JP6870436B2 - Metal particle agglomerates and methods for producing them, paste-like metal particle compositions and methods for producing conjugates - Google Patents

Metal particle agglomerates and methods for producing them, paste-like metal particle compositions and methods for producing conjugates Download PDF

Info

Publication number
JP6870436B2
JP6870436B2 JP2017072991A JP2017072991A JP6870436B2 JP 6870436 B2 JP6870436 B2 JP 6870436B2 JP 2017072991 A JP2017072991 A JP 2017072991A JP 2017072991 A JP2017072991 A JP 2017072991A JP 6870436 B2 JP6870436 B2 JP 6870436B2
Authority
JP
Japan
Prior art keywords
metal
particles
particle
less
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017072991A
Other languages
Japanese (ja)
Other versions
JP2018172764A (en
Inventor
和彦 山▲崎▼
和彦 山▲崎▼
弘太郎 増山
弘太郎 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017072991A priority Critical patent/JP6870436B2/en
Publication of JP2018172764A publication Critical patent/JP2018172764A/en
Application granted granted Critical
Publication of JP6870436B2 publication Critical patent/JP6870436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、金属粒子凝集体とその製造方法に関する。また、本発明は、上記金属粒子凝集体を含むペースト状金属粒子組成物、およびそのペースト状金属粒子組成物を用いた接合体の製造方法に関するものである。 The present invention relates to metal particle agglomerates and a method for producing the same. The present invention also relates to a paste-like metal particle composition containing the above-mentioned metal particle aggregate and a method for producing a bonded body using the paste-like metal particle composition.

電子部品の組立てや実装等において、2つ以上の部品を接合させる場合、一般的に接合材が用いられる。このような接合材として、銀、金等の高熱伝導性を有する金属粒子を揮発性溶剤に分散させたペースト状の接合材が知られている。接合材を用いて部品を接合する際は、一方の部品の表面に接合材を塗布し、塗布面に他方の部品を接触させ、この状態で加熱処理を行う。この加熱処理によって金属粒子を焼結させて接合層を生成させることによって部品を接合することができる。 When joining two or more parts in the assembly or mounting of electronic parts, a joining material is generally used. As such a bonding material, a paste-like bonding material in which metal particles having high thermal conductivity such as silver and gold are dispersed in a volatile solvent is known. When joining parts using a joining material, the joining material is applied to the surface of one part, the other part is brought into contact with the coated surface, and heat treatment is performed in this state. Parts can be joined by sintering metal particles to form a bonding layer by this heat treatment.

接合材としては、粒径がサブミクロンサイズの金属粒子を用いたもの(特許文献1、2)と、粒径がナノサイズの金属粒子を凝集させた凝集体を用いたもの(特許文献3、4)とが知られている。特許文献1には、平均粒径が0.1〜6μmの球状銀粒子を用いた接合材が開示されている。特許文献2には、平均粒径が0.1〜18μmの非球状銀粒子を用いた接合材が開示されている。特許文献3には、表面が有機物で被覆された平均粒径が1nm以上100nm以下の金属粒子が凝集して形成された、粒径が10nm以上100μm以下の凝集体を用いた接合材が開示されている。特許文献4には、数平均粒径50nm以下であり、かつ粒径100〜200nmの金属ナノ粒子と、凝集助剤と、高分子分散剤とを含む接合材が開示されている。 As the bonding material, those using metal particles having a particle size of submicron size (Patent Documents 1 and 2) and those using agglomerates of metal particles having a particle size of nanometer size (Patent Documents 3 and 2). 4) is known. Patent Document 1 discloses a bonding material using spherical silver particles having an average particle size of 0.1 to 6 μm. Patent Document 2 discloses a bonding material using non-spherical silver particles having an average particle size of 0.1 to 18 μm. Patent Document 3 discloses a bonding material using agglomerates having a particle size of 10 nm or more and 100 μm or less, which are formed by agglomerating metal particles having an average particle size of 1 nm or more and 100 nm or less whose surface is coated with an organic substance. ing. Patent Document 4 discloses a bonding material containing metal nanoparticles having a number average particle size of 50 nm or less and a particle size of 100 to 200 nm, a coagulation aid, and a polymer dispersant.

国際公開第2006/126614号International Publication No. 2006/126614 国際公開第2007/034833号International Publication No. 2007/034833 特開2008−161907号公報Japanese Unexamined Patent Publication No. 2008-161907 特開2011−94223号公報Japanese Unexamined Patent Publication No. 2011-94223

近年の電子機器の小型化や高集積化に伴って、半導体チップやLED素子などの電子部品の発熱量は増加する傾向にある。このため、電子部品の接合に用いる接合材は、高い接合強度と長期信頼性を持って電子部品を接合できるものであることが要求される。
しかしながら、サブミクロンサイズの金属粒子を用いた接合材は、ナノサイズの金属粒子を凝集させた凝集体を用いた接合材と比較すると、接合強度が低い傾向がある。この理由は、サブミクロンサイズの金属粒子は、ナノサイズの金属粒子と比較して、金属粒子同士の隙間が大きくなるため、サブミクロンサイズの金属粒子を用いた接合材を焼成させて形成した接合層には、微細なボイド(空隙)が発生し易いためであると考えられる。このボイドの発生を抑える方法として、接合時に、接合対象である電子部品などの部材を加圧する方法があるが、この場合は加圧設備が必要となる。
With the recent miniaturization and high integration of electronic devices, the amount of heat generated by electronic components such as semiconductor chips and LED elements tends to increase. Therefore, the bonding material used for bonding electronic components is required to be capable of bonding electronic components with high bonding strength and long-term reliability.
However, a bonding material using submicron-sized metal particles tends to have a lower bonding strength than a bonding material using an aggregate in which nano-sized metal particles are aggregated. The reason for this is that the submicron size metal particles have a larger gap between the metal particles than the nano size metal particles, so that the bonding material formed by firing the bonding material using the submicron size metal particles is formed. It is considered that this is because fine voids (voids) are likely to be generated in the layer. As a method of suppressing the generation of voids, there is a method of pressurizing a member such as an electronic component to be joined at the time of joining, but in this case, a pressurizing facility is required.

一方、ナノサイズの金属粒子を用いた接合材は、時間の経過とともに接合強度が低下するなど長期信頼性が劣る場合がある。この理由は、ナノサイズの金属粒子を用いた接合材では、ナノサイズの金属粒子表面に凝集を抑制するための保護剤(有機物)を含むのが一般的であるが、この保護剤が接合層に残留し、時間の経過とともに分解して、接合層にボイドを発生させることによって接合強度を低下させるためであると考えられる。 On the other hand, a bonding material using nano-sized metal particles may have poor long-term reliability, such as a decrease in bonding strength over time. The reason for this is that in a bonding material using nano-sized metal particles, a protective agent (organic substance) for suppressing aggregation is generally contained on the surface of the nano-sized metal particles, and this protective agent is used as a bonding layer. It is considered that this is because the bonding strength is lowered by generating voids in the bonding layer by remaining in the bonding layer and decomposing with the passage of time.

本発明は、前述した事情に鑑みてなされたものであって、高い接合強度と長期信頼性とを持って電子部品などの部材を接合できる接合層を形成することができる金属粒子の凝集体とその製造方法、ペースト状金属粒子組成物、およびそのペースト状金属粒子組成物を用いた接合体の製造方法を提供することをその目的とする。 The present invention has been made in view of the above-mentioned circumstances, and is an agglomerate of metal particles capable of forming a bonding layer capable of bonding members such as electronic parts with high bonding strength and long-term reliability. An object of the present invention is to provide a method for producing the same, a paste-like metal particle composition, and a method for producing a conjugate using the paste-like metal particle composition.

発明者らは、鋭意検討した結果、銀、金および銅からなる群より選ばれる少なくとも1つの金属を70質量%以上の量にて含有し、粒径が100nm以上500nm未満の範囲にある粒子を60体積%以上95体積%以下の範囲、粒径が50nm以上100nm未満の範囲にある粒子を5体積%以上40体積%以下の範囲、そして粒径が50nm未満の粒子を5体積%以下の割合にて含む金属粒子と、有機物とを含み、レーザ回折散乱法により測定される体積基準の粒度分布曲線において、D10が0.05μm以上0.25μm以下の範囲にあって、D50が0.4μm以上0.6μm以下の範囲にあり、さらにD90が1.5μm以上2.5μm以下の範囲にあって、前記有機物を前記金属粒子に対して2質量%以下の量にて含む金属粒子の凝集体を焼結させることによって、高い接合強度を有する接合層を得ることが可能となることを見出した。さらに、その接合層は、冷熱サイクルを繰り返し付与してもボイドが発生しにくく、長期信頼性が高いことを見出した。 As a result of diligent studies, the inventors have found particles containing at least one metal selected from the group consisting of silver, gold and copper in an amount of 70% by mass or more and having a particle size in the range of 100 nm or more and less than 500 nm. The ratio of particles in the range of 60% by volume or more and 95% by volume or less, particles having a particle size in the range of 50 nm or more and less than 100 nm in the range of 5% by volume or more and 40% by volume or less, and particles having a particle size of less than 50 nm in the range of 5% by volume or less. In the volume-based particle size distribution curve measured by the laser diffraction scattering method, which contains metal particles and organic substances contained in the above, D10 is in the range of 0.05 μm or more and 0.25 μm or less, and D50 is 0.4 μm or more. An aggregate of metal particles having a range of 0.6 μm or less, a D90 of 1.5 μm or more and 2.5 μm or less, and containing the organic substance in an amount of 2% by mass or less with respect to the metal particles. It has been found that it is possible to obtain a bonding layer having high bonding strength by sintering. Furthermore, it has been found that the bonding layer is less likely to generate voids even if it is repeatedly subjected to a cooling and heating cycle, and has high long-term reliability.

上記の金属粒子凝集体を用いることによって高い接合強度を有する接合層が得られる理由としては、次のように考えられる。金属粒子(一次粒子)が上記のように比較的広い粒度分布を有するので、金属粒子凝集体(二次粒子)は、金属粒子同士の隙間(空隙)が少なく緻密となる。そして、金属粒子凝集体もまた、上記のように比較的広い粒度分布を有するので、金属粒子凝集体同士の隙間が少ない緻密な金属粒子凝集体層を形成できる。さらに、有機物の含有量が2質量%以下であり、加熱によって生成する有機物の分解ガスの量が少ない。このため、その金属粒子凝集体層を焼結させることによって生成する接合層は、ボイドが少なく緻密となる。よってその接合層は接合強度と長期信頼性が向上する。 The reason why a bonding layer having high bonding strength can be obtained by using the above-mentioned metal particle agglomerates is considered as follows. Since the metal particles (primary particles) have a relatively wide particle size distribution as described above, the metal particle aggregates (secondary particles) are dense with few gaps (voids) between the metal particles. Since the metal particle agglomerates also have a relatively wide particle size distribution as described above, it is possible to form a dense metal particle agglomerate layer with few gaps between the metal particle agglomerates. Further, the content of the organic substance is 2% by mass or less, and the amount of the decomposition gas of the organic substance generated by heating is small. Therefore, the bonding layer formed by sintering the metal particle agglomerate layer has few voids and becomes dense. Therefore, the bonding layer has improved bonding strength and long-term reliability.

