JP2020152726A - 細胞透過性Bcl−xL阻害剤との抗体薬物コンジュゲート - Google Patents

細胞透過性Bcl−xL阻害剤との抗体薬物コンジュゲート Download PDF

Info

Publication number
JP2020152726A
JP2020152726A JP2020078046A JP2020078046A JP2020152726A JP 2020152726 A JP2020152726 A JP 2020152726A JP 2020078046 A JP2020078046 A JP 2020078046A JP 2020078046 A JP2020078046 A JP 2020078046A JP 2020152726 A JP2020152726 A JP 2020152726A
Authority
JP
Japan
Prior art keywords
adc
pharmaceutically acceptable
methyl
antibody
cit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020078046A
Other languages
English (en)
Inventor
アーウィン・アール・ボガート
R Boghaert Erwin
スコット・エル・アックラー
L Ackler Scott
ジー−フー・タオ
Zhi-Fu Tao
シールー・ワン
Wang Xilu
ジョージ・ドハーティ
Doherty George
ビオレッタ・エル・マリン
L Marin Violeta
ジェラード・エム・サリバン
Gerard M Sullivan
シャオホン・ソン
Xiaohong Song
アーロン・アール・クンザー
R Kunzer Aaron
デニー・エス・ウェルチ
S Welch Dennie
ミラン・ブランコ
Bruncko Milan
アンドリュー・エス・ジャッド
S Judd Andrew
アンドリュー・ジェイ・サワーズ
J Souers Andrew
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AbbVie Inc
Original Assignee
AbbVie Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AbbVie Inc filed Critical AbbVie Inc
Publication of JP2020152726A publication Critical patent/JP2020152726A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6807Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug or compound being a sugar, nucleoside, nucleotide, nucleic acid, e.g. RNA antisense
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6855Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from breast cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6857Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from lung cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Saccharide Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

【課題】低分子Bcl−xL阻害剤、および低分子Bcl−xL阻害剤を含む抗体薬物コンジュゲート(ADC)の提供。【解決手段】リンカーによって抗体に連結されている薬物を含む抗体薬物コンジュゲート(ADC)であって、薬物が、構造式(IIa)であるADCを提供する。該ADCは、調節不全のアポトーシス経路を伴う疾患の処置に対する治療的手法として、抗アポトーシスBcl xLタンパク質を阻害するのに有用である。【選択図】図1A

Description

本開示は、Bcl−xL抗アポトーシスタンパク質の活性を阻害する化合物、これらの阻害剤を含む抗体薬物コンジュゲート、これらの阻害剤および抗体薬物コンジュゲートの合成に有用な方法、阻害剤を含む組成物、ならびに抗体薬物コンジュゲート、ならびに抗アポトーシス性Bcl−xLタンパク質が発現される疾患を処置する方法に関する。
アポトーシスは、すべての生存種の組織ホメオスタシスにとって、必須の生物学的過程として認識されている。哺乳動物において、特に、アポトーシスは、胚の初期発達を調節することが示された。生命の後半において、細胞死は、潜在的に危険な細胞(例えば、がん性欠損を有する細胞)が除去される、既定の機構である。いくつかのアポトーシス経路は明らかにされており、最も重要なものの1つは、タンパク質のBcl−2ファミリーを伴い、このファミリーは、アポトーシスのミトコンドリア(「内因性」とも呼ばれる。)経路の重要な調節因子である。DanialおよびKorsmeyer、2004年、Cell 116巻:205−219頁を参照されたい。
調節不全のアポトーシス経路は、例えばアルツハイマー病のような神経変性状態(下方調節されたアポトーシス);ならびに例えば、がん、自己免疫疾患および血栓形成促進性状態のような増殖性疾患(上方調節されたアポトーシス)のような、多数の深刻な疾患の病理に関与している。
一面において、下方調節されたアポトーシス(およびより特に、タンパク質のBcl−2ファミリー)ががん性悪性腫瘍の発生に関与しているという示唆が、この依然として捉えどころがない疾患を標的とする新規方法となることを明らかにした。例えば、抗アポトーシスタンパク質であるBcl−2およびBcl−xLは、多くのタイプのがん細胞において、過剰発現されるという研究が示されている。Zhang、2002年、Nature Reviews/Drug Discovery 1巻:101頁;Kirkinら、2004年、Biochimica Biophysica Acta 1644巻:229−249頁;およびAmundsonら、2000年、Cancer Research 60巻:6101−6110頁を参照されたい。この調節解除の影響は、それがなかったなら正常状態においてアポトーシスを受けたはずの変質細胞が生存してしまうことである。調節不全の増殖に伴うこれらの欠陥の繰り返しが、がんの発生の開始点であると考えられている。
これらの、および多数の他の知見は、がんを標的とするための薬物発見における新規な戦略の出現を可能にした。低分子が細胞に侵入し、抗アポトーシスタンパク質の過剰発現に打ち勝つことができれば、アポトーシス過程を解除することが可能になると思われる。この戦略は、これが、通常、アポトーシスによる調節解除(異常な生存)の結果である薬物抵抗性の問題を緩和することができるという利点を有することができる。
研究者らは、血小板も、内因性アポトーシス経路によってプログラム細胞死を実行するために必要なアポトーシス機構(例えば、Bax、Bak、Bcl−xL、Bcl−2、シトクロムc、カスパーゼ−9、カスパーゼ−3およびAPAF−1)を含むことも実証した。血小板産生物の血液循環は、正常な生理学的過程であるが、いくつかの疾患は、血小板の過剰、もしくは血小板の望ましくない活性化によって引き起こされる、または悪化する。上記のことは、哺乳動物における、血小板中の抗アポトーシスタンパク質を阻害すること、および血小板の数を低下させることができる治療剤は、血小板の過剰、もしくは血小板の望ましくない活性化を特徴とする、血栓形成状態および疾患を処置するのに有用となり得ることを示唆する。
多数のBcl−xL阻害剤が、調節不全のアポトーシス経路を伴う疾患(例えば、がん)の処置のために開発されてきた。しかし、Bcl−xL阻害剤は、標的細胞(例えば、がん細胞)以外の細胞に作用する恐れがある。例えば、前臨床研究は、Bcl−xLの薬理学的不活性化は、血小板の半減期を低下させて、血小板減少症を引き起こすことを示した(Masonら、2007年、Cell 128巻:1173−1186頁を参照されたい。)。
DanialおよびKorsmeyer、2004年、Cell 116巻:205−219頁 Zhang、2002年、Nature Reviews/Drug Discovery 1巻:101頁; Kirkinら、2004年、Biochimica Biophysica Acta 1644巻:229−249頁 Amundsonら、2000年、Cancer Research 60巻:6101−6110頁 Masonら、2007年、Cell 128巻:1173−1186頁
アポトーシスを調節する際にBcl−xLが重要であることを考慮すると、Bcl−xLのような抗アポトーシス性Bcl−2ファミリータンパク質の発現または過剰発現によりアポトーシスが調節不全となっている疾患の処置に対する手法として、Bcl−xL活性を選択的または非選択的のどちらか一方により阻害する薬剤が当分野において依然として必要とされている。したがって、用量が制限される毒性を軽減した新規Bcl−xL阻害剤が必要とされている。
さらに、毒性を制限する、Bcl−xL阻害剤を送達する新規方法が必要とされている。Bcl−xL阻害剤について、探索されていない、細胞に薬物を送達する可能性のある手段の1つは、抗体薬物コンジュゲート(ADC)の使用による送達である。ADCは、リンカーによって細胞毒性薬物をモノクローナル抗体に化学的に連結することにより形成される。ADCのモノクローナル抗体は、細胞(例えば、がん細胞)の標的抗原に選択的に結合して、該薬物を細胞に放出する。ADCは抗体の特異性と薬物の潜在的な毒性とを合わせ持つので、ADCは治療可能性を有する。それにもかかわらず、治療剤としてADCを開発することは、不都合な毒性プロファイル、低い有効性および不十分な薬理学的パラメータのような様々な因子のために、これまで限定的にしか成功していない。したがって、これらの問題を克服して、がん細胞を標的とするよう、Bcl−xLを選択的に送達することができる新規ADCの開発は、重要な発見になると思われる。
Bcl−xLの阻害、およびこの結果として起こるアポトーシスの誘導が有益と思われる場合、Bcl−xLの低分子阻害剤は、細胞表面に発現される抗原に結合する抗体薬物コンジュゲート(ADC;イムノコンジュゲートとも呼ばれる。)の形態で投与されると効果的であることが、今や発見された。この発見は、所望の治療的利益を実現するために必要な血清レベルを潜在的に低下させる、ならびに/または低分子Bcl−xL阻害剤それ自体の全身的投与に伴う潜在的な副作用を回避および/もしくは改善する、対象とする特定の細胞および/または組織への、Bcl−xL阻害剤による治療を目標とすることを初めて可能にするものである。
したがって、一態様において、本開示は、とりわけ、調節不全のアポトーシス経路を伴う疾患の処置に対する治療的手法として、抗アポトーシス性Bcl−xLタンパク質を阻害するのに有用な、Bcl−xLの阻害剤を含むADCを提供する。ADCは、一般に、リンカーによって、対象とする標的細胞に発現される抗原に特異的に結合する抗体に連結されている、Bcl−xLの低分子阻害剤を含む。
