JP2020172697A - 焼結部品の製造方法、及び焼結部品 - Google Patents

焼結部品の製造方法、及び焼結部品 Download PDF

Info

Publication number
JP2020172697A
JP2020172697A JP2019076707A JP2019076707A JP2020172697A JP 2020172697 A JP2020172697 A JP 2020172697A JP 2019076707 A JP2019076707 A JP 2019076707A JP 2019076707 A JP2019076707 A JP 2019076707A JP 2020172697 A JP2020172697 A JP 2020172697A
Authority
JP
Japan
Prior art keywords
mass
sintered body
sintered
less
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019076707A
Other languages
English (en)
Inventor
敬之 田代
Noriyuki Tashiro
敬之 田代
繁樹 江頭
Shigeki Egashira
繁樹 江頭
朝之 伊志嶺
Asayuki Ishimine
朝之 伊志嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2019076707A priority Critical patent/JP2020172697A/ja
Publication of JP2020172697A publication Critical patent/JP2020172697A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

【課題】疲労強度が高く、耐摩耗性に優れる焼結部品を製造することができる焼結部品の製造方法を提供する。【解決手段】シリコンを0.1質量%以上0.5質量%以下、モリブデンを0.1質量%以上1.5質量%以下、クロムを0.1質量%以上0.5質量%以下、マンガンを0.1質量%以上0.75質量%以下、ニッケルを0.5質量%以上5.0質量%以下含有する鉄基合金の粉末を含む原料粉を用意する工程と、前記原料粉を金型内に充填し、1470MPa以上の成形圧力で加圧成形して圧粉体を作製する工程と、前記圧粉体を機械部品の形状に切削加工して加工体を作製する工程と、前記加工体を1200℃未満の焼結温度で焼結して焼結体を作製する工程と、前記焼結体を焼入れする工程と、前記焼入れする工程の後、前記焼結体を焼戻しする工程と、を備える、焼結部品の製造方法。【選択図】図1