すなわち、本発明の金属粒子凝集体は、銀、金および銅のいずれか1種からなり粒径が500nm以上の粒子を1体積%を超えて含むことがなく、粒径が100nm以上500nm未満の範囲にある粒子を60体積%以上95体積%以下の範囲、粒径が50nm以上100nm未満の範囲にある粒子を5体積%以上40体積%以下の範囲、そして粒径が50nm未満の粒子を5体積%以下の割合にて含む金属粒子と、有機物とを含み、レーザ回折散乱法により測定される体積基準の粒度分布曲線において、D10が0.05μm以上0.25μm以下の範囲にあって、D50が0.4μm以上0.6μm以下の範囲にあり、さらにD90が1.5μm以上2.5μm以下の範囲にあって、前記有機物を、前記金属粒子に対して2質量%以下の量にて含むことを特徴としている。 That is, the metal particle agglomerate of the present invention is composed of any one of silver, gold and copper, does not contain particles having a particle size of 500 nm or more in an amount of more than 1% by volume, and has a particle size of 100 nm or more and less than 500 nm. Particles in the range of 60% by volume or more and 95% by volume or less, particles in the range of 50 nm or more and less than 100 nm in the range of 5% by volume or more and 40% by volume or less, and particles having a particle size of less than 50 nm. In the volume-based particle size distribution curve containing metal particles and organic substances contained in a proportion of 5% by volume or less and measured by the laser diffraction scattering method, D10 is in the range of 0.05 μm or more and 0.25 μm or less. D50 is in the range of 0.4 μm or more and 0.6 μm or less, and D90 is in the range of 1.5 μm or more and 2.5 μm or less, and the organic substance is added in an amount of 2% by mass or less with respect to the metal particles. It is characterized by including.

本発明の金属粒子凝集体において、前記有機物の含有量は、前記金属粒子に対して0.05質量%以上であることが好ましい。
この場合、金属粒子凝集体が、金属粒子に対して0.05質量%以上の有機物によって被覆されるので、表面状態が安定になる。従って、この金属粒子凝集体は、揮発性溶媒と混合してペースト状にした場合でも、さらに凝集するなどの粒成長を起こさないため、高い接合強度と長期信頼性とを持って部材を接合することが可能となる。
In the metal particle aggregate of the present invention, the content of the organic substance is preferably 0.05% by mass or more with respect to the metal particles.
In this case, since the metal particle agglomerates are coated with 0.05% by mass or more of organic substances with respect to the metal particles, the surface state becomes stable. Therefore, even when this metal particle agglomerate is mixed with a volatile solvent to form a paste, it does not cause grain growth such as further agglomeration, so that the members are joined with high bonding strength and long-term reliability. It becomes possible.

本発明の金属粒子凝集体において、比表面積は2〜8m/gの範囲にあることが好ましい。
この場合、金属粒子凝集体の反応面積が大きいので、加熱による反応性が高くなる。従って、この金属粒子凝集体は、比較的低い温度で焼結させることが可能となる。
In the metal particle aggregate of the present invention, the specific surface area is preferably in the range of 2 to 8 m 2 / g.
In this case, since the reaction area of the metal particle aggregate is large, the reactivity by heating becomes high. Therefore, this metal particle agglomerate can be sintered at a relatively low temperature.

本発明の金属粒子凝集体の製造方法は、銀、金および銅のいずれか1種からなり、粒径が500nm以上の粒子を1体積%以上含むことがなく、粒径が100nm以上500nm未満の範囲にある粒子を65体積%以上95体積%の範囲、粒径が50nm以上100nm未満の範囲にある粒子を5体積%以上30体積%の範囲、そして粒径が50nm未満の粒子を5体積%以下の割合にて含む金属粒子と有機還元剤と水とを含むスラリーを調製し、金属粒子を還元処理して、金属粒子を凝集させる工程と、前記スラリーから凝集した金属粒子を取り出して、前記有機還元剤を、前記金属粒子に対して2質量%以下の量にて含む含水金属粒子凝集体を得る工程と、前記含水金属粒子凝集体を乾燥する工程とを備えることを特徴としている。 The method for producing a metal particle agglomerate of the present invention comprises any one of silver, gold and copper, does not contain 1% by volume or more of particles having a particle size of 500 nm or more, and has a particle size of 100 nm or more and less than 500 nm. Particles in the range are in the range of 65% by volume or more and 95% by volume, particles in the range of 50 nm or more and less than 100 nm are in the range of 5% by volume or more and 30% by volume, and particles with a particle size of less than 50 nm are in the range of 5% by volume. A step of preparing a slurry containing metal particles contained in the following proportions, an organic reducing agent, and water, reducing the metal particles to agglomerate the metal particles, and taking out the agglomerated metal particles from the slurry to obtain the above-mentioned It is characterized by comprising a step of obtaining a hydrous metal particle agglomerate containing an organic reducing agent in an amount of 2% by mass or less with respect to the metal particles, and a step of drying the hydrous metal particle agglomerate.

本発明の金属粒子凝集体の製造方法によれば、特定の粒度分布を持つ金属粒子を、有機還元剤を含むスラリー中にて還元処理することによって、金属粒子を凝集させるので、金属粒子同士の凝集強度が高い金属粒子凝集体を安定に生成させることができる。また、スラリーから取り出した金属粒子凝集体を、有機還元剤を金属粒子に対して2質量%以下の量にて含む含水金属粒子凝集体とした後、乾燥するので、得られた金属粒子凝集体の有機物の含有量を2質量%以下とすることができる。 According to the method for producing a metal particle agglomerate of the present invention, the metal particles having a specific particle size distribution are reduced in a slurry containing an organic reducing agent to agglomerate the metal particles. It is possible to stably generate metal particle agglomerates having high agglomeration strength. Further, the metal particle agglomerates taken out from the slurry are made into hydrous metal particle agglomerates containing an organic reducing agent in an amount of 2% by mass or less with respect to the metal particles, and then dried, so that the obtained metal particle agglomerates are obtained. The content of organic matter in the above can be 2% by mass or less.

本発明のペースト状金属粒子組成物は、揮発性溶媒と上記本発明の金属粒子凝集体とを含むことを特徴としている。
本発明のペースト状金属粒子組成物によれば、上記本発明の金属粒子凝集体を含むので、高い接合強度と長期信頼性とを持って接合対象部材を接合することが可能となる。
The paste-like metal particle composition of the present invention is characterized by containing a volatile solvent and the above-mentioned metal particle aggregate of the present invention.
According to the paste-like metal particle composition of the present invention, since the metal particle aggregate of the present invention is contained, it is possible to join the members to be joined with high bonding strength and long-term reliability.

接合体の製造方法は、第一の部材と第二の部材とが接合層を介して接合されている接合体の製造方法であって、上記本発明のペースト状金属粒子組成物を用いて前記接合層を形成することを特徴としている。
本発明の接合体の製造方法によれば、上記本発明のペースト状金属粒子組成物を用いて接合層を形成するので、高い接合強度と長期信頼性とを持って第一の部材と第二の部材部材とを接合することが可能となる。
The method for producing a bonded body is a method for producing a bonded body in which a first member and a second member are bonded via a bonding layer, and the above-mentioned paste-like metal particle composition of the present invention is used. It is characterized by forming a bonding layer.
According to the method for producing a bonded body of the present invention, since the bonded layer is formed by using the paste-like metal particle composition of the present invention, the first member and the second member have high bonding strength and long-term reliability. It is possible to join the members of the above.

本発明によれば、高い接合強度と長期信頼性とを持って電子部品などの部材を接合することができる金属粒子凝集体とその製造方法、ペースト状金属粒子組成物、およびそのペースト状金属粒子組成物を用いた接合体を提供することができる。 According to the present invention, a metal particle agglomerate capable of bonding members such as electronic parts with high bonding strength and long-term reliability, a method for producing the same, a paste-like metal particle composition, and the paste-like metal particles thereof. A bonded body using the composition can be provided.

本実施形態のペースト状金属粒子組成物を用いて製造された接合体の一例の断面図である。It is sectional drawing of an example of the bonded body produced using the paste-like metal particle composition of this embodiment.

<金属粒子凝集体>
本発明の実施形態である金属粒子凝集体について説明する。
本実施形態における金属粒子凝集体は、回路基板と半導体チップやLED素子などの電子部品とを接合するペースト状金属粒子組成物(接合材)の材料として使用することができる。
<Metal particle agglomerates>
The metal particle agglomerate according to the embodiment of the present invention will be described.
The metal particle aggregate in the present embodiment can be used as a material for a paste-like metal particle composition (bonding material) for bonding a circuit board and an electronic component such as a semiconductor chip or an LED element.

本実施形態の金属粒子凝集体は、金属粒子と有機物とを含む。
金属粒子(一次粒子)は、銀、金および銅からなる群より選ばれる少なくとも1つの金属を70質量%以上の量にて含有する。
金属粒子の上記金属の含有量は、好ましくは90質量%以上、特に好ましくは99質量%以上である。金属粒子は純度が高い方が、溶融し易くなるので、比較的低い温度で焼結させることが可能となる。
The metal particle agglomerates of the present embodiment include metal particles and organic substances.
The metal particles (primary particles) contain at least one metal selected from the group consisting of silver, gold and copper in an amount of 70% by mass or more.
The metal content of the metal particles is preferably 90% by mass or more, particularly preferably 99% by mass or more. The higher the purity of the metal particles, the easier it is to melt, so that the metal particles can be sintered at a relatively low temperature.