ADCの抗体は、対象とする標的細胞の表面上で発現される抗原に結合する任意の抗体とすることができるが、通常、必ずしも特異的ではない任意の抗原とすることができる。対象とする標的細胞は、例として非限定的に、Bcl−xLを発現または過剰発現する腫瘍細胞を含めた、抗アポトーシス性Bcl−xLタンパク質の阻害によるアポトーシスの誘導が望ましい細胞を一般に含む。標的抗原は、対象とする標的細胞に発現される、任意のタンパク質であってもよいが、通常、正常細胞もしくは健全細胞と比べて、正常細胞もしくは健全細胞ではなく標的細胞において独自に発現される、または標的細胞において過剰発現されるかのどちらかである、タンパク質であり、したがって、ADCは、例えば、腫瘍細胞のような、対象とする特定の細胞を選択的に標的とする。当分野において周知の通り、結合しているADCを内部移行させる、細胞表面のある種の抗原に結合しているADCは、ある種の利点を有する。したがって、一部の実施形態において、抗体によって標的とされる抗原は、これに結合しているADCを内部以降させる能力を有する抗原である。しかし、ADCによって標的とされる抗原は、結合しているADCを内部移行させるものである必要はない。標的細胞または組織の外部において放出されるBcl−xL阻害剤は、受動拡散または他の機構により細胞に侵入してBcl−xLを阻害することができる。
当業者によって認識される通り、選択される特異抗原、したがって抗体は、対象とする所望の標的細胞がいかなるものであるかに依存する。ある種の特定の治療の実施形態において、ADCの抗体に対する標的抗原は、公知の正常細胞または健全細胞には発現しない、または生存のためにBcl−xLに少なくとも一部が関係していることが疑われている抗原である。他のある種の具体的な治療の実施形態において、ADCの抗体は、ヒトへの投与に適した抗体である。
治療的標的として有用な大多数の細胞特異抗原、およびこれらの抗原に結合する抗体は、当分野において公知であり、同様に公知の細胞特異抗原または後に発見される細胞特異抗原を標的とするのに好適なさらなる抗体を取得するための技法となる。これらの様々な異なる抗体のうちのいずれも、本明細書に記載されているADCに含まれ得る。
Bcl−xL阻害剤をADCの抗体に連結するリンカーは、長くても、短くても、フレキシブルでも、剛直でも、親水的もしくは疎水性の性質であってもよく、またはフレキシブルなセグメント、剛直なセグメントなどのような異なる特徴を有するセグメントを含んでもよい。これらのリンカーは、細胞外環境に対して化学的に安定であってもよい、例えば、血流中において化学的に安定であってもよく、または細胞外ミリュー(millieu)において安定でなく、Bcl−xL阻害剤を放出する連結基を含んでもよい。一部の実施形態において、リンカーは、細胞へのADCの内部移行時に、Bcl−xL阻害剤を放出するよう設計されている連結基を含む。一部の具体的な実施形態において、リンカーは、細胞内部において、特異的にもしくは非特異的に、切断される、および/または破壊される、またはそうでない場合、分解するよう設計されている連結基を含む。ADCの文脈において、薬物を抗体に連結するのに有用な幅広いリンカーが、当分野において公知である。これらのリンカーのいずれも、および他のリンカーが、Bcl−xL阻害剤を本明細書に記載されているADCの抗体に連結するために使用され得る。
ADCの抗体に連結されているBcl−xL阻害剤の数は、様々となり得(「薬物対抗体比」または「DAR」と呼ばれる。)、抗体上の利用可能な結合部位の数および単一リンカーに連結される阻害剤の数によってしか制限されない。通常、リンカーは、単一のBcl−xL阻害剤をADCの抗体に連結する。ADCが使用および/または保管条件下において許容できないレベルの凝集を示さない限り、DARが20、またはそれより高いことさえあるADCが企図される。一部の実施形態において、本明細書に記載されているADCは、約1−10、1−8、1−6または1−4の範囲のDARを有することができる。ある種の具体的な実施形態において、ADCは、2、3または4のDARを有することができる。一部の実施形態において、Bcl−xL阻害剤、リンカーおよびDARの組合せは、得られたADCが、使用および/または保管条件下において、過度に凝集することがないように選択される。
本明細書に記載されているADCを含むBcl−xL阻害剤は、一般に、以下の構造式(IIa)による化合物、および/または医薬として許容されるこの塩であり、様々な置換基Ar、Z、Z、R、R、R、R10a、R10b、R10c、R11a、R11bおよびnは、発明を実施するための形態に定義されている通りである:
Figure 2020152726
式(IIa)において、#は、リンカーへの結合点を表す。ADCの一部でない阻害剤において、#は、水素原子を表す。
一部の実施形態において、本明細書に記載されているADCは、一般に、構造式(I)による化合物:
Figure 2020152726
(式中、Abは抗体を表し、Dは薬物(ここでは、Bcl−xL阻害剤)を表し、Lは薬物Dを抗体Abに連結させるリンカーを表し、LKは、リンカーL上の官能基と抗体Ab上の相補的な官能基との間に形成される連結基を表し、mは、抗体に連結されているリンカー−薬物の単位数を表す。)である。
ある種の具体的な実施形態において、ADCは、以下の構造式(Ia)による化合物であり、様々な置換基Ar、Z、Z、R、R、R、R10a、R10b、R10c、R11a、R11bおよびnは、それぞれ、式(IIa)に関して既に定義されている通りであり、AbおよびLは、構造式(I)に関して定義されている通りであり、mは1から20の範囲の整数であり、一部の実施形態において、2から8の範囲の整数であり、一部の実施形態において、1から8の範囲の整数であり、一部の実施形態において、2、3または4の整数である:
Figure 2020152726
別の態様において、本開示は、本明細書に記載されているADCを合成するために有用な中間シントン、およびADCを合成するための方法を提供する。中間シントンは、一般に、このシントンを抗体に連結することが可能な官能基を含む、リンカー部分に連結されているBcl−xL阻害剤を含む。これらのシントンは、一般に、以下の構造式(III)による化合物、またはこの塩であり、Dは、既に本明細書に記載されているBcl−xL阻害剤であり、Lは、既に記載されているリンカーであり、Rは、シントンを抗体上の相補的な官能基にコンジュゲートすることが可能な官能基を含む:
Figure 2020152726
ある種の具体的な実施形態において、中間シントンは、以下の構造式(IIIa)による化合物、またはこれらの塩であり、様々な置換基Ar、Z、Z、R、R、R、R10a、R10b、R10c、R11a、R11bおよびnは、構造式(IIa)に関して既に定義されている通りであり、Rは、上記の官能基を含む:
Figure 2020152726
ADCを合成するために、構造式(III)もしくは(IIIa)による中間シントン、またはこれらの塩は、官能基Rが、抗体上の相補的な官能基と反応して、共有結合性連結基を形成する条件下において、対象とする抗体と接触される。どの基Rを用いるかは、所望のカップリング化学、およびシントンが結合される抗体上の相補的な基に依存する。分子を抗体にコンジュゲートするのに適した様々な基が、当分野において公知である。これらの基のいずれも、Rに好適となり得る。非限定的な例示的な官能基(R)は、NHS−エステル、マレイミド、ハロアセチル、イソチオシアネート、ビニルスルホンおよびビニルスルホンアミドを含む。
別の態様において、本開示は、本明細書に記載されているADCを含む組成物を提供する。本組成物は、一般に、本明細書に記載されている、1つ以上のADC、および/またはこれらの塩、ならびに1つ以上の賦形剤、担体もしくは希釈剤を含む。本組成物は、医薬としての使用のため、または他の使用のために製剤化され得る。特定の実施形態において、本組成物は、医薬として使用するために製剤化され、構造式(Ia)によるADC、または医薬として許容されるこれらの塩、および医薬として許容される1つ以上の賦形剤、担体もしくは希釈剤を含む。
医薬として使用するために製剤化された組成物は、多回投与に好適なバルク形態で包装されてもよく、または、単回投与に好適な、単位用量の形態で包装されてもよい。バルクでまたは単位用量の形態で包装されるかに関わらず、本組成物は、凍結乾燥物のような乾燥組成物または液状組成物であってもよい。単位投与量の液状組成物は、単回投与に好適な量のADCが予め充填されているシリンジの形態で好都合に包装され得る。
さらに別の態様において、本開示は、抗アポトーシス性Bcl−xLタンパク質を阻害する方法を提供する。本方法は、抗体が標的細胞の抗原に結合する条件下において、本明細書に記載されているADC、例えば、構造式(Ia)によるADCを、Bcl−xL、およびADCの抗体に対する抗原を発現するまたは過剰発現する標的細胞に接触させるステップを一般に含む。抗原に応じて、ADCは、標的細胞に内部移行することができるようになる。本方法は、Bcl−xL活性を阻害する細胞アッセイにおいてインビトロで、またはBcl−xL活性の阻害が望ましい疾患の処置に対する治療的手法として、インビボで実施することができる。
さらに別の態様において、本開示は、細胞におけるアポトーシスを誘導する方法を提供する。本方法は、抗体が標的細胞の抗原に結合する条件下において、本明細書に記載されているADC、例えば、構造式(Ia)によるADCを、Bcl−xL、およびADCの抗体に対する抗原を発現するまたは過剰発現する標的細胞に接触させるステップを一般に含む。抗原に応じて、ADCは、標的細胞に内部移行することができるようになる。本方法は、アポトーシスを誘導する細胞アッセイにおいてインビトロで実施することができ、または特定の細胞におけるアポトーシスの誘導が有益と思われる、疾患の処置に対する治療的手法として、インビボで実施することができる。一実施形態において、本明細書に記載されているADCの抗体は、腫瘍細胞に発現する細胞表面受容体または腫瘍関連抗原に結合する。別の実施形態において、本明細書に記載されているADCの抗体は、EGFR、EpCAMおよびNCAM1から選択される細胞表面受容体または腫瘍関連抗原の1つに結合する。別の実施形態において、本明細書に記載されているADCの抗体は、EGFR、EpCAMまたはNCAM1に結合する。別の実施形態において、本明細書に記載されているADCの抗体は、EpCAMまたはNCAM1に結合する。別の実施形態において、本明細書に記載されているADCの抗体は、EpCAMに結合する。別の実施形態において、本明細書に記載されているADCの抗体は、NCAM1に結合する。別の実施形態において、本明細書に記載されているADCの抗体は、EGFRに結合する。
さらに別の態様において、本開示は、Bcl−xLの阻害および/またはアポトーシスの誘導が望ましいと思われる疾患を処置する方法を提供する。本発明を実施するための形態において一層完全に議論される通り、幅広い疾患が、調節不全のアポトーシスを抑制することによって少なくとも一部、抗アポトーシス性Bcl−xLタンパク質の発現および/または過剰発現によって少なくとも一部、媒介される。これらの疾患のいずれも、本明細書に記載されているADCにより処置または改善され得る。