Description

本開示は、焼結部品の製造方法、及び焼結部品に関する。
従来、鉄基合金の粉末を加圧成形して焼結した焼結体が、自動車や産業機械などの機械部品に利用されている。焼結体からなる焼結部品は、鉄基合金の粉末を含む原料粉を圧縮することによって圧粉体を成形した後、圧粉体を焼結することで製造されている。また、焼結体に対して、焼入れなどの熱処理をすることがある。特許文献1は、相対密度が93%以上である鉄系焼結体を開示する。
特開2017−186625号公報
焼結部品(焼結体)において、強度や硬度といった機械的特性の向上が望まれている。特に、疲労強度が高く、耐摩耗性に優れることが求められている。
本開示は、疲労強度が高く、耐摩耗性に優れる焼結部品を製造することができる焼結部品の製造方法を提供することを目的の一つとする。また、本開示は、疲労強度が高く、耐摩耗性に優れる焼結部品を提供することを目的の一つとする。
本開示の焼結部品の製造方法は、
シリコンを0.1質量%以上0.5質量%以下、モリブデンを0.1質量%以上1.5質量%以下、クロムを0.1質量%以上0.5質量%以下、マンガンを0.1質量%以上0.75質量%以下、ニッケルを0.5質量%以上5.0質量%以下含有する鉄基合金の粉末を含む原料粉を用意する工程と、
前記原料粉を金型内に充填し、1470MPa以上の成形圧力で加圧成形して圧粉体を作製する工程と、
前記圧粉体を機械部品の形状に切削加工して加工体を作製する工程と、
前記加工体を1200℃未満の焼結温度で焼結して焼結体を作製する工程と、
前記焼結体を焼入れする工程と、
前記焼入れする工程の後、前記焼結体を焼戻しする工程と、を備える。
本開示の焼結部品は、
シリコンを0.1質量%以上0.5質量%以下、モリブデンを0.1質量%以上1.5質量%以下、クロムを0.1質量%以上0.5質量%以下、マンガンを0.1質量%以上0.75質量%以下、ニッケルを0.5質量%以上5.0質量%以下含有する鉄基合金からなる組成を有し、
相対密度が96.5%以上で、かつ、表面硬度がビッカース硬さで600HV以上である焼結体からなる。
本開示の焼結部品の製造方法は、疲労強度が高く、耐摩耗性に優れる焼結部品を製造することができる。また、本開示の焼結部品は、疲労強度が高く、耐摩耗性に優れる。
図1は、実施形態に係る焼結部品の一例を示す概略斜視図である。 図2は、実施形態に係る焼結部品の製造方法における原料粉を用意する工程を説明する説明図である。 図3は、実施形態に係る焼結部品の製造方法における圧粉体を作製する工程の一例を説明する説明図である。 図4は、圧粉体の一例を示す概略斜視図である。 図5は、実施形態に係る焼結部品の製造方法における加工体を作製する工程の一例を説明する説明図である。 図6は、加工体の一例を示す概略斜視図である。
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
(1)本開示の実施形態に係る焼結部品の製造方法は、
シリコン(Si)を0.1質量%以上0.5質量%以下、モリブデン(Mo)を0.1質量%以上1.5質量%以下、クロム(Cr)を0.1質量%以上0.5質量%以下、マンガン(Mn)を0.1質量%以上0.75質量%以下、ニッケル(Ni)を0.5質量%以上5.0質量%以下含有する鉄基合金の粉末を含む原料粉を用意する工程と、
前記原料粉を金型内に充填し、1470MPa以上の成形圧力で加圧成形して圧粉体を作製する工程と、
前記圧粉体を機械部品の形状に切削加工して加工体を作製する工程と、
前記加工体を1200℃未満の焼結温度で焼結して焼結体を作製する工程と、
前記焼結体を焼入れする工程と、
前記焼入れする工程の後、前記焼結体を焼戻しする工程と、を備える。
本開示の焼結部品の製造方法は、上記特定の組成を有する鉄基合金の粉末を原料粉に用いることで、高強度で、かつ高硬度の焼結体を作製することができる。したがって、本開示の焼結部品の製造方法は、疲労強度が高く、耐摩耗性に優れる焼結部品を製造することができる。
本開示の焼結部品の製造方法は、原料粉として、上記特定の組成を有する鉄基合金の粉末(以下、「鉄基合金粉」という場合がある)を用いる。上記特定の組成を有する鉄基合金粉は圧縮性を改善できる。そのため、上記鉄基合金粉を用いることで、圧粉体の密度を高めることができ、緻密な圧粉体を成形し易い。結果として、高密度の焼結体を作製することができる。焼結体を高密度化することにより、焼結体中に存在する空孔が少なくなるため、焼結体の強度が向上する。よって、本開示の焼結部品の製造方法は、焼結部品の疲労強度を向上させることができる。
本開示の焼結部品の製造方法において、鉄基合金粉を用いて作製した焼結体は、鉄基合金粉と実質的に同じ組成の鉄基合金からなり、上記特定の組成を有する。上記特定の組成を有する鉄基合金は、鉄(Fe)とSi、Mo、Cr、Mn及びNiの各元素とが合金化することによって強度及び硬度が向上する。そのため、上記鉄基合金粉を用いることで、高強度で、かつ高硬度の焼結体を作製することができる。よって、本開示の焼結部品の製造方法は、焼結部品の疲労強度及び耐摩耗性を向上させることができる。
更に、上記特定の組成を有する鉄基合金は焼入れ性を改善できる。そのため、焼結体を焼入れした場合、焼結体の内部までマルテンサイト化し易い。その結果、焼結体の硬度が向上する。よって、本開示の焼結部品の製造方法は、焼結部品の耐摩耗性を向上させることができる。
本開示の焼結部品の製造方法は、圧粉体を作製する工程において、成形圧力を1470MPa以上とする。これにより、高密度で緻密な圧粉体を成形することができる。そのため、焼結体を高密度化することが可能である。よって、焼結部品の疲労強度を向上させることができる。
本開示の焼結部品の製造方法は、圧粉体を作製する工程の後、焼結体を作製する工程の前に、加工体を作製する工程において圧粉体を切削加工する。圧粉体は、焼結体に比べて加工負荷が小さく、切削加工が容易である。そのため、圧粉体を機械部品の形状に容易に加工することができる。よって、複雑形状の機械部品であっても効率的に加工することが可能であり、加工時間を短縮することができる。
本開示の焼結部品の製造方法は、焼結体を作製する工程において、焼結温度を1200℃未満とする。これにより、焼結に伴う焼結体の収縮を抑制することができる。焼結時の寸法変化が小さくなるため、焼結体の良好な寸法精度を確保し易い。加えて、焼結体において、収縮に伴う歪が生じ難くなるため、焼結体の強度低下を抑制することができる。更に、焼結時の粒成長を抑制し、結晶粒の粗大化を抑制することができる。よって、焼結部品の疲労強度を向上させることができる。
本開示の焼結部品の製造方法は、焼結体を焼入れする工程を備える。焼結体を焼入れすることによって、焼結体の硬度が向上する。よって、焼結部品の耐摩耗性を一層向上させることができる。
本開示の焼結部品の製造方法は、焼結体を焼戻しする工程を備える。焼入れした焼結体を焼戻しすることによって、焼結体の靭性が向上する。靭性の向上により、焼結部品の耐衝撃性を向上させることができる。
(2)本開示の焼結部品の製造方法の一形態として、
前記鉄基合金の組成は、シリコン(Si)の含有量をx質量%、モリブデン(Mo)の含有量をa質量%、クロム(Cr)の含有量をb質量%、マンガン(Mn)の含有量をc質量%とするとき、以下の式(1)を満たすことが挙げられる。
(50.25×x)+(25.6×a)+(41.2×b)+(38.0×c)+90<160・・・(1)
鉄基合金粉の組成が上記式(1)を満たすことで、鉄基合金粉の圧縮性を改善し易い。そのため、圧粉体を作製する工程において、高密度で緻密な圧粉体を成形し易い。結果として、焼結体を高密度化することが容易である。よって、上記形態は、焼結部品の疲労強度をより向上させることができる。
(3)本開示の焼結部品の製造方法の一形態として、
前記鉄基合金の組成は、シリコン(Si)の含有量をx質量%、モリブデン(Mo)の含有量をa質量%、クロム(Cr)の含有量をb質量%、マンガン(Mn)の含有量をc質量%、ニッケル(Ni)の含有量をd質量%とするとき、以下の式(2)を満たすことが挙げられる。
[(1+x)×1.55]×[(1+a)×4.75]×[(1+b)×4]×[(1+c)×5.75]×[(1+d)×1]>1500・・・(2)
鉄基合金粉の組成が上記式(2)を満たすことで、焼結体の焼入れ性を改善し易い。そのため、焼結体を焼入れする工程において、焼入れによるマルテンサイト化を促進させることができる。その結果、焼結体の硬度がより向上する。よって、上記形態は、焼結部品の耐摩耗性をより向上させることができる。
(4)本開示の焼結部品の製造方法の一形態として、
前記圧粉体の相対密度が96.5%以上であることが挙げられる。
圧粉体の相対密度が96.5%以上であることで、相対密度が96.5%以上という高密度の焼結体を作製することができる。よって、上記形態は、焼結部品の疲労強度をより向上させることができる。また、圧粉体の相対密度が96.5%以上であれば、圧粉体中に存在する空孔が少ないため、焼結時の収縮量が小さくなる。よって、焼結時の寸法変化が小さいため、良好な寸法精度の焼結体を得ることができる。
(5)本開示の焼結部品の製造方法の一形態として、
前記鉄基合金の粉末に炭素粉を0.1質量%以上0.5質量%以下添加することが挙げられる。
鉄基合金粉に炭素粉を添加することで、焼結時に鉄基合金中に炭素(C)が拡散して合金化することにより、焼結体の強度及び硬度がより向上する。よって、上記形態は、焼結部品の疲労強度及び耐摩耗性をより向上させることができる。
(6)本開示の実施形態に係る焼結部品は、
シリコン(Si)を0.1質量%以上0.5質量%以下、モリブデン(Mo)を0.1質量%以上1.5質量%以下、クロム(Cr)を0.1質量%以上0.5質量%以下、マンガン(Mn)を0.1質量%以上0.75質量%以下、ニッケル(Ni)を0.5質量%以上5.0質量%以下含有する鉄基合金からなる組成を有し、
