JP2020164974A - Silver paste and method for producing the same, and method for producing joined body - Google Patents
Silver paste and method for producing the same, and method for producing joined body Download PDFInfo
- Publication number
- JP2020164974A JP2020164974A JP2019114214A JP2019114214A JP2020164974A JP 2020164974 A JP2020164974 A JP 2020164974A JP 2019114214 A JP2019114214 A JP 2019114214A JP 2019114214 A JP2019114214 A JP 2019114214A JP 2020164974 A JP2020164974 A JP 2020164974A
- Authority
- JP
- Japan
- Prior art keywords
- silver
- less
- mass
- particles
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 523
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 419
- 239000004332 silver Substances 0.000 title claims abstract description 419
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000002245 particle Substances 0.000 claims abstract description 249
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 63
- 229930195729 fatty acid Natural products 0.000 claims abstract description 63
- 239000000194 fatty acid Substances 0.000 claims abstract description 63
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims abstract description 58
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 55
- 239000011259 mixed solution Substances 0.000 claims description 52
- 239000002904 solvent Substances 0.000 claims description 49
- 239000000203 mixture Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 40
- 229920005989 resin Polymers 0.000 claims description 35
- 239000011347 resin Substances 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 29
- 238000002156 mixing Methods 0.000 claims description 17
- 238000003756 stirring Methods 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000004898 kneading Methods 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 46
- 238000009826 distribution Methods 0.000 description 23
- 239000010419 fine particle Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 18
- -1 silver fatty acid Chemical class 0.000 description 15
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 14
- 238000005245 sintering Methods 0.000 description 12
- 239000002002 slurry Substances 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000011164 primary particle Substances 0.000 description 9
- 229920001187 thermosetting polymer Polymers 0.000 description 9
- 239000011342 resin composition Substances 0.000 description 8
- 239000004593 Epoxy Substances 0.000 description 7
- 229920001296 polysiloxane Polymers 0.000 description 7
- 229910001961 silver nitrate Inorganic materials 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 6
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 6
- 239000005416 organic matter Substances 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229920002050 silicone resin Polymers 0.000 description 6
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 6
- 229940071536 silver acetate Drugs 0.000 description 6
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000011163 secondary particle Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 4
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000002296 dynamic light scattering Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000007561 laser diffraction method Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000011268 mixed slurry Substances 0.000 description 3
- FJDUDHYHRVPMJZ-UHFFFAOYSA-N nonan-1-amine Chemical compound CCCCCCCCCN FJDUDHYHRVPMJZ-UHFFFAOYSA-N 0.000 description 3
- 238000000790 scattering method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XNGYKPINNDWGGF-UHFFFAOYSA-L silver oxalate Chemical compound [Ag+].[Ag+].[O-]C(=O)C([O-])=O XNGYKPINNDWGGF-UHFFFAOYSA-L 0.000 description 3
- OHGHHPYRRURLHR-UHFFFAOYSA-M silver;tetradecanoate Chemical compound [Ag+].CCCCCCCCCCCCCC([O-])=O OHGHHPYRRURLHR-UHFFFAOYSA-M 0.000 description 3
- 239000001509 sodium citrate Substances 0.000 description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 2
- 239000004280 Sodium formate Substances 0.000 description 2
- YFHNDHXQDJQEEE-UHFFFAOYSA-N acetic acid;hydrazine Chemical compound NN.CC(O)=O YFHNDHXQDJQEEE-UHFFFAOYSA-N 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 239000004844 aliphatic epoxy resin Substances 0.000 description 2
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000010946 fine silver Substances 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 150000003378 silver Chemical class 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 229940071575 silver citrate Drugs 0.000 description 2
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 2
- 235000019254 sodium formate Nutrition 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- QUTYHQJYVDNJJA-UHFFFAOYSA-K trisilver;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Ag+].[Ag+].[Ag+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QUTYHQJYVDNJJA-UHFFFAOYSA-K 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229940088601 alpha-terpineol Drugs 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- AVIYEYCFMVPYST-UHFFFAOYSA-N hexane-1,3-diol Chemical group CCCC(O)CCO AVIYEYCFMVPYST-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- WSTNFGAKGUERTC-UHFFFAOYSA-N n-ethylhexan-1-amine Chemical compound CCCCCCNCC WSTNFGAKGUERTC-UHFFFAOYSA-N 0.000 description 1
- AZJXQVRPBZSNFN-UHFFFAOYSA-N octane-3,3-diol Chemical compound CCCCCC(O)(O)CC AZJXQVRPBZSNFN-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- JKOCEVIXVMBKJA-UHFFFAOYSA-M silver;butanoate Chemical compound [Ag+].CCCC([O-])=O JKOCEVIXVMBKJA-UHFFFAOYSA-M 0.000 description 1
- CYLMOXYXYHNGHZ-UHFFFAOYSA-M silver;propanoate Chemical compound [Ag+].CCC([O-])=O CYLMOXYXYHNGHZ-UHFFFAOYSA-M 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
- B22F7/04—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0545—Dispersions or suspensions of nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/107—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
- B23K35/025—Pastes, creams, slurries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3006—Ag as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0466—Alloys based on noble metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
- B22F7/04—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
- B22F2007/042—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
- B22F2007/047—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method non-pressurised baking of the paste or slurry containing metal powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04026—Bonding areas specifically adapted for layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05644—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/2919—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29194—Material with a principal constituent of the material being a liquid not provided for in groups H01L2224/291 - H01L2224/29191
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29344—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29347—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29363—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/29364—Palladium [Pd] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8384—Sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は、回路基板と高出力LED素子とを接合する接合層や、回路基板とパワー半導体チップとを接合する接合層を作製するための原料として用いられる銀ペーストと、この銀ペーストを製造する方法と、この銀ペーストを用いて作製された接合層により接合された接合体の製造方法に関するものである。 The present invention manufactures a silver paste used as a raw material for producing a bonding layer for bonding a circuit board and a high-power LED element and a bonding layer for bonding a circuit board and a power semiconductor chip, and the silver paste. The present invention relates to a method and a method for producing a bonded body bonded by a bonding layer produced by using this silver paste.
従来より、半導体チップをリードフレーム等の金属板に接着・固定(ダイボンディング)するために、Ag粉末、熱硬化性樹脂、及び溶剤を含む銀ペーストが用いられている。例えば、特許文献1に開示された熱伝導性組成物は、銀粉、銀微粒子、脂肪酸銀、アミン及び銀レジネートを含む。前記銀粉は平均粒径が0.3μm〜100μmである。前記銀微粒子は1次粒子の平均粒子径が50〜150nmであり、結晶子径が20〜50nmであり、かつ結晶子径に対する平均粒子径の比が1〜7.5であり、更に銀レジネートを含む熱伝導性組成物が開示されている(例えば、特許文献1参照。)。 Conventionally, in order to bond and fix (die bond) a semiconductor chip to a metal plate such as a lead frame, a silver paste containing Ag powder, a thermosetting resin, and a solvent has been used. For example, the thermally conductive composition disclosed in Patent Document 1 contains silver powder, silver fine particles, fatty acid silver, amine and silver resinate. The silver powder has an average particle size of 0.3 μm to 100 μm. The silver fine particles have an average particle diameter of primary particles of 50 to 150 nm, a crystallite diameter of 20 to 50 nm, a ratio of the average particle diameter to the crystallite diameter of 1 to 7.5, and a silver resinate. A thermally conductive composition containing (see, for example, Patent Document 1) is disclosed.
このように構成された熱伝導性組成物では、高い熱伝導率を有する熱伝導体を得ることができるとされている。 It is said that the heat conductive composition configured in this way can obtain a heat conductor having a high thermal conductivity.
しかし、特許文献1に示された熱伝導性組成物では、この熱伝導性組成物を用いて作製された熱伝導体中に、特許文献1の図1に示すように、比較的多くの空乏(ボイド)が存在するため、その分、熱伝導体の熱伝導特性が低い不具合があった。 However, in the heat conductive composition shown in Patent Document 1, a relatively large amount of deficiency is contained in the heat conductor produced by using this heat conductive composition, as shown in FIG. 1 of Patent Document 1. Since there are (voids), there is a problem that the heat conduction characteristics of the heat conductor are low accordingly.
本発明の第1の目的は、ボイドの少ない接合層を作製できる、銀ペースト及びその製造方法を提供することにある。本発明の第2の目的は、銀ペーストを用いて作製された接合層の冷熱サイクル特性を向上できる、銀ペースト及びその製造方法を提供することにある。本発明の第3の目的は、銀ペーストの粘度を調整して塗布等の作業を容易にすることができる、銀ペースト及びその製造方法を提供することにある。本発明の第4の目的は、銀ペーストを用いて作製された接合層の熱伝導特性を向上できる、銀ペースト及びその製造方法を提供することにある。本発明の第5の目的は、接合層の熱伝導特性及び冷熱サイクル特性の向上により、接合体の熱伝導特性及び冷熱サイクル特性を向上できる、接合体の製造方法を提供することにある。 A first object of the present invention is to provide a silver paste and a method for producing the same, which can produce a bonding layer having few voids. A second object of the present invention is to provide a silver paste and a method for producing the silver paste, which can improve the thermal cycle characteristics of the bonding layer produced by using the silver paste. A third object of the present invention is to provide a silver paste and a method for producing the silver paste, which can adjust the viscosity of the silver paste to facilitate operations such as coating. A fourth object of the present invention is to provide a silver paste and a method for producing the silver paste, which can improve the heat conduction characteristics of the bonding layer produced by using the silver paste. A fifth object of the present invention is to provide a method for producing a bonded body, which can improve the heat conduction characteristics and the cold heat cycle characteristics of the bonded body by improving the heat conduction characteristics and the cold heat cycle characteristics of the bonded layer.
本発明の第1の観点は、銀粉と、脂肪酸銀と、脂肪族アミンとを含む銀ペーストであって、前記銀粉は、粒径が100nm以上500nm未満である第1銀粒子を55体積%以上95体積%以下の範囲で含み、粒径が50nm以上100nm未満である第2銀粒子を5体積%以上40体積%以下の範囲で含み、粒径が50nm未満である第3銀粒子を5体積%以下の範囲で含むことを特徴とする。 The first aspect of the present invention is a silver paste containing silver powder, fatty acid silver, and an aliphatic amine, and the silver powder contains 55% by volume or more of first silver particles having a particle size of 100 nm or more and less than 500 nm. 5 volumes of 3rd silver particles containing 95% by volume or less and having a particle size of 50 nm or more and less than 100 nm containing 5% by volume or more and 40% by volume or less and having a particle size of less than 50 nm. It is characterized by including in the range of% or less.
本発明の第2の観点は、第1の観点に基づく発明であって、樹脂を更に含むことを特徴とする。 The second aspect of the present invention is an invention based on the first aspect, and is characterized by further containing a resin.
本発明の第3の観点は、第1の観点に基づく発明であって、溶媒を更に含むことを特徴とする。 The third aspect of the present invention is an invention based on the first aspect, and is characterized by further containing a solvent.
本発明の第4の観点は、第1の観点に基づく発明であって、更に脂肪酸銀の少なくとも一部と脂肪族アミンの少なくとも一部とが反応して形成される錯体を含むことを特徴とする。 A fourth aspect of the present invention is an invention based on the first aspect, further comprising a complex formed by reacting at least a part of silver fatty acid and at least a part of an aliphatic amine. To do.
本発明の第5の観点は、脂肪酸銀、脂肪族アミン及び溶媒を、前記脂肪酸銀と前記脂肪族アミンと前記溶媒との合計量を100質量%としたときに、前記脂肪酸銀が0.1質量%〜40質量%、前記脂肪族アミンが0.1質量%〜60質量%、前記溶媒が80質量%以下の割合で混合して混合物を得る工程と、前記混合物を30℃〜100℃に加熱して撹拌した後に冷却して混合溶液を得る工程と、前記混合溶液と銀粉とを混練して銀ペーストを得る工程とを含む銀ペーストの製造方法であって、前記銀粉が、粒径が100nm以上500nm未満である第1銀粒子を55体積%以上95体積%以下の範囲で含み、粒径が50nm以上100nm未満である第2銀粒子を5体積%以上40体積%以下の範囲で含み、粒径が50nm未満である第3銀粒子を5体積%以下の範囲で含むことを特徴とする。 A fifth aspect of the present invention is that when the total amount of the fatty acid silver, the aliphatic amine and the solvent is 100% by mass, the fatty acid silver is 0.1. A step of mixing at a ratio of mass% to 40% by mass, the aliphatic amine of 0.1% by mass to 60% by mass, and the solvent of 80% by mass or less to obtain a mixture, and the mixture at 30 ° C. to 100 ° C. A method for producing a silver paste, which comprises a step of heating, stirring, and then cooling to obtain a mixed solution, and a step of kneading the mixed solution and silver powder to obtain a silver paste, wherein the silver powder has a particle size. The first silver particles having a particle size of 100 nm or more and less than 500 nm are contained in the range of 55% by volume or more and 95% by volume or less, and the second silver particles having a particle size of 50 nm or more and less than 100 nm are contained in the range of 5% by volume or more and 40% by volume or less. It is characterized by containing third silver particles having a particle size of less than 50 nm in a range of 5% by volume or less.
本発明の第6の観点は、第1部材と第2部材とを用意する工程と、第1部材及び/又は第2部材の表面に、第1ないし第4の観点のいずれかに記載の銀ペースト又は請求項5に記載の方法で製造された銀ペーストを塗布して銀ペースト層を形成する工程と、第1部材と第2部材とを銀ペースト層を介して積層して積層体を作製する工程と、積層体を加熱することにより銀ペースト層中の第1銀粒子と第2銀粒子と第3銀粒子を焼結させて接合層を形成させ、第1部材と第2部材とが接合層を介して接合された接合体を作製する工程とを含む接合体の製造方法である。 A sixth aspect of the present invention is the step of preparing the first member and the second member, and the silver according to any one of the first to fourth aspects on the surface of the first member and / or the second member. A step of applying a paste or a silver paste produced by the method according to claim 5 to form a silver paste layer, and laminating the first member and the second member via the silver paste layer to prepare a laminate. By heating the laminate, the first silver particles, the second silver particles, and the third silver particles in the silver paste layer are sintered to form a bonding layer, and the first member and the second member are formed. It is a method of manufacturing a bonded body including a step of producing a bonded body bonded via a bonded layer.
本発明の第1の観点の銀ペーストでは、銀粉が、粒径が100nm以上500nm未満である第1銀粒子を55体積%以上95体積%以下の範囲で含み、粒径が50nm以上100nm未満である第2銀粒子を5体積%以上40体積%以下の範囲で含み、粒径が50nm未満である第3銀粒子を5体積%以下の範囲で含むので、前記銀粉が比較的広い粒度分布を有することによって、焼結の際に、第1〜第3銀粒子同士の隙間が小さく緻密になることで、ボイドの少ない接合層を作製できる。 In the silver paste according to the first aspect of the present invention, the silver powder contains first silver particles having a particle size of 100 nm or more and less than 500 nm in a range of 55% by volume or more and 95% by volume or less, and the particle size is 50 nm or more and less than 100 nm. Since certain second silver particles are contained in the range of 5% by volume or more and 40% by volume or less and third silver particles having a particle size of less than 50 nm are contained in the range of 5% by volume or less, the silver powder has a relatively wide particle size distribution. By having the particles, the gaps between the first to third silver particles become small and dense during sintering, so that a bonding layer with few voids can be produced.