金属粒子は、粒径が500nm以上の粒子を1体積%以上含むことがなく、粒径が100nm以上500nm未満の範囲にある粒子を65体積%以上95体積%の範囲、粒径が50nm以上100nm未満の範囲にある粒子を5体積%以上30体積%の範囲、そして粒径が50nm未満の粒子を5体積%以下の割合にて含む。金属粒子が、上記のような比較的広い粒度分布を有することによって、金属粒子同士の隙間が小さい緻密な金属粒子凝集体を形成させることができる。金属粒子凝集体を構成する金属粒子間の隙間が小さいので、ボイドの少ない接合層を形成することが可能となる。金属粒子の粒径は、例えば、SEM(走査型電子顕微鏡)を用いて、金属粒子の投影面積を測定し、得られた投影面積から円相当径(銀粒子の投影面積と同じ面積を持つ円の直径)を算出し、算出した粒径を体積基準の粒径に換算することによって得ることができる。 The metal particles do not contain 1% by volume or more of particles having a particle size of 500 nm or more, and particles having a particle size of 100 nm or more and less than 500 nm are included in the range of 65% by volume or more and 95% by volume, and the particle size is 50 nm or more and 100 nm. Particles in the range of less than 5% by volume and 30% by volume are included, and particles having a particle size of less than 50 nm are included in a proportion of 5% by volume or less. Since the metal particles have a relatively wide particle size distribution as described above, it is possible to form a dense metal particle agglomerate having a small gap between the metal particles. Since the gap between the metal particles constituting the metal particle aggregate is small, it is possible to form a bonding layer having few voids. For the particle size of the metal particles, for example, the projected area of the metal particles is measured using an SEM (scanning electron microscope), and the diameter equivalent to a circle (a circle having the same area as the projected area of the silver particles) is obtained from the obtained projected area. It can be obtained by calculating (diameter) and converting the calculated particle size into a volume-based particle size.

粒径が100nm以上500nm未満の範囲にある金属粒子の含有量は、70体積%以上90体積%の範囲にあることが好ましい。粒径が50nm以上100nm未満の範囲にある金属粒子の含有量は10体積%以上30体積%の範囲にあることが好ましい。粒径が50nm未満の金属粒子の含有量は1体積%以下であることが好ましい。金属粒子の粒度分布が上記の範囲にあることによって、粒子間の隙間の小さい凝集体を形成させる効果が高くなり、さらにボイドの少ない接合層を形成することが可能となる。 The content of the metal particles having a particle size in the range of 100 nm or more and less than 500 nm is preferably in the range of 70% by volume or more and 90% by volume. The content of the metal particles having a particle size in the range of 50 nm or more and less than 100 nm is preferably in the range of 10% by volume or more and 30% by volume. The content of the metal particles having a particle size of less than 50 nm is preferably 1% by volume or less. When the particle size distribution of the metal particles is within the above range, the effect of forming aggregates with small gaps between the particles is enhanced, and it is possible to form a bonding layer having few voids.

本実施形態の金属粒子凝集体に含まれる有機物は、有機還元剤あるいはその分解物であることが好ましい。また、有機物は、150℃の温度で分解もしくは揮発するものであることが好ましい。有機還元剤の例としては、アスコルビン酸、ギ酸および酒石酸が挙げられる。
有機還元剤あるいはその分解物である有機物は、金属粒子凝集体の保存時では、金属粒子の表面の酸化を抑制し、金属原子の拡散を抑制する効果を有する。また、上記の有機物は、金属粒子凝集体を接合対象部材の被接合面に印刷して加熱したときでは、容易に分解もしくは揮発して、金属粒子の高活性な表面を露出させることにより、金属粒子同士の焼結反応を進行しやすくする効果がある。更に、上記の有機物の分解物もしくは揮発物は、接合対象部材の被接合面の酸化膜を還元させる還元能力を有する。
金属粒子凝集体に含まれる有機物が接合層に残留すると、時間の経過とともに分解して、接合層にボイドを発生させるおそれがある。このため、本実施形態の金属粒子凝集体では、有機物の含有量を、金属粒子に対して2質量%以下の量に制限している。
但し、有機物による上記の効果を得るためには、有機物の含有量は金属粒子に対して0.05質量%以上であることが好ましい。
The organic substance contained in the metal particle aggregate of the present embodiment is preferably an organic reducing agent or a decomposition product thereof. Further, the organic substance is preferably one that decomposes or volatilizes at a temperature of 150 ° C. Examples of organic reducing agents include ascorbic acid, formic acid and tartaric acid.
The organic reducing agent or an organic substance which is a decomposition product thereof has an effect of suppressing oxidation of the surface of the metal particles and suppressing diffusion of metal atoms during storage of the metal particle aggregates. Further, the above-mentioned organic substance is easily decomposed or volatilized when the metal particle agglomerate is printed on the surface to be bonded of the member to be bonded and heated, thereby exposing the highly active surface of the metal particles to the metal. It has the effect of facilitating the sintering reaction between particles. Further, the above-mentioned decomposition products or volatile substances of the organic substance have a reducing ability to reduce the oxide film on the surface to be bonded of the member to be bonded.
If the organic matter contained in the metal particle aggregate remains in the bonding layer, it may be decomposed with the passage of time to generate voids in the bonding layer. Therefore, in the metal particle agglomerate of the present embodiment, the content of organic matter is limited to an amount of 2% by mass or less with respect to the metal particles.
However, in order to obtain the above effect of the organic substance, the content of the organic substance is preferably 0.05% by mass or more with respect to the metal particles.

本実施形態の金属粒子凝集体は、上記の金属粒子(一次粒子)の凝集体であり、レーザ回折散乱法により測定される体積基準の粒度分布曲線において、D10が0.05μm以上0.25μm以下の範囲にあって、D50が0.4μm以上0.6μm以下の範囲にあり、さらにD90が1.5μm以上2.5μm以下の範囲とされている。金属粒子凝集体が、上記のような比較的広い粒度分布を有することによって、金属粒子凝集体同士の隙間が少ない緻密な金属粒子凝集体層を形成でき、さらにボイドの少ない接合層を形成することができる。 The metal particle agglomerate of the present embodiment is an agglomerate of the above metal particles (primary particles), and D10 is 0.05 μm or more and 0.25 μm or less in the volume-based particle size distribution curve measured by the laser diffraction scattering method. In the range of, D50 is in the range of 0.4 μm or more and 0.6 μm or less, and D90 is in the range of 1.5 μm or more and 2.5 μm or less. Since the metal particle agglomerates have a relatively wide particle size distribution as described above, a dense metal particle agglomerate layer with few gaps between the metal particle agglomerates can be formed, and a bonding layer with few voids can be formed. Can be done.

本実施形態の金属粒子凝集体は、比表面積が2〜8m/gの範囲にあることが好しい。
比表面積が上記の範囲にある金属粒子凝集体は、金属粒子の反応面積が大きく、加熱による反応性が高くなる。従って、この金属粒子凝集体は、比較的低い温度で焼結させることが可能となる。
The metal particle agglomerates of the present embodiment preferably have a specific surface area in the range of 2 to 8 m 2 / g.
A metal particle agglomerate having a specific surface area in the above range has a large reaction area of the metal particles and a high reactivity by heating. Therefore, this metal particle agglomerate can be sintered at a relatively low temperature.

次に、本実施形態の金属粒子凝集体の製造方法について説明する。
本実施形態の金属粒子凝集体の製造方法は、銀、金および銅からなる群より選ばれる少なくとも1つの金属を70質量%以上の量にて含有し、粒径が500nm以上の粒子を1体積%以上含むことがなく、粒径が100nm以上500nm未満の範囲にある粒子を65体積%以上95体積%の範囲、粒径が50nm以上100nm未満の範囲にある粒子を5体積%以上30体積%の範囲、そして粒径が50nm未満の粒子を5体積%以下の割合にて含む金属粒子と有機還元剤と水とを含むスラリーを調製し、金属粒子を還元処理して、金属粒子を凝集させる工程と、前記スラリーから凝集した金属粒子を取り出して、前記有機還元剤を、前記金属粒子に対して2質量%以下の量にて含む含水金属粒子凝集体を得る工程と、前記含水金属粒子凝集体を乾燥する工程とを備える。
Next, a method for producing the metal particle aggregate of the present embodiment will be described.
The method for producing a metal particle aggregate of the present embodiment contains at least one metal selected from the group consisting of silver, gold and copper in an amount of 70% by mass or more, and one volume of particles having a particle size of 500 nm or more. % Or more, particles having a particle size in the range of 100 nm or more and less than 500 nm are in the range of 65% by volume or more and 95% by volume, and particles having a particle size in the range of 50 nm or more and less than 100 nm are in the range of 5% by volume or more and 30% by volume. A slurry containing metal particles containing particles having a particle size of less than 50 nm at a ratio of 5% by volume or less, an organic reducing agent, and water is prepared, and the metal particles are reduced to agglomerate the metal particles. A step of taking out agglomerated metal particles from the slurry to obtain a hydrous metal particle agglomerate containing the organic reducing agent in an amount of 2% by mass or less with respect to the metal particles, and a step of coagulating the hydrous metal particles. It includes a step of drying the aggregate.

原料として用いる金属粒子の成分は、前述の金属粒子凝集体に含まれる金属粒子の好ましい成分と同じである。また、金属粒子の好ましい粒度分布は、前述の金属粒子凝集体に含まれる金属粒子の粒度分布と同じである。 The components of the metal particles used as the raw material are the same as the preferable components of the metal particles contained in the above-mentioned metal particle agglomerates. Further, the preferable particle size distribution of the metal particles is the same as the particle size distribution of the metal particles contained in the above-mentioned metal particle aggregate.

前述の粒度分布を有する金属粒子は、例えば、粒径が100nm以上500nm未満の範囲にある金属粒子、粒径が50nm以上100nm未満の範囲にある金属粒子、そして粒径が50nm未満の金属粒子をそれぞれ用意して、混合する方法によって製造することができる。
また、前述の粒度分布を有する金属粒子は、有機酸金属塩(銀、金、銅の塩)の水溶液と、銀、金および銅に対して還元作用を有する有機物とを混合して、金属塩を還元させて、金属粒子として析出させて金属粒子のスラリーを得る方法によっても製造することができる。有機酸金属塩の例としては、シュウ酸金属塩、クエン酸金属塩およびマレイン酸金属塩が挙げられる。還元作用を有する有機物の例としては、アスコルビン酸、ギ酸、酒石酸およびそれらの塩が挙げられる。この製造方法によって得られる金属粒子の粒度分布は、有機酸金属塩と有機物の配合量、還元時の温度や時間によって適宜調整することができる。
The metal particles having the above-mentioned particle size distribution include, for example, metal particles having a particle size in the range of 100 nm or more and less than 500 nm, metal particles having a particle size in the range of 50 nm or more and less than 100 nm, and metal particles having a particle size of less than 50 nm. Each can be prepared and manufactured by a mixing method.
Further, the metal particles having the above-mentioned particle size distribution are obtained by mixing an aqueous solution of an organic acid metal salt (salt of silver, gold, copper) and an organic substance having a reducing action on silver, gold, and copper to form a metal salt. Can also be produced by a method of reducing and precipitating as metal particles to obtain a slurry of metal particles. Examples of organic acid metal salts include oxalic acid metal salts, citrate metal salts and maleic acid metal salts. Examples of reducing organic substances include ascorbic acid, formic acid, tartaric acid and salts thereof. The particle size distribution of the metal particles obtained by this production method can be appropriately adjusted depending on the blending amount of the organic acid metal salt and the organic substance, and the temperature and time at the time of reduction.