本方法は、一般に、Bcl−xLの発現または過剰発現によって少なくとも一部、媒介される疾患に罹患している対象に、治療的利益をもたらすのに有効な量のADCを投与するステップを含む。投与されるADCの抗体としていかなるものを用いるかは、処置される疾患に依存する。本明細書に記載されているADCを用いて実現される治療的利益は、処理されている疾患にも依存する。ある例において、ADCは、単剤療法として投与された場合に、特定の疾患を処置または改善することができる。他の例において、ADCは、ADCと一緒になって、疾患を処置または改善する他の薬剤を含めた、総合的な処置レジメンの一部となり得る。
例えば、Bcl−xLの発現レベルの向上は、がんにおける化学療法および放射線療法に対する抵抗性に関連している(Dattaら、1995年、Cell Growth Differ 6巻:363−370頁;Amundsonら、2000年、Cancer Res 60巻:6101−6110頁;Hauraら、2004年、Clin Lung Cancer 6巻:113−122頁)。がんを処置する文脈において、本明細書において開示されているデータは、ADCが単剤療法として有効となり得ること、または他の標的化されたもしくは標的化されていない化学治療剤および/または放射線療法への補助として、またはこれらと共に投与されると有効となり得る。操作のいかなる理論によっても拘泥されることを意図するものではないが、標的化されたまたは標的化されていない化学療法および/または放射療法に対して抵抗性となった腫瘍において、本明細書に記載されているADCによるBcl−xL活性の阻害は、該腫瘍を「感作し」、こうして、これらの腫瘍は、再び、化学治療剤および/または放射線処置に対して感受性となる。
したがって、がんを処置する文脈において、「治療的利益」は、化学的治療レジメンおよび/もしくは放射線治療レジメンをまだ開始していない患者、または化学的治療レジメンおよび/もしくは放射線治療レジメンに対して抵抗性を示した(または、抵抗性が疑われる、もしくは抵抗性となっている。)患者のどちらかにおいて、化学的療法および/または放射線療法に対して腫瘍を感作する手段として、標的化されたもしくは標的化されていない化学治療剤および/または放射線療法への補助として、またはこれらと共に、本明細書に記載されているADCを投与するステップを含む。一実施形態は、標準的な細胞毒性剤および/または放射線に対して腫瘍を感作する方法であって、この腫瘍に結合することが可能な本明細書に記載されているADCを、標準的な細胞毒性剤および/または放射線に腫瘍細胞を感作するのに有効な量で腫瘍に接触させるステップを含む方法に関する。別の実施形態は、標準的な細胞毒性剤および/または放射線を用いる処置に抵抗性となった腫瘍を、標準的な細胞毒性剤および/または放射線に対して感作する方法であって、この腫瘍に結合することが可能な本明細書に記載されているADCを、標準的な細胞毒性剤および/または放射線に腫瘍細胞を感作するのに有効な量で腫瘍に接触させるステップを含む方法に関する。別の実施形態は、標準的な細胞毒性剤および/または放射線療法にこれまで曝露されてこなかった腫瘍を、標準的な細胞毒性剤および/または放射線に対して感作する方法であって、この腫瘍に結合することが可能な本明細書に記載されているADCを、標準的な細胞毒性剤および/または放射線に腫瘍細胞を感作するのに有効な量で腫瘍に接触させるステップを含む方法に関する。
EGFRを標的とするBcl−xL阻害性ADCを単剤として、またはドセタキセル(DTX)と組み合わせて処置した後の、H1650異種移植片の腫瘍成長の阻害を図示しているグラフである。 EGFRを標的とするBcl−xL阻害性ADCを単剤として、またはドセタキセル(DTX)と組み合わせて処置した後の、H1650異種移植片の腫瘍成長の阻害を図示しているグラフである。 EGFRを標的とするBcl−xLi ADCによる処置後の、H1650異種移植片の腫瘍成長の阻害を図示しているグラフである。 EGFRを標的とするBcl−xLi ADCよる処置後の、H1650異種移植片の腫瘍成長の阻害を図示しているグラフである。 EGFRを標的とするBcl−xLi ADCによる処置後の、H1650異種移植片の腫瘍成長の阻害を図示しているグラフである。 EGFRを標的とするBcl−xLi ADCを単剤として用いて、またはドセタキセル(DTX)と組み合わせて処置した後の、EBC−1異種移植片の腫瘍成長の阻害を図示しているグラフである。 EGFRを標的とするBcl−xLi ADCを単剤として用いて、またはドセタキセル(DTX)と組み合わせて処置した後の、EBC−1異種移植片の腫瘍成長の阻害を図示しているグラフである。 EGFRを標的とするBcl−xLi ADCを単剤として用いて、またはドセタキセル(DTX)と組み合わせて処置した後の、EBC−1異種移植片の腫瘍成長の阻害を図示しているグラフである。 EGFRを標的とするBcl−xLi ADCを単剤として用いて、またはドセタキセル(DTX)と組み合わせて処置した後の、EBC−1異種移植片の腫瘍成長の阻害を図示しているグラフである。 α−NCAM1を標的とするBcl−xLi ADCを単剤として、または選択的Bcl−2で阻害剤であるABT−199と組み合わせて投与して処置した後の、H146異種移植片の腫瘍成長の阻害を図示しているグラフである。 α−NCAM1を標的とするBcl−xLi ADCを単剤として、または選択的Bcl−2で阻害剤であるABT−199と組み合わせて投与して処置した後の、H1963.FP5異種移植片の腫瘍成長の阻害を図示しているグラフである。 循環血小板の数に及ぼす、細胞透過性Bcl−xL阻害剤によるBcl−xl ADCの影響を図示しているグラフである。
本開示は、ADC、該ADCの合成に有用なシントン、該ADCを含む組成物、およびADCを使用する様々な方法に関する。
当業者により認識される通り、本明細書において開示されているADCは、「モジュラー(modular)」の性質がある。本開示の全体にわたり、ADCを含む様々な「モジュール」、およびADCを合成するのに有用なシントンの様々な具体的な実施形態が記載されている。特定の非限定例として、ADCおよびシントンを含むことができる抗体、リンカーおよびBcl−xL阻害剤の具体的な実施形態が記載されている。記載されている具体的な実施形態のすべてが、あたかも特定の組合せのそれぞれが、個々に明示的に記載されているかのごとく、互いに組み合わされていてもよいことが意図されている。
本明細書に記載されている、様々なBcl−xL阻害剤、ADCおよび/またはADCシントンは、塩の形態であってもよく、ある種の実施形態において、特に、医薬として許容される塩の形態であってもよいことが当業者によってやはり理解される。十分に酸性な官能基、十分に塩基性な官能基、またはこれらの両方の官能基を有する本開示の化合物は、いくつかの無機塩基、ならびに無機酸および有機酸のいずれかと反応して、塩を形成することができる。代替として、四級窒素を有するもののような本来、帯電している化合物は、適切な対イオン、例えば、臭化物イオン、塩化物イオンまたはフッ素イオンのようなハロゲン化物イオンと塩を形成することができる。
酸付加塩を形成するために一般に使用される酸は、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、リン酸などのような無機酸、およびp−トルエンスルホン酸、メタンスルホン酸、シュウ酸、p−ブロモフェニル−スルホン酸、炭酸、コハク酸、クエン酸などのような有機酸である。塩基付加塩は、アンモニウム、およびアルカリまたはアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩などのような無機塩基に由来するものを含む。
以下の開示において、構造図と名称の両方が含まれている場合、および名称が構造図と矛盾する場合、構造図が優先する。
5.1. 定義
本明細書において特に定義されていない場合、本開示に関連して使用されている科学的および技術的用語は、当業者によって一般に理解されている意味を有するものとする。
様々な化学的な置換基が、以下に定義されている。一部の例において、置換基(例えば、アルキル、アルカニル、アルケニル、アルキニル、シクロアルキル、ヘテロシクリル、ヘテロアリールおよびアリール)中の炭素原子数は、接頭語の「C−C」によって示され、xは炭素原子の最小数であり、yは炭素原子の最大数である。したがって、例えば、「C−Cアルキル」とは、1個から6個の炭素原子を含有するアルキルを指す。さらに「C−Cシクロアルキル」の例示は、3から8個の炭素環原子を含有する飽和ヒドロカルビル環を意味する。置換基が「置換されている」として記載されている場合、炭素または窒素上の水素原子が、非水素基により置きかえられている。例えば、置換アルキル置換基は、アルキル上の少なくとも1個の水素原子が非水素基により置きかえられるアルキル置換基である。例示するために、モノフルオロアルキルは、フルオロ基により置換されているアルキルであり、ジフルオロアルキルは、2個のフルオロ基により置換されているアルキルである。1つの置換基上に2つ以上の置換が存在する場合、各置換は、同一であってもよく、または異なっていてもよい(特に明記されていない限り)ことを認識すべきである。置換基が「置換されていてもよい」と記載されている場合、この置換基は、(1)非置換である、または(2)置換されているかのどちらかとすることができる。可能な置換基は、以下に限定されないが、C−Cアルキル、C−Cアルケニル、C−Cアルキニル、アリール、シクロアルキル、ヘテロシクリル、ヘテロアリール、ハロゲン、C−Cハロアルキル、オキソ、−CN、NO、−ORxa、−OC(O)R、−OC(O)N(Rxa、−SRxa、−S(O)xa、−S(O)N(Rxa、−C(O)Rxa、−C(O)ORxa、−C(O)N(Rxa、−C(O)N(Rxa)S(O)、−N(Rxa、−N(Rxa)C(O)R、−N(Rxa)S(O)、−N(Rxa)C(O)O(R)、−N(Rxa)C(O)N(Rxa、−N(Rxa)S(O)N(Rxa、−(C−Cアルキレニル)−CN、−(C−Cアルキレニル)−ORxa、−(C−Cアルキレニル)−OC(O)R、−(C−Cアルキレニル)−OC(O)N(Rxa、−(C−Cアルキレニル)−SRxa、−(C−Cアルキレニル)−S(O)xa、−(C−Cアルキレニル)−S(O)N(Rxa、−(C−Cアルキレニル)−C(O)Rxa、−(C−Cアルキレニル)−C(O)ORxa、−(C−Cアルキレニル)−C(O)N(Rxa、−(C−Cアルキレニル)−C(O)N(Rxa)S(O)、−(C−Cアルキレニル)−N(Rxa、−(C−Cアルキレニル)−N(Rxa)C(O)R、−(C−Cアルキレニル)−N(Rxa)S(O)、−(C−Cアルキレニル)−N(Rxa)C(O)O(R)、−(C−Cアルキレニル)−N(Rxa)C(O)N(Rxa、または−(C−Cアルキレニル)−N(Rxa)S(O)N(Rxaを含み、Rxaは、出現毎に独立して、水素、アリール、シクロアルキル、ヘテロシクリル、ヘテロアリール、C−CアルキルまたはC−Cハロアルキルであり、Rは、出現毎に独立して、アリール、シクロアルキル、ヘテロシクリル、ヘテロアリール、C−CアルキルまたはC−Cハロアルキルである。