本発明の第2の観点の銀ペーストでは、この銀ペーストが樹脂を更に含むので、銀ペーストを用いて作製された接合層の冷熱サイクル特性を向上できる。 In the silver paste according to the second aspect of the present invention, since the silver paste further contains a resin, the thermal cycle characteristics of the bonding layer prepared by using the silver paste can be improved.
本発明の第3の観点の銀ペーストでは、この銀ペーストが溶媒を更に含むので、銀ペーストの粘度を調整して塗布等の作業を容易にすることができるという優れた効果が得られる。 In the silver paste according to the third aspect of the present invention, since the silver paste further contains a solvent, an excellent effect that the viscosity of the silver paste can be adjusted to facilitate operations such as coating can be obtained.
本発明の第4の観点の銀ペーストでは、脂肪酸銀の少なくとも一部と脂肪族アミンの少なくとも一部とが反応して形成される錯体を含むので、焼成時に前記錯体から微細な銀が析出し、この析出した銀が銀ペースト中の第1銀粒子と第2銀粒子と第3銀粒子との間を埋めることで、銀ペーストを用いて作製される接合層がより緻密化して、その熱伝導特性を飛躍的に向上させることができる。 Since the silver paste of the fourth aspect of the present invention contains a complex formed by reacting at least a part of fatty acid silver and at least a part of an aliphatic amine, fine silver is precipitated from the complex at the time of firing. By filling the space between the first silver particles, the second silver particles, and the third silver particles in the silver paste, the bonded layer produced by using the silver paste becomes more dense and its heat. Conduction characteristics can be dramatically improved.
本発明の第5の観点の銀ペーストの製造方法では、脂肪酸銀、脂肪族アミン及び溶媒を所定の割合で混合した混合物を加熱して撹拌した後に冷却して混合溶液を調製し、この混合溶液と銀粉とを混練して銀ペーストを調製し、前記銀粉が、粒径が100nm以上500nm未満である第1銀粒子を55体積%以上95体積%以下の範囲で含み、粒径が50nm以上100nm未満である第2銀粒子を5体積%以上40体積%以下の範囲で含み、粒径が50nm未満である第3銀粒子を5体積%以下の範囲で含むので、前記と同様に、前記銀粉が比較的広い粒度分布を有することによって、焼結の際に、第1〜第3銀粒子同士の隙間が小さく緻密になることで、ボイドの少ない接合層を作製できる。 In the method for producing a silver paste according to the fifth aspect of the present invention, a mixed solution in which a mixture of fatty acid silver, an aliphatic amine and a solvent is mixed at a predetermined ratio is heated and stirred, and then cooled to prepare a mixed solution. And silver powder are kneaded to prepare a silver paste, and the silver powder contains first silver particles having a particle size of 100 nm or more and less than 500 nm in a range of 55% by volume or more and 95% by volume or less, and has a particle size of 50 nm or more and 100 nm. Since the second silver particles having a particle size of less than 50% by volume are contained in the range of 5% by volume or more and 40% by volume or less and the third silver particles having a particle size of less than 50 nm are contained in the range of 5% by volume or less, the silver powder is similarly described above. Since the particles have a relatively wide particle size distribution, the gaps between the first to third silver particles become small and dense during sintering, so that a bonding layer with few voids can be produced.
本発明の第6の観点の接合体の製造方法では、第1部材と第2部材とを、前記銀ペーストを塗布した銀ペースト層を挟んで積層して積層体を作製し、この積層体を加熱することで銀ペースト層中の第1銀粒子と第2銀粒子と第3銀粒子を焼結させて接合層を形成し、第1部材と第2部材とがこの接合層を介して接合された接合体を作製したので、接合体を接合する接合層はボイドが少なく、この方法で製造された接合体の熱伝導特性及び冷熱サイクル特性を向上できる。 In the method for producing a bonded body according to the sixth aspect of the present invention, the first member and the second member are laminated with the silver paste layer coated with the silver paste sandwiched between them to prepare a laminated body, and the laminated body is formed. By heating, the first silver particles, the second silver particles, and the third silver particles in the silver paste layer are sintered to form a bonding layer, and the first member and the second member are bonded via the bonding layer. Since the bonded body is produced, the bonding layer for joining the bonded body has few voids, and the heat conduction characteristics and the cold cycle characteristics of the bonded body produced by this method can be improved.
次に本発明を実施するための形態を説明する。銀ペーストは、銀粉と脂肪酸銀と脂肪族アミンとを含む。前記銀粉は、互いに粒径が異なる第1銀粒子(第1群の銀粒子)、第2銀粒子(第2群の銀粒子)、及び第3銀粒子(第3群の銀粒子)を含み、これら第1〜第3銀粒子はいずれも一次粒子として互いに凝集し、凝集体(銀粉)を形成している。第1銀粒子は、粒径が100nm以上500nm未満であり、第1〜第3銀粒子の合計量100体積%に対して55体積%以上95体積%以下の範囲で含む。また、第2銀粒子は、粒径が50nm以上100nm未満であり、第1〜第3銀粒子の合計量100体積%に対して5体積%以上40体積%以下の範囲で含む。更に、第3銀粒子は、粒径が50nm未満であり、第1〜第3銀粒子の合計量100体積%に対して5体積%以下の範囲で含む。なお、ここでの「体積」は銀粒子そのものの体積を示す。ここで、第1〜第3銀粒子の含有割合をそれぞれ前記範囲に限定したのは、比較的広い粒度分布を有することによって、焼結の際に、第1〜第3銀粒子同士の隙間が小さく緻密な凝集体になることにより、ボイドの少ない接合層を作製できるからである。なお、第1〜第3銀粒子中の銀の純度は、90質量%以上であることが好ましく、99質量%以上であることがより好ましい。これは、第1〜第3銀粒子の純度が高い方が溶融し易くなるので、第1〜第3銀粒子を比較的低温で焼結させることができるからである。第1〜第3銀粒子中の銀以外の元素としては、Au、Cu、Pdなどを含んでも、本発明の目的を達成することができる。 Next, a mode for carrying out the present invention will be described. The silver paste contains silver powder, fatty acid silver and aliphatic amines. The silver powder contains first silver particles (first group of silver particles), second silver particles (second group of silver particles), and third silver particles (third group of silver particles) having different particle sizes. , All of these 1st to 3rd silver particles aggregate with each other as primary particles to form an agglomerate (silver powder). The first silver particles have a particle size of 100 nm or more and less than 500 nm, and include 55% by volume or more and 95% by volume or less with respect to 100% by volume of the total amount of the first to third silver particles. The second silver particles have a particle size of 50 nm or more and less than 100 nm, and are contained in a range of 5% by volume or more and 40% by volume or less with respect to 100% by volume of the total amount of the first to third silver particles. Further, the third silver particles have a particle size of less than 50 nm and are contained in a range of 5% by volume or less with respect to 100% by volume of the total amount of the first to third silver particles. The "volume" here indicates the volume of the silver particles themselves. Here, the content ratio of the first to third silver particles is limited to the above range because the particle size distribution is relatively wide, so that the gaps between the first to third silver particles are formed during sintering. This is because a bonding layer with few voids can be produced by forming small and dense aggregates. The purity of silver in the first to third silver particles is preferably 90% by mass or more, and more preferably 99% by mass or more. This is because the higher the purity of the first to third silver particles, the easier it is to melt, so that the first to third silver particles can be sintered at a relatively low temperature. The object of the present invention can be achieved even if the elements other than silver in the first to third silver particles include Au, Cu, Pd and the like.
また、粒径が100nm以上500nm未満である第1銀粒子は70体積%以上90体積%以下の範囲で含むことが好ましく、粒径が50nm以上100nm未満である第2銀粒子は10体積%以上30体積%以下の範囲で含むことが好ましく、粒径が50nm未満である第3銀粒子は1体積%以下の範囲で含むことが好ましい。第1〜第3銀粒子の粒度分布が前記範囲内にあることによって、焼結の際に、第1〜第3銀粒子同士の隙間の小さい緻密な銀粉の凝集体を形成できる効果が高くなり、更にボイドの少ない接合層を作製できる。なお、第1〜第3銀粒子の粒径は、例えばSEM(Scanning Electron Microscope:走査型顕微鏡写真)を用いて、前記銀粉中の第1〜第3銀粒子の投影面積を測定し、得られた投影面積から円相当径(第1〜第3銀粒子の投影面積と同じ面積を持つ円の直径)を算出し、この算出した粒径を体積基準の粒径に換算することによって得ることができる。具体的な測定方法の例は、後述する実施例中で説明する。 Further, the first silver particles having a particle size of 100 nm or more and less than 500 nm are preferably contained in the range of 70% by volume or more and 90% by volume or less, and the second silver particles having a particle size of 50 nm or more and less than 100 nm are 10% by volume or more. It is preferably contained in the range of 30% by volume or less, and the third silver particles having a particle size of less than 50 nm are preferably contained in the range of 1% by volume or less. When the particle size distribution of the first to third silver particles is within the above range, the effect of forming a dense agglomerate of silver powder with a small gap between the first to third silver particles during sintering becomes high. In addition, a bonding layer with less voids can be produced. The particle size of the first to third silver particles can be obtained by measuring the projected area of the first to third silver particles in the silver powder using, for example, a SEM (Scanning Electron Microscope). It can be obtained by calculating the equivalent circle diameter (the diameter of a circle having the same area as the projected area of the 1st to 3rd silver particles) from the projected area and converting the calculated particle size into the volume-based particle size. it can. An example of a specific measurement method will be described in Examples described later.
前記銀粉は、有機還元剤或いはその分解物からなる有機物を含むことが好ましく、この有機物は、150℃の温度で分解若しくは揮発するものであることが好ましい。また、有機還元剤の例としては、アスコルビン酸、ギ酸、酒石酸等が挙げられる。有機還元剤或いはその分解物からなる有機物は、第1〜第3銀粒子が凝集した二次粒子(即ち銀ペーストを作製する前の銀粉)の状態で保存されているときに、第1〜第3銀粒子の表面の酸化を抑制し、第1〜第3銀粒子の相互拡散、即ち保存時における拡散接合を抑制する効果を有する。また、前記有機物は、銀粒子の凝集体を含む銀ペーストを接合対象部材の被接合面に印刷して加熱したときに、容易に分解若しくは揮発して、第1〜第3銀粒子の高活性な表面を露出させることにより、第1〜第3銀粒子同士の焼結反応を進行し易くする効果がある。更に、前記有機物の分解物若しくは揮発物は、接合対象部材の被接合面の酸化膜を還元させる還元能力を有する。なお、銀粉に含まれる有機物が接合層に残留すると、時間の経過とともに分解して、接合層にボイドを発生させるおそれがある。このため、有機物の含有割合は、第1〜第3銀粒子の合計量100質量%に対して2質量%以下とすることが好ましい。但し、有機物による前記効果を得るためには、有機物の含有割合は第1〜第3銀粒子の合計量100質量%に対して0.05質量%以上であることが好ましい。有機物の含有割合は、より好ましくは第1〜第3銀粒子の合計量100質量%に対して0.1質量%〜1.5質量%である。 The silver powder preferably contains an organic substance composed of an organic reducing agent or a decomposition product thereof, and the organic substance is preferably decomposed or volatilized at a temperature of 150 ° C. Examples of organic reducing agents include ascorbic acid, formic acid, tartaric acid and the like. The organic substance composed of the organic reducing agent or its decomposition product is stored in the state of secondary particles in which the first to third silver particles are aggregated (that is, silver powder before preparing the silver paste), and the first to third silver particles are stored. It has the effect of suppressing the oxidation of the surface of the 3 silver particles and suppressing the mutual diffusion of the 1st to 3rd silver particles, that is, the diffusion bonding during storage. Further, the organic substance is easily decomposed or volatilized when a silver paste containing an aggregate of silver particles is printed on the surface to be bonded of the member to be bonded and heated, and the high activity of the first to third silver particles is achieved. By exposing the surface, there is an effect of facilitating the sintering reaction between the first to third silver particles. Further, the decomposition product or volatile substance of the organic substance has a reducing ability to reduce the oxide film on the surface to be bonded of the member to be bonded. If the organic matter contained in the silver powder remains in the bonding layer, it may be decomposed with the passage of time to generate voids in the bonding layer. Therefore, the content ratio of the organic substance is preferably 2% by mass or less with respect to 100% by mass of the total amount of the first to third silver particles. However, in order to obtain the effect of the organic substance, the content ratio of the organic substance is preferably 0.05% by mass or more with respect to 100% by mass of the total amount of the first to third silver particles. The content ratio of the organic substance is more preferably 0.1% by mass to 1.5% by mass with respect to 100% by mass of the total amount of the first to third silver particles.
本発明において、後述する各成分と混合される前の銀粉は、第1〜第3銀粒子(一次粒子)が凝集した二次粒子の状態であり、レーザ回折散乱法により測定される体積基準の粒度分布曲線において、D10が0.05μm以上0.25μm以下の範囲であって、D50が0.4μm以上0.6μm以下の範囲であり、更にD90が1.5μm以上2.5μm以下の範囲であることが好ましい。このような比較的広い粒度分布を有する銀粉と、後述する各成分とから得られる本発明の銀ペーストでは、焼結の際に、第1〜第3銀粒子同士の隙間の小さい緻密な凝集体を形成できる効果が高くなり、更にボイドの少ない接合層を作製できる。ここで、レーザ回折散乱法による体積基準の粒度分布の測定は、次の通りに行う。先ず、銀粉(二次粒子)0.1gをイオン交換水20g中に投入し、25kHzの超音波を5分間照射して、イオン交換水に銀粉を分散させる。次に、得られた銀粉の分散液を、レーザ回折散乱式粒度分布測定装置(堀場製作所製商品名:LA−960)の観察セルに適量滴下し、この装置の手順に従い粒度分布を測定する。このレーザ回折散乱法によって測定された粒度分布は、第1〜第3銀粒子(一次粒子)が凝集した二次粒子の粒度分布である。 In the present invention, the silver powder before being mixed with each component described later is a state of secondary particles in which first to third silver particles (primary particles) are aggregated, and is a volume-based measurement measured by a laser diffraction / scattering method. In the particle size distribution curve, D10 is in the range of 0.05 μm or more and 0.25 μm or less, D50 is in the range of 0.4 μm or more and 0.6 μm or less, and D90 is in the range of 1.5 μm or more and 2.5 μm or less. It is preferable to have. In the silver paste of the present invention obtained from the silver powder having such a relatively wide particle size distribution and each component described later, a dense aggregate having a small gap between the first to third silver particles at the time of sintering. The effect of forming the paste is increased, and a bonding layer with few voids can be produced. Here, the volume-based particle size distribution is measured by the laser diffraction / scattering method as follows. First, 0.1 g of silver powder (secondary particles) is put into 20 g of ion-exchanged water, and ultrasonic waves of 25 kHz are irradiated for 5 minutes to disperse the silver powder in the ion-exchanged water. Next, an appropriate amount of the obtained dispersion of silver powder is dropped onto an observation cell of a laser diffraction / scattering type particle size distribution measuring device (trade name: LA-960 manufactured by HORIBA, Ltd.), and the particle size distribution is measured according to the procedure of this device. The particle size distribution measured by this laser diffraction / scattering method is the particle size distribution of the secondary particles in which the first to third silver particles (primary particles) are aggregated.