相対密度が96.5%以上で、かつ、表面硬度がビッカース硬さで600HV以上である焼結体からなる。
本開示の焼結部品を構成する焼結体は、上記特定の鉄基合金からなる組成を有することで、高強度で、かつ高硬度である。したがって、本開示の焼結部品は、疲労強度が高く、耐摩耗性に優れる。
また、焼結体の相対密度が96.5%以上であることで、焼結体中に存在する空孔が少ない。そのため、焼結体の強度が高い。よって、本開示の焼結部品は疲労強度が高い。更に、本開示の焼結部品は、焼結体の表面硬度が600HV以上であることで、耐摩耗性に優れる。
本開示の焼結部品は、機械部品の中でも、特に疲労強度や耐摩耗性が要求される歯車などに好適に利用できる。
(7)本開示の焼結部品の一形態として、
前記焼結体の表面から深さ100μmまでの領域における炭素(C)の含有量が0.5質量%以上1.5質量%以下であることが挙げられる。
焼結体の表面から深さ100μmまでの領域(以下、「表層領域」)において、Cの含有量が上記範囲内であることで、炭素濃度が高い。そのため、表層領域が硬化して、焼結体の表面硬度が向上する。よって、上記形態は、焼結部品の耐摩耗性を向上させることができる。
(8)本開示の焼結部品の一形態として、
前記焼結体の外周面及び内周面の少なくとも一方に複数の歯が形成された歯車形状を有することが挙げられる。
歯車形状を有する上記形態の焼結部品は、所謂焼結歯車である。上記形態は、疲労強度が高く、耐摩耗性に優れる焼結歯車が得られる。
[本開示の実施形態の詳細]
以下、図面を参照して、本開示の実施形態に係る焼結部品の製造方法、及び焼結部品を説明する。図中の同一符号は、同一名称物を示す。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
<実施形態>
[焼結部品の製造方法]
実施形態に係る焼結部品の製造方法の特徴の1つは、原料粉として、特定の組成を有する鉄基合金の粉末(鉄基合金粉)を用いる点にある。鉄基合金粉を用いて作製した焼結体からなる焼結部品は、鉄基合金粉と実質的に同じ鉄基合金からなる組成を有する。まず、鉄基合金粉の組成について説明する。
(鉄基合金粉の組成)
鉄基合金は、シリコン(Si)、モリブデン(Mo)、クロム(Cr)、マンガン(Mn)及びニッケル(Ni)を含有し、残部が鉄(Fe)及び不純物からなる合金である。鉄基合金に含有する各元素の含有量は次のとおりである。
Si:0.1質量%以上0.5質量%以下
Mo:0.1質量%以上1.5質量%以下
Cr:0.1質量%以上0.5質量%以下
Mn:0.1質量%以上0.75質量%以下
Ni:0.5質量%以上5.0質量%以下
鉄基合金は、Feに加えて、Si、Mo、Cr、Mn及びNiの各元素を含有する。各元素の含有量が上記範囲内であることで、Feと各元素とが合金化することによって強度及び硬度が向上する。そのため、鉄基合金粉を用いることで、高強度で、かつ高硬度の焼結体を作製することができる。
上記元素の中でも、Si、Mo、Cr及びMnの含有量が上記範囲内であることで、鉄基合金が硬くなり過ぎることを抑制できる。そのため、鉄基合金粉の圧縮性を改善できる。上記組成を有する鉄基合金粉を用いることで、高密度で緻密な圧粉体を成形し易い。結果として、高密度の焼結体を作製することができる。焼結体を高密度化することにより、焼結体の強度が向上する。
更に、Si、Mo、Cr、Mn及びNiの各元素は、焼入れ性の向上に寄与する。各元素の含有量が上記範囲内であることで、焼結体の焼入れ性を改善できる。そのため、焼結体を焼入れした場合、焼結体の内部までマルテンサイト化し易く、焼入れ深さを増大させることができる。よって、焼入れによって焼結体の内部まで硬度が向上する。また、焼入れ性がよいため、焼結体を大型化(大径化)しても、焼結体の内部まで十分に焼入れが可能である。上記元素の中でも、Mo、Cr、Mnは焼入れ倍数が高く、焼入れ性の向上に有効である。特に、Mnは、焼入れ倍数が最も高く、焼入れ性の向上効果が大きい。
鉄基合金に含有する各元素の作用効果と含有量の限定理由について説明する。
〈Si:0.1〜0.5質量%〉
Siは、焼結体の焼入れ性を向上させると共に、硬度を向上させる効果がある。これにより、焼結体の内部までマルテンサイト化を促進させることができ、加えて高い硬度を維持できる。焼入れ性の向上により、焼結体を大型化(大径化)しても、焼入れによって焼結体の内部まで硬度が高くなる。このような効果を得るためには、Siの含有量は0.1質量%以上とする。Siを0.5質量%超含有しても、その効果が飽和するばかりでなく、鉄基合金が硬くなり過ぎるおそれがある。そのため、鉄基合金粉の圧縮性の低下を招く場合がある。また、Siを過剰に含有すると、粒界酸化が生じ易くなる。そのため、焼結体の脆性化を招くおそれがある。よって、Siの含有量の上限は0.5質量%以下とする。Siの含有量の上限は、好ましくは0.4質量%未満である。Siの含有量は0.15質量%以上0.25質量%以下でもよい。
〈Mo:0.1〜1.5質量%〉
Moは、焼結体の焼入れ性を向上させると共に、靭性を向上させる効果がある。これにより、焼結体の内部までマルテンサイト化を促進させることができ、加えて靭性も改善することができる。よって、硬度と靭性のバランスに優れる焼結体とすることができる。焼入れ性の向上により、焼結体を大型化(大径化)しても、焼入れによって内部まで硬度が高くなる。このような効果を得るためには、Moの含有量は0.1質量%以上とする。Moを1.5質量%超含有しても、その効果が飽和するばかりでなく、鉄基合金が硬くなり過ぎるおそれがある。そのため、鉄基合金粉の圧縮性の低下を招く場合がある。また、Moを過剰に含有すると、マルテンサイト変態の開始が遅くなることにより、残留オーステナイトが多くなる。そのため、焼結体が軟化して硬度が低下するおそれがある。よって、Moの含有量の上限は1.5質量%以下とする。Moの含有量は0.5質量%以上1.3質量%以下でもよい。
〈Cr:0.1〜0.5質量%〉
Crは、焼結体の焼入れ性を向上させると共に、硬度を向上させる効果がある。これにより、焼結体の内部までマルテンサイト化を促進させることができ、加えて高い硬度を維持できる。焼入れ性の向上により、焼結体を大型化(大径化)しても、焼入れによって内部まで硬度が高くなる。このような効果を得るためには、Crの含有量は0.1質量%以上とする。Crを0.5質量%超含有しても、その効果が飽和するばかりでなく、鉄基合金が硬くなり過ぎるおそれがある。そのため、鉄基合金粉の圧縮性の低下を招く場合がある。また、Crを過剰に含有すると、粒界酸化が生じ易くなる。そのため、焼結体の脆性化を招くおそれがある。更に、マルテンサイト変態の開始が遅くなることにより、残留オーステナイトが多くなる。そのため、焼結体が軟化して硬度が低下するおそれがある。よって、Crの含有量の上限は0.5質量%以下とする。Crの含有量は0.15質量%以上0.3質量%以下でもよい。
〈Mn:0.1〜0.75質量%〉
Mnは、焼結体の焼入れ性を向上させる効果がある。これにより、焼結体の内部までマルテンサイト化を促進させることができる。よって、焼結体を大型化(大径化)しても、焼入れによって内部まで硬度が高くなる。このような効果を得るためには、Mnの含有量は0.1質量%以上とする。Mnを0.75質量%超含有しても、その効果が飽和するばかりでなく、鉄基合金が硬くなり過ぎるおそれがある。そのため、鉄基合金粉の圧縮性の低下を招く場合がある。また、Mnを過剰に含有すると、粒界酸化が生じ易くなる。そのため、焼結体の脆性化を招くおそれがある。更に、マルテンサイト変態の開始が遅くなることにより、残留オーステナイトが多くなる。そのため、焼結体が軟化して硬度が低下するおそれがある。よって、Mnの含有量の上限は0.75質量%以下とする。Mnの含有量は0.15質量%以上0.25質量%以下でもよい。
〈Ni:0.5〜5.0質量%〉
Niは、焼結体の靭性を向上させる効果がある。これにより、焼結体の靭性を改善できるので、硬度と靭性のバランスに優れる焼結体とすることができる。このような効果を得るためには、Niの含有量は0.5質量%以上とする。Niを5.0質量%超含有すると、マルテンサイト化が起こり難くなり、残留オーステナイトが多くなる。そのため、焼結体が軟化して硬度が低下するおそれがある。よって、Niの含有量の上限は5.0質量%以下とする。Niの含有量は1.0質量%以上3.0質量%以下でもよい。
〈不純物〉
鉄基合金に含まれる不純物は、不可避不純物を含む。不可避不純物としては、例えば硫黄(S)、リン(P)、酸素(O)などの元素が挙げられる。不可避不純物の各元素の含有量は、例えば0.2質量%以下、更に0.05質量%以下が挙げられる。不純物の合計含有量は、例えば1質量%以下、更に0.5質量%以下、0.1質量%以下が挙げられる。
鉄基合金粉の組成は、Siの含有量をx質量%、Moの含有量をa質量%、Crの含有量をb質量%、Mnの含有量をc質量%とするとき、以下の式(1)を満たすことが好ましい。
(50.25×x)+(25.6×a)+(41.2×b)+(38.0×c)+90<160・・・(1)
鉄基合金粉の組成が式(1)を満たすことで、鉄基合金粉の圧縮性を改善し易い。そのため、高密度で緻密な圧粉体を成形し易い。結果として、焼結体を高密度化することが容易である。式(1)の左辺の値が小さいほど、圧縮性を改善する効果が高くなる傾向がある。式(1)の右辺の値は、155以下、150以下、145以下でもよい。
鉄基合金粉の組成は、Siの含有量をx質量%、Moの含有量をa質量%、Crの含有量をb質量%、Mnの含有量をc質量%、Niの含有量をd質量%とするとき、以下の式(2)を満たすことが好ましい。
[(1+x)×1.55]×[(1+a)×4.75]×[(1+b)×4]×[(1+c)×5.75]×[(1+d)×1]>1500・・・(2)
鉄基合金粉の組成が式(2)を満たすことで、焼結体の焼入れ性を改善し易い。そのため、焼結体を焼入れした場合、焼入れによるマルテンサイト化を促進させることができる。その結果、焼結体の硬度がより向上する。式(2)の左辺の値が大きいほど、焼入れ性を改善する効果が高くなる傾向がある。式(2)の右辺の値が1500超であれば、十分な効果が得られる。