一部の実施形態において、様々なADC、シントン、ならびにADCおよび/またはシントンを含むBcl−xL阻害剤は、以下の置換基、例えば、置換基Ar、Z、Z、R、R、R、R10a、R10b、R10c、R11a、R11b、L、R、F、LK、Ab、nおよび/またはmを含めた、構造式を参照することにより、本明細書において記載されている。置換基を含む様々な基は、価数および安定性が許す通り、組み合わされ得ることを理解すべきである。本開示によって想定される置換基および変数の組合せは、安定化合物の形成をもたらすものに過ぎない。本明細書において使用する場合、用語「安定な」とは、製造を可能にするほど十分な安定性を有する化合物であって、本明細書において詳述されている目的に有用となるのに十分な時間、化合物の完全性を維持する化合物を指す。
本明細書において使用する場合、以下の用語は、以下の意味を有するよう意図されている。
用語「アルコキシ」とは、式−ORの基を指し、Rはアルキル基である。代表的なアルコキシ基は、メトキシ、エトキシ、プロポキシ、tert−ブトキシなどを含む。
用語「アルコキシアルキル」は、アルコキシ基により置換されているアルキル基を指し、一般式−RORにより表されることができ、Rは、アルキレン基であり、Rはアルキル基である。
用語「アルキル」は単独で、または別の置換基の一部として、親となるアルカン、アルケンまたはアルキンの1個の炭素原子から1個の水素原子を除去することによって誘導される、飽和または不飽和の分岐状、直鎖状または環式一価炭化水素基を指す。典型的なアルキル基は、以下に限定されないが、メチル;エタニル、エテニル、エチニルのようなエチル類、プロパン−1−イル、プロパン−2−イル、シクロプロパン−1−イル、プロパ−1−エン−1−イル、プロパ−1−エン−2−イル、プロパ−2−エン−1−イル,シクロプロパ−1−エン−1−イル;シクロプロパ−2−エン−1−イル、プロパ−1−イン−1−イル、プロパ−2−イン−1−イルなどのようなプロピル類、ブタン−1−イル、ブタン−2−イル、2−メチル−プロパン−1−イル、2−メチル−プロパン−2−イル、シクロブタン−1−イル、ブタ−1−エン−1−イル、ブタ−1−エン−2−イル、2−メチル−プロパ−1−エン−1−イル、ブタ−2−エン−1−イル、ブタ−2−エン−2−イル、ブタ−1,3−ジエン−1−イル、ブタ−1,3−ジエン−2−イル、シクロブタ−1−エン−1−イル、シクロブタ−1−エン−3−イル、シクロブタ−1,3−ジエン−1−イル、ブタ−1−イン−1−イル、ブタ−1−イン−3−イル、ブタ−3−イン−1−イルなどのようなブチル類を含む。飽和の特定のレベルが意図される場合、名称の「アルカニル」、「アルケニル」および/または「アルキニル」は、以下に定義されている通り使用される。用語「低級アルキル」は、1個から6個の炭素を有するアルキル基を指す。
用語「アルカニル」は単独で、または別の置換基の一部として、親となるアルカンの1個の炭素原子から1個の水素原子を除去することによって誘導される、飽和の分岐状、直鎖状または環式アルキルを指す。典型的なアルカニル基は、以下に限定されないが、メチル;エタニル;プロパン−1−イル、プロパン−2−イル(イソプロピル)、シクロプロパン−1−イルなどのようなプロパニル類;ブタン−1−イル、ブタン−2−イル(sec−ブチル)、2−メチルプロパン−1−イル(イソブチル)、2−メチル−プロパン−2−イル(t−ブチル)、シクロブタン−1−イルなどのようなブタニル類などを含む。
用語「アルケニル」は単独で、または別の置換基の一部として、親となるアルケンの1個の炭素原子から1個の水素原子を除去することによって誘導される、少なくとも1つの炭素−炭素二重結合を有する、不飽和の分岐状、直鎖状または環式アルキルを指す。典型的なアルケニル基は、以下に限定されないが、エテニル;プロパ−1−エン−1−イル、プロパ−1−エン−2−イル、プロパ−2−エン−1−イル、プロパ−2−エン−2−イル、シクロプロパ−1−エン−1−イル、シクロプロパ−2−エン−1−イルのようなプロペニル類;ブタ−1−エン−1−イル、ブタ−1−エン−2−イル、2−メチル−プロパ−1−エン−1−イル、ブタ−2−エン−1−イル、ブタ−2−エン−2−イル、ブタ−1,3−ジエン−1−イル、ブタ−1,3−ジエン−2−イル、シクロブタ−1−エン−1−イル、シクロブタ−1−エン−3−イル、シクロブタ−1,3−ジエン−1−イルなどのようなブテニル類などを含む。
用語「アルキニル」は単独で、または別の置換基の一部として、親となるアルキンの1個の炭素原子から1個の水素原子を除去することによって誘導される、少なくとも1つの炭素−炭素三重結合を有する、不飽和の分岐状、直鎖状または環式アルキルを指す。典型的なアルキニル基は、以下に限定されないが、エチニル;プロパ−1−イン−1−イル、プロパ−2−イン−1−イルなどのようなプロピニル類;ブタ−1−イン−1−イル、ブタ−1−イン−3−イル、ブタ−3−イン−1−イルなどのようなブチニル類などを含む。
用語「アルキルアミン」とは、式−NHRの基を指し、「ジアルキルアミン」は、式−NRの基を指し、Rはそれぞれ、互いに独立して、アルキル基である。
用語「アルキレン」とは、2個の末端炭素原子のそれぞれから1個の水素原子を除去することにより誘導される、末端が一価のラジカル中心を2個、有するアルカン基、アルケン基またはアルキン基を指す。典型的なアルキレン基は、以下に限定されないが、メチレン、および飽和または不飽和エチレン、プロピレン、ブチレンなどを含む。用語「低級アルキレン」は、1個から6個の炭素を有するアルキレン基を指す。
用語「アリール」は、6個から14個の炭素環原子を含有する芳香族カルボシクリルを意味する。アリールは、単環式または多環式とすることができる(すなわち、2つ以上の環を含有してもよい。)。多環式芳香族環の場合、多環式系の1つの環だけが、芳香族であることを必要とする一方、残りの環は、飽和であってもよく、部分飽和であってもよく、または不飽和であってもよい。アリールの例は、フェニル、ナフタレニル、インデニル、インダニルおよびテトラヒドロナフチルを含む。
接頭語「ハロ」は、接頭語を含む置換基が、1個以上の独立して選択されるハロゲン基により置換されていることを示す。例えば、ハロアルキルは、少なくとも1個の水素基がハロゲン基により置きかえられているアルキル置換基を意味する。典型的なハロゲン基は、クロロ、フルオロ、ブロモおよびヨードを含む。ハロアルキルの例は、クロロメチル、1−ブロモエチル、フルオロメチル、ジフルオロメチル、トリフルオロメチルおよび1,1,1−トリフルオロエチルを含む。置換基が、2個以上のハロゲン基により置換されている場合、これらのハロゲン基は、同一であってもよく、または異なっていてもよい(特に明記されていない限り)ことを認識すべきである。
用語「ハロアルコキシ」とは、式−ORの基を指し、Rはハロアルキルである。
用語「ヘテロアルキル」、「ヘテロアルカニル」、「ヘテロアルケニル」、「ヘテロアルキニル」および「ヘテロアルキレン」は、それぞれ、アルキル基、アルカニル基、アルケニル基、アルキニル基およびアルキレン基を指し、1個以上の炭素原子、例えば、1個、2個または3個の炭素原子が、それぞれ独立して、同一もしくは異なるヘテロ原子(heterotom)またはヘテロ原子群により置きかえられている。炭素原子を置きかえることができる典型的なヘテロ原子および/またはヘテロ原子群は、以下に限定されないが、O、S、SO、NR、PH、S(O)、S(O)、S(O)NR、S(O)NRなど(これらの組合せを含む。)を含み、Rはそれぞれ独立して、水素またはC−Cアルキルである。
用語「シクロアルキル」および「ヘテロシクリル」とは、それぞれ、「アルキル」基および「ヘテロアルキル」基の環式型を指す。ヘテロシクリル基の場合、ヘテロ原子は、分子の残りに結合している位置を占有することができる。シクロアルキル環またはヘテロシクリル環は、単一環(単環式)であってもよく、または2つ以上の環(二環式または多環式)を有していてもよい。
単環式シクロアルキル基およびヘテロシクリル基は、典型的に、3個から7個の環原子、より典型的に3個から6個の環原子、さらにより典型的に、5個から6個の環原子を含有する。シクロアルキル基の例は、以下に限定されないが、シクロプロピル;シクロブタニルおよびシクロブテニルのようなシクロブチル類;シクロペンタニルおよびシクロペンテニルのようなシクロペンチル類;シクロヘキサニルおよびシクロヘキセニルのようなシクロヘキシル類などを含む。単環式ヘテロシクリルの例は、以下に限定されないが、オキセタン、フラニル、ジヒドロフラニル、テトラヒドロフラニル、テトラヒドロピラニル、チオフェニル(チオフラニル)、ジヒドロチオフェニル、テトラヒドロチオフェニル、ピロリル、ピロリニル、ピロリジニル、イミダゾリル、イミダゾリニル、イミダゾリジニル、ピラゾリル、ピラゾリニル、ピラゾリジニル、トリアゾリル、テトラゾリル、オキサゾリル、オキサゾリジニル、イソオキサゾリジニル、イソオキサゾリル、チアゾリル、イソチアゾリル、チアゾリニル、イソチアゾリニル、チアゾリジニル、イソチアゾリジニル、チオジアゾリル、オキサジアゾリル(1,2,3−オキサジアゾリル、1,2,4−オキサジアゾリル、1,2,5−オキサジアゾリル(フラザニル)または1,3,4−オキサジアゾリルを含む。)、オキサトリアゾリル(1,2,3,4−オキサトリアゾリルまたは1,2,3,5−オキサトリアゾリルを含む。)、ジオキサゾリル(1,2,3−ジオキサゾリル、1,2,4−ジオキサゾリル、1,3,2−ジオキサゾリルまたは1,3,4−ジオキサゾリルを含む。)、1,4−ジオキサニル、ジオキソチオモルホリニル、オキサチアゾリル、オキサチオリル、オキサチオラニル、ピラニル、ジヒドロピラニル、チオピラニル、テトラヒドロチオピラニル、ピリジニル(アジニル)、ピペリジニル、ジアジニル(ピリダジニル(1,2−ジアジニル)、ピリミジニル(1,3−ジアジニル)またはピラジニル(1,4−ジアジニル)を含む。)、ピペラジニル、トリアジニル(1,3,5−トリアジニル、1,2,4−トリアジニルおよび1,2,3−トリアジニルを含む。)、オキサジニル(1,2−オキサジニル、1,3−オキサジニルまたは1,4−オキサジニルを含む。)、オキサチアジニル(1,2,3−オキサチアジニル、1,2,4−オキサチアジニル、1,2,5−オキサチアジニルまたは1,2,6−オキサチアジニルを含む。)、オキサジアジニル(1,2,3−オキサジアジニル、1,2,4−オキサジアジニル、1,4,2−オキサジアジニルまたは1,3,5−オキサジアジニルを含む。)、モルホリニル、アゼピニル、オキセピニル、チエピニル、ジアゼピニル、ピリドニル(ピリド−2(1H)−オニルおよびピリド−4(1H)−オニルを含む。)、フラン−2(5H)−オニル、ピリミドニル(ピラミド−2(1H)−オニルおよびピラミド−4(3H)−オニルを含む。)、オキサゾール−2(3H)−オニル、1H−イミダゾール−2(3H)−オニル、ピリダジン−3(2H)−オニルおよびピラジン−2(1H)−オニルを含む。
多環式シクロアルキル基およびヘテロシクリル基は2環以上の環を含有し、二環式シクロアルキル基およびヘテロシクリル基は2つの環を含有している。これらの環は、架橋配向していてもよく、縮合配向していてもよく、またはスピロ配向していてもよい。多環式シクロアルキル基およびヘテロシクリル基は、架橋環、縮合環および/またはスピロ環の組合せを含んでもよい。スピロ環式シクロアルキルまたはヘテロシクリルにおいて、1個の原子は、2つの異なる環に共通している。スピロシクロアルキルの一例は、スピロ[4.5]デカンであり、スピロヘテロシクリルの一例は、スピロピラゾリンである。