また、第1〜第3銀粒子の凝集体は、比表面積が2m2/g〜8m2/gの範囲にあることが好ましく、3m2/g〜7m2/gの範囲にあることが更に好ましい。ここで、比表面積が前記範囲内にある第1〜第3銀粒子の凝集体は、第1〜第3銀粒子の反応面積が大きく、加熱による反応性が高くなるので、比較的低温で焼結させることができる。 Moreover, aggregates of the first to third silver particles, it is preferred that the specific surface area is in the range of 2m 2 / g~8m 2 / g, in the range of 3m 2 / g~7m 2 / g further preferable. Here, the agglomerates of the first to third silver particles having a specific surface area within the above range are baked at a relatively low temperature because the reaction area of the first to third silver particles is large and the reactivity by heating is high. Can be tied.
一方、脂肪酸銀としては、酢酸銀、シュウ酸銀、プロピオン酸銀、ミリスチン酸銀、酪酸銀等が挙げられる。また、脂肪族アミンとしては、第1級アミン、第2級アミン、第3級アミン等が挙げられる。脂肪族アミンの炭素数は好ましくは8〜12とすることが望ましい。炭素数が小さすぎると脂肪族アミンの沸点が低い傾向があるので、銀ペーストの印刷性が低下するおそれがある。炭素数が大きすぎると銀ペースト中の銀粒子の焼結を妨げ、十分な強度を有する接合体が得られないおそれがある。具体的な例として、第1級アミンには、エチルヘキシルアミン、アミノデカン、ドデシルアミン、ノニルアミン、ヘキシルアミン等があり、第2級アミンには、ジメチルアミン、ジエチルアミン等があり、第3級アミンには、トリメチルアミン、トリエチルアミン等がある。 On the other hand, examples of the fatty acid silver include silver acetate, silver oxalate, silver propionate, silver myristate, and silver butyrate. Examples of the aliphatic amine include primary amines, secondary amines, and tertiary amines. The number of carbon atoms of the aliphatic amine is preferably 8 to 12. If the number of carbon atoms is too small, the boiling point of the aliphatic amine tends to be low, which may reduce the printability of the silver paste. If the number of carbon atoms is too large, the sintering of silver particles in the silver paste may be hindered, and a bonded body having sufficient strength may not be obtained. As a specific example, the primary amine includes ethylhexylamine, aminodecane, dodecylamine, nonylamine, hexylamine and the like, the secondary amine includes dimethylamine, diethylamine and the like, and the tertiary amine includes dimethylamine and diethylamine. , Trimethylamine, triethylamine and the like.
ここで、銀ペーストにおいて、脂肪酸銀に対する脂肪族アミンのモル比、即ち、脂肪族アミンのモル量/脂肪酸銀のモル量は、1.5〜3の範囲内とするとよい。脂肪族アミンの割合が少ないと、固体である脂肪酸銀の割合が相対的に高くなるため、銀ペースト中に均一に分散しにくくなり、加熱して得た接合層内部にボイドが生じやすくなるおそれがある。脂肪族アミンの割合が多すぎると、過剰量の脂肪族アミンが銀ペースト中の銀粉の粒成長を招き、ペースト粘度が低下するので印刷性が悪化するおそれがある。脂肪族アミンのモル量/脂肪酸銀のモル量は、好ましくは、1.7〜2.8の範囲内とするとよく、更に好ましくは2.0〜2.5の範囲内とするとよい。 Here, in the silver paste, the molar ratio of the aliphatic amine to the fatty acid silver, that is, the molar amount of the aliphatic amine / the molar amount of the fatty acid silver may be in the range of 1.5 to 3. When the proportion of the aliphatic amine is small, the proportion of the solid fatty acid silver is relatively high, so that it is difficult to disperse uniformly in the silver paste, and voids may easily occur inside the bonding layer obtained by heating. There is. If the proportion of the aliphatic amine is too large, the excessive amount of the aliphatic amine causes the grain growth of the silver powder in the silver paste, and the paste viscosity is lowered, so that the printability may be deteriorated. The molar amount of the aliphatic amine / the molar amount of the silver fatty acid is preferably in the range of 1.7 to 2.8, and more preferably in the range of 2.0 to 2.5.
更に、銀ペーストは、脂肪酸銀の少なくとも一部と脂肪族アミンの少なくとも一部とが反応して形成される錯体を含むことが好ましい。この錯体は、銀アミン錯体であると推定される。 Further, the silver paste preferably contains a complex formed by reacting at least a part of fatty acid silver with at least a part of an aliphatic amine. This complex is presumed to be a silver amine complex.
銀ペーストは、更に樹脂又は溶媒のいずれか一方又は双方を含むことが好ましい。樹脂としては、エポキシ系樹脂、シリコーン系樹脂、アクリル系樹脂、及びそれらの混合物等が挙げられる。エポキシ系樹脂には、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、及びそれらの混合物等があり、シリコーン系樹脂には、メチルシリコーン樹脂、エポキシ変性シリコーン樹脂、ポリエステル変性シリコーン樹脂、及びそれらの混合物等があり、アクリル系樹脂には、アクリレート系モノマー樹脂等がある。これらの樹脂は、銀ペーストの加熱によって硬化し、その硬化体が、銀粉末の焼結体の空隙に充填される。熱硬化性樹脂組成物の硬化体が、銀粉末の焼結体の空隙に充填されることによって、接合層の機械的強度が向上し、更に冷熱サイクル負荷時における接合強度の低下が抑えられる。前記樹脂の含有量は銀ペースト全体を100質量%としたときに0.1質量%〜3質量%の範囲内であってもよい。前記樹脂の含有量が0.1質量%未満であると接合層の機械的強度が向上しないおそれがあり、3質量%を超えると銀粉の焼結が妨げられ接合層の機械的強度が低下するおそれがある。前記樹脂の含有量は、好ましくは0.2質量%〜2.5質量%の範囲内であってもよく、更に好ましくは0.3質量%〜2.0質量%の範囲内であってもよい。 The silver paste preferably further contains either one or both of the resin and the solvent. Examples of the resin include epoxy-based resins, silicone-based resins, acrylic-based resins, and mixtures thereof. Epoxy resins include bisphenol A type epoxy resins, novolak type epoxy resins, cyclic aliphatic epoxy resins, and mixtures thereof, and silicone resins include methyl silicone resins, epoxy modified silicone resins, and polyester modified silicones. There are resins and mixtures thereof, and acrylic resins include acrylate-based monomer resins and the like. These resins are cured by heating the silver paste, and the cured product is filled in the voids of the sintered body of the silver powder. By filling the voids of the sintered body of silver powder with the cured product of the thermosetting resin composition, the mechanical strength of the bonding layer is improved, and the decrease in bonding strength under a thermal cycle load is suppressed. The content of the resin may be in the range of 0.1% by mass to 3% by mass when the whole silver paste is 100% by mass. If the content of the resin is less than 0.1% by mass, the mechanical strength of the bonding layer may not be improved, and if it exceeds 3% by mass, sintering of silver powder is hindered and the mechanical strength of the bonding layer is lowered. There is a risk. The content of the resin may be preferably in the range of 0.2% by mass to 2.5% by mass, and more preferably in the range of 0.3% by mass to 2.0% by mass. Good.
溶媒としては、アルコール系溶媒、グリコール系溶媒、アセテート系溶媒、炭化水素系溶媒、及びそれらの混合物等が挙げられる。アルコール系溶媒には、α−テルピネオール、イソプロピルアルコール、エチルヘキサンジオール、及びそれらの混合物等があり、グリコール系溶媒には、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、及びそれらの混合物等があり、アセテート系溶媒には、ブチルカルビトールアセテート等があり、炭化水素系溶媒としては、デカン、ドデカン、テトラデカン、及びそれらの混合物等がある。 Examples of the solvent include alcohol-based solvents, glycol-based solvents, acetate-based solvents, hydrocarbon-based solvents, and mixtures thereof. Alcohol-based solvents include α-terpineol, isopropyl alcohol, ethylhexanediol, and mixtures thereof, and glycol-based solvents include ethylene glycol, diethylene glycol, polyethylene glycol, and mixtures thereof, and acetate-based solvents. Examples include butyl carbitol acetate and the like, and examples of the hydrocarbon solvent include decane, dodecane, tetradecane, and a mixture thereof.
このように構成された銀ペーストの製造方法を説明する。先ず、脂肪酸銀、脂肪族アミン及び溶媒を用意し、脂肪酸銀と脂肪族アミンと溶媒との合計量を100質量%としたときに、例えば、脂肪酸銀が0.1質量%〜40質量%、脂肪族アミンが0.1質量%〜60質量%、溶媒が80質量%以下の割合で混合する。ここで、脂肪酸銀、脂肪族アミン及び溶媒の混合割合を前記範囲内に限定したのは、混合液に沈殿等を生じることなく、本発明の効果を得られるという理由に基づく。より好ましくは、脂肪酸銀と脂肪族アミンと溶媒との合計量を100質量%としたときに、脂肪酸銀が20質量%〜30質量%、脂肪族アミンが20質量%〜40質量%、溶媒が40質量%〜60質量%の割合で混合される。 A method for producing the silver paste thus constructed will be described. First, when fatty acid silver, an aliphatic amine and a solvent are prepared and the total amount of the fatty acid silver, the aliphatic amine and the solvent is 100% by mass, for example, fatty acid silver is 0.1% by mass to 40% by mass. The aliphatic amine is mixed in a proportion of 0.1% by mass to 60% by mass, and the solvent is mixed in a proportion of 80% by mass or less. Here, the mixing ratio of the fatty acid silver, the aliphatic amine and the solvent is limited to the above range because the effect of the present invention can be obtained without causing precipitation or the like in the mixed solution. More preferably, when the total amount of the fatty acid silver, the aliphatic amine and the solvent is 100% by mass, the fatty acid silver is 20% by mass to 30% by mass, the aliphatic amine is 20% by mass to 40% by mass, and the solvent is It is mixed at a ratio of 40% by mass to 60% by mass.
次に、前記混合物を30℃〜100℃に加熱して5分間〜10時間撹拌して混合液を調製した後に、この混合液を室温(25℃)まで下げる。これにより脂肪酸銀、脂肪族アミン及び溶媒の混合溶液(単に混合溶液ともいう)を調製する。ここで、前記混合物の加熱温度及び加熱時間を前記範囲内とするのは、脂肪酸銀、脂肪族アミン及び溶媒を均一に混合するためである。なお、必ずしも溶媒は必要とされない。例えば、脂肪族アミンが室温で液状の場合等には、溶媒を使用せず脂肪酸銀と脂肪族アミンとを混合して混合液を作製することもできる。 Next, the mixture is heated to 30 ° C. to 100 ° C. and stirred for 5 minutes to 10 hours to prepare a mixed solution, and then the mixed solution is lowered to room temperature (25 ° C.). As a result, a mixed solution of fatty acid silver, an aliphatic amine and a solvent (also simply referred to as a mixed solution) is prepared. Here, the heating temperature and heating time of the mixture are within the above ranges in order to uniformly mix the fatty acid silver, the aliphatic amine and the solvent. A solvent is not always required. For example, when the aliphatic amine is liquid at room temperature, a mixed solution can be prepared by mixing the fatty acid silver and the aliphatic amine without using a solvent.
次に、前記混合溶液と前記銀粉を混練した後、プラネタリー遊星撹拌機等にて撹拌し、更に3本ロールミル等にて混練することにより、銀ペーストを得る。ここで、前記銀ペーストを100質量%としたとき、前記銀粉の含有量は50質量%〜95質量%の範囲内、残部が前記混合溶液とするとよい。好ましくは、前記銀粉の含有量は80質量%〜90質量%とするとよい。銀ペーストにおいて、前記銀粉の含有量が少ないと銀ペーストの粘度が低下してダレ等の塗布不良が生じやすくなるおそれがあり、高すぎると粘度が増大してハンドリング性が悪化するおそれがある。なお、銀ペーストは溶媒を含まなくてもよい。また、銀ペーストは前記樹脂を含んでもよい。この場合、冷熱サイクル特性が向上する。 Next, the mixed solution and the silver powder are kneaded, then stirred with a planetary planetary stirrer or the like, and further kneaded with a three-roll mill or the like to obtain a silver paste. Here, when the silver paste is 100% by mass, the content of the silver powder may be in the range of 50% by mass to 95% by mass, and the balance may be the mixed solution. Preferably, the content of the silver powder is 80% by mass to 90% by mass. In the silver paste, if the content of the silver powder is low, the viscosity of the silver paste may decrease and coating defects such as sagging may easily occur, and if it is too high, the viscosity may increase and the handleability may deteriorate. The silver paste does not have to contain a solvent. Moreover, the silver paste may contain the resin. In this case, the cold cycle characteristics are improved.
なお、この混合溶液において、脂肪酸銀に対する脂肪族アミンのモル比、即ち、脂肪族アミンのモル量/脂肪酸銀のモル量は、1.5〜3の範囲内とすることが好ましく、1.7〜2.8の範囲内とすることが更に好ましい。このような混合溶液を用いて、銀ペーストを作製すると、混合溶液における脂肪酸銀に対する脂肪族アミンのモル比が、銀ペーストにおける脂肪酸銀に対する脂肪族アミンのモル比となる。 In this mixed solution, the molar ratio of the aliphatic amine to the silver fatty acid, that is, the molar amount of the aliphatic amine / the molar amount of the silver fatty acid is preferably in the range of 1.5 to 3, 1.7. It is more preferably within the range of ~ 2.8. When a silver paste is prepared using such a mixed solution, the molar ratio of the aliphatic amine to the fatty acid silver in the mixed solution becomes the molar ratio of the aliphatic amine to the fatty acid silver in the silver paste.
前記銀ペーストを用いて接合体を作製する手順を説明する。先ず、互いに接合すべき第1部材と第2部材とを用意する。第1部材としては、例えば最表面に金メッキを施したSiウェーハが挙げられ、第2部材としては、例えば最表面に銀メッキを施したCu板が挙げられる。但し、これらに限定されない。次いで、第1部材及び/又は第2部材の表面に、前記銀ペーストを、例えば、メタルマスク法等により塗布して、所望の平面形状を有する銀ペースト層を形成する。次に、銀ペースト層を介して第1部材と第2部材を積層し、積層体を作製する。そして、この積層体を焼成することにより、即ち積層体を120℃〜280℃の温度(加熱温度)に10分間〜240分間(加熱時間)加熱保持することにより、銀ペースト層中の第1銀粒子と第2銀粒子と第3銀粒子を焼結させて接合層を形成させ、第1部材と第2部材とがこの接合層を介して接合された接合体を作製する。ここで、前記積層体の加熱温度及び加熱時間を前記範囲内に限定したのは、10分未満では焼結が進みにくくなるおそれがあり、240分を超えても接合特性に変化がなくコスト増となるという理由に基づく。なお、前記積層体は、加圧することなく、加熱のみとすることが好ましい。これは、工程を簡略化してコストを低減するという理由に基づく。 The procedure for producing a bonded body using the silver paste will be described. First, a first member and a second member to be joined to each other are prepared. Examples of the first member include a Si wafer having a gold-plated outermost surface, and examples of the second member include a Cu plate having a silver-plated outermost surface. However, it is not limited to these. Next, the silver paste is applied to the surface of the first member and / or the second member by, for example, a metal mask method or the like to form a silver paste layer having a desired planar shape. Next, the first member and the second member are laminated via the silver paste layer to prepare a laminated body. Then, by firing this laminate, that is, by heating and holding the laminate at a temperature of 120 ° C. to 280 ° C. (heating temperature) for 10 minutes to 240 minutes (heating time), the first silver in the silver paste layer. The particles, the second silver particles, and the third silver particles are sintered to form a bonding layer, and a bonded body in which the first member and the second member are bonded via the bonding layer is produced. Here, the reason why the heating temperature and heating time of the laminate are limited to the above ranges is that sintering may be difficult to proceed in less than 10 minutes, and even if it exceeds 240 minutes, the bonding characteristics do not change and the cost increases. Based on the reason that It is preferable that the laminate is only heated without pressurization. This is based on the reason that the process is simplified and the cost is reduced.