(炭素粉)
更に、鉄基合金粉に炭素粉を0.1質量%以上0.5質量%以下添加してもよい。鉄基合金粉に炭素粉を添加することで、焼結時に鉄基合金中に炭素(C)が拡散して合金化することにより、焼結体の強度及び硬度がより向上する。このような効果を得るためには、炭素粉の添加量は、鉄基合金粉と炭素粉との総量を100質量%として、0.1質量%以上とするとよい。炭素粉を0.5質量%超添加すると、セメンタイトが析出し易くなる。そのため、焼結体の強度低下を招くおそれがある。よって、炭素粉の添加量の上限は0.5質量%以下とすることが好ましい。炭素粉の添加量は、例えば0.15質量%以上0.4質量%以下、0.2質量%以上0.3質量%以下でもよい。
鉄基合金粉に炭素粉を0.1質量%以上0.5質量%以下添加した場合、焼結体の組成(後述する内部領域における組成)は、上述した鉄基合金粉の組成に加えて、Cを0.1質量%以上0.5質量%以下含有する焼結合金からなる組成を有することになる。
図1〜図6を参照して実施形態に係る焼結部品の製造方法について、具体例と共に説明する。実施形態に係る焼結部品の製造方法は、以下の工程を備える。
第一の工程:鉄基合金粉101を含む原料粉100を用意する(図2参照)。
第二の工程:原料粉100を加圧成形して圧粉体20を作製する(図3、図4参照)。
第三の工程:圧粉体20を切削加工して加工体30を作製する(図5、図6参照)。
第四の工程:加工体30を焼結して焼結体10を作製する(図1参照)。
第五の工程:焼結体10を焼入れする。
第六の工程:焼入れ後、焼結体10を焼戻しする。
図1は、実施形態に係る焼結部品の製造方法によって製造する焼結部品1の具体例を示す。焼結部品1は焼結体10からなる。図1に例示する焼結部品1は、焼結体10の外周面11に複数の歯13が形成された歯車形状を有する外歯歯車である。また、焼結部品1は、焼結体10の端面15の中央部に貫通孔17が形成されている。
(第一の工程:用意工程)
この工程では、図2に示すように、鉄基合金粉101を含む原料粉100を用意する。鉄基合金粉101は、上述した特定の組成を有する鉄基合金からなる。また、原料粉100として、鉄基合金粉101に炭素粉103を0.1質量%以上0.5質量%以下添加してもよい。
原料粉の粒径は適宜選択できる。鉄基合金粉101の平均粒径は、例えば20μm以上200μm以下、更に50μm以上150μm以下が挙げられる。原料粉100の主体となる鉄基合金粉101の平均粒径が上記範囲内である場合、後述する第二の工程(成形工程)において、原料粉100を加圧成形し易い。そのため、高密度で緻密な圧粉体20(図4)を作製し易い。
炭素粉103の平均粒径は、例えば1μm以上30μm以下程度が挙げられる。炭素粉103は、鉄基合金粉101よりも平均粒径が小さいものを利用できる。炭素粉103の平均粒径が小さいと、鉄基合金粉101と炭素粉103とを混合したときに、鉄基合金粉101中に炭素粉103が均一に分散し易い。そのため、後述する第四の工程(焼結工程)において、焼結時に鉄基合金中にCが均一に拡散して合金化し易い。
ここでの平均粒径は、レーザ回折式粒度分布測定装置によって測定した体積粒度分布における累積体積が50%となる粒径(D50)とする。
その他、原料粉100は、潤滑剤及びバインダの少なくとも一方を含有してもよい。潤滑剤及びバインダの合計含有量は、原料粉100全体を100質量%として、例えば0.1質量%以下とすると、緻密な圧粉体20(図4)を作製し易い。原料粉100が潤滑剤及びバインダを含有しなければ、より緻密な圧粉体20を作製し易い上に、後工程で圧粉体20を脱脂する必要もない。この点で、潤滑剤などの省略は、焼結部品1の量産性の向上に寄与する。潤滑剤は、例えば高級脂肪酸、金属石鹸、脂肪酸アミド、高級脂肪酸アミドなどが挙げられる。バインダは、例えばポリビニルブチラール、ポリビニルアルコール、アクリル樹脂、ポリエチレン樹脂などの熱可塑性樹脂が挙げられる。
(第二の工程:成形工程)
この工程では、図3に示すように、原料粉100を金型200内に充填し、1470MPa以上の成形圧力で加圧成形して圧粉体20(図4)を作製する。圧粉体20の形状は、図1に示す焼結部品1(焼結体10)の形状とは異なる形状でよい。これは、後述する第三の工程(加工工程)において、圧粉体20を所定の機械部品の形状(この例では、歯車形状)に加工するからである。圧粉体20の形状が、例えば円柱、円筒などの単純な形状であれば、歯車形状といった複雑な形状である場合に比べて、圧粉体20を高密度に成形し易い。
この例では、図4に示すような円筒状の圧粉体20を作製する。図3に示す金型200は、円筒状の圧粉体20を成形する金型である。金型200は、ダイ201と、ダイ201に嵌め込まれる下パンチ202及び上パンチ203と、ダイ201内に挿入されるコアロッド204とを備える。金型200は、ダイ201の内周面、下パンチ202の端面、及びコアロッド204の外周面によって円筒状のキャビティを形成する。原料粉100は金型200のキャビティ内に充填される。キャビティ内の原料粉100を下パンチ202及び上パンチ203によって一軸加圧成形することで、円筒状の圧粉体20を成形する。
成形圧力が高いほど、圧粉体20の相対密度を高め易く、緻密な圧粉体20を成形することができる。そのため、焼結体10(図1)を高密度化することができる。成形圧力を1470MPa(15000kg/cm)以上とすることで、高密度で緻密な圧粉体20を成形することができる。例えば、相対密度が96.5%以上という緻密な圧粉体20を作製することが可能である。成形圧力は1560MPa以上、更に1760MPa以上でもよい。成形圧力の上限は、特に限定されない。成形圧力の上限としては、例えば2260MPa以下、更に2160MPa以下が挙げられる。
圧粉体20の相対密度は、例えば96.5%以上が挙げられる。圧粉体20の相対密度が96.5%以上であれば、後述する第四の工程(焼結工程)において、相対密度が96.5%以上である高密度の焼結体10(図1)を作製することができる。また、圧粉体20の相対密度が96.5%以上であれば、圧粉体20中に存在する空孔が少ないため、焼結時の収縮量が小さくなる。よって、焼結時の寸法変化が小さいため、良好な寸法精度の焼結体10を得ることができる。圧粉体20の相対密度は97%以上、更に97.5%以上でもよい。圧粉体20の相対密度は、理想的には100%であるが、製造性などを考慮すると、99.6%以下、更に99%以下でもよい。
圧粉体20の相対密度は、圧粉体20の断面を画像解析ソフトウェアにより画像解析することで求めることができる。具体的には、圧粉体の断面を観察し、複数(例えば10個以上)の観察視野の画像を取得する。1断面につき1視野として、複数の断面から観察視野の画像を取得してもよいし、1つの断面から複数の観察視野の画像を取得してもよい。観察視野のサイズは、例えば500μm×600μm程度とする。取得した各観察視野の画像を、画像解析ソフトウェアによってコントラストを2値化処理して、空孔と空孔でない部分とに分ける。観察視野に占める空孔でない部分の面積割合を求め、その面積割合を相対密度とみなす。そして、各観察視野から求めた相対密度の平均値を圧粉体の相対密度とする。
その他、圧粉体20の相対密度は、[実測密度/理論密度]×100として求めることもできる。実測密度は、例えばアルキメデス法により測定することができる。理論密度は、例えば原料粉の組成から計算によって求めることができる。
金型200の内面(ダイ201の内周面及びコアロッド204の外周面)に潤滑剤を塗布してもよい。この場合、圧粉体20を金型200から抜き出し易くなる。
(第三の工程:加工工程)
この工程では、図5に示すように、圧粉体20を機械部品の形状に切削加工して加工体30(図6)を作製する。機械部品は、例えばスプロケットを含む各種歯車、ローター、リング、フランジ、プーリー、軸受けなどが挙げられる。切削加工は、転削加工でも旋削加工でもよい。具体的な切削加工としては、例えば歯切加工、穴あけ加工などが挙げられる。切削加工には、例えば歯切工具、ドリル、バイト、フライスなどの各種切削工具を使用できる。歯切工具としては、ホブ、ピニオンカッタ、ブローチなどが挙げられる。
この工程では、焼結する前の圧粉体20を切削加工するため、焼結した後の焼結体に比べて切削加工が容易である。そのため、圧粉体20を機械部品の形状(この例では、歯車形状)に効率的に加工することができる。よって、加工時間を短縮することができ、生産性が向上する。
この例では、図6に示すような歯車形状の加工体30を作製する。加工体30の形状は、焼結体10(図1)の形状と実質的に同じ形状である。図5は、圧粉体20(図4)を歯車形状に切削加工している状態を示す。図5は、切削加工の一例として、ホブ300を用いて圧粉体20の外周面21を歯切加工する場合を例示する。図5中の白抜き矢印は、加工時の圧粉体20及びホブ300の回転方向や移動方向を示す。ホブ300は、円筒状の本体部の外周に複数の刃301が設けられている。ホブ300は、その軸方向を圧粉体20の軸方向と直交するように配置され、その状態から回転(自転)しつつ、圧粉体20の軸方向に移動する。この例では、ホブ300は、下側から上側に向かって移動しながら、刃301が圧粉体20の外周面21に対して上側から下側に抜けるように回転する。一方、圧粉体20は、上側から見て、反時計回りに回転(自転)する。このようにして、ホブ300によって圧粉体20の外周面21に複数の歯13を形成することで、圧粉体20を歯車形状に加工する。これにより、図6に示すような歯車形状の加工体30を作製する。
この例では、圧粉体20の外周面21に複数の歯13を形成して加工体30を作製する場合を例示した。例えば、焼結体の内周面に複数の歯が形成された歯車形状を有する焼結部品を製造する場合は、圧粉体の内周面に複数の歯を形成することによって、加工体を作製する。この場合、例えばピニオンカッタを用いて圧粉体20の内周面を歯切加工することが挙げられる。