本実施形態の金属粒子凝集体の製造方法では、金属粒子と有機還元剤と水とを含むスラリーを調製し、金属粒子を還元処理して、金属粒子を凝集させる。金属粒子の表面が還元されて、酸化被膜が除去され、金属粒子の表面が活性化されることによって、金属粒子同士の凝集強度が高い金属粒子凝集体を安定に生成させることができる。金属粒子を有機還元剤によって還元処理して、金属粒子の凝集体を生成させる。その生成した金属粒子凝集体の表面を有機還元剤が被覆する。これによって、形状の安定性が高い凝集体が得られる。 In the method for producing a metal particle agglomerate of the present embodiment, a slurry containing the metal particles, an organic reducing agent, and water is prepared, the metal particles are reduced, and the metal particles are agglomerated. By reducing the surface of the metal particles, removing the oxide film, and activating the surface of the metal particles, it is possible to stably generate metal particle agglomerates having high aggregation strength between the metal particles. The metal particles are reduced with an organic reducing agent to form aggregates of the metal particles. The surface of the generated metal particle agglomerates is coated with an organic reducing agent. As a result, an aggregate having high shape stability can be obtained.

スラリーの調製に際して、金属粒子と有機物と水の混合順序に特に制限はない。金属粒子と有機物と水とを同時に混合してよいし、金属粒子と有機物を含む混合物と水とを混合してもよいし、金属粒子と水を含む混合物と有機物とを混合してもよいし、有機物と水を含む混合物と金属粒子とを混合してもよい。 When preparing the slurry, the mixing order of the metal particles, the organic substance and the water is not particularly limited. Metal particles, organic matter and water may be mixed at the same time, a mixture containing metal particles and organic matter and water may be mixed, or a mixture containing metal particles and water and organic matter may be mixed. , A mixture containing organic matter and water and metal particles may be mixed.

金属粒子を還元処理する際には、スラリーを加熱することが好ましい。スラリーの加熱温度は、通常は90℃以下、好ましくは50℃以上80℃以下である。加熱温度が上記の温度よりも高いと金属粒子の過剰に還元されて、凝集体の粒径が大きくなりすぎることがある。一方、加熱温度が上記の温度よりも低いと金属粒子が還元されずに、凝集体が生成しないことがある。 When the metal particles are reduced, it is preferable to heat the slurry. The heating temperature of the slurry is usually 90 ° C. or lower, preferably 50 ° C. or higher and 80 ° C. or lower. If the heating temperature is higher than the above temperature, the metal particles may be excessively reduced and the particle size of the agglomerates may become too large. On the other hand, if the heating temperature is lower than the above temperature, the metal particles may not be reduced and aggregates may not be formed.

本実施形態の金属粒子凝集体の製造方法では、スラリーから凝集した金属粒子を取り出して、水洗などによって、有機還元剤を、金属粒子に対して2質量%以下の量にて含む含水金属粒子凝集体を得る。スラリーから金属粒子を取り出す方法としては、遠心分離、ろ過、デカンテーションなどの方法を用いることができる。 In the method for producing agglomerates of metal particles of the present embodiment, the agglomerated metal particles are taken out from the slurry and washed with water or the like to contain an organic reducing agent in an amount of 2% by mass or less with respect to the metal particles. Get an aggregate. As a method for extracting metal particles from the slurry, a method such as centrifugation, filtration, or decantation can be used.

<ペースト状金属粒子組成物>
次に、本実施態様のペースト状金属粒子組成物(接合材)について説明する。
本実施態様のペースト状金属粒子組成物は、揮発性溶媒と上述の金属粒子凝集体とを含む。揮発性溶媒の例としては、アルコール系溶媒、グリコール系溶媒、アセテート系溶媒、炭化水素系溶媒およびアミン系溶媒が挙げられる。アルコール系溶媒の具体例としては、α−テルピネオール、イソプロピルアルコールが挙げられる。グリコール系溶媒の具体例としては、エチレングリコール、ジエチレングリコール、ポリエチレングリコールが挙げられる。アセテート系溶媒の具体例としては、酢酸ブチルトールカルビテートが挙げられる。炭化水素系溶媒の具体例としては、デカン、ドデカン、テトラデカンが挙げられる。アミン系溶媒の具体例としては、ヘキシルアミン、オクチルアミン、ドデシルアミンが挙げられる。
<Paste-like metal particle composition>
Next, the paste-like metal particle composition (bonding material) of the present embodiment will be described.
The paste-like metal particle composition of the present embodiment contains a volatile solvent and the above-mentioned metal particle agglomerates. Examples of volatile solvents include alcohol solvents, glycol solvents, acetate solvents, hydrocarbon solvents and amine solvents. Specific examples of the alcohol solvent include α-terpineol and isopropyl alcohol. Specific examples of the glycol-based solvent include ethylene glycol, diethylene glycol, and polyethylene glycol. Specific examples of the acetate-based solvent include butyl butyl toll carbitate acetate. Specific examples of the hydrocarbon solvent include decane, dodecane, and tetradecane. Specific examples of amine-based solvents include hexylamine, octylamine, and dodecylamine.

ペースト状金属粒子組成物の金属粒子凝集体の含有量は、ペースト状金属粒子組成物の全体量に対して50質量%以上であることが好ましく、70質量%以上95質量%以下の範囲にあることが特に好ましい。金属粒子凝集体の含有量が上記の範囲にあると、ペースト状金属粒子組成物の粘度が低くなりすぎず、部材の表面に安定してペースト状金属粒子組成物を塗布することができる。また、そのペースト状金属粒子組成物を焼成することによって、密度が高く、ボイドの発生量が少ない焼結体(接合層)を得ることができる。 The content of the metal particle agglomerates in the paste-like metal particle composition is preferably 50% by mass or more, and is in the range of 70% by mass or more and 95% by mass or less with respect to the total amount of the paste-like metal particle composition. Is particularly preferred. When the content of the metal particle agglomerates is in the above range, the viscosity of the paste-like metal particle composition does not become too low, and the paste-like metal particle composition can be stably applied to the surface of the member. Further, by firing the paste-like metal particle composition, a sintered body (bonded layer) having a high density and a small amount of voids generated can be obtained.

本実施形態のペースト状金属粒子組成物は、さらに酸化防止剤、粘度調整剤などの添加剤を含んでいてもよい。これらの添加剤の含有量は、ペースト状金属粒子組成物の全体量にして1質量%以上5質量%以下の範囲であることが好ましい。 The paste-like metal particle composition of the present embodiment may further contain additives such as an antioxidant and a viscosity modifier. The content of these additives is preferably in the range of 1% by mass or more and 5% by mass or less in terms of the total amount of the paste-like metal particle composition.

本実施形態のペースト状金属粒子組成物は、例えば、揮発性溶媒と金属粒子凝集体とを混合して得た混合物を、混練装置を用いて混練することによって製造することができる。混練装置としては、三本ロールミルを用いることができる。 The paste-like metal particle composition of the present embodiment can be produced, for example, by kneading a mixture obtained by mixing a volatile solvent and a metal particle agglomerate using a kneading device. As the kneading device, a three-roll mill can be used.

<接合体>
次に、本実施態様のペースト状金属粒子組成物を用いた接合体の製造方法について、図1を参照して説明する。図1に本実施形態のペースト状金属粒子組成物を用いて製造された接合体の断面図を示す。図1に示すように、接合体11は、基板12と、第1の金属層13と、接合層14と、第2の金属層15と、被接合物16と、を備えて概略構成されている。
<Joined body>
Next, a method for producing a bonded body using the paste-like metal particle composition of the present embodiment will be described with reference to FIG. FIG. 1 shows a cross-sectional view of a bonded body produced by using the paste-like metal particle composition of the present embodiment. As shown in FIG. 1, the joint body 11 is roughly configured by including a substrate 12, a first metal layer 13, a joint layer 14, a second metal layer 15, and an object to be joined 16. There is.

本実施形態では、一例として、上述したペースト状金属粒子組成物(接合材)を用いて基板12(第一の部材)と被接合物16(第二の部材)とを接合した接合体11について説明するが、ペースト状金属粒子組成物を用いて接合するものとしては、特に限定されるものではない。 In the present embodiment, as an example, the bonded body 11 in which the substrate 12 (first member) and the object to be bonded 16 (second member) are bonded using the above-mentioned paste-like metal particle composition (bonding material). As described above, the bonding using the paste-like metal particle composition is not particularly limited.

基板12としては、特に限定されないが、具体的には、例えば、アルミ板、及びアルミ板が接合された絶縁基板および回路基板が挙げられる。 The substrate 12 is not particularly limited, and specific examples thereof include an aluminum plate, an insulating substrate to which an aluminum plate is joined, and a circuit board.

第1の金属層13は、基板12に隣接して積層されている。第1の金属層13を介して、基板12と接合層14とが接合されている。第1の金属層13の材料としては、具体的には、例えば、金、銀、銅等からなる群より選ばれた1種又は2種以上の金属を用いることができる。 The first metal layer 13 is laminated adjacent to the substrate 12. The substrate 12 and the bonding layer 14 are bonded via the first metal layer 13. As the material of the first metal layer 13, for example, one kind or two or more kinds of metals selected from the group consisting of gold, silver, copper and the like can be used.

接合層14は、第1の金属層13と第2の金属層15の間に隣接して積層されている。
接合層14は、第1の金属層13と接触して界面17を形成している。また、接合層14は、第2の金属層15と接触して界面18を形成している。接合層14は、上述した接合材を第1の金属層13上に塗布し、塗布した面と第2の金属層15が対向するように被接合物16を置き、加熱処理することで形成されるものである。
The bonding layer 14 is laminated adjacently between the first metal layer 13 and the second metal layer 15.
The bonding layer 14 is in contact with the first metal layer 13 to form an interface 17. Further, the bonding layer 14 is in contact with the second metal layer 15 to form an interface 18. The bonding layer 14 is formed by applying the above-mentioned bonding material on the first metal layer 13, placing the object to be bonded 16 so that the coated surface and the second metal layer 15 face each other, and heat-treating. It is a thing.

接合層14の厚さとしては、基板12と被接合物16とを接合することができる厚さであれば、特に限定されない。具体的には、例えば、1〜100μmであってもよい。 The thickness of the bonding layer 14 is not particularly limited as long as it can bond the substrate 12 and the object 16 to be bonded. Specifically, for example, it may be 1 to 100 μm.