次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
<実施例1>
先ず、酢酸銀(脂肪酸銀)、アミノデカン(脂肪族アミン)及びブチルカルビトールアセテート(溶媒)を用意し、脂肪酸銀、脂肪族アミン及び溶媒の合計量を100質量%としたとき、酢酸銀(脂肪酸銀)22質量%、アミノデカン(脂肪族アミン)41.3質量%、ブチルカルビトールアセテート(溶媒)36.7質量%の割合で取り分け、これらをスターラーの撹拌子とともにガラス製の容器に入れた。そして、50℃に加熱したホットプレートに前記容器を載せ、スターラーの撹拌子を300rpmで回転させながら、1時間撹拌して混合液を調製した。次いで、この混合液が貯留された容器をホットプレートから降ろしてこの混合液の温度を室温まで下げた。これにより脂肪酸銀・脂肪族アミン混合溶液(以下、単に混合溶液と呼ぶ)を調製した。この混合溶液を実施例1とした。
<Example 1>
First, silver acetate (fatty acid silver), aminodecane (aliphatic amine) and butyl carbitol acetate (solvent) are prepared, and when the total amount of fatty acid silver, aliphatic amine and solvent is 100% by mass, silver acetate (fatty acid). 22% by mass of silver), 41.3% by mass of aminodecane (aliphatic amine), and 36.7% by mass of butyl carbitol acetate (solvent) were set aside, and these were placed in a glass container together with a stirrer of Stirrer. Then, the container was placed on a hot plate heated to 50 ° C., and the stirrer was stirred for 1 hour while rotating at 300 rpm to prepare a mixed solution. The container in which the mixture was stored was then removed from the hot plate to reduce the temperature of the mixture to room temperature. As a result, a fatty acid silver / aliphatic amine mixed solution (hereinafter, simply referred to as a mixed solution) was prepared. This mixed solution was designated as Example 1.
<実施例2〜14及び比較例1〜2>
実施例2〜14及び比較例1〜2の混合溶液は、脂肪酸銀、脂肪族アミン及び溶媒として、表1に示す種類のものを用いるとともに、脂肪酸銀、脂肪族アミン及び溶媒を、表1に示すような割合でそれぞれ配合した。なお、比較例1では脂肪酸銀を含まず、比較例2では脂肪族アミンを含まないため、混合溶液ではないけれども、本明細書では、便宜上、比較例1〜2も混合溶液と呼ぶ。また、表1中の脂肪酸銀の種類の欄において、『A1』は酢酸銀であり、『A2』はシュウ酸銀であり、『A3』はミリスチン酸銀である。また、表1中の脂肪族アミンの種類の欄において、『B1』はアミノデカンを示し、『B2』はヘキシルアミンを示し、『B3』はノニルアミンであり、『B4』はドデシルアミンである。更に、表1中の溶媒の種類の欄において、『C1』はブチルカルビトールアセテートであり、『C2』はエチレングリコールであり、『C3』はテルピネオールであり、『C4』は2−エチル1,3−ヘキサンジオールである。
<Examples 2 to 14 and Comparative Examples 1 to 2>
As the mixed solution of Examples 2 to 14 and Comparative Examples 1 and 2, the types shown in Table 1 are used as the fatty acid silver, the aliphatic amine and the solvent, and the fatty acid silver, the aliphatic amine and the solvent are shown in Table 1. Each was blended in the proportions shown. Although it is not a mixed solution because Comparative Example 1 does not contain silver fatty acid and Comparative Example 2 does not contain an aliphatic amine, Comparative Examples 1 and 2 are also referred to as mixed solutions in the present specification for convenience. Further, in the column of the type of fatty acid silver in Table 1, "A1" is silver acetate, "A2" is silver oxalate, and "A3" is silver myristate. Further, in the column of the type of aliphatic amine in Table 1, "B1" indicates aminodecane, "B2" indicates hexylamine, "B3" is nonylamine, and "B4" is dodecylamine. Further, in the solvent type column in Table 1, "C1" is butylcarbitol acetate, "C2" is ethylene glycol, "C3" is terpineol, and "C4" is 2-ethyl1, It is 3-hexanediol.
<比較試験1及び評価>
実施例1〜14及び比較例1〜2の混合溶液を撹拌しながら130℃に10分間加熱した後、この混合溶液1gをシリコンウェーハ上に滴下し、25℃の温度で減圧乾燥することにより、乾燥物が表面に付着したウェーハを作製した。そして、このウェーハの表面をSEM(走査電子顕微鏡)観察し、表面に付着した粒子を1000個計数し、画像処理ソフト(Image−J(アメリカ国立衛生研究所:開発))を用いて、抽出した粒子(一次粒子)の投影面積を測定し、得られた投影面積から円相当径を算出し、これを一次粒子径とした。輪郭が視認できない箇所がある粒子については、円相当径を測定しなかった。得られた一次粒子径を、体積基準の粒径に変換し、その体積基準の粒径の平均値を乾燥物の平均粒径とした。また、前記乾燥物から銀粉が生じたものを『可』とし、乾燥物から銀粉が生じなかったもの或いは銀粉を測定できなかったものを『不可』と判定した。前記乾燥物の平均粒径と、判定結果を表2に示す。なお、表2には、脂肪酸銀の種類と、脂肪族アミンの種類と溶媒の種類も示した。
<Comparative test 1 and evaluation>
The mixed solutions of Examples 1 to 14 and Comparative Examples 1 and 2 were heated to 130 ° C. for 10 minutes with stirring, and then 1 g of this mixed solution was dropped onto a silicon wafer and dried under reduced pressure at a temperature of 25 ° C. A wafer in which the dried product adhered to the surface was produced. Then, the surface of this wafer was observed by SEM (scanning electron microscope), 1000 particles adhering to the surface were counted, and extracted using image processing software (Image-J (American National Institute of Public Health: development)). The projected area of the particles (primary particles) was measured, and the equivalent circle diameter was calculated from the obtained projected area, which was used as the primary particle diameter. For particles with invisible contours, the equivalent circle diameter was not measured. The obtained primary particle size was converted into a volume-based particle size, and the average value of the volume-based particle size was taken as the average particle size of the dried product. Further, the product in which silver powder was generated from the dried product was determined to be "possible", and the product in which silver powder was not produced from the dried product or the silver powder could not be measured was determined to be "impossible". Table 2 shows the average particle size of the dried product and the determination results. Table 2 also shows the types of silver fatty acids, the types of aliphatic amines, and the types of solvents.
表2から明らかなように、脂肪酸銀を含まない比較例1の混合溶液では、接合層の緻密化に寄与すると期待される銀を含まないため、SEM(走査電子顕微鏡)観察時に銀粉の発生は見られず、判定結果は不可であった。 As is clear from Table 2, since the mixed solution of Comparative Example 1 containing no fatty acid silver does not contain silver, which is expected to contribute to the densification of the bonding layer, silver powder is generated during SEM (scanning electron microscope) observation. It was not seen and the judgment result was impossible.
また、脂肪族アミンを含まない比較例2の混合溶液では、均一な混合溶液が得られず、シリコンウェーハ上での乾燥物が塊となったため、SEM(走査電子顕微鏡)観察で銀粉を測定することができず、判定結果は不可であった。これは、比較例2では、脂肪族アミンを含まないため、脂肪酸銀の分解が十分に進行しなかったためであると考えられる。 Further, in the mixed solution of Comparative Example 2 containing no aliphatic amine, a uniform mixed solution could not be obtained, and the dried product on the silicon wafer became a lump. Therefore, silver powder is measured by SEM (scanning electron microscope) observation. The judgment result was impossible. It is considered that this is because in Comparative Example 2, since the aliphatic amine was not contained, the decomposition of the fatty acid silver did not proceed sufficiently.
これらに対し、脂肪酸銀及び脂肪族アミンを含む実施例1〜14の混合溶液では、SEM(走査電子顕微鏡)観察時に平均粒径50nm〜100nmの銀粉の発生が見られ、判定結果は可であった。これは、実施例1〜14が脂肪酸銀及び脂肪族アミンを含むので、加熱により有機物が速やかに分解され、高活性な表面を露出させた銀ナノ粒子が容易に形成されたからであると推定される。 On the other hand, in the mixed solution of Examples 1 to 14 containing the fatty acid silver and the aliphatic amine, the generation of silver powder having an average particle size of 50 nm to 100 nm was observed during SEM (scanning electron microscope) observation, and the determination result was acceptable. It was. It is presumed that this is because Examples 1 to 14 contain fatty acid silver and an aliphatic amine, so that the organic matter is rapidly decomposed by heating, and highly active surface-exposed silver nanoparticles are easily formed. To.
<実施例15>
銀ペーストを100質量%とするために、実施例1の混合溶液25質量%と銀粉(第1〜第3銀粒子の凝集体)75質量%を混練した後、プラネタリー遊星撹拌機にて撹拌し、更に3本ロールミルにて混練した。これにより銀ペーストを得た。この銀ペーストを実施例15とした。
<Example 15>
In order to make the silver paste 100% by mass, 25% by mass of the mixed solution of Example 1 and 75% by mass of silver powder (aggregates of first to third silver particles) are kneaded and then stirred with a planetary planetary stirrer. Then, the mixture was further kneaded with a three-roll mill. This gave a silver paste. This silver paste was designated as Example 15.
表5に示すNo.1の銀粉(第1〜第3銀粒子の混合物/凝集体)は次のようにして調製した。先ず、D10、D50及びD90がそれぞれ20nm、50nm及び100nmである銀微粒子と、D10、D50及びD90がそれぞれ150nm、300nm及び500nmである銀微粒子とを用意した。銀微粒子のD10、D50及びD90は、銀微粒子の粒度分布曲線から求めた。銀微粒子の粒度分布曲線は、後述する動的光散乱法により測定した。なお、用意したD10、D50及びD90がそれぞれ20nm、50nm及び100nmである銀微粒子(原料粉A)と、D10、D50及びD90がそれぞれ150nm、300nm及び500nmである銀微粒子(原料粉B)とを、質量比で1:3の割合にて混合し、銀微粒子混合物を得た。原料粉A、Bは、次のようにして製造することができる。原料粉Aは、例えば、硝酸銀とクエン酸と水酸化カリウムとを、硝酸銀中の銀イオンに対して等モル比(1:1:1)となるよう蒸留水中で混合して懸濁液を作製した。この懸濁液に、銀イオン1に対して2のモル比で酢酸ヒドラジンを加える。酢酸ヒドラジンを加えた懸濁液を40℃の液温で反応させ、得られた反応液スラリーから洗浄、回収、乾燥することで得ることができる。原料粉Bは、例えば、硝酸銀水溶液とアンモニア水と蒸留水を混合し銀濃度が22g/Lである銀アンミン水溶液を調製し、この銀アンミン水溶液に、還元液を加え、生じた銀粒子スラリーを洗浄、回収、乾燥することで得られた。なお、還元液は、ヒドロキノン水溶液と水酸化ナトリウム水溶液との混合液であり、酸化還元電位がAg/AgCl基準で−380mVとなるように調製された液である。 The No. 1 silver powder (mixture / aggregate of the first to third silver particles) shown in Table 5 was prepared as follows. First, silver fine particles having D10, D50 and D90 of 20 nm, 50 nm and 100 nm, respectively, and silver fine particles having D10, D50 and D90 of 150 nm, 300 nm and 500 nm, respectively, were prepared. D10, D50 and D90 of the silver fine particles were obtained from the particle size distribution curve of the silver fine particles. The particle size distribution curve of the silver fine particles was measured by the dynamic light scattering method described later. The prepared silver fine particles (raw material powder A) in which D10, D50 and D90 are 20 nm, 50 nm and 100 nm, respectively, and silver fine particles (raw material powder B) in which D10, D50 and D90 are 150 nm, 300 nm and 500 nm, respectively, are used. , The mixture was mixed at a mass ratio of 1: 3 to obtain a silver fine particle mixture. The raw material powders A and B can be produced as follows. For the raw material powder A, for example, silver nitrate, citric acid, and potassium hydroxide are mixed in distilled water so as to have an equimolar ratio (1: 1: 1) with respect to silver ions in silver nitrate to prepare a suspension. did. Hydrazine acetate is added to this suspension in a molar ratio of 2 to 1 silver ion. It can be obtained by reacting a suspension to which hydrazine acetate is added at a liquid temperature of 40 ° C., and washing, recovering, and drying from the obtained reaction liquid slurry. For the raw material powder B, for example, a silver nitrate aqueous solution, ammonia water, and distilled water are mixed to prepare a silver ammine aqueous solution having a silver concentration of 22 g / L, and a reducing solution is added to the silver ammine aqueous solution to obtain a resulting silver particle slurry. Obtained by washing, collecting and drying. The reducing solution is a mixed solution of a hydroquinone aqueous solution and a sodium hydroxide aqueous solution, and is a solution prepared so that the redox potential is -380 mV based on Ag / AgCl.
<動的光散乱法による粒度分布曲線の測定方法>
先ず、銀微粒子0.1gをイオン交換水20g中に投入し、25kHzの超音波を5分間照射して、イオン交換水に銀微粒子を分散させた。次に、得られた銀微粒子の分散液を、動的光散乱式粒度分布測定装置(堀場製作所:LB−550)用の観察セルに注ぎ、この装置の手順に従い粒度分布を測定した。
<Measurement method of particle size distribution curve by dynamic light scattering method>
First, 0.1 g of silver fine particles was put into 20 g of ion-exchanged water, and ultrasonic waves of 25 kHz were irradiated for 5 minutes to disperse the silver fine particles in the ion-exchanged water. Next, the obtained dispersion of silver fine particles was poured into an observation cell for a dynamic light scattering type particle size distribution measuring device (HORIBA, Ltd .: LB-550), and the particle size distribution was measured according to the procedure of this device.