(第四の工程:焼結工程)
この工程では、加工体30(図6)を1200℃未満の焼結温度で焼結して焼結体10(図1)を作製する。焼結温度は、例えば1100℃以上、更に1130℃以上が挙げられる。焼結時間は、焼結体10のサイズにもよるが、例えば10分以上150分以下が挙げられる。焼結時の雰囲気は、例えば窒素雰囲気、真空雰囲気が挙げられる。窒素雰囲気や真空雰囲気であれば、雰囲気中の酸素濃度が低く(例えば体積割合で1ppm以下)、酸化物の生成を低減することができる。真空雰囲気の雰囲気圧力は、例えば10Pa以下が挙げられる。
焼結温度を1200℃未満とすることで、焼結に伴う焼結体10の収縮を抑制することができる。そのため、焼結時における焼結体10の寸法変化が小さくなる。よって、焼結体10の良好な寸法精度を確保し易い。加えて、焼結体10において、収縮に伴う歪が生じ難くなるため、焼結体10の強度低下を抑制することができる。更に、焼結時の粒成長を抑制し、結晶粒の粗大化を抑制することができる。焼結温度を1200℃以上とした場合は、焼結体10中に存在する空孔の形状が球形化する傾向がある。
(第五の工程:焼入れ工程)
この工程では、焼結体10(図1)を焼入れする。焼入れは、浸炭焼入れでもよい。
浸炭条件は、例えば、カーボンポテンシャル(CP)を0.6%以上1.8%以下に調整した雰囲気とし、処理温度を910℃以上950℃以下、処理時間を60分以上560分以下とすることが挙げられる。但し、最適な浸炭の処理時間は、一般に、焼結体10のサイズによって異なる。そのため、上記時間はあくまで一例である。
焼入れ条件は、オーステナイト化の処理温度を800℃以上1000℃以下、処理時間を10分以上150分以下とし、その後に油冷又は水冷で急冷することが挙げられる。
焼結体10を焼入れすることによって、焼結体10の硬度が向上する。また、焼結体10を浸炭焼入れした場合は、焼結体10の表面にCが浸透して、表面近傍の炭素濃度を高めることができる。これにより、焼結体10の表面に炭素濃度が高い浸炭硬化層(図示せず)が形成される。浸炭硬化層を備える焼結体10は、表層領域(表面から深さ100μmまでの領域)におけるCの含有量が内部に比較して多い。そのため、焼結体10の表層領域が硬い。よって、焼結体10の表面硬度が向上する。焼結体10の表層領域におけるCの含有量は、例えば0.5質量%以上1.5質量%以下、更に0.8質量%以上1.2質量%以下が挙げられる。
(第六の工程:焼戻し工程)
この工程では、上述した第五の工程(焼入れ工程)の後、焼結体10(図1)を焼戻しする。
焼戻し条件は、処理温度を150℃以上230℃以下、処理時間を60分以上240分以下とすることが挙げられる。
焼入れした焼結体10を焼戻しすることによって、焼結体10の靭性が向上する。靭性の向上により、硬度と靭性のバランスに優れる焼結体10とすることができる。
(その他の工程)
その他、実施形態の焼結部品の製造方法は、以下の仕上げ工程を備えてもよい。
(仕上げ工程)
この工程では、焼結体10を仕上げ加工する。この工程は、上述した第四の工程(焼結工程)の後、第五の工程(焼入れ工程)の前に行うことが挙げられる。仕上げ加工は、例えば研磨加工などが挙げられる。仕上げ加工を行うことで、焼結体10の表面粗さを小さくして表面性状に優れる焼結体や、機械部品の設計寸法に適合した焼結体を製造することができる。
<主な効果>
実施形態の焼結部品の製造方法は、高強度で、かつ高硬度の焼結体10を作製することができる。また、実施形態の焼結部品の製造方法は、高密度の焼結体10を作製することができる。更に、実施形態の焼結部品の製造方法は、焼結体10の焼入れ性を改善できる。したがって、実施形態の焼結部品の製造方法は、疲労強度が高く、耐摩耗性に優れる焼結部品1を製造することができる。
[焼結部品]
図1を参照して、実施形態に係る焼結部品1について説明する。焼結部品1は焼結体10からなる。図1は、焼結部品1の一例として、焼結体10の外周面11に複数の歯13が形成された歯車形状を有する外歯歯車を例示する。
(概要)
実施形態に係る焼結部品1は、鉄基合金からなる組成を有し、相対密度が96.5%以上で、かつ、表面硬度がビッカース硬さで600HV以上である焼結体10からなる。焼結部品1は、例えば、上述した実施形態に係る焼結部品の製造方法によって製造することができる。
(組成)
鉄基合金は、Si、Mo、Cr、Mn及びNiを含有し、残部が鉄(Fe)及び不純物からなる合金である。鉄基合金に含有する各元素の含有量は次のとおりである。
Si:0.1質量%以上0.5質量%以下
Mo:0.1質量%以上1.5質量%以下
Cr:0.1質量%以上0.5質量%以下
Mn:0.1質量%以上0.75質量%以下
Ni:0.5質量%以上5.0質量%以下
更に、鉄基合金は、Cを0.1質量%以上0.5質量%以下含有してもよい。
Feに加えて、上記各元素を特定の範囲内で含有する鉄基合金は、Feと各元素とが合金化することによって強度及び硬度が向上する。そのため、焼結体10は、上記特定の鉄基合金からなる組成を有することで、高強度で、かつ高硬度である。また、鉄基合金がSi、Mo、Cr、Mn及びNiの各元素を特定の範囲内で含有することで、焼結体10の焼入れ性を改善できる。よって、焼結体10は焼入れ性に優れる。そのため、焼入れによって焼結体10の内部まで硬度が向上する。高強度で、かつ高硬度の焼結体10からなる焼結部品1は、疲労強度が高く、耐摩耗性に優れる。鉄基合金に含有する各元素の作用効果と含有量の限定理由については、上述した製造方法において既に説明しているので、ここでは省略する。
焼結体10の組成は、例えばエネルギー分散型X線分析装置付き走査型電子顕微鏡(SEM−EDS)などにより測定することができる。焼結体10の組成を測定するときは、焼結体10の断面をとり、焼結体10の内部領域における組成を測定するとよい。焼結体10の表面及び表面近傍の領域は、不純物などが存在して適切な測定が行えない可能性があるためである。焼結体10の表面に浸炭硬化層が形成されている場合は、浸炭硬化層より深い内部領域の組成を測定する。焼結体10の組成を測定する領域は、例えば、焼結体10の表面から内部に向かって1mm以上、更に2mm以上、好ましくは3mm以上深い内部領域とすることが挙げられる。
(相対密度)
焼結体10の相対密度は96.5%以上である。このような焼結体10は、緻密であり、焼結体10中に存在する空孔が少ない。そのため、焼結体10の強度が高い。よって、焼結部品1は疲労強度が高い。焼結体10の相対密度は97%以上、更に97.5%以上でもよい。焼結体10の相対密度は、理想的には100%であるが、製造性などを考慮すると、99.6%以下、更に99%以下でもよい。
焼結体10の相対密度は、上述した圧粉体の相対密度と同じように、断面を画像解析ソフトウェアにより画像解析することで求めることができる。具体的には、焼結体の断面を観察し、複数(例えば10個以上)の観察視野の画像を取得する。1断面につき1視野として、複数の断面から観察視野の画像を取得してもよいし、1つの断面から複数の観察視野の画像を取得してもよい。観察視野のサイズは、例えば500μm×600μm程度とする。取得した各観察視野の画像を、画像解析ソフトウェアによってコントラストを2値化処理して、空孔と空孔でない部分とに分ける。観察視野に占める空孔でない部分の面積割合を求め、その面積割合を相対密度とみなす。そして、各観察視野から求めた相対密度の平均値を焼結体の相対密度とする。
その他、焼結体10の相対密度は、[実測密度/理論密度]×100として求めることもできる。実測密度は、例えばアルキメデス法により測定することができる。理論密度は、例えば焼結体10の組成から計算によって求めることができる。
(表面硬度)
焼結体10の表面硬度は600HV以上である。焼結体10の表面硬度が高いほど、焼結部品1の耐摩耗性が向上する。焼結体10の表面硬度が600HV以上であれば、焼結体10の表面が十分に硬い。よって、焼結部品1は耐摩耗性に優れる。焼結体10の表面硬度は650HV以上でもよい。焼結体10の表面硬度の上限は、特に限定されない。
(表層領域におけるCの含有量)
焼結体10の表層領域(表面から深さ100μmまでの領域)におけるCの含有量は、例えば0.5質量%以上1.5質量%以下が挙げられる。焼結体10の表層領域におけるCの含有量が上記範囲内であることで、表層領域が硬化する。そのため、焼結体10の表面硬度が向上する。よって、焼結部品1の耐摩耗性を向上させることができる。焼結体10の表層領域におけるCの含有量は0.8質量%以上1.2質量%以下でもよい。
焼結体10の表層領域におけるCの含有量は、焼結体10を浸炭焼入れすることによって調整することが可能である。焼結体10の表層領域におけるCの含有量の測定は、例えば電子プローブマイクロアナライザー(EPMA)、オージェ電子分光法(AES)などを利用できる。
(用途)
焼結部品1は、図1に示すような歯車などの機械部品であることが挙げられる。焼結部品1が歯車である場合、焼結体10の外周面11及び内周面の少なくとも一方に複数の歯13が形成された歯車形状を有する。焼結部品1は、歯車以外の機械部品であってもよい。
<主な効果>
実施形態の焼結部品1は、高強度で、かつ高硬度の焼結体10からなる。更に、焼結体10の相対密度が96.5%以上で、かつ、表面硬度がビッカース硬さで600HV以上である。したがって、実施形態の焼結部品1は、疲労強度が高く、耐摩耗性に優れる。実施形態の焼結部品1は、機械部品の中でも、特に疲労強度や耐摩耗性が要求される歯車などに好適に利用できる。
[試験例1]
鉄基合金粉を原料粉に用いて、焼結体からなる焼結部品を製造し、その評価を行った。
(1)用意工程