第2の金属層15は、接合層14を介して第1の金属層13の反対側に隣接して積層されている。第2の金属層15を介して、接合層14と被接合物16とが接合されている。
第2の金属層15の材料としては、第1の金属層13に用いられる材料と同様のものを用いることができる。
The second metal layer 15 is laminated adjacent to the opposite side of the first metal layer 13 via the bonding layer 14. The bonding layer 14 and the object to be bonded 16 are bonded via the second metal layer 15.
As the material of the second metal layer 15, the same material as that used for the first metal layer 13 can be used.

被接合物16は、第2の金属層15を介して接合層14の反対側に隣接して積層されている。被接合物16としては、特に限定されないが、具体的には、例えば、シリコン(Si)、シリコンカーバイド(SiC)、半導体チップおよびLED素子などの電子部品が挙げられる。また、本実施形態の接合体11は、上述した接合材を用いているため、被接合物16として熱に弱い材料も用いることができる。 The object 16 to be bonded is laminated adjacent to the opposite side of the bonding layer 14 via the second metal layer 15. The object to be joined 16 is not particularly limited, and specific examples thereof include electronic components such as silicon (Si), silicon carbide (SiC), semiconductor chips, and LED elements. Further, since the bonded body 11 of the present embodiment uses the above-mentioned bonding material, a heat-sensitive material can also be used as the object to be bonded 16.

本実施形態の接合体11は、接合層14により、基板12と被接合物16とが接合される。接合層14は上述した接合材を用いて形成しているため、接合層14の接合強度と長期信頼性とが向上する。本実施形態の接合体11の接合強度(シェア強度)としては、具体的には、例えば、20MPa以上が好ましく、30MPa以上がより好ましい。 In the bonded body 11 of the present embodiment, the substrate 12 and the object to be joined 16 are bonded by the bonding layer 14. Since the bonding layer 14 is formed by using the above-mentioned bonding material, the bonding strength and long-term reliability of the bonding layer 14 are improved. Specifically, as the bonding strength (share strength) of the bonded body 11 of the present embodiment, for example, 20 MPa or more is preferable, and 30 MPa or more is more preferable.

なお、接合強度の測定は、例えば、市販のボンディングテスタ(例えば、RHESCA社製等)を用いて行うことができる。長期信頼性の向上効果は、例えば、接合体11に冷熱サイクルを繰り返し付与したときの接合層14のボイド面積率の増加量によって確認できる。ボイド面積率の増加が少ないと、長期信頼性が高い。 The bonding strength can be measured using, for example, a commercially available bonding tester (for example, manufactured by RHESCA). The effect of improving the long-term reliability can be confirmed, for example, by the amount of increase in the void area ratio of the bonding layer 14 when the bonding body 11 is repeatedly subjected to the cooling and heating cycle. If the increase in the void area ratio is small, the long-term reliability is high.

次に、上述した接合体11の製造方法について、図1を用いて説明する。
先ず、基板12の表面に、周知の方法により金属を積層することで、第1の金属層13を積層する。同様にして、被接合物16の表面に、第2の金属層15を積層する。
Next, the method for manufacturing the bonded body 11 described above will be described with reference to FIG.
First, the first metal layer 13 is laminated by laminating a metal on the surface of the substrate 12 by a well-known method. Similarly, the second metal layer 15 is laminated on the surface of the object to be joined 16.

基板12及び被接合物16の表面に金属を積層する方法としては、特に限定されないが、具体的には、例えば、真空蒸着法、スパッタリング法、めっき法、印刷法等が挙げられる。 The method of laminating the metal on the surfaces of the substrate 12 and the object 16 is not particularly limited, and specific examples thereof include a vacuum vapor deposition method, a sputtering method, a plating method, and a printing method.

次に、第1の金属層13の表面に、周知の方法により上述した接合材を塗布する。第1の金属層13の表面に接合材を塗布する方法としては、特に限定されないが、具体的には、例えば、スピンコート法、メタルマスク法、スクリーン印刷法等が挙げられる。 Next, the above-mentioned bonding material is applied to the surface of the first metal layer 13 by a well-known method. The method of applying the bonding material to the surface of the first metal layer 13 is not particularly limited, and specific examples thereof include a spin coating method, a metal mask method, and a screen printing method.

次に、第1の金属層13の表面に塗布した接合材の上に、第2の金属層15側が対向するように被接合物16を置く。その後、加熱処理することで、接合材から接合層14が形成され、接合層14を介して第1の金属層13及び第2の金属層15が接合される。 Next, the object to be joined 16 is placed on the bonding material applied to the surface of the first metal layer 13 so that the second metal layer 15 side faces each other. After that, by heat treatment, a bonding layer 14 is formed from the bonding material, and the first metal layer 13 and the second metal layer 15 are bonded via the bonding layer 14.

加熱処理の際の加熱温度としては、特に限定されないが、例えば、120℃以上、より具体的には120℃以上400℃以下の範囲が好ましい。加熱温度が上記の範囲であることにより、接合層14の接合強度と長期信頼性とを高くすることができる。また、加熱処理の際に、基板12と被接合物16のどちらかを10MPa以下の圧力で加圧してもよい。加圧することにより、接合層14が緻密になり、接合強度と長期信頼性とを高くすることができる。 The heating temperature during the heat treatment is not particularly limited, but is preferably in the range of, for example, 120 ° C. or higher, more specifically 120 ° C. or higher and 400 ° C. or lower. When the heating temperature is in the above range, the bonding strength and long-term reliability of the bonding layer 14 can be increased. Further, at the time of heat treatment, either the substrate 12 or the object to be joined 16 may be pressurized at a pressure of 10 MPa or less. By pressurizing, the bonding layer 14 becomes dense, and the bonding strength and long-term reliability can be increased.

加熱処理の際の加熱時間としては、特に限定されないが、具体的には、例えば、30分以上が好ましい。加熱時間が30分以上であることにより、接合層14の接合強度と長期信頼性とを高くすることができる。
以上の工程により、接合体11が製造される。
The heating time during the heat treatment is not particularly limited, but specifically, for example, 30 minutes or more is preferable. When the heating time is 30 minutes or more, the bonding strength and long-term reliability of the bonding layer 14 can be increased.
The bonded body 11 is manufactured by the above steps.

以下、本発明の効果を、実施例を用いて詳細に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the effects of the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.

[本発明例1]
(1)銀粒子凝集体
D10が20nm、D50が50nm、D90が100nmの銀粒子と、D10が150nm、D50が300nm、D90が500nmの銀粒子とを用意した。銀粒子のD10、D50、D90は、銀粒子の粒度分布曲線から求めた。銀粒子の粒度分布曲線は動的光散乱法を用いて下記の方法により測定した。
用意したD50が50nmの銀粒子と、D50が300nmの銀粒子とを、質量比で1:3の割合にて混合して、銀粒子混合物を得た。
[Example 1 of the present invention]
(1) Silver particle agglomerates Silver particles having a D10 of 20 nm, a D50 of 50 nm and a D90 of 100 nm, and silver particles having a D10 of 150 nm, a D50 of 300 nm and a D90 of 500 nm were prepared. D10, D50, and D90 of the silver particles were obtained from the particle size distribution curve of the silver particles. The particle size distribution curve of silver particles was measured by the following method using a dynamic light scattering method.
The prepared silver particles having a D50 of 50 nm and silver particles having a D50 of 300 nm were mixed at a mass ratio of 1: 3 to obtain a silver particle mixture.

(動的光散乱法による粒度分布曲線の測定方法)
先ず、銀粉末0.1gをイオン交換水20g中に投入し、25kHzの超音波を5分間照射して、イオン交換水に銀粒子を分散させた。次に、得られた銀粒子凝集体分散液を、動的光散乱式粒度分布測定装置(堀場製作所製:LB−550)用の観察セルに注ぎ、この装置の手順に従い粒度分布を測定した。
(Measurement method of particle size distribution curve by dynamic light scattering method)
First, 0.1 g of silver powder was put into 20 g of ion-exchanged water, and ultrasonic waves of 25 kHz were irradiated for 5 minutes to disperse silver particles in the ion-exchanged water. Next, the obtained silver particle agglomerate dispersion was poured into an observation cell for a dynamic light scattering type particle size distribution measuring device (manufactured by HORIBA, Ltd .: LB-550), and the particle size distribution was measured according to the procedure of this device.

上記で得られた銀粒子混合物とアスコルビン酸ナトリウム(有機還元剤)と水とを、質量比で10:1:89となる割合にて混合して、銀粒子スラリーを調製した。調製した銀粒子スラリーを、90℃の温度で3時間加熱して、銀粒子を還元処理した。次いで、銀粒子スラリーを室温まで放冷した後、遠心分離器を用いて、固形物を分離、回収した。回収した固形物(含水銀粒子凝集体)を数回水洗し、乾燥して銀粒子凝集体を得た。 The silver particle mixture obtained above, sodium ascorbate (organic reducing agent), and water were mixed at a mass ratio of 10: 1: 89 to prepare a silver particle slurry. The prepared silver particle slurry was heated at a temperature of 90 ° C. for 3 hours to reduce the silver particles. Then, after allowing the silver particle slurry to cool to room temperature, the solid matter was separated and recovered using a centrifuge. The recovered solid matter (mercury-containing particle agglomerates) was washed with water several times and dried to obtain silver particle agglomerates.

得られた銀粒子凝集体について、銀粒子凝集体を構成している銀粒子(一次粒子)の粒度分布、銀粒子凝集体(二次粒子)のレーザ回折散乱法による粒度分布曲線、銀粒子凝集体に含まれている有機物の含有量、そして銀粒子凝集体の比表面積を、下記の方法により測定した。その結果を表1に示す。 Regarding the obtained silver particle agglomerates, the particle size distribution of the silver particles (primary particles) constituting the silver particle agglomerates, the particle size distribution curve of the silver particle agglomerates (secondary particles) by the laser diffraction scattering method, and the silver particle coagulation. The content of organic matter contained in the aggregate and the specific surface area of the silver particle aggregate were measured by the following methods. The results are shown in Table 1.