前記銀微粒子混合物とアスコルビン酸ナトリウム(有機還元剤)と水とを、質量比で10:1:89となる割合にて混合し、銀微粒子スラリーを調製した。この銀微粒子スラリーを、90℃の温度で3時間加熱して、銀微粒子を還元処理した。次いで、銀微粒子スラリーを室温まで放冷した後、遠心分離器を用いて、固形物を分離して回収した。この回収した固形物(含水銀微粒子凝集体)を数回水洗し、乾燥して、表5に示すNo.1の銀粉(第1〜第3銀粒子の混合物)を得た。 The silver fine particle mixture, sodium ascorbate (organic reducing agent), and water were mixed at a mass ratio of 10: 1: 89 to prepare a silver fine particle slurry. The silver fine particle slurry was heated at a temperature of 90 ° C. for 3 hours to reduce the silver fine particles. Next, the silver fine particle slurry was allowed to cool to room temperature, and then the solid matter was separated and recovered using a centrifuge. The recovered solid matter (mercury-containing fine particle aggregate) was washed with water several times and dried to obtain No. 1 silver powder (mixture of first to third silver particles) shown in Table 5.
No.2の銀粉は、上述した、No.1の銀粉の調製方法において、D50が50nmの銀粒子と、D50が300nmの銀粒子との混合割合を、質量比で1:1としたこと以外は、同様にして、No.2の銀粉の調製方法で得た。 The No. 2 silver powder has a mass ratio of 1: 1 except that the mixing ratio of the silver particles having a D50 of 50 nm and the silver particles having a D50 of 300 nm is 1: 1 in the above-mentioned method for preparing the No. 1 silver powder. Was obtained in the same manner by the method for preparing No. 2 silver powder.
No.3の銀粉は、上述した、No.1の銀粉の調製方法において、D50が50nmの銀粒子と、D50が300nmの銀粒子との混合割合を、質量比で1:5としたこと以外は、同様にして、No.3の銀粉の調製方法で得た。 The silver powder of No. 3 is different from the above-mentioned method of preparing the silver powder of No. 1 in that the mixing ratio of the silver particles having a D50 of 50 nm and the silver particles having a D50 of 300 nm was set to 1: 5 by mass ratio. Was obtained in the same manner by the method for preparing No. 3 silver powder.
No.4の銀粉は、以下の方法で得た。50℃に保持した1200gのイオン交換水に、50℃に保持した900gの硝酸銀水溶液と、50℃に保持した600gのクエン酸ナトリウム水溶液とを、5分かけて同時に滴下し、クエン酸銀スラリーを調製した。なお、イオン交換水中に硝酸銀水溶液とクエン酸ナトリウム水溶液を同時に滴下している間、イオン交換水を撹拌し続けた。また、硝酸銀水溶液中の硝酸銀の濃度は66質量%であり、クエン酸ナトリウム水溶液中のクエン酸の濃度は56質量%であった。次いで、50℃に保持したクエン酸銀スラリーに、50℃に保持した300gのギ酸ナトリウム水溶液を30分かけて滴下して混合スラリーを得た。このギ酸ナトリウム水溶液中のギ酸の濃度は58質量%であった。次に、前記混合スラリーに所定の熱処理を行った。具体的には、前記混合スラリーを昇温速度10℃/時間で最高温度60℃まで昇温し、60℃(最高温度)で30分保持した後に、60分間かけて20℃まで温度を下げた。これにより銀粉スラリーを得た。前記銀粉スラリーを遠心分離機に入れて1000rpmの回転速度で10分間回転させた。これにより銀粉スラリー中の液層が除去され、脱水及び脱塩された銀粉スラリーを得た。この脱水及び脱塩された銀粉スラリーを凍結乾燥法により30時間乾燥することで、No.4の銀粉を得た。 No. 4 silver powder was obtained by the following method. A 900 g silver nitrate aqueous solution held at 50 ° C. and a 600 g sodium citrate aqueous solution kept at 50 ° C. were simultaneously added dropwise to 1200 g of ion-exchanged water held at 50 ° C. over 5 minutes to prepare a silver citrate slurry. Prepared. The ion-exchanged water was continuously stirred while the silver nitrate aqueous solution and the sodium citrate aqueous solution were simultaneously added dropwise to the ion-exchanged water. The concentration of silver nitrate in the silver nitrate aqueous solution was 66% by mass, and the concentration of citric acid in the sodium citrate aqueous solution was 56% by mass. Then, 300 g of an aqueous sodium formate solution kept at 50 ° C. was added dropwise to the silver citrate slurry held at 50 ° C. over 30 minutes to obtain a mixed slurry. The concentration of formic acid in this aqueous sodium formate solution was 58% by mass. Next, the mixed slurry was subjected to a predetermined heat treatment. Specifically, the mixed slurry was raised to a maximum temperature of 60 ° C. at a heating rate of 10 ° C./hour, held at 60 ° C. (maximum temperature) for 30 minutes, and then lowered to 20 ° C. over 60 minutes. .. As a result, a silver powder slurry was obtained. The silver powder slurry was placed in a centrifuge and rotated at a rotation speed of 1000 rpm for 10 minutes. As a result, the liquid layer in the silver powder slurry was removed to obtain a dehydrated and desalted silver powder slurry. The dehydrated and desalted silver powder slurry was dried by a freeze-drying method for 30 hours to obtain No. 4 silver powder.
No.5の銀粉は、上述した、No.1の銀粉の調製方法において、D50が50nmの銀粒子と、D50が300nmの銀粒子との混合割合を、質量比で2:1としたこと以外は、同様にして、No.5の銀粉の調製方法で得た。 The No. 5 silver powder has a mass ratio of 2: 1 except that the mixing ratio of the silver particles having a D50 of 50 nm and the silver particles having a D50 of 300 nm is set to 2: 1 in the above-mentioned method for preparing the No. 1 silver powder. Was obtained in the same manner by the method for preparing silver powder of No. 5.
No.6の銀粉は、上述した、No.1の銀粉の調製方法において、D50が50nmの銀粒子と、D50が300nmの銀粒子との混合割合を、質量比で1:6としたこと以外は、同様にして、No.6の銀粉の調製方法で得た。 The silver powder of No. 6 has a mass ratio of 1: 6 other than the mixing ratio of the silver particles having a D50 of 50 nm and the silver particles having a D50 of 300 nm in the above-mentioned method for preparing the silver powder of No. 1. Was obtained in the same manner by the method for preparing silver powder of No. 6.
No.7の銀粉は、上述した、No.1の銀粉の調製方法において、D50が50nmの銀粒子と、D50が300nmの銀粒子との混合割合を、質量比で2:9としたこと以外は、同様にして、No.7の銀粉の調製方法で得た。 The silver powder of No. 7 is different from the above-mentioned method of preparing the silver powder of No. 1 in that the mixing ratio of the silver particles having a D50 of 50 nm and the silver particles having a D50 of 300 nm was set to a mass ratio of 2: 9. Was obtained in the same manner by the method for preparing silver powder of No. 7.
No.8の銀粉は、上述した、No.1の銀粉の調製方法において、D50が50nmの銀粒子のみを用いたこと以外は、同様にして、No.8の銀粉の調製方法で得た。 The No. 8 silver powder was obtained in the same manner as in the No. 8 silver powder preparation method, except that only silver particles having a D50 of 50 nm were used in the above-mentioned No. 1 silver powder preparation method.
No.9の銀粉は、上述した、No.1の銀粉の調製方法において、D50が50nmの銀粒子と、D50が300nmの銀粒子との混合割合を、質量比で4:3としたこと以外は、同様にして、No.9の銀粉の調製方法で得た。 The silver powder of No. 9 is different from the above-mentioned method of preparing the silver powder of No. 1 in that the mixing ratio of the silver particles having a D50 of 50 nm and the silver particles having a D50 of 300 nm was set to 4: 3 by mass ratio. Was obtained in the same manner by the method for preparing silver powder of No. 9.
No.10の銀粉は、上述した、No.1の銀粉の調製方法において、D50が50nmの銀粒子と、D50が300nmの銀粒子との混合割合を、質量比で1:9としたこと以外は、同様にして、No.10の銀粉の調製方法で得た。 The silver powder of No. 10 is different from the above-mentioned method of preparing the silver powder of No. 1 in that the mixing ratio of the silver particles having a D50 of 50 nm and the silver particles having a D50 of 300 nm was set to 1: 9 by mass ratio. Was obtained in the same manner by the method for preparing No. 10 silver powder.
得られた銀粉について、銀粉を構成している銀粒子(第1〜第3銀粒子)の粒度分布、及び銀粉に含まれている有機物の含有量を次の方法によりそれぞれ測定した。 With respect to the obtained silver powder, the particle size distribution of the silver particles (first to third silver particles) constituting the silver powder and the content of organic substances contained in the silver powder were measured by the following methods.
<銀粒子の粒度分布の測定方法>
SEMを用いて、第1〜第3銀粒子が凝集した凝集体(二次粒子)500個の画像を取得し、各銀粒子凝集体に含まれている銀粒子(一次粒子)の粒径を測定した。このときSEMの装置倍率は100000倍とした。500個の銀粒子凝集体のSEM画像から、銀粒子(一次粒子)の全体の輪郭が視認できる銀粒子を抽出した。次いで、画像処理ソフト(Image−J)を用いて、抽出した銀粒子の投影面積を測定し、得られた投影面積から円相当径を算出し、これを銀粒子の粒径とした。輪郭が視認できない箇所がある銀粒子については、円相当径を測定しなかった。得られた銀粒子の粒径を、体積基準の粒径に変換し、その体積基準の粒径の粒度分布を求めた。その結果を表5に示す。
<Measurement method of particle size distribution of silver particles>
Using SEM, 500 images of aggregates (secondary particles) in which the first to third silver particles are aggregated are acquired, and the particle size of the silver particles (primary particles) contained in each silver particle aggregate is determined. It was measured. At this time, the device magnification of the SEM was set to 100,000 times. From the SEM image of 500 silver particle aggregates, silver particles in which the entire outline of the silver particles (primary particles) can be visually recognized were extracted. Next, the projected area of the extracted silver particles was measured using image processing software (Image-J), the equivalent circle diameter was calculated from the obtained projected area, and this was used as the particle size of the silver particles. The diameter equivalent to the circle was not measured for silver particles whose contours were not visible. The particle size of the obtained silver particles was converted into a volume-based particle size, and the particle size distribution of the volume-based particle size was obtained. The results are shown in Table 5.
<有機物の含有量の測定方法>
混合溶液と混合する前の銀粉を量り取り、大気中にて150℃の温度で30分間加熱した。加熱後、室温まで放冷し、銀粉の質量を測定した。次の式(1)より、有機物の含有量を算出した。この結果、有機物の含有量は0.2質量%であった。
有機物の含有量(質量%)={(A−B)/A}×100 ……(1)
但し、式(1)中のAは加熱前の銀粉の質量であり、Bは加熱後の銀粉の質量である。得られた結果を表5に示す。
<Measuring method of organic matter content>
The silver powder before mixing with the mixed solution was weighed and heated in the air at a temperature of 150 ° C. for 30 minutes. After heating, the mixture was allowed to cool to room temperature, and the mass of silver powder was measured. The content of organic matter was calculated from the following formula (1). As a result, the content of organic matter was 0.2% by mass.
Organic matter content (mass%) = {(AB) / A} × 100 …… (1)
However, A in the formula (1) is the mass of the silver powder before heating, and B is the mass of the silver powder after heating. The results obtained are shown in Table 5.
<実施例16〜33及び比較例3〜8>
実施例16〜33及び比較例3〜8の銀ペーストは、混合溶液として、表1に示す脂肪酸銀、脂肪族アミン及び溶媒種類のものを用いるとともに、銀粉、混合溶液を、表3及び表4に示すような割合でそれぞれ配合し、表3及び表4に示した配合以外は、実施例15と同様にして、銀ペーストを調製した。なお、実施例15〜33及び比較例3〜8で用いた混合溶液を表3及び表4中の混合溶液の種類の欄に実施例1〜14のいずれかで示した。また、実施例15〜33及び比較例3〜8では、表5に示す粒度分布の異なる10種類(No.1〜No.10)の銀粉末のいずれかを配合しており、実施例15〜33及び比較例3〜8で用いた銀粉末を表3及び表4中の銀粉末の種類の欄にNo.1〜No.10のいずれかで示した。
<Examples 16 to 33 and Comparative Examples 3 to 8>
As the silver pastes of Examples 16 to 33 and Comparative Examples 3 to 8, the fatty acid silver, aliphatic amines and solvent types shown in Table 1 were used as the mixed solution, and the silver powder and the mixed solution were used in Tables 3 and 4. The silver paste was prepared in the same manner as in Example 15 except for the formulations shown in Tables 3 and 4, respectively. The mixed solutions used in Examples 15 to 33 and Comparative Examples 3 to 8 are shown in any of Examples 1 to 14 in the column of mixed solution types in Tables 3 and 4. Further, in Examples 15 to 33 and Comparative Examples 3 to 8, any one of 10 types (No. 1 to No. 10) of silver powder having different particle size distributions shown in Table 5 is blended, and Examples 15 to 15 to The silver powder used in 33 and Comparative Examples 3 to 8 is shown by any of No. 1 to No. 10 in the column of the type of silver powder in Tables 3 and 4.
<比較試験2及び評価>
(1) 実施例15〜33及び比較例3〜8の銀ペーストを用いて接合体をそれぞれ作製した。具体的には、先ず、第1部材として、最表面に金メッキを施した2.5mm角のSiウェーハ(厚さ:200μm)を用意し、第2部材として、最表面に銀メッキを施した20mm角のCu板(厚さ:1mm)を用意した。次いで、第2部材の表面に、前記銀ペーストを、メタルマスク法により塗布して銀ペースト層を形成した。次に、銀ペースト層上に第1部材を載せて、積層体を作製した。更に、この積層体を焼成することにより、即ち積層体を150℃の温度(加熱温度)に60分間(加熱時間)保持することにより、第1部材と第2部材とを接合層を介して接合した。これらの接合体を実施例15〜33及び比較例3〜8の接合体とした。なお、前記積層体は、加圧しなかった。これらの接合体の接合強度を次のように測定した。
<Comparative test 2 and evaluation>
(1) Bonds were prepared using the silver pastes of Examples 15 to 33 and Comparative Examples 3 to 8, respectively. Specifically, first, a 2.5 mm square Si wafer (thickness: 200 μm) with gold plating on the outermost surface was prepared as the first member, and 20 mm with silver plating on the outermost surface as the second member. A square Cu plate (thickness: 1 mm) was prepared. Next, the silver paste was applied to the surface of the second member by the metal mask method to form a silver paste layer. Next, the first member was placed on the silver paste layer to prepare a laminated body. Further, by firing the laminate, that is, by holding the laminate at a temperature (heating temperature) of 150 ° C. for 60 minutes (heating time), the first member and the second member are bonded via the bonding layer. did. These joints were used as the joints of Examples 15 to 33 and Comparative Examples 3 to 8. The laminate was not pressurized. The joint strength of these joints was measured as follows.