架橋シクロアルキルまたはヘテロシクリルにおいて、環は、少なくとも2個の共通する非隣接原子を共有する。架橋シクロアルキルの例は、以下に限定されないが、アダマンチルおよびノルボルナニル環を含む。架橋ヘテロシクリルの例は、以下に限定されないが、2−オキサトリシクロ[3.3.1.13,7]デカニルを含む。
縮合環のシクロアルキルまたはヘテロシクリルにおいて、2つ以上の環は、一緒に縮合し、この結果、2つの環が、1つの共通結合を共有する。縮合環のシクロアルキルの例は、デカリン、ナフチレン、テトラリンおよびアントラセンを含む。2つまたは3つの環を含有する縮合環のヘテロシクリルの例は、イミダゾピラジニル(イミダゾ[1,2−a]ピラジニルを含む。)、イミダゾピリジニル(イミダゾ[1,2−a]ピリジニルを含む。)、イミダゾピリダジニル(イミダゾ[1,2−b]ピリダジニルを含む。)、チアゾロピリジニル(チアゾロ[5,4−c]ピリジニル、チアゾロ[5,4−b]ピリジニル、チアゾロ[4,5−b]ピリジニルおよびチアゾロ[4,5−c]ピリジニルを含む。)、インドリジニル、ピラノピロリル、4H−キノリジニル、プリニル、ナフチリジニル、ピリドピリジニル(ピリド[3,4−b]−ピリジニル、ピリド[3,2−b]−ピリジニルまたはピリド[4,3−b]−ピリジニルを含む。)およびプテリジニルを含む。縮合環のヘテロシクリルの他の例は、ジヒドロクロメニル、テトラヒドロイソキノリニル、インドリル、イソインドリル(イソベンゾアゾリル、シュードイソインドリル)、インドレニニル(シュードインドリル)、イソインダゾリル(ベンゾピラゾリル)、ベンゾアジニル(キノリニル(1−ベンゾアジニル)またはイソキノリニル(2−ベンゾアジニル)を含む。)、フタラジニル、キノキサリニル、キナゾリニル、ベンゾジアジニル(シンノリニル(1,2−ベンゾジアジニル)またはキナゾリニル(1,3−ベンゾジアジニル)を含む。)、ベンゾピラニル(クロマニルまたはイソクロマニルを含む。)、ベンゾオキサジニル(1,3,2−ベンゾオキサジニル、1,4,2−ベンゾオキサジニル、2,3,1−ベンゾオキサジニルまたは3,1,4−ベンゾオキサジニルを含む。)、ベンゾ[d]チアゾリルおよびベンゾイソオキサジニル(1,2−ゼンゾイソオキサジニルまたは1,4−ベンゾイソオキサジニルを含む。)のようなベンゾ縮合ヘテロシクリルを含む。
用語「ヘテロアリール」は、5個から14個の環原子を含有する芳香族ヘテロシクリルを指す。ヘテロアリールは、単環または2縮合環または3縮合環とすることができる。ヘテロアリールの例は、ピリジル、ピラジル、ピリミジニル、ピリダジニルおよび1,3,5−、1,2,4−または1,2,3−トリアジニルのような6員環;トリアゾリル、ピロリル、イミダジル、フラニル、チオフェニル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、1,2,3−、1,2,4−、1,2,5−または1,3,4−オキサジアゾリルおよびイソチアゾリルのような5員環の置換基;イミダゾピラジニル(イミダゾ[1,2−a]ピラジニルを含む。)、イミダゾピリジニル(イミダゾ[1,2−a]ピリジニルを含む。)、イミダゾピリダジニル(イミダゾ[1,2−b]ピリダジニルを含む。)、チアゾロピリジニル(チアゾロ[5,4−c]ピリジニル、チアゾロ[5,4−b]ピリジニル、チアゾロ[4,5−b]ピリジニルおよびチアゾロ[4,5−c]ピリジニルを含む。)、ベンゾ[d]チアゾリル、ベンゾチオフラニル、ベンゾイソオキサゾリル、ベンゾオキサゾリル、プリニルおよびアントラニリルのような6/5員の縮合環置換基;およびベンゾピラニル、キノリニル、イソキノリニル、シンノリニル、キナゾリニルおよびベンゾオキサジニルのような6/6員の縮合環を含む。ヘテロアリールはまた、ピリドニル(ピリド−2(1H)−オニルおよびピリド−4(1H)−オニルを含む。)、ピリミドニル(ピラミド−2(1H)−オニルおよびピラミド−4(3H)−オニルを含む。)、ピリダジン−3(2H)−オニルおよびピラジン−2(1H)−オニルのような、芳香族(4N+2個のパイ電子)共鳴寄与体を有する複素環とすることもできる。
用語「スルホネート」は、本明細書において使用する場合、スルホン酸の塩またはエステルを意味する。
用語「スルホン酸メチル」は、本明細書において使用する場合、スルホン酸基のメチルエステルを意味する。
用語「カルボキシレート」は、本明細書において使用する場合、カルボン酸の塩またはエステルを意味する。
リンカーの文脈において、用語「糖」は、本明細書で使用する場合、モノサッカライドのクラスのO−グリコシドまたはN−グリコシド炭水化物誘導体を意味し、天然源に由来してもよく、または合成由来であってもよい。例えば「糖」は、以下に限定されないが、ベータ−グルクロン酸およびベータ−ガラクトースに由来するもののような誘導体を含む。適切な糖の置換は、以下に限定されないが、ヒドロキシル、アミン、カルボン酸、エステルおよびエーテルを含む。
用語「NHSエステル」は、カルボン酸のN−ヒドロキシスクシンイミドエステル誘導体を意味する。
塩と言う用語は、「またはこの塩」の文脈において使用される場合、アルカリ金属塩を形成するよう、および遊離酸または遊離塩基の付加塩を形成するよう一般に使用される塩を含む。一般に、これらの塩は、通常、例えば、適切な酸または塩基を本発明の化合物と反応させることによる従来的な手段によって調製され得る。
塩が患者に投与されることが意図される場合(例えば、インビトロの文脈における使用におけるものとは対照的に)、この塩は、好ましくは、医薬として許容される、および/または生理学的に適合される。用語「医薬として許容される」とは、本特許出願において、修飾される名詞が、医薬製品として、または医薬製品の一部としての使用に適していることを意味するよう、形容詞として使用されている。用語「医薬として許容される塩」は、アルカリ金属塩を形成するよう、および遊離酸または遊離塩基の付加塩を形成するよう一般に使用される塩を含む。一般に、これらの塩は、通常、例えば、適切な酸または塩基を本発明の化合物と反応させることによる従来的な手段によって調製され得る。
5.2 例示的な実施形態
課題を解決するための手段に明記されている通り、本開示の一態様は、リンカーによって抗体に連結されているBcl−xL阻害剤を含むADCに関する。具体的な実施形態において、ADCは、以下の構造式(I)による化合物またはこの塩であり、式中、Abは抗体を表し、DはBcl−xL阻害剤(薬物)を表し、Lはリンカーを表し、LKはリンカーLの反応性官能基と抗体Ab上の相補的な官能基との間に形成されている連結基を表し、mは、抗体に連結しているD−LーLK単位の数を表す:
Figure 2020152726
本明細書に記載されているADCを含むことができる、様々なBcl−xL阻害剤(D)、リンカー(L)および抗体(Ab)、ならびにADCに連結されているBcl−xL阻害剤の数の具体的な実施形態は、以下により詳細に記載されている。
5.2.1 Bcl−xL阻害剤
ADCは、1種以上のBcl−xL阻害剤を含み、この阻害剤は、同一であってもよく、または異なっていてもよいが、通常、同一である。一部の実施形態において、ADCを含むBcl−xL阻害剤、およびある種の具体的な実施形態において、上記の構造式(I)のDは、構造式(IIa)による化合物:
Figure 2020152726
またはこの塩であり、式中、
Arは、
Figure 2020152726
から選択され、これらは、ハロ、シアノ、メチルおよびハロメチルから独立して選択される1つ以上の置換基により置換されていてもよく、
は、N、CHおよびC−CNから選択され、
は、NH、CH、O、S、S(O)およびS(O)から選択され、
は、メチル、クロロおよびシアノから選択され、
は、水素、メチル、クロロおよびシアノから選択され、
は、水素、C1−4アルカニル、C2−4アルケニル、C2−4アルキニル、C1−4ハロアルキルまたはC1−4ヒドロキシアルキルであり、R1−4アルカニル、C2−4アルケニル、C2−4アルキニル、C1−4ハロアルキルおよびC1−4ヒドロキシアルキルは、OCH、OCHCHOCHおよびOCHCHNHCHから独立して選択される1つ以上の置換基により置換されていてもよく、
10a、R10bおよびR10cは、それぞれ、水素、ハロ、C1−6アルカニル、C2−6アルケニル、C2−6アルキニルおよびC1−6ハロアルキルから相互に独立して選択され、
11aおよびR11bはそれぞれ、水素、メチル、エチル、ハロメチル、ヒドロキシル、メトキシ、ハロ、CNおよびSCHから相互に独立して選択され、
nは、0、1、2または3であり、
#は、リンカーLへの結合点を表す。
ある種の実施形態において、式(IIa)のArは、
Figure 2020152726
から選択され、ハロ、シアノ、メチルおよびハロメチルから独立して選択される1つ以上の置換基により置換されていてもよい。特定の実施形態において、Arは、
Figure 2020152726
である。
ある種の実施形態において、式(IIa)のZはNである。
ある種の実施形態において、式(IIa)のZはCHである。
ある種の実施形態において、式(IIa)のZはOである。
ある種の実施形態において、式(IIa)のRは、メチルおよびクロロから選択される。
ある種の実施形態において、式(IIa)のRは、水素およびメチルから選択される。特定の実施形態において、Rは水素である。
ある種の実施形態において、式(IIa)中のRはメチルであり、Rは水素であり、ZはNである。
ある種の実施形態において、式(IIa)中のR10aはハロであり、R10bおよびR10cはそれぞれ水素である。特定の実施形態において、R10aはフルオロである。
ある種の実施形態において、式(IIa)中のR10bはハロであり、R10aおよびR10cはそれぞれ水素である。特定の実施形態において、R10bはフルオロである。
ある種の実施形態において、式(IIa)中のR10cはハロであり、R10aおよびR10bはそれぞれ水素である。特定の実施形態において、R10cはフルオロである。
ある種の実施形態において、式(IIa)中のR10a、R10bおよびR10cはそれぞれ水素である。
ある種の実施形態において、式(IIa)のR11aおよびR11bは、同じである。特定の実施形態において、R11aおよびR11bはそれぞれ、メチルである。
ある種の実施形態において、式(IIa)のnは、0または1である。
本明細書に記載されているADCに含まれ得る例示的なBcl−xL阻害剤および/またはこの塩は、それぞれ、実施例1.1−1.8に記載されている、化合物W1.01−W1.08を含む。