(銀粒子の粒度分布の測定方法)
SEMを用いて、銀粒子凝集体500個の画像を取得し、各銀粒子凝集体に含まれている銀粒子の粒径を測定した。このときSEMの装置倍率は100000倍とした。500個の銀粒子凝集体のSEM画像から、銀粒子(一次粒子)の全体の輪郭が視認できる銀粒子を抽出した。次いで、画像処理ソフト(Image−J)を用いて、抽出した銀粒子の投影面積を測定し、得られた投影面積から円相当径を算出して、これを銀粒子の粒径とした。輪郭が視認できない箇所がある銀粒子については、円相当径を測定しなかった。得られた銀粒子の粒径を、体積基準の粒径に変換し、その体積基準の粒径の粒度分布を求めた。その結果を、表1の「金属粒子の粒度分布」の欄に示す。
(Measurement method of particle size distribution of silver particles)
Images of 500 silver particle aggregates were acquired using SEM, and the particle size of the silver particles contained in each silver particle aggregate was measured. At this time, the device magnification of the SEM was set to 100,000 times. From the SEM image of 500 silver particle aggregates, silver particles in which the entire outline of the silver particles (primary particles) can be visually recognized were extracted. Next, the projected area of the extracted silver particles was measured using image processing software (Image-J), the equivalent circle diameter was calculated from the obtained projected area, and this was used as the particle size of the silver particles. The diameter equivalent to the circle was not measured for silver particles whose contours could not be visually recognized. The particle size of the obtained silver particles was converted into a volume-based particle size, and the particle size distribution of the volume-based particle size was obtained. The results are shown in the column of "particle size distribution of metal particles" in Table 1.

(銀粒子凝集体のレーザ回折散乱法による粒度分布曲線の測定方法)
先ず、銀粒子凝集体0.1gをイオン交換水20g中に投入し、25kHzの超音波を5分間照射して、イオン交換水に銀粒子凝集体を分散させた。次に、得られた銀粒子凝集体分散液を、レーザ回折散乱式粒度分布測定装置(堀場製作所製:LA−960)の観察セルに適量滴下し、この装置の手順に従い粒度分布を測定した。このレーザ回折散乱法によって測定された粒度分布は、銀粒子(一次粒子)の凝集体を一つの粒子として扱う、銀粒子凝集体(二次粒子)の粒度分布である。この結果を、表1の「金属粒子凝集体の粒度分布」の欄に示す。
(Measurement method of particle size distribution curve by laser diffraction scattering method of silver particle aggregate)
First, 0.1 g of silver particle aggregates was put into 20 g of ion-exchanged water, and ultrasonic waves of 25 kHz were irradiated for 5 minutes to disperse the silver particle aggregates in the ion-exchanged water. Next, an appropriate amount of the obtained silver particle agglomerate dispersion was dropped onto an observation cell of a laser diffraction / scattering type particle size distribution measuring device (manufactured by HORIBA, Ltd .: LA-960), and the particle size distribution was measured according to the procedure of this device. The particle size distribution measured by this laser diffraction / scattering method is a particle size distribution of silver particle aggregates (secondary particles) that treats aggregates of silver particles (primary particles) as one particle. The results are shown in the column of "Particle size distribution of metal particle aggregates" in Table 1.

(有機物の含有量の測定方法)
銀粒子凝集体を量り取り、大気中にて150℃の温度で30分間加熱した。加熱後、室温まで放冷し、銀粒子凝集体の質量を測定した。下記の式より、有機物の含有量を算出した。この結果を、表1の「有機物含有量」の欄に示す。
有機物の含有量(質量%)=(A−B)/A×100
(但し、Aは、加熱前の銀粒子凝集体の質量、Bは、加熱後の銀粒子凝集体の質量である。)
(Measuring method of organic matter content)
The silver particle agglomerates were weighed and heated in the air at a temperature of 150 ° C. for 30 minutes. After heating, the mixture was allowed to cool to room temperature, and the mass of silver particle aggregates was measured. The content of organic matter was calculated from the following formula. The results are shown in the "Organic matter content" column of Table 1.
Organic matter content (% by mass) = (AB) / A × 100
(However, A is the mass of the silver particle agglomerates before heating, and B is the mass of the silver particle agglomerates after heating.)

(比表面積の測定方法)
測定装置として、QUANTACHROME AUTOSORB−1(カンタクローム・インスツルメンツ製)を用い、冷却した銀粒子凝集体へのNガスの吸着量から求めた。この結果を、表1の「比表面積」の欄に示す。
(Method of measuring specific surface area)
As the measuring apparatus, using a QUANTACHROME AUTOSORB-1 (manufactured by Quantachrome Instruments), was determined from the amount of adsorbed N 2 gas to chilled silver particles agglomerate. The results are shown in the "Specific surface area" column of Table 1.

(2)ペースト状銀粒子組成物
上記(1)で得られた銀粒子凝集体とエチレングリコールとを、質量比で70:30の割合で混合した。得られた混合物を、三本ロールミルを用いて混練して、ペースト状銀粒子組成物を調製した。
(2) Paste-like silver particle composition The silver particle aggregate obtained in (1) above and ethylene glycol were mixed at a mass ratio of 70:30. The obtained mixture was kneaded using a three-roll mill to prepare a paste-like silver particle composition.

(3)接合体
第一部材として、最表面に金メッキを施した20mm角のCu板(厚さ:1mm)を、第二部材として、最表面に金メッキを施した2.5mm角のSiウエハ(厚さ:200μm)を用意した。第一部材の表面に、上記(2)で調製したペースト状銀粒子組成物を、メタルマスク法により塗布してペースト層を形成した。次いで、ペースト層の上に第二部材を配置して、200℃の温度で30分加熱して、第一の部材と第二の部材とが接合層を介して接合されている接合体を作製した。得られた接合体の接合強度(シェア強度)を下記の方法により測定した。また、接合体に対して、液相法にて200℃⇔−40℃1000サイクルの冷熱サイクルを負荷し、その冷熱サイクルの前後での接合層中のボイド面積率を下記の方法により測定した。その結果を、下記の表1に示す。
(3) Joined body A 20 mm square Cu plate (thickness: 1 mm) with gold plating on the outermost surface is used as the first member, and a 2.5 mm square Si wafer (thickness: 1 mm) with gold plating on the outermost surface as the second member. Thickness: 200 μm) was prepared. The paste-like silver particle composition prepared in (2) above was applied to the surface of the first member by a metal mask method to form a paste layer. Next, the second member is placed on the paste layer and heated at a temperature of 200 ° C. for 30 minutes to prepare a bonded body in which the first member and the second member are bonded via the bonding layer. did. The joint strength (share strength) of the obtained joint was measured by the following method. Further, the bonded body was loaded with a cold cycle of 200 ° C.⇔-40 ° C. for 1000 cycles by the liquid phase method, and the void area ratio in the joint layer before and after the cold heat cycle was measured by the following method. The results are shown in Table 1 below.

(接合体の接合強度の測定方法)
せん断強度評価試験機を用いて接合強度を測定した。測定は、接合体の第一部材(Cu板)を水平に固定し、接合層の表面から50μm上方の位置にてシェアツールを用いて、第二部材(Siウエハ)を横から水平方向に押して、第二部材が破断されたときの強度を測定した。シェアツールの移動速度は0.1mm/secとした。一条件に付き3回強度試験を行い、それらの算術平均値を測定値とした。せん断強度評価試験機として株式会社レスカ製ボンディングテスタ(Model:PTR−1101)を用いた。
(Measuring method of joint strength of joint body)
The joint strength was measured using a shear strength evaluation tester. For measurement, the first member (Cu plate) of the bonded body is fixed horizontally, and the second member (Si wafer) is pushed horizontally from the side using a shear tool at a position 50 μm above the surface of the bonded layer. , The strength when the second member was broken was measured. The moving speed of the share tool was 0.1 mm / sec. Intensity tests were performed three times under one condition, and their arithmetic mean values were used as measured values. A bonding tester (Model: PTR-1101) manufactured by Resca Co., Ltd. was used as a shear strength evaluation tester.

(接合層中のボイド面積率の測定方法)
超音波探傷装置を用いて、以下の式から接合層中のボイド面積率を求めた。ここで、接合層の面積は、接合層により接合すべき面積、すなわち第二部材の面積とした。また、超音波探傷像において第一部材と第二部材とが剥離した部分は白色部で示されることから、この白色部の面積をボイド面積とした。
ボイド面積率(%)=ボイド面積/接合層の面積×100
(Measurement method of void area ratio in the joint layer)
Using an ultrasonic flaw detector, the void area ratio in the joint layer was calculated from the following formula. Here, the area of the bonding layer is defined as the area to be bonded by the bonding layer, that is, the area of the second member. Further, in the ultrasonic flaw detection image, the portion where the first member and the second member are separated is indicated by a white portion, and therefore the area of this white portion is defined as the void area.
Void area ratio (%) = void area / bonding layer area x 100

[本発明例2]
本発明例1の(1)銀粒子凝集体において、D50が50nmの銀粒子と、D50が300nmの銀粒子との混合割合を、質量比で1:1としたこと、以外は本発明例1と同様にして、銀粒子凝集体、ペースト状銀粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。
[Example 2 of the present invention]
Example 1 of the present invention except that the mixing ratio of the silver particles having a D50 of 50 nm and the silver particles having a D50 of 300 nm was 1: 1 in the (1) silver particle aggregate of the present invention example 1. A silver particle aggregate, a paste-like silver particle composition, and a bonded body were produced in the same manner as in Example 1 of the present invention, and the same evaluation as in Example 1 of the present invention was performed. The results are shown in Table 1.

[本発明例3]
本発明例1の(1)銀粒子凝集体において、D50が50nmの銀粒子と、D50が300nmの銀粒子との混合割合を、質量比で1:5としたこと以外は本発明例1と同様にして、銀粒子凝集体、ペースト状銀粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。
[Example 3 of the present invention]
In the (1) silver particle agglomerate of the present invention example 1, the mixing ratio of the silver particles having a D50 of 50 nm and the silver particles having a D50 of 300 nm was set to 1: 5 in terms of mass ratio. In the same manner, a silver particle agglomerate, a paste-like silver particle composition, and a bonded body were produced and evaluated in the same manner as in Example 1 of the present invention. The results are shown in Table 1.

[本発明例4]
本発明例1の(1)銀粒子凝集体において、銀粒子混合物の代わりに下記の方法により作製した銀粉を用いたこと以外は本発明例1と同様にして、銀粒子凝集体、ペースト状銀粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。
[Example 4 of the present invention]
In the silver particle agglomerate of the present invention example 1, the silver particle agglomerate and the paste-like silver are the same as those of the present invention example 1 except that the silver powder prepared by the following method is used instead of the silver particle mixture. A particle composition and a conjugate were produced and evaluated in the same manner as in Example 1 of the present invention. The results are shown in Table 1.