(1−1) 接合体の接合強度の測定方法
実施例15〜33及び比較例3〜8の接合体の接合強度は、せん断強度評価試験機を用いて測定した。具体的には、接合強度の測定は、接合体の第1部材(Cu板)を水平に固定し、接合層の表面(上面)から50μm上方の位置でシェアツールにより、第2部材(Siウェーハ)を横から水平方向に押して、第2部材が破断されたときの強度を測定することによって行った。なお、シェアツールの移動速度は0.1mm/秒とした。1条件に付き3回強度試験を行い、それらの算術平均値を接合強度の測定値とした。
(1-1) Method for measuring joint strength of joints The joint strengths of the joints of Examples 15 to 33 and Comparative Examples 3 to 8 were measured using a shear strength evaluation tester. Specifically, the joint strength is measured by fixing the first member (Cu plate) of the joint body horizontally and using a share tool at a position 50 μm above the surface (upper surface) of the joint layer to measure the second member (Si wafer). ) Was pushed from the side to the horizontal direction, and the strength when the second member was broken was measured. The moving speed of the share tool was 0.1 mm / sec. The strength test was performed three times under one condition, and the arithmetic mean value was used as the measured value of the joint strength.
(2) 実施例15〜33及び比較例3〜8の銀ペーストを用いて銀焼成膜をそれぞれ作製した。具体的には、先ず、実施例15〜33及び比較例3〜8の銀ペーストを透明ガラス板上にメタルマスク版(孔サイズ:縦10mm×横10mm、厚さ:50μm)により塗布して銀ペースト層をそれぞれ形成した。次に、透明ガラス基板上に形成された銀ペースト層を焼成して、即ちこの銀ペースト層を150℃の温度(加熱温度)に60分間(加熱時間)保持して、銀焼成膜を作製した。これらの銀焼成膜を実施例15〜33及び比較例3〜8の銀焼成膜とした。これらの銀焼成膜の熱拡散率を次のように測定した。 (2) Silver fired films were prepared using the silver pastes of Examples 15 to 33 and Comparative Examples 3 to 8, respectively. Specifically, first, the silver pastes of Examples 15 to 33 and Comparative Examples 3 to 8 are applied on a transparent glass plate with a metal mask plate (hole size: length 10 mm × width 10 mm, thickness: 50 μm) to silver. Each paste layer was formed. Next, the silver paste layer formed on the transparent glass substrate was fired, that is, the silver paste layer was held at a temperature of 150 ° C. (heating temperature) for 60 minutes (heating time) to prepare a silver fired film. .. These silver-fired films were used as the silver-fired films of Examples 15 to 33 and Comparative Examples 3 to 8. The thermal diffusivity of these fired silver films was measured as follows.
(2−1) 銀焼成膜の熱拡散率の測定方法
実施例15〜33及び比較例3〜8の銀焼成膜についてレーザフラッシュ法により熱拡散率を測定した。具体的には、先ず、銀焼成膜の表面にパルスレーザを均一に照射して瞬間的に加熱したときの銀焼成膜の裏面の温度変化T(t)を測定した。次に、銀焼成膜の裏面の温度変化T(t)は1次元の熱伝導方程式で表されるので、銀焼成膜の裏面の温度変化T(t)を縦軸にとりかつ経過時間tを横軸にとることにより(T(t)−t)曲線が得られ、この曲線から最大上昇温度TMAXの半分の温度に達するのに要した時間t0.5を求めた。そして、銀焼成膜の熱拡散率αを次の式(2)により求めた。
α = 1.370×L2/(π2×t0.5) ……(2)
前記式(2)中のLは銀焼成膜の厚さである。これらの結果を表1に示す。
(2-1) Method for Measuring Thermal Diffusivity of Silver-Fired Film The thermal diffusivity of the silver-fired films of Examples 15 to 33 and Comparative Examples 3 to 8 was measured by a laser flash method. Specifically, first, the temperature change T (t) on the back surface of the silver fired film when the surface of the silver fired film was uniformly irradiated with a pulse laser and instantaneously heated was measured. Next, since the temperature change T (t) on the back surface of the silver fired film is expressed by a one-dimensional heat conduction equation, the temperature change T (t) on the back surface of the silver fired film is taken on the vertical axis and the elapsed time t is horizontal. By taking the axis, a (T (t) -t) curve was obtained, and the time t 0.5 required to reach half the maximum temperature rise temperature T MAX was calculated from this curve. Then, the thermal diffusivity α of the silver fired film was obtained by the following equation (2).
α = 1.370 x L 2 / (π 2 x t 0.5 ) …… (2)
L in the formula (2) is the thickness of the silver fired film. These results are shown in Table 1.
表4から明らかなように、脂肪酸銀を添加しなかった比較例3の銀ペーストを用いて接合体及び銀焼成膜を作製した場合、接合体の接合強度は20MPaと小さく、銀焼成膜の熱拡散率は78W/mKと小さかった。また、脂肪族アミンを添加しなかった比較例4では、銀ペーストにならなかったため、接合体及び銀焼成膜を作製できなかった。これらに対し、脂肪酸銀として酢酸銀、シュウ酸銀又はミリスチン酸銀を添加し、脂肪族アミンとしてアミノデカン、ヘキシルアミン又はノニルアミンを添加した実施例15〜33の銀ペーストを用いて接合体及び銀焼成膜を作製した場合、接合体の接合強度は38MPa〜50MPaと大きくなり、銀焼成膜の熱拡散率は122W/mK〜155W/mKと大きくなった。 As is clear from Table 4, when the bonded body and the silver-fired film were prepared using the silver paste of Comparative Example 3 to which the fatty acid silver was not added, the bonding strength of the bonded body was as small as 20 MPa, and the heat of the silver-fired film was small. The diffusivity was as small as 78 W / mK. Further, in Comparative Example 4 in which the aliphatic amine was not added, the silver paste was not obtained, so that the bonded body and the silver fired film could not be prepared. To these, the conjugate and silver firing were used using the silver pastes of Examples 15 to 33 in which silver acetate, silver oxalate or silver myristate was added as silver fatty acid, and aminodecane, hexylamine or nonylamine were added as aliphatic amines. When the film was prepared, the bonding strength of the bonded body was as large as 38 MPa to 50 MPa, and the thermal diffusivity of the silver-fired film was as large as 122 W / mK to 155 W / mK.
粒径が50nm以上100nm未満である銀粒子が1体積%と少ない、比較例5の銀ペーストを用いて接合体及び銀焼成膜を作製した場合、接合体の接合強度は20MPaと小さく、銀焼成膜の熱拡散率は119W/mKと小さかった。 When a bonded body and a silver fired film were prepared using the silver paste of Comparative Example 5 in which the number of silver particles having a particle size of 50 nm or more and less than 100 nm was as small as 1% by volume, the bonding strength of the bonded body was as small as 20 MPa and silver fired. The thermal diffusivity of the film was as small as 119 W / mK.
粒径が50nm以上100nm未満である銀粒子が50体積%と多く、粒径が50nm未満である銀粒子が10体積%と多い、比較例6の銀ペーストを用いて接合体及び銀焼成膜を作製した場合、接合体の接合強度は10MPaと小さく、銀焼成膜の熱拡散率は80W/mKと小さかった。 Using the silver paste of Comparative Example 6 in which silver particles having a particle size of 50 nm or more and less than 100 nm are as many as 50% by volume and silver particles having a particle size of less than 50 nm as many as 10% by volume, the bonded body and the silver fired film are prepared. When produced, the bonding strength of the bonded body was as small as 10 MPa, and the thermal diffusion rate of the silver fired film was as small as 80 W / mK.
粒径が50nm未満である銀粒子が7体積%と多い、比較例7の銀ペーストを用いて接合体及び銀焼成膜を作製した場合、接合体の接合強度は15MPaと小さく、銀焼成膜の熱拡散率は90W/mKと小さかった。 When a bonded body and a silver-fired film were prepared using the silver paste of Comparative Example 7 in which the amount of silver particles having a particle size of less than 50 nm was as large as 7% by volume, the bonding strength of the bonded body was as small as 15 MPa, which was the same as that of the silver-fired film. The thermal diffusivity was as small as 90 W / mK.
銀粉として粒径が100nm以上500nm未満である銀粒子を100体積%含む比較例8の銀ペーストを用いて接合体及び銀焼成膜を作製した場合、接合体の接合強度は11MPaと小さかった。 When a bonded body and a silver fired film were prepared using the silver paste of Comparative Example 8 containing 100% by volume of silver particles having a particle size of 100 nm or more and less than 500 nm as silver powder, the bonding strength of the bonded body was as small as 11 MPa.
表3から明らかなように、銀粉として、粒径が100nm以上500nm未満である第1銀粒子を55体積%以上95体積%以下の範囲で含み、粒径が50nm以上100nm未満である第2銀粒子を5体積%以上40体積%以下の範囲で含み、粒径が50nm未満である第3銀粒子を5体積%以下の範囲で含む実施例15〜33の銀ペーストを用いて接合体及び銀焼成膜を作製した場合、接合体の接合強度は38MPa〜50MPaと大きくなり、銀焼成膜の熱拡散率は122W/mK〜155W/mKと大きくなった。 As is clear from Table 3, the silver powder contains first silver particles having a particle size of 100 nm or more and less than 500 nm in a range of 55% by volume or more and 95% by volume or less, and second silver having a particle size of 50 nm or more and less than 100 nm. Joined body and silver using the silver paste of Examples 15 to 33 containing particles in the range of 5% by volume or more and 40% by volume or less and containing third silver particles having a particle size of less than 50 nm in the range of 5% by volume or less. When the fired film was prepared, the bonding strength of the bonded body was as large as 38 MPa to 50 MPa, and the thermal diffusion rate of the silver fired film was as large as 122 W / mK to 155 W / mK.
<比較試験3及び評価>
実施例15〜17及び比較例3の接合体について、接合層の断面をFE−SEMにより観察した。その結果を図1〜図4に示す。
<Comparative test 3 and evaluation>
For the bonded bodies of Examples 15 to 17 and Comparative Example 3, the cross section of the bonded layer was observed by FE-SEM. The results are shown in FIGS. 1 to 4.
図1〜図4から明らかなように、脂肪酸銀を添加しなかった比較例3(図4)の銀ペーストを用いて作製した接合体では、接合層中に多くの空乏が存在していたのに対し、脂肪酸銀として酢酸銀を添加した実施例15〜17(図1〜図3)の銀ペーストを用いて作製した接合体では、接合層中の空乏が少なくなった。また、実施例15〜17の接合体において、銀粉の含有割合を75質量%(実施例15:図1)から80質量%(実施例16:図2)に増やし更に85質量%(実施例17:図3)に増やしていくと、接合層中の空乏が少なくなっていくことが分かった。 As is clear from FIGS. 1 to 4, in the zygote prepared by using the silver paste of Comparative Example 3 (FIG. 4) to which no fatty acid silver was added, many deficiencies were present in the zygote layer. On the other hand, in the bonded body prepared by using the silver paste of Examples 15 to 17 (FIGS. 1 to 3) in which silver acetate was added as the fatty acid silver, the deficiency in the bonded layer was reduced. Further, in the conjugates of Examples 15 to 17, the content ratio of silver powder was increased from 75% by mass (Example 15: FIG. 1) to 80% by mass (Example 16: FIG. 2), and further increased to 85% by mass (Example 17). : It was found that the depletion in the junction layer decreased as the amount was increased to Fig. 3).
<実施例34及び35>
実施例34及び35の銀ペーストは、混合溶液及び樹脂として、表1及び表6に示す種類のものを用いるとともに、銀粉、混合溶液及び樹脂を、表6に示すような割合でそれぞれ配合した。樹脂は、混合溶液と銀粉を混合する際に添加し、これらとともに混錬した。なお、表6に示した配合以外は、実施例15と同様にして、銀ペーストを調製した。
<Examples 34 and 35>
As the silver pastes of Examples 34 and 35, the types shown in Tables 1 and 6 were used as the mixed solution and the resin, and the silver powder, the mixed solution and the resin were mixed in the proportions shown in Table 6, respectively. The resin was added when the mixed solution and the silver powder were mixed, and kneaded together with these. A silver paste was prepared in the same manner as in Example 15 except for the formulations shown in Table 6.
<比較試験4及び評価>
実施例17、実施例34及び実施例35の銀ペーストを用いて、比較試験2と同様に接合体をそれぞれ作製し、これらの接合体の接合強度を比較試験2と同様に測定した。また、実施例17、実施例34及び実施例35の銀ペーストを用いて、比較試験2と同様に銀焼成膜をそれぞれ作製し、これらの銀焼成膜の熱拡散率を比較試験2と同様に測定した。更に、実施例17、実施例34及び実施例35の接合体について冷熱サイクル試験を行った後に、これらの接合体の接合強度を比較試験2と同様に測定した。前記冷熱サイクル試験は、気相法を用いて、−40℃に20分保持した後に、+150℃に20分保持する操作を1000サイクル繰返すことにより行った。その結果を表6及び表7に示す。
<Comparative test 4 and evaluation>
Using the silver pastes of Examples 17, 34 and 35, joints were prepared in the same manner as in Comparative Test 2, and the joint strength of these joints was measured in the same manner as in Comparative Test 2. Further, using the silver pastes of Examples 17, 34 and 35, silver fired films were prepared in the same manner as in Comparative Test 2, and the thermal diffusivity of these silver fired films was set in the same manner as in Comparative Test 2. It was measured. Further, after performing a thermal cycle test on the joints of Examples 17, 34 and 35, the joint strength of these joints was measured in the same manner as in Comparative Test 2. The cold cycle test was carried out by repeating the operation of holding at −40 ° C. for 20 minutes and then holding at + 150 ° C. for 20 minutes using the vapor phase method for 1000 cycles. The results are shown in Tables 6 and 7.
なお、表6中の樹脂の種類の欄において、『D1』はエポキシ系熱硬化性樹脂組成物を示し、『D2』はシリコーン系熱硬化性樹脂組成物を示す(いずれも常温で液状、硬化温度:140〜150℃)。また、表6中の銀粉末の種類の欄において、No.1は表5のNo.1の銀粉末であり、混合溶液は表1の実施例1の混合溶液である。更に、表6において、樹脂の配合割合は銀ペーストを100質量%としたときの割合である。 In the resin type column in Table 6, "D1" indicates an epoxy-based thermosetting resin composition, and "D2" indicates a silicone-based thermosetting resin composition (both liquid and cured at room temperature). Temperature: 140-150 ° C). Further, in the column of the type of silver powder in Table 6, No. 1 is the silver powder of No. 1 in Table 5, and the mixed solution is the mixed solution of Example 1 in Table 1. Further, in Table 6, the blending ratio of the resin is the ratio when the silver paste is 100% by mass.
表6及び表7から明らかなように、樹脂を添加しなかった実施例17の銀ペーストを用いて接合体及び銀焼成膜を作製した場合、接合体の初期(冷熱サイクル試験前)の接合強度は50MPaと大きく、銀焼成膜の熱拡散率は150W/mKと大きかったけれども、接合体の冷熱サイクル試験後の接合強度は22MPaと小さくなった。これに対し、樹脂としてエポキシ系熱硬化性樹脂組成物を添加した実施例34の銀ペーストを用いて接合体及び銀焼成膜を作製した場合、接合体の初期(冷熱サイクル試験前)の接合強度は35MPaと実施例17より小さくなり、銀焼成膜の熱拡散率は100W/mKと実施例17より小さくなったけれども、接合体の冷熱サイクル試験後の接合強度は36MPaと実施例17より大きくなった。 As is clear from Tables 6 and 7, when the bonded body and the silver fired film were prepared using the silver paste of Example 17 to which no resin was added, the initial bonding strength of the bonded body (before the thermal cycle test) was formed. Was as large as 50 MPa, and the thermal diffusivity of the silver fired film was as large as 150 W / mK, but the bonding strength of the bonded body after the cold cycle test was as small as 22 MPa. On the other hand, when a bonded body and a silver-fired film were prepared using the silver paste of Example 34 to which an epoxy-based thermosetting resin composition was added as a resin, the bonding strength at the initial stage of the bonded body (before the cold cycle test). Was 35 MPa, which was smaller than that of Example 17, and the thermal diffusivity of the silver-fired film was 100 W / mK, which was smaller than that of Example 17, but the bonding strength of the bonded body after the cold cycle test was 36 MPa, which was larger than that of Example 17. It was.