表1に示す各組成(残部Fe及び不純物)を有する鉄基合金粉を用意した。表1中、鉄基合金粉における各元素の含有量は質量割合(質量%)である。用意した各鉄基合金粉に炭素粉(黒鉛粉)を添加したものを原料粉とした。表1に炭素粉の添加量を示す。炭素粉の添加量は、鉄基合金粉と炭素粉との総量を100質量%としたときの質量割合(質量%)である。
鉄基合金粉の平均粒径(D50)は98.5μmである。炭素粉の平均粒径(D50)は6.8μmである。
原料粉はV型混合器を用いて90分間混合した。
試料No.114に使用した鉄基合金粉は、AISI(米国鉄鋼協会)規格に規定されている市販のAISI4600の鋼粉である。
表1に示す各試料について、鉄基合金粉の組成から上記式(1)及び式(2)によって算出した値を表1に示す。
試料No.1〜No.11の各鉄基合金粉は、Siを0.1質量%以上0.5質量%以下、Moを0.1質量%以上1.5質量%以下、Crを0.1質量%以上0.5質量%以下、Mnを0.1質量%以上0.75質量%以下、Niを0.5質量%以上5.0質量%以下含有する。また、試料No.1〜No.11の各鉄基合金粉の組成は、式(1)の左辺の算出値が160未満である。試料No.1〜No.11の各鉄基合金粉の組成は、式(2)の左辺の算出値が1500超である。一方、試料No.101〜No.114に使用した各鉄基合金粉の組成は、Si、Mo、Cr、Mn及びNiのうち、いずれかの元素の含有量が上記範囲外である。
(2)成形工程
各原料粉を金型内に充填し、1960MPa(20000kg/cm)の成形圧力で一軸加圧成形して、円筒状の圧粉体を作製した。圧粉体の寸法は、外径60mmφ、内径35mmφ、長さ15mmである。
作製した各圧粉体の相対密度(%)を評価した。相対密度は、断面を市販の画像解析ソフトウェアにより画像解析することで求めた。具体的には、任意の断面をとり、10個以上の観察視野の画像を取得する。観察視野のサイズは、500μm×600μm(=300000μm)とする。取得した各観察視野の画像を、画像解析ソフトウェアによってコントラストを2値化処理して、空孔でない部分の面積の面積割合を求める。その面積割合を相対密度とみなす。そして、各観察視野から求めた相対密度の平均値を圧粉体の相対密度とする。各圧粉体の相対密度(%)を表1に示す。
Figure 2020172697
試料No.1〜No.11の各鉄基合金粉の組成は、Si、Mo、Cr、Mn及びNiの各元素の含有量が上記範囲内で、かつ、式(1)の算出値が160未満を満たす。このような特定の組成を有する鉄基合金粉を使用した試料No.1〜No.11の各圧粉体の相対密度は96.5%以上である。これに対し、上記各元素の含有量が上記範囲外で、かつ、式(1)の算出値が160未満を満たさない鉄基合金粉を使用した試料No.106〜No.112の各圧粉体の相対密度は96.5%未満である。試料No.1〜No.11の各圧粉体の相対密度が試料No.106〜No.112に比較して高くなった理由は、試料No.1〜No.11の各鉄基合金粉は圧縮性に優れるためと考えられる。
(3)加工工程
作製した各圧粉体を切削加工して加工体を作製した。具体的には、円筒状の圧粉体を歯車形状に加工した。
(4)焼結工程
作製した各加工体を、窒素雰囲気中、1130℃の焼結温度で焼結して焼結体を作製した。焼結時間は20分間とした。
(5)焼入れ工程
作製した各焼結体を、浸炭焼入れした。浸炭焼入れの条件は、カーボンポテンシャル(CP)が1.2%の雰囲気中、930℃で90分間保持した後、CPを0.8%に変更して、850℃で45分間保持した。その後、80℃以上110℃以下の油で油冷した。
(6)焼戻し工程
浸炭焼入れした後、各焼結体を焼戻しした。焼戻しの条件は、大気雰囲気中、200℃で90分間保持した後、常温まで徐冷した。
以上のようにして、各焼結体からなる機械部品の試料を製造した。
(評価)
製造した各機械部品の試料について、以下の評価を行った。
〈組成〉
各機械部品を構成する焼結体の組成を調べた。焼結体の組成の測定は、SEM−EDS(Zeiss社製)を用いて、焼結体の断面をSEMにより観察し、付属のEDSによって分析した。焼結体の組成を測定する領域は、焼結体の断面において、焼結体の内部領域とした。具体的には、焼結体の表面から内部に向かって深さ5mmの地点における内部領域とした。SEM−EDSによる観察視野(測定領域)のサイズは50μm×50μmとした。各焼結体の組成を表2に示す。
〈表層領域におけるCの含有量〉
更に、各焼結体の表層領域(表面から深さ100μmまでの領域)におけるCの含有量を測定した。表層領域におけるCの含有量は、焼結体の断面において、焼結体の表層領域をEPMAにより分析して測定した。いずれの試料も、焼結体の表層領域におけるCの含有量が概ね同じであり、0.8質量%以上1.2質量%以下であった。
〈相対密度〉
各焼結体の相対密度(%)を求めた。焼結体の相対密度は、上述した圧粉体の相対密度と同じように、断面を市販の画像解析ソフトウェアにより画像解析することで求めた。各焼結体の相対密度(%)を表2に示す。
〈表面硬度〉
各焼結体の表面のビッカース硬さ(HV)を、ビッカース硬さ試験機(株式会社ミツトヨ製)を用いて測定した。得られたビッカース硬さを焼結体の表面硬度Haとする。ビッカース硬さの測定はJIS Z 2244:2009「ビッカース硬さ試験−試験方法」に準じて行う。試験荷重は0.98N(100gf)とする。この試験では、焼結体の表層領域(表面から深さ100μmまでの領域)におけるビッカース硬さを測定するものとする。ただし、圧痕部に焼結体中の空孔が含まれないようにして測定する。各焼結体の表面硬度Haを表2に示す。
〈焼入れ性〉
各焼結体の焼入れ性を評価した。焼入れ性の評価は次のように行った。各試料について、試験片を次のように作製する。各試料と同じ組成の原料粉を加圧成形して、直径120mm、長さ30mmである円柱状の圧粉体を作製する。成形圧力は1960MPaとする。圧粉体を窒素雰囲気中、1130℃の焼結温度で焼結して焼結体を作製する。得られた円柱状の焼結体を試験片とする。この試験片は、焼入れ前のものであり、焼入れ焼戻しなどの熱処理が施されていない。焼入れ性の評価はJIS G 0561:2011「鋼の焼入性試験方法(一端焼入方法)」に準じて行う(ジョミニー試験とも呼ばれる)。具体的には、850℃以上のオーステナイト化温度まで加熱した試験片の片端面に水を吹き付けて急冷して、焼入れする。焼入れした試験片を長さ方向に沿って切断する。試験片の断面において、試験片の片端面から深さ方向にビッカース硬さ(HV)を測定する。試験片の片端面からより深い位置であっても、硬さの低下が少ない方が焼入れ性がよいといえる。ここでは、試験片の片端面から深さ10mmの地点におけるビッカース硬さが400HVを超える場合、焼入れ性の評価を「A」、ビッカース硬さが400HV以下の場合、焼入れ性の評価を「B」とした。焼入れ性の評価結果を表2に示す。
〈総合評価〉
各試料について、上記した相対密度、表面硬度及び焼入れ性の評価に基づき、総合評価を行った。総合評価は、相対密度が96.5%以上、表面硬度が600HV以上、焼入れ性の評価が「A」の全てを満たす場合を「A」、いずれか1つでも満たさない場合を「B」とした。総合評価の結果を表2に示す。
Figure 2020172697
上記特定の組成を有する鉄基合金粉(表1参照)を使用した試料No.1〜No.11の各焼結体は、Siを0.1質量%以上0.5質量%以下、Moを0.1質量%以上1.5質量%以下、Crを0.1質量%以上0.5質量%以下、Mnを0.1質量%以上0.75質量%以下、Niを0.5質量%以上5.0質量%以下含有する鉄基合金からなる組成を有する。そして、試料No.1〜No.11の各焼結体は、相対密度が96.5%以上で、かつ、表面硬度が600HV以上、具体的には650HV以上であり、高密度で高硬度である。加えて、試料No.1〜No.11の各焼結体は焼入れ性も良好である。
試料No.1〜No.11において、各焼結体の相対密度が96.5%以上という高密度化を達成できた理由は、各圧粉体の相対密度が96.5%以上であるためである。
また、試料No.1〜No.11において、各焼結体の表面硬度が600HV以上を達成できた理由は、各焼結体が上記特定の鉄基合金からなる組成を有することで、高強度で、かつ高硬度であるためである。
加えて、試料No.1〜No.11の各焼結体の焼入れ性が良好である理由は、各焼結体(鉄基合金)の組成がSi、Mo、Cr、Mn及びNiの各元素を特定の範囲内で含有し、かつ、式(2)の算出値(表1参照)が1500超であることで、各焼結体が焼入れ性に優れるためと考えられる。
これに対し、上記各元素のうち、いずれかの元素の含有量が上記範囲外である鉄基合金粉(表1参照)を使用した試料No.101〜No.114の各焼結体は、相対密度、表面硬度及び焼入れ性のうち、いずれかの特性が劣る。
試料No.106〜No.113の各焼結体は相対密度が低い。この理由は、表1に示すように、圧粉体の相対密度が低いためである。
試料No.106〜No.113の各焼結体は表面硬度が低い。この理由は、Si、Mo、Cr、Mn及びNiのうち、いずれかの元素を多量に含有するため、硬度が低下したものと考えられる。また、試料No.101〜No.104の各焼結体は表面硬度が650HV未満であり、試料No.1〜No.11の各焼結体に比較して硬度が低い。この理由は、Si、Mo、Cr及びMnのうち、いずれかの元素を含有していないためと考えられる。
更に、試料No.101〜No.105及びNo.114の各焼結体は、焼入れ性に劣る。この理由は、Si、Mo、Cr、Mn及びNiのうち、いずれかの元素を含有していないためと考えられる。また、試料No.101〜No.105及びNo.114は、式(2)の算出値(表1参照)が1500以下である。
1 焼結部品
10 焼結体
11 外周面
13 歯
15 端面
17 貫通孔
20 圧粉体
21 外周面
30 加工体
100 原料粉
101 鉄基合金粉
103 炭素粉
200 金型
201 ダイ
202 下パンチ
203 上パンチ
204 コアロッド
300 ホブ
301 刃