ADCを含むBcl−xL阻害剤は、ADCに含まれない場合、抗アポトーシスBcl−xLタンパク質に結合してこのタンパク質を阻害し、アポトーシスを誘導する。構造式(IIa)による特定のBcl−xL阻害剤(すなわち、構造式(IIa)による化合物または塩であり、この場合、#は水素原子を表す。)が、ADCに含まれない場合に、Bcl−xL活性に結合して、この活性を阻害する能力は、例えば、Taoら、2014年、ACS Med.Chem.Lett.、5巻:1088−1093頁において記載されているTR−FRET Bcl−xL結合アッセイを含めた、標準的な結合アッセイおよび活性アッセイにおいて確認され得る。Bcl−xL結合を確認するために使用され得る具体的なTR−FRET Bcl−xL結合アッセイは、以下の実施例4において提供されている。通常、本明細書に記載されているADC中の有用なBcl−xL阻害剤は、実施例4の結合アッセイが約10nM未満となるKを示すが、かなり一層小さなK、例えば、約1、0.1または0.01nM未満にさえなるKを示すことがある。
Bcl−xL阻害活性はまた、Taoら、2014年、ACS Med.Chem.Lett.、5巻:1088−1093頁に記載されているFL5.12細胞毒性アッセイおよびMolt−4細胞毒性アッセイのような、標準的な細胞をベースとする細胞毒性アッセイにおいて確認され得る。特定のBcl−xL阻害剤のBcl−xL阻害活性を確認するために使用され得る、特定のMolt−4細胞の細胞毒性アッセイは、以下の実施例5に提示されている。通常、本明細書に記載されているADCに有用なBcl−xL阻害剤は、実施例5のMolt−4細胞毒性アッセイにおいて、約500nM未満のEC50を示すが、かなりより小さなEC50、例えば約250、100、50、20、10または5nM未満にもなるEC50を示すことがある。
構造式(IIa)によって定義されたBcl−xL阻害剤は、ADCに含まれない場合、細胞透過性であり、細胞に浸透することが予期されるが、細胞膜を自由に通過しない化合物のBcl−xL阻害活性は、透過化細胞を用いた細胞アッセイにおいて確認され得る。背景技術において議論されている通り、ミトコンドリア外膜透過化(MOMP)の過程は、Bcl−2ファミリータンパク質によって制御される。具体的には、MOMPは、アポトーシス促進性Bcl−2ファミリータンパク質であるBaxおよびBakによって促進され、これらのファミリータンパク質は、活性化されると、ミトコンドリア外膜において重合して細孔を形成し、シトクロムc(cyt c)の放出に至る。cyt cの放出は、アポトソームの製剤化の引き金となり、ひいてはカスパーゼの活性化、および細胞にプログラム細胞死をもたらす他の事象をもたらす(Goldsteinら、2005年、Cell Death and Differentiation、12巻:453−462頁を参照されたい。)。BaxおよびBakのオリゴマー化作用は、Bcl−2およびBcl−xLを含む、抗アポトーシス性Bcl−2ファミリーメンバーによって拮抗される。生存するためにBcl−xLに依存している細胞中のBcl−xL阻害剤は、Baxおよび/またはBak、MOMP、cyt cの放出、および下流の事象の活性化を引き起こし、これらによりアポトーシスがもたらされる。cyt c放出の過程は、細胞におけるシトクロムcのミトコンドリア画分およびサイトゾル画分の両方のウェスタンブロットにより評価され得、細胞におけるアポトーシスの代替測定として使用され得る。
Bcl−xL阻害活性、およびこの後に起こる低細胞透過性を有する分子に対するcyt cの放出を検出する手段として、細胞は、ミトコンドリアの膜ではなく、形質膜において選択的な細孔形成を引き起すが、ミトコンドリア膜においては細孔形成を引き起こさない薬剤により処置され得る。具体的には、コレステロール/リン脂質の比は、ミトコンドリア膜よりも形質膜においてはるかに高い。この結果、コレステロールに由来する洗剤であるジギトニンを低濃度用いた短いインキュベートは、ミトコンドリア膜に著しく影響を及ぼすことなく、形質膜を選択的に透過化する。この薬剤は、コレステロールと不溶性複合体を形成して、この正常なリン脂質の結合部位からコレステロールを分離する。この作用は、ひいては、脂質二重層内に、約40−50Å幅の穴の形成をもたらす。形質膜が、一旦、透過化されると、アポトーシス細胞においてミトコンドリアからサイトゾルに放出されるシトクロムCを含めた、ジギトニンにより形成される穴を通過することが可能なサイトゾル構成成分が洗い流され得る(Campos、2006年、Cytometry A 69巻(6号):515−523頁)。
通常、Bcl−xL阻害剤は、実施例5のMolt−4の細胞透過化cyt cアッセイにおいて、約10nM未満のEC50をもたらすが、これらの化合物は、例えば約5、1、または0.5nM未満にもなる、かなり一層小さなEC50を示すことがある。
構造式(IIa)のBcl−xL阻害剤の多数が、他の抗アポトーシス性Bcl−2ファミリータンパク質よりも選択的または特異的にBcl−xLを阻害するが、Bcl−xLの選択的および/または特異的阻害は必要ではない。ADCを含むBcl−xL阻害剤はまた、Bcl−xLの阻害に加えて、例えばBcl−2のような、1種以上の他の抗アポトーシスBcl−2ファミリータンパク質を阻害し得る。一部の実施形態において、ADCを含むBcl−xL阻害剤は、Bcl−xLに対して選択的および/または特異的である。特異的または選択的とは、特定のBcl−xL阻害剤が、等価なアッセイ条件下において、Bcl−2よりも大きな程度にBcl−xLに結合する、またはこれを阻害することを意味する。具体的な実施形態において、ADCを含むBcl−xL阻害剤は、Bcl−xL結合アッセイにおいて、Bcl−2よりもBcl−xLに対して、10倍、100倍、またはこれより一層大きな範囲の特異性を示す。
5.2.2 リンカー
本明細書に記載されているADCにおいて、Bcl−xL阻害剤は、リンカーによって抗体に連結されている。Bcl−xL阻害剤をADCの抗体に連結するリンカーは、短くても、長くても、疎水性でも、親水性でも、フレキシブルでも、または剛直でもよく、または上記の特性の1つ以上をそれぞれ独立して有するセグメントからなることができ、したがって、このリンカーは、異なる特性を有するセグメントを含むことができる。リンカーは、多価であってもよく、この結果、このリンカーは、2つ以上のBcl−xL阻害剤を抗体の単一部位に共有結合により連結し、またはリンカーは一価であってもよく、この結果、このリンカーは、1つのBcl−xL阻害剤を抗体の単一部位に共有結合により連結する。
当業者によって理解される通り、リンカーは、1つの場所においてBcl−xL阻害剤への共有結合性連結基を、および別の場所において抗体への共有結合性連結を形成することによって、Bcl−xL阻害剤を抗体に連結する。この共有結合性連結基は、リンカー上の官能基と、阻害剤および抗体上の官能基との間の反応によって形成される。本明細書において使用する場合、「リンカー」という表現は、(i)リンカーをBcl−xL阻害剤に共有結合により連結することが可能な官能基、およびこのリンカーを抗体に共有結合により連結することが可能な官能基を含むリンカーの非コンジュゲート形態、(ii)リンカーを抗体に共有結合により連結することが可能な官能基を含み、Bcl−xL阻害剤に共有結合により連結している、またはこの反対となるリンカーの部分的なコンジュゲート形態、および(iii)Bcl−xL阻害剤と抗体の両方に共有結合により連結されているリンカーの完全なコンジュゲート形態を含むことが意図されている。本明細書に記載されている中間シントンおよびADCの、一部の具体的な実施形態において、リンカー上の官能基、およびリンカーと抗体との間に形成される共有結合性連結基を含む部分は、それぞれRおよびLKとして具体的に例示される。一実施形態は、本明細書に記載されているシントンが抗体に共有結合により連結する条件下において、腫瘍細胞に発現する細胞表面受容体または腫瘍関連抗原に結合する抗体を該シントンに接触させるステップにより形成されるADCに関する。一実施形態は、本明細書に記載されているシントンが抗体に共有結合により連結する条件下において、該シントンに接触させることによる、ADCを作製する方法に関する。一実施形態は、Bcl−xLを発現する細胞におけるBcl−xL活性を阻害する方法であって、細胞に結合することが可能な、本明細書に記載されているADCが細胞に結合する条件下において、細胞をADCに接触させるステップを含む方法に関する。
リンカーは、細胞外の条件に対して化学的に安定であることが好ましいが、必要ではなく、細胞内において、切断されるよう、破壊されるよう、および/またはそうでない場合、特異的に分解するよう設計され得る。代替として、細胞内において、特異的に切断されるまたは分解するよう設計されていないリンカーが使用されてもよい。ADCの文脈において、薬物を抗体に連結するのに有用な幅広いリンカーが、当分野において公知である。これらのリンカーのいずれも、および他のリンカーが、Bcl−xL阻害剤を本明細書に記載されているADCの抗体に連結するために使用され得る。多数のBcl−xL阻害剤を抗体に連結するために使用され得る例示的な多価リンカーが、例えば、これらの内容の全体が参照により本明細書に組み込まれている、米国特許第8,399,512号、米国出願公開第2010/0152725号、米国特許第8,524,214号、米国特許第8,349,308号、米国出願公開第2013/189218号、米国出願公開第2014/017265号、WO2014/093379、WO2014/093394、WO2014/093640に記載されている。例えば、Mersanaらによって開発されたFleximer(登録商標)リンカー技法は、良好な物理化学特性を有する、高いDARのADCを可能にする可能性を有する。以下に示されている通り、Fleximer(登録商標)リンカー技法は、エステル結合の配列により、薬物分子を可溶性ポリアセタール主鎖に取り込ませることに基づくものである。この方法は、良好な物理化学特性を維持しながら、高負荷ADC(最大20のDAR)をもたらす。この方法は、以下のスキームに示されている通り、Bcl−xL阻害剤を用いて利用され得る。
Figure 2020152726
上のスキーム中に図示されているFleximer(登録商標)リンカー技法を利用するため、脂肪族アルコールが存在し、またはBcl−xL阻害剤に導入されなければならない。次に、このアルコール部分がアラニン部分にコンジュゲートされ、次に、このアラニン部分がFleximer(登録商標)リンカーに合成的に取り込まれる。ADCのリポソーム処理は、親アルコール含有薬物をインビトロにおいて放出する。
デンドリマータイプのリンカーの追加例は、US2006/116422、US2005/271615;de Grootら、(2003年)Angew.Chem.Int.Ed.42巻:4490−4494頁;Amirら、(2003年)Angew.Chem.Int.Ed.42巻:4494−4499頁;Shamisら、(2004年)J.Am.Chem.Soc.126巻:1726−1731頁;Sunら、(2002年)Bioorganic&Medicinal Chemistry Letters 12巻:2213−2215頁;Sunら、(2003年) Bioorganic&Medicinal Chemistry 11巻:1761−1768頁;およびKingら、(2002年)Tetrahedron Letters 43巻:1987−1990頁に見いだされ得る。