また、樹脂としてシリコーン系熱硬化性樹脂組成物を添加した実施例35の銀ペーストを用いて接合体及び銀焼成膜を作製した場合、接合体の初期(冷熱サイクル試験前)の接合強度は25MPaと実施例17より小さくなり、銀焼成膜の熱拡散率は101W/mKと実施例17より小さくなったけれども、接合体の冷熱サイクル試験後の接合強度は23MPaと実施例17より大きくなった。 When a bonded body and a silver fired film were prepared using the silver paste of Example 35 to which a silicone-based thermosetting resin composition was added as the resin, the initial bonding strength of the bonded body (before the cold cycle test) was 25 MPa. The heat diffusion rate of the silver-fired film was 101 W / mK, which was smaller than that of Example 17, but the bonding strength of the bonded body after the cold cycle test was 23 MPa, which was larger than that of Example 17.
本発明の銀ペーストは、回路基板と高出力LED素子とを接合する接合層や、回路基板とパワー半導体チップとを接合する接合層等に利用できる。 The silver paste of the present invention can be used as a bonding layer for bonding a circuit board and a high-power LED element, a bonding layer for bonding a circuit board and a power semiconductor chip, and the like.
銀ペーストは、更に樹脂又は溶媒のいずれか一方又は双方を含むことが好ましい。樹脂としては、エポキシ系樹脂、シリコーン系樹脂、アクリル系樹脂、及びそれらの混合物等が挙げられる。エポキシ系樹脂には、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、及びそれらの混合物等があり、シリコーン系樹脂には、メチルシリコーン樹脂、エポキシ変性シリコーン樹脂、ポリエステル変性シリコーン樹脂、及びそれらの混合物等があり、アクリル系樹脂には、アクリレート系モノマー樹脂等がある。これらの樹脂は、銀ペーストの加熱によって硬化し、その硬化体が、銀粉の焼結体の空隙に充填される。熱硬化性樹脂組成物の硬化体が、銀粉の焼結体の空隙に充填されることによって、接合層の機械的強度が向上し、更に冷熱サイクル負荷時における接合強度の低下が抑えられる。前記樹脂の含有量は銀ペースト全体を100質量%としたときに0.1質量%〜3質量%の範囲内であってもよい。前記樹脂の含有量が0.1質量%未満であると接合層の機械的強度が向上しないおそれがあり、3質量%を超えると銀粉の焼結が妨げられ接合層の機械的強度が低下するおそれがある。前記樹脂の含有量は、好ましくは0.2質量%〜2.5質量%の範囲内であってもよく、更に好ましくは0.3質量%〜2.0質量%の範囲内であってもよい。 The silver paste preferably further contains either one or both of the resin and the solvent. Examples of the resin include epoxy-based resins, silicone-based resins, acrylic-based resins, and mixtures thereof. Epoxy resins include bisphenol A type epoxy resins, novolak type epoxy resins, cyclic aliphatic epoxy resins, and mixtures thereof, and silicone resins include methyl silicone resins, epoxy modified silicone resins, and polyester modified silicones. There are resins and mixtures thereof, and acrylic resins include acrylate-based monomer resins and the like. These resins are cured by heating the silver paste, and the cured product is filled in the voids of the sintered body of silver powder . By filling the voids of the sintered body of silver powder with the cured product of the thermosetting resin composition, the mechanical strength of the bonding layer is improved, and the decrease in bonding strength under a thermal cycle load is suppressed. The content of the resin may be in the range of 0.1% by mass to 3% by mass when the whole silver paste is 100% by mass. If the content of the resin is less than 0.1% by mass, the mechanical strength of the bonding layer may not be improved, and if it exceeds 3% by mass, sintering of silver powder is hindered and the mechanical strength of the bonding layer is lowered. There is a risk. The content of the resin may be preferably in the range of 0.2% by mass to 2.5% by mass, and more preferably in the range of 0.3% by mass to 2.0% by mass. Good.
<実施例16〜33及び比較例3〜8>
実施例16〜33及び比較例3〜8の銀ペーストは、混合溶液として、表1に示す脂肪酸銀、脂肪族アミン及び溶媒種類のものを用いるとともに、銀粉、混合溶液を、表3及び表4に示すような割合でそれぞれ配合し、表3及び表4に示した配合以外は、実施例15と同様にして、銀ペーストを調製した。なお、実施例15〜33及び比較例3〜8で用いた混合溶液を表3及び表4中の混合溶液の種類の欄に実施例1〜14のいずれかで示した。また、実施例15〜33及び比較例3〜8では、表5に示す粒度分布の異なる10種類(No.1〜No.10)の銀粉のいずれかを配合しており、実施例15〜33及び比較例3〜8で用いた銀粉を表3及び表4中の銀粉の種類の欄にNo.1〜No.10のいずれかで示した。
<Examples 16 to 33 and Comparative Examples 3 to 8>
As the silver pastes of Examples 16 to 33 and Comparative Examples 3 to 8, the fatty acid silver, aliphatic amines and solvent types shown in Table 1 were used as the mixed solution, and the silver powder and the mixed solution were used in Tables 3 and 4. The silver paste was prepared in the same manner as in Example 15 except for the formulations shown in Tables 3 and 4, respectively. The mixed solutions used in Examples 15 to 33 and Comparative Examples 3 to 8 are shown in any of Examples 1 to 14 in the column of mixed solution types in Tables 3 and 4. Further, in Examples 15 to 33 and Comparative Examples 3 to 8, any one of 10 types (No. 1 to No. 10) of silver powder having different particle size distributions shown in Table 5 is blended, and Examples 15 to 33 are blended. And the silver powder used in Comparative Examples 3 to 8 is shown by any of No. 1 to No. 10 in the column of the type of silver powder in Tables 3 and 4.
(2−1) 銀焼成膜の熱拡散率の測定方法
実施例15〜33及び比較例3〜8の銀焼成膜についてレーザフラッシュ法により熱拡散率を測定した。具体的には、先ず、銀焼成膜の表面にパルスレーザを均一に照射して瞬間的に加熱したときの銀焼成膜の裏面の温度変化T(t)を測定した。次に、銀焼成膜の裏面の温度変化T(t)は1次元の熱伝導方程式で表されるので、銀焼成膜の裏面の温度変化T(t)を縦軸にとりかつ経過時間tを横軸にとることにより(T(t)−t)曲線が得られ、この曲線から最大上昇温度TMAXの半分の温度に達するのに要した時間t0.5を求めた。そして、銀焼成膜の熱拡散率αを次の式(2)により求めた。
α = 1.370×L2/(π2×t0.5) ……(2)
前記式(2)中のLは銀焼成膜の厚さである。これらの接合体の接合強度及び銀焼成膜の熱拡散率を表3及び表4に示す。
(2-1) Method for Measuring Thermal Diffusivity of Silver-Fired Film The thermal diffusivity of the silver-fired films of Examples 15 to 33 and Comparative Examples 3 to 8 was measured by a laser flash method. Specifically, first, the temperature change T (t) on the back surface of the silver fired film when the surface of the silver fired film was uniformly irradiated with a pulse laser and instantaneously heated was measured. Next, since the temperature change T (t) on the back surface of the silver fired film is expressed by a one-dimensional heat conduction equation, the temperature change T (t) on the back surface of the silver fired film is taken on the vertical axis and the elapsed time t is horizontal. By taking the axis, a (T (t) -t) curve was obtained, and the time t 0.5 required to reach half the maximum temperature rise temperature T MAX was calculated from this curve. Then, the thermal diffusivity α of the silver fired film was obtained by the following equation (2).
α = 1.370 x L 2 / (π 2 x t 0.5 ) …… (2)
L in the formula (2) is the thickness of the silver fired film. Tables 3 and 4 show the bonding strength of these bonded bodies and the thermal diffusivity of the silver-fired film .
なお、表6中の樹脂の種類の欄において、『D1』はエポキシ系熱硬化性樹脂組成物を示し、『D2』はシリコーン系熱硬化性樹脂組成物を示す(いずれも常温で液状、硬化温度:140〜150℃)。また、表6中の銀粉の種類の欄において、No.1は表5のNo.1の銀粉であり、混合溶液は表1の実施例1の混合溶液である。更に、表6において、樹脂の配合割合は銀ペーストを100質量%としたときの割合である。 In the resin type column in Table 6, "D1" indicates an epoxy-based thermosetting resin composition, and "D2" indicates a silicone-based thermosetting resin composition (both liquid and cured at room temperature). Temperature: 140-150 ° C). Further, in the column of the type of silver powder in Table 6, No. 1 is the silver powder of No. 1 in Table 5, and the mixed solution is the mixed solution of Example 1 in Table 1. Further, in Table 6, the blending ratio of the resin is the ratio when the silver paste is 100% by mass.
本発明の第1の観点は、銀粉と、脂肪酸銀と、脂肪族アミンと、溶媒とを含む銀ペーストであって、前記銀粉は、粒径が100nm以上500nm未満である第1銀粒子と、粒径が50nm以上100nm未満である第2銀粒子と、粒径が50nm未満である第3銀粒子とからなり、かつ前記第1〜第3銀粒子の合計量100体積%に対して、前記第1銀粒子を55体積%以上95体積%以下、前記第2銀粒子を5体積%以上40体積%以下、前記第3銀粒子を5体積%以下の範囲で含み、前記脂肪酸銀と前記脂肪族アミンと前記溶媒との合計量を100質量%としたときに、前記脂肪酸銀を13.2質量%〜33.0質量%、前記脂肪族アミンを0.1質量%〜60質量%、前記溶媒を80質量%以下の割合で含み、前記銀ペーストを100質量%としたときに、前記銀粉の含有量が50質量%〜95質量%であることを特徴とする。 A first aspect of the present invention is a silver paste containing silver powder, fatty acid silver, an aliphatic amine, and a solvent , wherein the silver powder contains first silver particles having a particle size of 100 nm or more and less than 500 nm . The second silver particles having a particle size of 50 nm or more and less than 100 nm and the third silver particles having a particle size of less than 50 nm are formed , and the total amount of the first to third silver particles is 100% by mass. The first silver particles are contained in the range of 55% by mass or more and 95% by mass or less, the second silver particles are contained in the range of 5% by mass or more and 40% by mass or less, the third silver particles are contained in the range of 5% by mass or less, and the fatty acid silver and the fat. When the total amount of the group amine and the solvent is 100% by mass, the fatty acid silver is 13.2% by mass to 33.0% by mass, the aliphatic amine is 0.1% by mass to 60% by mass, and the above. It is characterized in that the content of the silver powder is 50% by mass to 95% by mass when the solvent is contained in a proportion of 80% by mass or less and the silver paste is 100% by mass .
本発明の第3の観点は、第1の観点に基づく発明であって、更に脂肪酸銀の少なくとも一部と脂肪族アミンの少なくとも一部とが反応して形成される錯体を含むことを特徴とする。 A third aspect of the present invention is an invention based on the first aspect, further comprising a complex formed by reacting at least a part of silver fatty acid and at least a part of an aliphatic amine. To do.
本発明の第4の観点は、脂肪酸銀、脂肪族アミン及び溶媒を、前記脂肪酸銀と前記脂肪族アミンと前記溶媒との合計量を100質量%としたときに、前記脂肪酸銀が13.2質量%〜33.0質量%、前記脂肪族アミンが0.1質量%〜60質量%、前記溶媒が80質量%以下の割合で混合して混合物を得る工程と、前記混合物を30℃〜100℃に加熱して撹拌した後に冷却して混合溶液を得る工程と、前記混合溶液と銀粉とを混練して銀ペーストを得る工程とを含む銀ペーストの製造方法であって、前記銀粉は、粒径が100nm以上500nm未満である第1銀粒子と、粒径が50nm以上100nm未満である第2銀粒子と、粒径が50nm未満である第3銀粒子とからなり、かつ前記第1〜第3銀粒子の合計量100体積%に対して、前記第1銀粒子を55体積%以上95体積%以下、前記第2銀粒子を5体積%以上40体積%以下、前記第3銀粒子を5体積%以下の範囲で含み、前記銀ペーストを100質量%としたときに、前記銀粉の含有量が50質量%〜95質量%であることを特徴とする。 The fourth aspect of the present invention is that the fatty acid silver is 13.2 when the total amount of the fatty acid silver, the aliphatic amine and the solvent is 100% by mass. A step of mixing the aliphatic amine at a ratio of 0.1% by mass to 60% by mass and the solvent at a ratio of 80% by mass or less to obtain a mixture, and mixing the mixture at 30 ° C. to 100% by mass to 33.0 % by mass. A method for producing a silver paste, which comprises a step of heating to ° C., stirring, and then cooling to obtain a mixed solution, and a step of kneading the mixed solution and silver powder to obtain a silver paste. The silver powder is a grain. a first silver particle size less than 500nm or 100nm, the particle size is composed of a second silver particles is less than 100nm or 50 nm, and the third silver particles a particle size of less than 50 nm, and the first to With respect to the total amount of 3 silver particles of 100% by mass, the first silver particles are 55% by mass or more and 95% by mass or less, the second silver particles are 5% by mass or more and 40% by mass or less, and the third silver particles are 5 It is characterized in that the content of the silver powder is 50% by mass to 95% by mass when it is contained in the range of volume% or less and the silver paste is 100% by mass .
本発明の第5の観点は、第1部材と第2部材とを用意する工程と、第1部材及び/又は第2部材の表面に、第1ないし第3の観点のいずれかに記載の銀ペースト又は請求項4に記載の方法で製造された銀ペーストを塗布して銀ペースト層を形成する工程と、第1部材と第2部材とを銀ペースト層を介して積層して積層体を作製する工程と、積層体を加熱することにより銀ペースト層中の第1銀粒子と第2銀粒子と第3銀粒子を焼結させて接合層を形成させ、第1部材と第2部材とが接合層を介して接合された接合体を作製する工程とを含む接合体の製造方法である。 A fifth aspect of the present invention is the step of preparing the first member and the second member, and the silver according to any one of the first to third aspects on the surface of the first member and / or the second member. A step of applying a paste or a silver paste produced by the method according to claim 4 to form a silver paste layer, and laminating the first member and the second member via the silver paste layer to prepare a laminate. By heating the laminate, the first silver particles, the second silver particles, and the third silver particles in the silver paste layer are sintered to form a bonding layer, and the first member and the second member are formed. It is a method of manufacturing a bonded body including a step of producing a bonded body bonded via a bonded layer.