Claims (8)

  1. シリコンを0.1質量%以上0.5質量%以下、モリブデンを0.1質量%以上1.5質量%以下、クロムを0.1質量%以上0.5質量%以下、マンガンを0.1質量%以上0.75質量%以下、ニッケルを0.5質量%以上5.0質量%以下含有する鉄基合金の粉末を含む原料粉を用意する工程と、
    前記原料粉を金型内に充填し、1470MPa以上の成形圧力で加圧成形して圧粉体を作製する工程と、
    前記圧粉体を機械部品の形状に切削加工して加工体を作製する工程と、
    前記加工体を1200℃未満の焼結温度で焼結して焼結体を作製する工程と、
    前記焼結体を焼入れする工程と、
    前記焼入れする工程の後、前記焼結体を焼戻しする工程と、を備える、
    焼結部品の製造方法。
  2. 前記鉄基合金の組成は、シリコンの含有量をx質量%、モリブデンの含有量をa質量%、クロムの含有量をb質量%、マンガンの含有量をc質量%とするとき、以下の式(1)を満たす請求項1に記載の焼結部品の製造方法。
    (50.25×x)+(25.6×a)+(41.2×b)+(38.0×c)+90<160・・・(1)
  3. 前記鉄基合金の組成は、シリコンの含有量をx質量%、モリブデンの含有量をa質量%、クロムの含有量をb質量%、マンガンの含有量をc質量%、ニッケルの含有量をd質量%とするとき、以下の式(2)を満たす請求項1又は請求項2に記載の焼結部品の製造方法。
    [(1+x)×1.55]×[(1+a)×4.75]×[(1+b)×4]×[(1+c)×5.75]×[(1+d)×1]>1500・・・(2)
  4. 前記圧粉体の相対密度が96.5%以上である請求項1から請求項3のいずれか1項に記載の焼結部品の製造方法。
  5. 前記鉄基合金の粉末に炭素粉を0.1質量%以上0.5質量%以下添加する請求項1から請求項4のいずれか1項に記載の焼結部品の製造方法。
  6. シリコンを0.1質量%以上0.5質量%以下、モリブデンを0.1質量%以上1.5質量%以下、クロムを0.1質量%以上0.5質量%以下、マンガンを0.1質量%以上0.75質量%以下、ニッケルを0.5質量%以上5.0質量%以下含有する鉄基合金からなる組成を有し、
    相対密度が96.5%以上で、かつ、表面硬度がビッカース硬さで600HV以上である焼結体からなる、
    焼結部品。
  7. 前記焼結体の表面から深さ100μmまでの領域における炭素の含有量が0.5質量%以上1.5質量%以下である請求項6に記載の焼結部品。
  8. 前記焼結体の外周面及び内周面の少なくとも一方に複数の歯が形成された歯車形状を有する請求項6又は請求項7に記載の焼結部品。
JP2019076707A 2019-04-12 2019-04-12 焼結部品の製造方法、及び焼結部品 Pending JP2020172697A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019076707A JP2020172697A (ja) 2019-04-12 2019-04-12 焼結部品の製造方法、及び焼結部品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019076707A JP2020172697A (ja) 2019-04-12 2019-04-12 焼結部品の製造方法、及び焼結部品

Publications (1)

Publication Number Publication Date
JP2020172697A true JP2020172697A (ja) 2020-10-22

Family

ID=72830064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076707A Pending JP2020172697A (ja) 2019-04-12 2019-04-12 焼結部品の製造方法、及び焼結部品

Country Status (1)

Country Link
JP (1) JP2020172697A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374269B2 (ja) 2017-07-26 2023-11-06 住友電気工業株式会社 焼結部材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374269B2 (ja) 2017-07-26 2023-11-06 住友電気工業株式会社 焼結部材

Similar Documents

Publication Publication Date Title
US20090317582A1 (en) Sintered gear
CN105899697A (zh) 渗碳钢部件的制造方法和渗碳钢部件
KR101607744B1 (ko) 슬라이딩 부재용 철기 소결 합금 및 그 제조 방법
JP6688287B2 (ja) プレアロイ鉄基粉末、プレアロイ鉄基粉末を含有する鉄基粉末混合物、及び鉄基粉末混合物からプレス成形および焼結した部品を製造する方法
JP6722511B2 (ja) 浸炭用焼結鋼、浸炭焼結部材およびそれらの製造方法
KR20090034373A (ko) 분말 단조 부재, 분말 단조용 혼합 분말, 분말 단조 부재의제조 방법 및 그것을 이용한 파단 분할형 커넥팅 로드
JPH10324944A (ja) 粉末冶金用鉄基混合粉
US20210162499A1 (en) Method for manufacturing sintered member
JP5595980B2 (ja) 浸炭焼結体およびその製造方法
JP2020172697A (ja) 焼結部品の製造方法、及び焼結部品
JP2020172698A (ja) 焼結部品の製造方法、及び焼結部品
WO2020158788A1 (ja) 焼結材、歯車、及び焼結材の製造方法
CN112041103B (zh) 烧结材料以及烧结材料的制造方法
JPH1150103A (ja) 粉末冶金用鉄粉の製造方法
CN114269960A (zh) 烧结材料及烧结材料的制造方法
WO2020241087A1 (ja) 鉄基合金焼結体及び粉末冶金用鉄基混合粉
WO2020158789A1 (ja) 焼結材、歯車、及び焼結材の製造方法
CN114286872B (zh) 烧结部件以及烧结部件的制造方法
JP6299714B2 (ja) 焼結鍛造品及びその製造方法
JP2019099867A (ja) 鉄系粉末混合物及び鉄系焼結部材の製造方法
JPH10280083A (ja) 粉末冶金用鉄基混合粉
JP2019019383A (ja) 焼結部材、及び焼結部材の製造方法
WO2021038879A1 (ja) 焼結歯車
KR20220054863A (ko) 소결 부재 및 전자 커플링