(銀粉の作製方法)
先ず、50℃に保持した1200gのイオン交換水に、50℃に保持した900gの硝酸銀水溶液と、50℃に保持した600gのクエン酸ナトリウム水溶液とを、5分かけて同時に滴下し、クエン酸銀スラリーを調製した。なお、イオン交換水中に硝酸銀水溶液とクエン酸ナトリウム水溶液を同時に滴下している間、イオン交換水を撹拌し続けた。また、硝酸銀水溶液中の硝酸銀の濃度は66質量%であり、クエン酸ナトリウム水溶液中のクエン酸の濃度は56質量%であった。
次いで、50℃に保持したクエン酸銀スラリーに、50℃に保持した300gのギ酸ナトリウム水溶液を30分かけて滴下して混合スラリーを得た。このギ酸ナトリウム水溶液中のギ酸の濃度は58質量%であった。
次に、上記混合スラリーに所定の熱処理を行った。具体的には、上記混合スラリーを昇温速度10℃/時間で最高温度60℃まで昇温し、60℃(最高温度)で30分保持した後に、60分間かけて20℃まで温度を下げた。これにより銀粉スラリーを得た。上記銀粉スラリーを遠心分離機に入れて1000rpmの回転速度で10分間回転させた。これにより銀粉スラリー中の液層が除去され、脱水及び脱塩された銀粉スラリーを得た。
この脱水及び脱塩された銀粉スラリーを凍結乾燥法により30時間乾燥することで、銀粉を得た。
(How to make silver powder)
First, 900 g of a silver nitrate aqueous solution held at 50 ° C. and 600 g of a sodium citrate aqueous solution held at 50 ° C. were simultaneously added dropwise to 1200 g of ion-exchanged water held at 50 ° C. over 5 minutes, and silver citrate was added. A slurry was prepared. The ion-exchanged water was continuously stirred while the silver nitrate aqueous solution and the sodium citrate aqueous solution were simultaneously added dropwise to the ion-exchanged water. The concentration of silver nitrate in the silver nitrate aqueous solution was 66% by mass, and the concentration of citric acid in the sodium citrate aqueous solution was 56% by mass.
Next, a 300 g aqueous sodium formate solution kept at 50 ° C. was added dropwise to the silver citrate slurry held at 50 ° C. over 30 minutes to obtain a mixed slurry. The concentration of formic acid in this sodium formate aqueous solution was 58% by mass.
Next, the mixed slurry was subjected to a predetermined heat treatment. Specifically, the mixed slurry was raised to a maximum temperature of 60 ° C. at a heating rate of 10 ° C./hour, held at 60 ° C. (maximum temperature) for 30 minutes, and then lowered to 20 ° C. over 60 minutes. .. As a result, a silver powder slurry was obtained. The silver powder slurry was placed in a centrifuge and rotated at a rotation speed of 1000 rpm for 10 minutes. As a result, the liquid layer in the silver powder slurry was removed to obtain a dehydrated and desalted silver powder slurry.
The dehydrated and desalted silver powder slurry was dried by a freeze-drying method for 30 hours to obtain silver powder.

[本発明例5]
本発明例1の(1)銀粒子凝集体において、銀粒子スラリーから回収した含水銀粒子凝集体の水洗の回数を多くして、含水銀粒子凝集体に残留するアスコルビン酸の量を低減させたこと以外は本発明例1と同様にして、銀粒子凝集体、ペースト状銀粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。
[Example 5 of the present invention]
In the silver particle agglomerate of Example 1 of the present invention, the number of times of washing the mercury-containing particle agglomerate recovered from the silver particle slurry with water was increased to reduce the amount of ascorbic acid remaining in the mercury-containing particle agglomerate. A silver particle aggregate, a paste-like silver particle composition, and a conjugate were produced in the same manner as in Example 1 of the present invention except for the above, and the same evaluation as in Example 1 of the present invention was performed. The results are shown in Table 1.

[本発明例6]
本発明例1の(1)銀粒子凝集体において、銀粒子スラリーから回収した含水銀粒子凝集体の水洗の回数を少なくして、含水銀粒子凝集体に残留するアスコルビン酸の量を増加させたこと以外は本発明例1と同様にして、銀粒子凝集体、ペースト状銀粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。
[Example 6 of the present invention]
In (1) silver particle agglomerates of Example 1 of the present invention, the number of times of washing the mercury-containing particle agglomerates recovered from the silver particle slurry with water was reduced, and the amount of ascorbic acid remaining in the mercury-containing particle agglomerates was increased. A silver particle aggregate, a paste-like silver particle composition, and a conjugate were produced in the same manner as in Example 1 of the present invention except for the above, and the same evaluation as in Example 1 of the present invention was performed. The results are shown in Table 1.

[本発明例7]
銀粒子の代わりに、D10が35nm、D50が50nm、D90が70nmの金粒子を使用したこと、この金粒子とアスコルビン酸ナトリウム(有機還元剤)と水とを、質量比で10:5:85となる割合にて混合した以外は本発明例1と同様にして、金粒子凝集体、ペースト状金粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。なお、金粒子のD10、D50、D90は、動的光散乱法によって測定した。
[Example 7 of the present invention]
Instead of silver particles, gold particles having a D10 of 35 nm, a D50 of 50 nm, and a D90 of 70 nm were used, and the gold particles, sodium ascorbate (organic reducing agent), and water were mixed in a mass ratio of 10: 5: 85. A gold particle agglomerate, a paste-like gold particle composition, and a bonded body were produced in the same manner as in Example 1 of the present invention except that they were mixed in the same proportion as in Example 1 of the present invention. The results are shown in Table 1. The gold particles D10, D50, and D90 were measured by a dynamic light scattering method.

[本発明例8]
銀粒子の代わりに、表1に示す粒度分布を有する銅粒子を使用したこと以外は本発明例1と同様にして、銅粒子凝集体、ペースト状銅粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。
[Example 8 of the present invention]
A copper particle agglomerate, a paste-like copper particle composition, and a bonded body were produced in the same manner as in Example 1 of the present invention except that copper particles having the particle size distribution shown in Table 1 were used instead of the silver particles. The same evaluation as in Invention Example 1 was performed. The results are shown in Table 1.

[本発明例9]
本発明例1の(1)銀粒子凝集体において、D50が50nmの銀粒子と、D50が300nmの銀粒子との混合割合を、質量比で2:1としたこと、以外は本発明例1と同様にして、銀粒子凝集体、ペースト状銀粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。
[Example 9 of the present invention]
In the silver particle agglomerate of Example 1 of the present invention (1), the mixing ratio of the silver particles having a D50 of 50 nm and the silver particles having a D50 of 300 nm was set to 2: 1 in terms of mass ratio. A silver particle aggregate, a paste-like silver particle composition, and a bonded body were produced in the same manner as in Example 1 of the present invention, and the same evaluation as in Example 1 of the present invention was performed. The results are shown in Table 1.

[本発明例10]
本発明例1の(1)銀粒子凝集体において、D50が50nmの銀粒子と、D50が300nmの銀粒子との混合割合を、質量比で1:6としたこと以外は本発明例1と同様にして、銀粒子凝集体、ペースト状銀粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。
[Example 10 of the present invention]
In the (1) silver particle aggregate of the present invention example 1, the mixing ratio of the silver particles having a D50 of 50 nm and the silver particles having a D50 of 300 nm was set to 1: 6 in terms of mass ratio. In the same manner, a silver particle agglomerate, a paste-like silver particle composition, and a bonded body were produced and evaluated in the same manner as in Example 1 of the present invention. The results are shown in Table 1.

[本発明例11]
本発明例5において、銀粒子スラリーから回収した含水銀粒子凝集体の水洗の回数をさらに多くして、含水銀粒子凝集体に残留するアスコルビン酸の量を低減させたこと以外は本発明例5と同様にして、銀粒子凝集体、ペースト状銀粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。
[Example 11 of the present invention]
In Example 5 of the present invention, except that the number of times of washing the mercury-containing particle agglomerates recovered from the silver particle slurry with water was further increased to reduce the amount of ascorbic acid remaining in the mercury-containing particle agglomerates. In the same manner as in Example 1, a silver particle aggregate, a paste-like silver particle composition, and a bonded body were produced and evaluated in the same manner as in Example 1 of the present invention. The results are shown in Table 1.

[比較例1]
本発明例1の(1)銀粒子凝集体において、D50が300nmの銀粒子のみを使用したこと、アスコルビン酸ナトリウムを加えなかったこと以外は本発明例1と同様にして、銀粒子凝集体、ペースト状銀粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。
[Comparative Example 1]
In the silver particle agglomerate of the present invention example 1 (1), the silver particle agglomerate was similar to that of the present invention example 1 except that only silver particles having a D50 of 300 nm were used and sodium ascorbate was not added. A paste-like silver particle composition and a conjugate were produced and evaluated in the same manner as in Example 1 of the present invention. The results are shown in Table 1.

[比較例2]
本発明例1の(1)銀粒子凝集体において、D50が50nmの銀粒子のみを用いたこと以外は本発明例1と同様にして、銀粒子凝集体、ペースト状銀粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を表1に示す。
[Comparative Example 2]
In the same manner as in Example 1 of the present invention except that only silver particles having a D50 of 50 nm were used in the (1) silver particle aggregate of Example 1 of the present invention, the silver particle aggregate, the paste-like silver particle composition, and the conjugate. Was produced and evaluated in the same manner as in Example 1 of the present invention. The results are shown in Table 1.

[比較例3]
本発明例1の(1)銀粒子凝集体において、粒子スラリーから回収した含水銀粒子凝集体を水洗しなかったこと以外は本発明例1と同様にして、銀粒子凝集体、ペースト状銀粒子組成物、接合体を製造し、本発明例1と同様の評価を行った。その結果を、表1に示す。
[Comparative Example 3]
In the silver particle agglomerate of the present invention example 1 (1), the silver particle agglomerate and the paste-like silver particle are the same as those of the present invention example 1 except that the mercury-containing particle agglomerate recovered from the particle slurry was not washed with water. The composition and the bonded product were produced and evaluated in the same manner as in Example 1 of the present invention. The results are shown in Table 1.