本発明の第1の観点の銀ペーストでは、銀粉が、粒径が100nm以上500nm未満である第1銀粒子を55体積%以上95体積%以下の範囲で含み、粒径が50nm以上100nm未満である第2銀粒子を5体積%以上40体積%以下の範囲で含み、粒径が50nm未満である第3銀粒子を5体積%以下の範囲で含むので、前記銀粉が比較的広い粒度分布を有することによって、焼結の際に、第1〜第3銀粒子同士の隙間が小さく緻密になることで、ボイドの少ない接合層を作製できる。また、銀ペーストが溶媒を更に含むので、銀ペーストの粘度を調整して塗布等の作業を容易にすることができるという優れた効果が得られる。 In the silver paste according to the first aspect of the present invention, the silver powder contains first silver particles having a particle size of 100 nm or more and less than 500 nm in a range of 55% by volume or more and 95% by volume or less, and the particle size is 50 nm or more and less than 100 nm. Since certain second silver particles are contained in the range of 5% by volume or more and 40% by volume or less and third silver particles having a particle size of less than 50 nm are contained in the range of 5% by volume or less, the silver powder has a relatively wide particle size distribution. By having the particles, the gaps between the first to third silver particles become small and dense during sintering, so that a bonding layer with few voids can be produced. Further, since the silver paste further contains a solvent, it is possible to obtain an excellent effect that the viscosity of the silver paste can be adjusted to facilitate operations such as coating.
本発明の第3の観点の銀ペーストでは、脂肪酸銀の少なくとも一部と脂肪族アミンの少なくとも一部とが反応して形成される錯体を含むので、焼成時に前記錯体から微細な銀が析出し、この析出した銀が銀ペースト中の第1銀粒子と第2銀粒子と第3銀粒子との間を埋めることで、銀ペーストを用いて作製される接合層がより緻密化して、その熱伝導特性を飛躍的に向上させることができる。 Since the silver paste according to the third aspect of the present invention contains a complex formed by reacting at least a part of fatty acid silver and at least a part of an aliphatic amine, fine silver is precipitated from the complex at the time of firing. By filling the space between the first silver particles, the second silver particles, and the third silver particles in the silver paste, the bonded layer produced by using the silver paste becomes more dense and its heat. Conduction characteristics can be dramatically improved.
本発明の第4の観点の銀ペーストの製造方法では、脂肪酸銀、脂肪族アミン及び溶媒を所定の割合で混合した混合物を加熱して撹拌した後に冷却して混合溶液を調製し、この混合溶液と銀粉とを混練して銀ペーストを調製し、前記銀粉が、粒径が100nm以上500nm未満である第1銀粒子を55体積%以上95体積%以下の範囲で含み、粒径が50nm以上100nm未満である第2銀粒子を5体積%以上40体積%以下の範囲で含み、粒径が50nm未満である第3銀粒子を5体積%以下の範囲で含むので、前記と同様に、前記銀粉が比較的広い粒度分布を有することによって、焼結の際に、第1〜第3銀粒子同士の隙間が小さく緻密になることで、ボイドの少ない接合層を作製できる。 In the method for producing a silver paste according to the fourth aspect of the present invention, a mixed solution in which a mixture of fatty acid silver, an aliphatic amine and a solvent is mixed at a predetermined ratio is heated and stirred, and then cooled to prepare a mixed solution. And silver powder are kneaded to prepare a silver paste, and the silver powder contains first silver particles having a particle size of 100 nm or more and less than 500 nm in a range of 55% by volume or more and 95% by volume or less, and has a particle size of 50 nm or more and 100 nm. Since the second silver particles having a particle size of less than 50% by volume are contained in the range of 5% by volume or more and 40% by volume or less and the third silver particles having a particle size of less than 50 nm are contained in the range of 5% by volume or less, the silver powder is similarly described above. Since the particles have a relatively wide particle size distribution, the gaps between the first to third silver particles become small and dense during sintering, so that a bonding layer with few voids can be produced.
本発明の第5の観点の接合体の製造方法では、第1部材と第2部材とを、前記銀ペーストを塗布した銀ペースト層を挟んで積層して積層体を作製し、この積層体を加熱することで銀ペースト層中の第1銀粒子と第2銀粒子と第3銀粒子を焼結させて接合層を形成し、第1部材と第2部材とがこの接合層を介して接合された接合体を作製したので、接合体を接合する接合層はボイドが少なく、この方法で製造された接合体の熱伝導特性及び冷熱サイクル特性を向上できる。 In the method for producing a bonded body according to the fifth aspect of the present invention, the first member and the second member are laminated with the silver paste layer coated with the silver paste sandwiched between them to prepare a laminated body, and the laminated body is formed. By heating, the first silver particles, the second silver particles, and the third silver particles in the silver paste layer are sintered to form a bonding layer, and the first member and the second member are bonded via the bonding layer. Since the bonded body is produced, the bonding layer for joining the bonded body has few voids, and the heat conduction characteristics and the cold cycle characteristics of the bonded body produced by this method can be improved.
このように構成された銀ペーストの製造方法を説明する。先ず、脂肪酸銀、脂肪族アミン及び溶媒を用意し、脂肪酸銀と脂肪族アミンと溶媒との合計量を100質量%としたときに、例えば、脂肪酸銀が13.2質量%〜33.0質量%、脂肪族アミンが0.1質量%〜60質量%、溶媒が80質量%以下の割合で混合する。ここで、脂肪酸銀、脂肪族アミン及び溶媒の混合割合を前記範囲内に限定したのは、混合液に沈殿等を生じることなく、本発明の効果を得られるという理由に基づく。
A method for producing the silver paste thus constructed will be described. First, when fatty acid silver, aliphatic amine and solvent are prepared and the total amount of fatty acid silver, aliphatic amine and solvent is 100% by mass, for example, fatty acid silver is 13.2 % by mass to 33.0 % by mass. %, The aliphatic amine is mixed at a ratio of 0.1% by mass to 60% by mass, and the solvent is mixed at a ratio of 80% by mass or less. Here, the fatty acid silver, the mixing ratio of the aliphatic amine and a solvent is limited to within the range, without causing precipitation or the like to the mixture, based rather on grounds that an effect is obtained of the present invention.
Claims (6)
前記銀粉は、粒径が100nm以上500nm未満である第1銀粒子を55体積%以上95体積%以下の範囲で含み、粒径が50nm以上100nm未満である第2銀粒子を5体積%以上40体積%以下の範囲で含み、粒径が50nm未満である第3銀粒子を5体積%以下の範囲で含むことを特徴とする銀ペースト。 A silver paste containing silver powder, fatty acid silver, and an aliphatic amine.
The silver powder contains first silver particles having a particle size of 100 nm or more and less than 500 nm in a range of 55% by volume or more and 95% by volume or less, and 5% by volume or more of second silver particles having a particle size of 50 nm or more and less than 100 nm. A silver paste containing in the range of 5% by volume or less and containing third silver particles having a particle size of less than 50 nm in the range of 5% by volume or less.
前記混合物を30℃〜100℃に加熱して撹拌した後に冷却して混合溶液を得る工程と、
前記混合溶液と銀粉とを混練して銀ペーストを得る工程と
を含む銀ペーストの製造方法であって、
前記銀粉が、粒径が100nm以上500nm未満である第1銀粒子を55体積%以上95体積%以下の範囲で含み、粒径が50nm以上100nm未満である第2銀粒子を5体積%以上40体積%以下の範囲で含み、粒径が50nm未満である第3銀粒子を5体積%以下の範囲で含むことを特徴とする銀ペーストの製造方法。 When the total amount of the fatty acid silver, the aliphatic amine and the solvent is 100% by mass, the fatty acid silver is 0.1% by mass to 40% by mass, and the fat. A step of mixing the group amine at a ratio of 0.1% by mass to 60% by mass and the solvent at a ratio of 80% by mass or less to obtain a mixture.
A step of heating the mixture to 30 ° C. to 100 ° C., stirring the mixture, and then cooling the mixture to obtain a mixed solution.
A method for producing a silver paste, which comprises a step of kneading the mixed solution and silver powder to obtain a silver paste.
The silver powder contains first silver particles having a particle size of 100 nm or more and less than 500 nm in a range of 55% by volume or more and 95% by volume or less, and 5% by volume or more of second silver particles having a particle size of 50 nm or more and less than 100 nm. A method for producing a silver paste, which comprises a third silver particle having a particle size of less than 50 nm in a volume of 5% by volume or less.
前記第1部材及び/又は前記第2部材の表面に、請求項1ないし4いずれか1項に記載の銀ペースト又は請求項5に記載の方法で製造された銀ペーストを塗布して銀ペースト層を形成する工程と、
前記第1部材と前記第2部材とを前記銀ペースト層を介して積層して積層体を作製する工程と、
前記積層体を加熱することにより前記銀ペースト層中の第1銀粒子と第2銀粒子と第3銀粒子を焼結させて接合層を形成させ、前記第1部材と前記第2部材とが接合層を介して接合された接合体を作製する工程と
を含む接合体の製造方法。 The process of preparing the first member and the second member,
A silver paste layer is formed by applying the silver paste according to any one of claims 1 to 4 or the silver paste produced by the method according to claim 5 to the surface of the first member and / or the second member. And the process of forming
A step of laminating the first member and the second member via the silver paste layer to prepare a laminated body, and
By heating the laminate, the first silver particles, the second silver particles, and the third silver particles in the silver paste layer are sintered to form a bonding layer, and the first member and the second member are formed. A method for producing a bonded body, which comprises a step of producing a bonded body bonded via a bonded layer.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19824871.8A EP3812063A4 (en) | 2018-06-25 | 2019-06-24 | Silver paste and joined body production method |
PCT/JP2019/024989 WO2020004342A1 (en) | 2018-06-25 | 2019-06-24 | Silver paste and joined body production method |
CN201980016581.9A CN111801183B (en) | 2018-06-25 | 2019-06-24 | Silver paste and method for producing bonded body |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018119463 | 2018-06-25 | ||
JP2018119463 | 2018-06-25 | ||
JP2019065363 | 2019-03-29 | ||
JP2019065363 | 2019-03-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6737381B1 JP6737381B1 (en) | 2020-08-05 |
JP2020164974A true JP2020164974A (en) | 2020-10-08 |
Family
ID=71892451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019114214A Active JP6737381B1 (en) | 2018-06-25 | 2019-06-20 | Silver paste, method for producing the same, and method for producing a joined body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6737381B1 (en) |
CN (1) | CN111801183B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023190591A1 (en) | 2022-03-31 | 2023-10-05 | パナソニックIpマネジメント株式会社 | Silver paste and composite |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112457825A (en) * | 2020-11-30 | 2021-03-09 | 哈尔滨工业大学 | Preparation method and application of slurry with high heat conductivity and low sintering temperature |
CN114905184B (en) * | 2021-02-07 | 2024-01-26 | 深圳先进电子材料国际创新研究院 | Silver soldering paste and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010505230A (en) * | 2007-01-30 | 2010-02-18 | イグザクス インコーポレイテッド | Metal paste for conductive film formation |
WO2012133767A1 (en) * | 2011-03-31 | 2012-10-04 | ナミックス株式会社 | Thermally conductive composition and thermal conductor |
JP2015508434A (en) * | 2011-12-23 | 2015-03-19 | ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ | Ink composition for forming conductive silver structure |
JP2016148089A (en) * | 2015-02-13 | 2016-08-18 | 三菱マテリアル株式会社 | Silver powder, pasty composition and manufacturing method of silver powder |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5502434B2 (en) * | 2008-11-26 | 2014-05-28 | 三ツ星ベルト株式会社 | Bonding agent for inorganic material and bonded body of inorganic material |
CN103608140B (en) * | 2011-06-10 | 2016-03-30 | 同和电子科技有限公司 | Grafting material and the conjugant using this grafting material to make |
EP2805783B1 (en) * | 2012-01-20 | 2018-12-05 | DOWA Electronics Materials Co., Ltd. | Bonding material and bonding method in which said bonding material is used |
KR102354209B1 (en) * | 2016-09-30 | 2022-01-20 | 도와 일렉트로닉스 가부시키가이샤 | Bonding material and bonding method using the same |
-
2019
- 2019-06-20 JP JP2019114214A patent/JP6737381B1/en active Active
- 2019-06-24 CN CN201980016581.9A patent/CN111801183B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010505230A (en) * | 2007-01-30 | 2010-02-18 | イグザクス インコーポレイテッド | Metal paste for conductive film formation |
WO2012133767A1 (en) * | 2011-03-31 | 2012-10-04 | ナミックス株式会社 | Thermally conductive composition and thermal conductor |
JP2015508434A (en) * | 2011-12-23 | 2015-03-19 | ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ | Ink composition for forming conductive silver structure |
JP2016148089A (en) * | 2015-02-13 | 2016-08-18 | 三菱マテリアル株式会社 | Silver powder, pasty composition and manufacturing method of silver powder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023190591A1 (en) | 2022-03-31 | 2023-10-05 | パナソニックIpマネジメント株式会社 | Silver paste and composite |
Also Published As
Publication number | Publication date |
---|---|
CN111801183A (en) | 2020-10-20 |
JP6737381B1 (en) | 2020-08-05 |
CN111801183B (en) | 2022-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6502345B2 (en) | Method of synthesizing silver particles, silver particles, method of producing conductive paste, and conductive paste | |
JP4870223B1 (en) | Pasty silver particle composition, method for producing metal member assembly, and metal member assembly | |
KR102499025B1 (en) | Metal paste for bonding, bonding body and method for producing the same, and semiconductor device and method for producing the same | |
KR20180004853A (en) | Binding material, binding body, and binding method | |
JP6737381B1 (en) | Silver paste, method for producing the same, and method for producing a joined body | |
WO2015060173A1 (en) | Silver paste and semiconductor device using same | |
JP6842836B2 (en) | Method for manufacturing copper paste and copper sintered body | |
JP2022046765A (en) | Copper paste, bonding method, and method for producing bonded body | |
JP2019087396A (en) | Silver paste, joined body, and method for manufacturing joined body | |
JP6923063B2 (en) | Silver paste and its manufacturing method and joint manufacturing method | |
WO2020004342A1 (en) | Silver paste and joined body production method | |
WO2021125161A1 (en) | Silver paste, method for producing same, and method for producing jointed article | |
JP6947280B2 (en) | Silver paste and its manufacturing method and joint manufacturing method | |
JP2016188419A (en) | Nickel particle composition, joint material and joint method using the same | |
JP6669420B2 (en) | Bonding composition | |
JP6958434B2 (en) | Metal particle agglomerates and a method for producing the same, and a paste-like metal particle agglomerate composition and a method for producing a bonded body using the same. | |
JP6870436B2 (en) | Metal particle agglomerates and methods for producing them, paste-like metal particle compositions and methods for producing conjugates | |
WO2021125336A1 (en) | Silver paste and method for producing same, and method for producing joined article | |
JP2015224263A (en) | Adhesive composition, semiconductor device using the same and production method of semiconductor device | |
JP2021138991A (en) | Bonding material, method for producing bonding material, and bonding method | |
TWI789698B (en) | Copper oxide paste and method for producing electronic parts | |
WO2021060126A1 (en) | Joining material, method for manufacturing joining material, joining method, and semiconductor device | |
WO2023190591A1 (en) | Silver paste and composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191125 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20191125 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200121 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200121 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200616 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200629 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6737381 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |