に選択される第1回生トルク特性と、前記閾値以上の場合に選択される第2回生トルク特性とを含む複数の前記回生トルク特性を記憶し、
    前記回生トルク制御部は、前記重量推定部が前記推定重量を算出するまでは、前記第1回生トルク特性に基づいて前記モータを制御する、回生制御装置。
  2. 前記第1回生トルク特性及び前記第2回生トルク特性は、前記モータの回転数と回生トルクとの関係が互いに独立して設定される、請求項1に記載の回生制御装置。
  3. 前記回生トルク制御部は、前記推定重量が更新された場合に、新たな前記推定重量に基づいて前記回生トルク特性を選択する、請求項1又は2に記載の回生制御装置。
  4. 前記回生トルク制御部は、前記回生トルク特性記憶部が3以上の前記回生トルク特性を記憶している場合に、前記回生トルク特性の選択を段階的に切り替える、請求項3に記載の回生制御装置。
JP2019085467A 2019-04-26 2019-04-26 回生制御装置 Pending JP2020182352A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019085467A JP2020182352A (ja) 2019-04-26 2019-04-26 回生制御装置
PCT/JP2020/009144 WO2020217726A1 (ja) 2019-04-26 2020-03-04 回生制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085467A JP2020182352A (ja) 2019-04-26 2019-04-26 回生制御装置

Publications (1)

Publication Number Publication Date
JP2020182352A true JP2020182352A (ja) 2020-11-05

Family

ID=72942038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085467A Pending JP2020182352A (ja) 2019-04-26 2019-04-26 回生制御装置

Country Status (2)

Country Link
JP (1) JP2020182352A (ja)
WO (1) WO2020217726A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136209A1 (ja) * 2022-01-11 2023-07-20 いすゞ自動車株式会社 車両の制御装置および車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340165A (ja) * 2001-05-15 2002-11-27 Aisin Seiki Co Ltd 車両重量の推定装置
CN105189172B (zh) * 2013-02-11 2018-05-29 沃尔沃卡车集团 用于驱动车辆的方法
JP2016082692A (ja) * 2014-10-15 2016-05-16 ダイムラー・アクチェンゲゼルシャフトDaimler AG 回生制御装置及び電動車両

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136209A1 (ja) * 2022-01-11 2023-07-20 いすゞ自動車株式会社 車両の制御装置および車両
JP2023102158A (ja) * 2022-01-11 2023-07-24 いすゞ自動車株式会社 車両の制御装置および車両
JP7392741B2 (ja) 2022-01-11 2023-12-06 いすゞ自動車株式会社 車両の制御装置および車両

Also Published As

Publication number Publication date
WO2020217726A1 (ja) 2020-10-29

Similar Documents

Publication Publication Date Title
EP2774802B1 (en) Vehicle and vehicle control method
CN102985279B (zh) 蓄电容量管理装置
KR101836250B1 (ko) 구동 모터를 구비한 차량의 dc 컨버터의 출력 전압을 제어하는 방법 및 장치
US11338701B2 (en) Eco-friendly vehicle and method of providing guidance for charging amount
JP6018018B2 (ja) 電気自動車の回生制御装置
KR102448101B1 (ko) 차량 및 그 제어 방법
JP2017114312A (ja) ハイブリッド車両及びその制御方法
JP6784684B2 (ja) ハイブリッド車両の走行用バッテリの充電状態を管理するための方法
JP2014222989A (ja) 電気自動車の回生制御装置
JP6435789B2 (ja) ハイブリッド駆動車両の出力制御装置
JP2015080977A (ja) ハイブリッド車両の走行制御装置
JP2014111418A (ja) 電気自動車の走行制御装置
JP2018103930A (ja) ハイブリッド車両の制御装置
US20160200314A1 (en) Generation control apparatus
JP5262692B2 (ja) 車両のブレーキ操作の評価装置、車両のブレーキ操作の評価方法、ブレーキ制御装置及びバッテリ制御装置
JP3776434B2 (ja) 駆動力切換制御装置
WO2020217726A1 (ja) 回生制御装置
US20210291661A1 (en) Electric vehicle
CN108290571B (zh) 混合动力车辆的再生电力量控制系统、车辆及控制方法
JP7190389B2 (ja) 車両用制御装置
Chen et al. Truncated battery power following strategy for energy management control of series hybrid electric vehicles
JP6400648B2 (ja) 電気自動車の回生制御装置
JP2015123822A (ja) ハイブリッド電気自動車の制御装置
JP2020195254A (ja) 車両用モータ制御装置
EP4105059B1 (en) Operating mode control device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200304