Figure 0006870436
Figure 0006870436

銀粒子凝集体の最大粒径が本発明の範囲を超える比較例1では、銀粒子凝集体同士の隙間に起因するボイドが多数発生したため、ボイド面積率が高くなり、接合強度が低くなったと考えられる。
銀粒子凝集体に含まれる50nm未満の微細な銀粒子(一次粒子)の割合が本発明の範囲を超える比較例2では、微細な銀粒子同士が不均一に凝集し、銀粒子凝集体に部分的な空隙が形成され、この銀粒子凝集体に形成された空隙がボイドとなって現れて、ボイド面積率が高くなり、接合強度が低くなったと考えられる。
銀粒子凝集体の有機物の含有量が本発明の範囲を超える比較例3では、接合体の作製時の加熱によって、有機物が揮発して、接合層にボイドが多量に形成され、ボイド面積率が高くなり、接合強度が低くなったと考えられる。
In Comparative Example 1 in which the maximum particle size of the silver particle agglomerates exceeds the range of the present invention, it is considered that the void area ratio is high and the bonding strength is low because a large number of voids are generated due to the gaps between the silver particle agglomerates. Be done.
In Comparative Example 2 in which the proportion of fine silver particles (primary particles) having a size of less than 50 nm contained in the silver particle agglomerates exceeds the range of the present invention, the fine silver particles are non-uniformly agglomerated and partially formed into the silver particle agglomerates. It is considered that the voids are formed and the voids formed in the agglomerates of silver particles appear as voids, the void area ratio is increased, and the bonding strength is decreased.
In Comparative Example 3 in which the content of the organic substance in the silver particle aggregate exceeds the range of the present invention, the organic substance is volatilized by heating during the production of the bonded body, a large amount of voids are formed in the bonded layer, and the void area ratio is increased. It is probable that the joint strength became higher and the joint strength became lower.

これに対して、金属粒子(一次粒子)の粒度分布と有機物の含有量が、本発明の範囲内とされた本発明例1−11においては、接合体の接合強度が高く、接合層中のボイド面積率が低くなった。特に、有機物の含有量が金属粒子に対して0.05質量%以上とされ、比表面積が2〜8m/gの範囲とされた本発明例1−8においては、接合体の接合強度がより高くなった。また、冷熱サイクル前の接合層中のボイド面積率がより低くなり、さらに同時に冷熱サイクル後のボイド面積率の増加が抑制された。このボイド面積率の増加が抑制されることによって、接合体の長期信頼性が向上していることが確認された。 On the other hand, in Example 1-11 of the present invention in which the particle size distribution of the metal particles (primary particles) and the content of organic substances were within the range of the present invention, the bonding strength of the bonded body was high and the bonding layer was contained. The void area ratio has decreased. In particular, in Example 1-8 of the present invention in which the content of organic matter is 0.05% by mass or more with respect to the metal particles and the specific surface area is in the range of 2 to 8 m 2 / g, the bonding strength of the bonded body is high. It became higher. In addition, the void area ratio in the bonding layer before the cold cycle became lower, and at the same time, the increase in the void area ratio after the cold cycle was suppressed. It was confirmed that the long-term reliability of the conjugate was improved by suppressing this increase in the void area ratio.

本発明の銀粒子凝集体は、パワーモジュールの半導体チップの接合、加圧なしでの接合が必要なLED素子の接合への適用が可能である。 The silver particle agglomerate of the present invention can be applied to the bonding of semiconductor chips of power modules and the bonding of LED elements that require bonding without pressurization.

11…接合体
12…基板
13…第1の金属層
14…接合層
15…第2の金属層
16…被接合物
17、18…界面
11 ... Bonded body 12 ... Substrate 13 ... First metal layer 14 ... Bonded layer 15 ... Second metal layer 16 ... Jointed object 17, 18 ... Interface

Claims (6)

銀、金および銅のいずれか1種からなり粒径が500nm以上の粒子を1体積%を超えて含むことがなく、粒径が100nm以上500nm未満の範囲にある粒子を60体積%以上95体積%以下の範囲、粒径が50nm以上100nm未満の範囲にある粒子を5体積%以上40体積%以下の範囲、そして粒径が50nm未満の粒子を5体積%以下の割合にて含む金属粒子と、
有機物とを含み、
レーザ回折散乱法により測定される体積基準の粒度分布曲線において、D10が0.05μm以上0.25μm以下の範囲にあって、D50が0.4μm以上0.6μm以下の範囲にあり、さらにD90が1.5μm以上2.5μm以下の範囲にあって、前記有機物を、前記金属粒子に対して2質量%以下の量にて含むことを特徴とする金属粒子凝集体。
It is composed of any one of silver, gold and copper , and does not contain more than 1% by volume of particles having a particle size of 500 nm or more, and 60% by volume or more of particles having a particle size in the range of 100 nm or more and less than 500 nm 95. Metal particles containing particles having a volume of 50 nm or more and less than 100 nm in a range of 5% by volume or more and 40% by volume or less, and particles having a particle size of less than 50 nm in a proportion of 5% by volume or less. When,
Including organic matter
In the volume-based particle size distribution curve measured by the laser diffraction / scattering method, D10 is in the range of 0.05 μm or more and 0.25 μm or less, D50 is in the range of 0.4 μm or more and 0.6 μm or less, and D90 is. A metal particle agglomerate in a range of 1.5 μm or more and 2.5 μm or less, which contains the organic substance in an amount of 2% by mass or less with respect to the metal particles.
前記有機物の含有量が、前記金属粒子に対して0.05質量%以上であることを特徴とする請求項1に記載の金属粒子凝集体。 The metal particle agglomerate according to claim 1, wherein the content of the organic substance is 0.05% by mass or more with respect to the metal particles. 比表面積が2〜8m/gの範囲にあることを特徴とする請求項1または請求項2に記載の金属粒子凝集体。 The metal particle agglomerate according to claim 1 or 2, wherein the specific surface area is in the range of 2 to 8 m 2 / g. 銀、金および銅のいずれか1種からなり、粒径が500nm以上の粒子を1体積%以上含むことがなく、粒径が100nm以上500nm未満の範囲にある粒子を65体積%以上95体積%の範囲、粒径が50nm以上100nm未満の範囲にある粒子を5体積%以上30体積%の範囲、そして粒径が50nm未満の粒子を5体積%以下の割合にて含む金属粒子と有機還元剤と水とを含むスラリーを調製し、金属粒子を還元処理して、金属粒子を凝集させる工程と、前記スラリーから凝集した金属粒子を取り出して、前記有機還元剤を、前記金属粒子に対して2質量%以下の量にて含む含水金属粒子凝集体を得る工程と、前記含水金属粒子凝集体を乾燥する工程とを備えることを特徴とする請求項1乃至3のいずれか1項に記載の金属粒子凝集体の製造方法。 It is composed of any one of silver, gold and copper, and does not contain 1% by volume or more of particles having a particle size of 500 nm or more, and 65% by volume or more and 95% by volume of particles having a particle size in the range of 100 nm or more and less than 500 nm. Metal particles and organic reducing agent containing particles having a particle size of 50 nm or more and less than 100 nm in a range of 5% by volume or more and 30% by volume, and particles having a particle size of less than 50 nm in a proportion of 5% by volume or less. A step of preparing a slurry containing water and water and reducing the metal particles to agglomerate the metal particles, and taking out the agglomerated metal particles from the slurry and applying the organic reducing agent to the metal particles 2 The metal according to any one of claims 1 to 3, further comprising a step of obtaining a hydrous metal particle agglomerate contained in an amount of mass% or less and a step of drying the hydrous metal particle agglomerate. Method for producing particle agglomerates. 揮発性溶媒と請求項1乃至3のいずれか1項に記載の金属粒子凝集体とを含むことを特徴とするペースト状金属粒子組成物。 A paste-like metal particle composition comprising a volatile solvent and the metal particle aggregate according to any one of claims 1 to 3. 第一の部材と第二の部材とが接合層を介して接合されている接合体の製造方法であって、
請求項5に記載のペースト状金属粒子組成物を用いて前記接合層を形成することを特徴とする接合体の製造方法。
A method for manufacturing a bonded body in which a first member and a second member are joined via a bonding layer.
A method for producing a bonded body, which comprises forming the bonded layer using the paste-like metal particle composition according to claim 5.
JP2017072991A 2017-03-31 2017-03-31 Metal particle agglomerates and methods for producing them, paste-like metal particle compositions and methods for producing conjugates Active JP6870436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017072991A JP6870436B2 (en) 2017-03-31 2017-03-31 Metal particle agglomerates and methods for producing them, paste-like metal particle compositions and methods for producing conjugates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072991A JP6870436B2 (en) 2017-03-31 2017-03-31 Metal particle agglomerates and methods for producing them, paste-like metal particle compositions and methods for producing conjugates

Publications (2)

Publication Number Publication Date
JP2018172764A JP2018172764A (en) 2018-11-08
JP6870436B2 true JP6870436B2 (en) 2021-05-12

Family

ID=64107721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072991A Active JP6870436B2 (en) 2017-03-31 2017-03-31 Metal particle agglomerates and methods for producing them, paste-like metal particle compositions and methods for producing conjugates

Country Status (1)

Country Link
JP (1) JP6870436B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930578B2 (en) 2019-12-20 2021-09-01 三菱マテリアル株式会社 Manufacturing method of silver paste and bonded body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107206485B (en) * 2015-02-06 2020-06-02 特线工业株式会社 Conductive fine particles
JP6428339B2 (en) * 2015-02-13 2018-11-28 三菱マテリアル株式会社 Silver powder and paste-like composition and method for producing silver powder
US10940534B2 (en) * 2015-08-25 2021-03-09 Tanaka Kikinzoku Kogyo K.K. Metal paste having excellent low-temperature sinterability and method for producing the metal paste
JP2017052668A (en) * 2015-09-09 2017-03-16 三菱マテリアル株式会社 Composition, and method for manufacturing joined body

Also Published As

Publication number Publication date
JP2018172764A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP7220310B2 (en) Copper paste for non-pressure bonding, method for non-pressure bonding, and method for manufacturing bonded body
JP6422289B2 (en) Nickel particle composition, bonding material and bonding method
JP2019087396A (en) Silver paste, joined body, and method for manufacturing joined body
JP2008133527A (en) Silver particulate, and method for producing the same
JP6923063B2 (en) Silver paste and its manufacturing method and joint manufacturing method
WO2021125161A1 (en) Silver paste, method for producing same, and method for producing jointed article
JP6900150B2 (en) Joining material and joining method using it
JP6870436B2 (en) Metal particle agglomerates and methods for producing them, paste-like metal particle compositions and methods for producing conjugates
CN111801183B (en) Silver paste and method for producing bonded body
TWI758588B (en) Metal particle agglomerate and method for producing the same, and paste-like metal particle agglomerate composition and method for producing a bonded body using the same
TWI677488B (en) Manufacturing method of low-temperature sinterable surface-treated copper fine particles
JP6463195B2 (en) Nickel particle composition, bonding material, and bonding method using the same
JP6947280B2 (en) Silver paste and its manufacturing method and joint manufacturing method
KR20190082255A (en) Conductive bonding material and method for manufacturing semiconductor device
WO2020004342A1 (en) Silver paste and joined body production method
CN114845827B (en) Silver paste, method for producing same, and method for producing joined body
TW202100266A (en) Metal paste, bonding method and method for producing bonded body
JP2023035474A (en) Copper powder production method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150