使用され得る例示的な一価リンカーは、例えば、それぞれの内容の全体が参照により本明細書に組み込まれている、Nolting、2013年、Antibody−Drug Conjugates、Methods in Molecular Biology 1045巻:71−100頁;Kitsonら、2013年、CROs/CMOs−Chemica Oggi−Chemistry Today 31巻(4号):30−36頁;Ducryら、2010年、Bioconjugate Chem.21巻:5−13頁;Zhaoら、2011年、J.Med.Chem.54巻:3606−3623頁、米国特許第7,223,837号、米国特許第8,568,728号、米国特許第8,535,678号およびWO2004010957に記載されている。
例として非限定的に、本明細書に記載されているADCに含まれ得る一部の切断可能なリンカーおよび切断不能なリンカーが以下に記載されている。
5.2.2.1.切断可能なリンカー
ある種の実施形態において、選択されるリンカーは、インビトロおよびインビボにおいて切断可能である。切断可能なリンカーは、化学的もしくは酵素的に不安定な連結基または分解性連結基を含むことができる。切断可能なリンカーは、一般に、細胞質における還元、リソソームにおける酸性条件への曝露、または細胞内の特定のプロテアーゼもしくは他の酵素による切断のような薬物を遊離させるための細胞内過程に依存する。切断可能なリンカーは、一般に、化学的または酵素的のどちらかにより切断可能な1つ以上の化学結合を組み込んでいる一方、このリンカーの残りは切断不能である。
ある種の実施形態において、リンカーは、ヒドラゾン基および/またはジスルフィド基のような化学的に不安定な基を含む。化学的に不安定な基を含むリンカーは、血漿と一部の細胞質コンパートメントとの間の特性差を利用する。ヒドラゾン含有リンカーにとって、薬物放出を促進させる細胞内条件は、エンドソームおよびリソソームの酸性環境である一方、ジスルフィド含有リンカーは、高濃度のチオール、例えばグルタチオンを含有するサイトゾルにおいて還元される。ある種の実施形態において、化学的に不安定な基を含むリンカーの血漿安定性は、化学的に不安定な基の近傍に置換基を使用する、立体障害を導入することにより向上され得る。
ヒドラゾンのような酸に不安定な基は、血液の中性pH環境(pH7.3−7.5)における全身の血液循環の間は無傷のままであり、ADCが、一旦、穏やかに酸性な細胞のエンドソームコンパートメント(pH5.0−6.5)およびリソソームコンパートメント(pH4.5−5.0)に内部移行されると、加水分解を受けて薬物を放出する。このpH依存性の放出機構は、薬物の非特異的放出に関連する。リンカーのヒドラゾン基の安定性を向上させるために、リンカーは、化学的修飾、例えば置換によって変化されることができ、これにより、血液循環中の喪失を最小限にしながら、リソソームにおけるより効率的な放出の実現を調節することが可能となる。
ヒドラゾン含有リンカーは、追加の、酸に不安定な切断部位および/または酵素に不安定な切断部位のような、追加の切断部位を含有することができる。例示的なヒドラゾン含有リンカーを含むADCは、以下の構造:
Figure 2020152726
(式中、DおよびAbは薬物およびAbをそれぞれ表し、nは、抗体に連結されている薬物−リンカーの数を表す。)を含む。リンカー(Id)のようなある種のリンカーにおいて、リンカーは、2つの切断可能な基、すなわちジスルフィド部分およびヒドラゾン部分を含む。このようなリンカーの場合、未修飾の遊離薬物の効率的な放出は、酸性pH、またはジスルフィドの還元と酸性pHを必要とする。(Ie)および(If)のようなリンカーは、単一のヒドラゾン切断部位により有効であることが示されている。
リンカーに含まれ得る他の酸不安定基は、シス−アコニチル含有リンカーを含む。シスアコニチルの化学は、酸性条件下、アミド加水分解を促進するために、アミド結合に並置されているカルボン酸を使用する。
切断可能なリンカーはまた、ジスルフィド基を含んでもよい。ジスルフィドは、生理学的pHにおいて熱力学的に安定であり、細胞内に内部移行すると、薬物を放出するよう設計されており、この場合、サイトゾルが、細胞外環境と比べて、かなり強い還元的環境をもたらす。ジスルフィド結合の切断は、一般に、(還元型)グルタチオン(GSH)のような細胞質チオール補因子の存在を必要とし、したがって、ジスルフィド含有リンカーは、血液循環中、妥当な安定性があり、サイトゾル内において薬物を選択的に放出する。ジスルフィド結合を切断することが可能な、細胞内の酵素タンパク質であるジスルフィドイソメラーゼまたは類似の酵素もまた、細胞内部のジスルフィド結合の優先的切断に寄与し得る。GSHまたはシステインがかなり一層低い濃度であることに比べて、GSHは、0.5−10mMの濃度範囲で細胞中に存在することが報告されており、血液循環において、最多量の低分子量チオールは約5μMである。不規則な血流により低酸素状態に至る腫瘍細胞は、還元的酵素の活性を高め、したがって、一層高いグルタチオン濃度をもたらす。ある種の実施形態において、ジスルフィド含有リンカーのインビボ安定性は、リンカーの化学的修飾、例えば、ジスルフィド結合に隣接した立体障害の使用により増強され得る。
例示的なスルフィド含有リンカーを含むADCは、以下の構造:
Figure 2020152726
(式中、DおよびAbは薬物および抗体をそれぞれ表し、nは、抗体に連結されている薬物−リンカーの数を表し、Rは、例えば、水素またはアルキルから独立して出現毎に選択される。)を含む。ある種の実施形態において、ジスルフィド結合に隣接する立体障害を高めると、リンカーの安定性が増大する。(Ig)および(Ii)のような構造は、1つ以上のR基がメチルのような低級アルキルから選択される場合、インビボにおける安定性の向上を示す。
使用され得る別のタイプのリンカーは、酵素によって特異的に切断されるリンカーである。一実施形態において、リンカーは、リソソーム酵素によって切断可能である。このようなリンカーは、通常、ペプチドをベースとする、または酵素に対する基質として働くペプチド領域を含む。ペプチドをベースとするリンカーは、血漿および細胞外ミリューにおいて、化学的に不安定なリンカーよりも安定となる傾向がある。リソソームタンパク質分解性酵素は、内在性阻害剤、およびリソソームと比べて血液のpHの値が不都合にも高いため、血液中における活性は非常に低いので、ペプチド結合は、一般に、良好な血清安定性を有している。抗体からの薬物の放出は、リソソームプロテアーゼ、例えば、カプテシンおよびプラスミンの作用により特異的に起こる。これらのプロテアーゼは、ある種の腫瘍組織において、高いレベルで存在することがある。一実施形態において、リンカーは、リソソーム酵素によって切断可能であり、このリソソーム酵素とはカテプシンBである。ある種の実施形態において、リンカーはリソソーム酵素によって切断可能であり、このリソソーム酵素とはβ−グルクロニダーゼまたはβ−ガラクトシダーゼである。ある種の実施形態において、リンカーはリソソーム酵素によって切断可能であり、このリソソーム酵素とはβ−グルクロニダーゼである。ある種の実施形態において、リンカーはリソソーム酵素によって切断可能であり、このリソソーム酵素とはβ−ガラクトシダーゼである。
例示的な実施形態において、切断可能なペプチドは、Gly−Phe−Leu−Gly、Ala−Leu−Ala−Leuのようなテトラペプチド、またはVal−Cit、Val−AlaおよびPhe−Lysのようなジペプチドから選択される。ある種の実施形態において、より長いペプチドが疎水性であるために、より長いペプチドよりもジペプチドの方が好ましい。
ドキソルビシン、マイトマイシン、カンプトテシン、タリソマイシンおよびオーリスタチン/オーリスタチンファミリーメンバーのような薬物を抗体に連結するのに有用な、ジペプチドをベースとする様々な切断可能なリンカーが記載されている(それぞれの内容が参照により本明細書に組み込まれている、Dubowchikら、1998年、J.Org.Chem.67巻:1866−1872頁;Dubowchikら、1998年、Bioorg.Med.Chem.Lett.8巻:3341−3346頁;Walkerら、2002年、Bioorg.Med.Chem.Lett.12巻:217−219頁;Walkerら、2004年、Bioorg.Med.Chem.Lett.14巻:4323−4327頁;およびFranciscoら、2003年、Blood 102巻:1458−1465頁を参照されたい。)。これらのジペプチドリンカー、またはこれらのジペプチドリンカーの修飾型のすべてが、本明細書に記載されているADCに使用され得る。使用され得る他のジペプチドリンカーは、Seattle Geneticsのブレンツキシマブベンドチン(Vendotin)SGN−35(Adcetris(商標))、Seattle GeneticsのSGN−75(抗CD−70、MC−モノメチルオーリスタチンF(MMAF)、Celldex Therapeuticsのグレムバツムマブ(CDX−011)(抗NMB、Val−Cit−モノメチルオーリスタチンE(MMAE)およびCytogenのPSMA−ADC(PSMA−ADC−1301)(抗PSMA、Val−Cit−MMAE)のようなADCに見いだされるものを含む。
酵素により切断可能なリンカーは、酵素による切断部位から薬物を空間的に分離する自己破壊型スペーサーを含んでもよい。薬物のペプチドリンカーへの直接的な結合は、薬物のアミノ酸付加物のタンパク質分解による放出をもたらす恐れがあり、これは、この活性を害する。自己破壊型スペーサーの使用により、アミド結合の加水分解時に、化学的に修飾されていない、完全に活性な薬物を排除することが可能となる。
自己破壊型スペーサーの1つは、二官能性パラ−アミノベンジルアルコール基であり、この基は、アミノ基を介してペプチドに連結されて、アミド結合を形成する一方、アミン含有薬物は、カルバメート官能基を介して、リンカーのベンジル型ヒドロキシル基に結合され得る(p−アミドベンジルカルバメートであるPABCを与える。)。得られたプロドラッグは、プロテアーゼ媒介性切断時に活性化され、1,6−脱離反応をもたらし、未修飾薬物、二酸化炭素およびリンカー基の残りの部分を放出する。以下のスキームは、p−アミドベンジルカルバメートの断片化、および薬物の放出を図示している:
Figure 2020152726
(式中、X−Dは、未修飾薬物を表す。)。
この自己破壊基の複素環式変形体も記載されている。米国特許第7,989,434号を参照されたい。
ある種の実施形態において、酵素による切断可能なリンカーは、β−グルクロン酸をベースとするリンカーである。薬物の容易な放出は、リソソーム酵素であるβ−グルクロニダーゼによるβ−グルクロニドのグリコシド結合の切断によって実現され得る。この酵素は、リソソーム内に豊富に存在しており、一部の腫瘍タイプにおいて過剰発現される一方、細胞外の酵素活性は低い。β−グルクロン酸をベースとするリンカーは、β−グルクロニドの親水性性質により、ADCが凝集する傾向を回避するために使用され得る。ある種の実施形態において、β−グルクロン酸をベースとするリンカーは、疎水性薬物に連結されているADC用のリンカーとして好ましい。以下のスキームは、β−グルクロン酸をベースとするリンカーを含有するADCから薬物が放出されるのを図示している:
Figure 2020152726
オーリスタチン、カンプトテシンおよびドキソルビシンアナログ、CBI小溝結合剤およびプシムベリンのような薬物を抗体に連結するのに有用な、切断可能な様々なβ−グルクロン酸をベースとするリンカーが記載されている(それぞれの内容が参照により本明細書に組み込まれている、Jeffreyら.、2006年、Bioconjug.Chem.17巻:831−840頁;Jeffreyら、2007年、Bioorg.Med.Chem.Lett.17巻:2278−2280頁;およびJiangら、2005年、J.Am.Chem.Soc.127巻:11254−11255頁を参照されたい。)。これらのβ−グルクロン酸をベースとするリンカーはすべて、本明細書に記載されているADCにおいて使用され得る。ある種の実施形態において、酵素による切断可能なリンカーは、β−ガラクトシドをベースとするリンカーである。β−ガラクトシドは、リソソーム内に豊富に存在する一方、細胞外での酵素活性は低い。
さらに、フェノール基を含有するBcl−xL阻害剤は、フェノール性酸素を介してリンカーに共有結合され得る。米国出願公開第2009/0318668号に記載されているこのようなリンカーの1つは、ジアミノ−エタン「SpaceLink」が、従来的な「PABO」をベースとする自己破壊型基と組み合わされて使用され、フェノールを送達する方法に依存するものである。リンカーの切断は、本開示のBcl−xL阻害剤を使用して、以下に概略されている。
Figure 2020152726
切断可能なリンカーは、切断不能な一部もしくはセグメントを含んでもよく、および/または切断可能なセグメントもしくは一部は、他の切断不能なリンカーにおいて含まれ、このリンカーを切断可能にし得る。単なる例として、ポリエチレングリコール(PEG)および関連ポリマーは、ポリマー主鎖中に切断可能な基を含むことができる。例えば、ポリエチレングリコールまたはポリマーリンカーは、ジスルフィド、ヒドラゾンまたはジペプチドのような、1つ以上の切断可能な基を含むことができる。
リンカーに含まれ得る他の分解可能な連結基は、PEGカルボン酸または活性化PEGカルボン酸と生物活性剤上のアルコール基との反応によって形成されるエステル連結基を含み、この場合、このようなエステル基は一般に、生理的条件下で加水分解し、生物活性剤を放出する。加水分解により分解可能な連結基は、以下に限定されないが、カーボネート連結基、アミンとアルデヒドとの反応に由来するイミン連結基、アルコールとリン酸エステル基との反応より形成されるリン酸エステル連結基、アルデヒドとアルコールの反応生成物であるアセタール連結基、ギ酸エステルとアルコールの反応生成物であるオルトエステル連結基、および以下に限定されないが、ポリマーの末端位およびオリゴヌクレオチドの5’ヒドロキシル基を含めた、ホスホロアミダイト基により形成されるオリゴヌクレオチド連結基を含む。
ある種の実施形態において、リンカーは、酵素により切断可能なペプチド部分を含み、例えば、リンカーは、構造式(IVa)、(IVb)もしくは(IVc):
Figure 2020152726
またはこれらの塩を含み、式中、
ペプチドは、リソソーム酵素により切断可能なペプチド(N→Cで表示されており、この場合、ペプチドは、アミノおよびカルボキシ「末端」を含む。)を表し、
Tは、1つ以上のエチレングリコール単位を含むポリマー、もしくはアルキレン鎖、またはこれらの組合せを表し、
は、水素、アルキル、スルホネートおよびスルホン酸メチルから選択され、
pは、0から5の範囲の整数であり、
qは、0または1であり、
xは、0または1であり、
yは、0または1であり、
Figure 2020152726
は、Bcl−xL阻害剤へのリンカーの結合点を表し、
は、リンカーの残りへの結合点を表す。
ある種の実施形態において、リンカーは、酵素により切断可能なペプチド部分を含み、例えば、リンカーは、構造式(IVa)、(IVb)もしくは(IVc)またはこれらの塩を含む。
ある種の実施形態において、ペプチドは、トリペプチドまたはジペプチドから選択される。ある特定の実施形態において、ジペプチドは、Val−Cit、Cit−Val、Ala−Ala、Ala−Cit、Cit−Ala、Asn−Cit、Cit−Asn、Cit−Cit、Val−Glu、Glu−Val、Ser−Cit、Cit−Ser、Lys−Cit、Cit−Lys、Asp−Cit、Cit−Asp、Ala−Val、Val−Ala、Phe−Lys、Lys−Phe、Val−Lys、Lys−Val、Ala−Lys、Lys−Ala、Phe−Cit、Cit−Phe、Leu−Cit、Cit−Leu、Ile−Cit、Cit−Ile、Phe−Arg、Arg−Phe、Cit−TrpおよびTrp−Cit、またはこれらの塩から選択される。
本明細書に記載されているADCに含まれ得る構造式(IVa)によるリンカーの特定の例示的な実施形態は、以下に例示されているリンカーを含む(例示されている通り、これらのリンカーは、該リンカーを抗体に共有結合により連結するのに適した基を含む。):
Figure 2020152726
Figure 2020152726
本明細書に記載されているADCに含まれ得る構造式(IVb)によるリンカーの特定の例示的な実施形態は、以下に例示されているリンカーを含む(例示されている通り、これらのリンカーは、該リンカーを抗体に共有結合により連結するのに適した基を含む。):
Figure 2020152726
Figure 2020152726
Figure 2020152726
Figure 2020152726
Figure 2020152726
ある種の実施形態において、リンカーは、酵素により切断可能な糖部分を含み、例えば、リンカーは、構造式(Va)、(Vb)、(Vc)、もしくは(Vd):
Figure 2020152726
Figure 2020152726
またはこれらの塩を含み、式中、
qは、0または1であり、
rは、0または1であり、
は、OまたはNHであり、
Figure 2020152726
は、薬物へのリンカーの結合点を表し、
は、リンカーの残りへの結合点を表す。
本明細書に記載されているADCに含まれ得る構造式(Va)によるリンカーの特定の例示的な実施形態は、以下に例示されているリンカーを含む(例示されている通り、これらのリンカーは、該リンカーを抗体に共有結合により連結するのに適した基を含む。):
Figure 2020152726
Figure 2020152726
Figure 2020152726
Figure 2020152726
本明細書に記載されているADCに含まれ得る構造式(Vb)によるリンカーの特定の例示的な実施形態は、以下に例示されているリンカーを含む(例示されている通り、これらのリンカーは、該リンカーを抗体に共有結合により連結するのに適した基を含む。):
Figure 2020152726
Figure 2020152726
本明細書に記載されているADCに含まれ得る構造式(Vc)によるリンカーの特定の例示的な実施形態は、以下に例示されているリンカーを含む(例示されている通り、これらのリンカーは、該リンカーを抗体に共有結合により連結するのに適した基を含む。):
Figure 2020152726
Figure 2020152726
Figure 2020152726
Figure 2020152726
本明細書に記載されているADCに含まれ得る構造式(Vd)によるリンカーの特定の例示的な実施形態は、以下に例示されているリンカーを含む(例示されている通り、これらのリンカーは、該リンカーを抗体に共有結合により連結するのに適した基を含む。):
Figure 2020152726
5.2.2.2切断不能なリンカー
切断可能なリンカーは、ある種の利点を実現することができるが、本明細書に記載されているADCを含むリンカーは、切断可能である必要はない。切断不能なリンカーの場合、薬物放出は、血漿と一部の細胞質コンパートメントとの間の特性差に依存しない。薬物の放出は、抗原媒介性のエンドサイトーシスによるADCの内部移行、およびリソソームコンパートメントへの送達の後に起こると仮定され、、ここで抗体は、細胞内タンパク質分解により、アミノ酸のレベルにまで分解される。この過程は、薬物、リンカー、およびリンカーが共有結合していたアミノ酸残基によって形成される薬物誘導体を放出する。切断不能なリンカーを有するコンジュゲートに由来するアミノ酸薬物代謝産物は、より親水性であり、一般に、膜透過性に乏しく、これにより、切断可能なリンカーを有するコンジュゲートと比べて、より小さなバイスタンダー効果およびより低い非特異的毒性しかもたらさない。一般に、切断不能なリンカーを有するADCは、切断可能なリンカーを有するADCよりも、血液循環中に大きな安定性を有する。切断不能なリンカーは、アルキレン鎖であってもよく、または例えば、ポリアルキレングリコールポリマー、アミドポリマーに基づくもののようなポリマーの性質があってもよく、またはアルキレン鎖、ポリアルキレングリコールおよび/またはアミドポリマーのセグメントを含んでもよい。ある種の実施形態において、リンカーは、1から6つのエチレングリコール単位を有するポリエチレングリコールセグメントを含む。
薬物を抗体に連結するために使用される様々な切断不能なリンカーが、記載されてきた。(これらの内容が参照により本明細書に組み込まれている、Jeffreyら.、2006年、Bioconjug.Chem.17巻;831−840頁、Jeffreyら.、2007年、Bioorg.Med.Chem.Lett.17巻:2278−2280頁;およびJiangら、2005年、J.Am.Chem.Soc.127巻:11254−11255頁を参照されたい。)。これらのリンカーのすべてが、本明細書に記載されているADCに含まれ得る。
ある種の実施形態において、リンカーは、インビボにおいて非切断可能であり、例えば、構造式(VIa)、(VIb)、(VIc)または(VId)によるリンカー(例示されている通り、これらのリンカーは、該リンカーを抗体に共有結合により連結するのに適した基を含む。)は、
Figure 2020152726
Figure 2020152726
またはこの塩を含み、式中、
は、水素、アルキル、スルホネートおよびスルホン酸メチルから選択され、
は、リンカーを抗体に共有結合により連結することが可能な官能基を含む部分であり、
Figure 2020152726
は、Bcl−xL阻害剤へのリンカーの結合点を表す。
本明細書に記載されているADCに含まれ得る構造式(VIa)−(VId)によるリンカーの特定の例示的な実施形態は、以下に例示されているリンカーを含む(例示されている通り、これらのリンカーは、該リンカーを抗体に共有結合により連結するのに適した基を含み、
Figure 2020152726
は、Bcl−xL阻害剤への結合点を表す。):
Figure 2020152726
Figure 2020152726
5.2.2.3.リンカーを抗体に結合するために使用される基
結合基は、性質として求電子性とすることができ、マレイミド基、活性化ジスルフィド、NHSエステルおよびHOBtエステルような活性エステル、ハロギ酸エステル、酸ハロゲン化物、ハロアセトアミドのようなハロゲン化アルキルおよびハロゲン化ベンジルを含む。以下において議論されている通り、本開示により使用され得る、「自己安定型」マレイミドおよび「架橋型ジスルフィド」に関連する技術も出現している。
ADCからの薬物−リンカーの喪失が、アルブミン、システインまたはグルタチオンとのマレイミド交換の結果として観察された(Alleyら、2008年、Bioconjugate Chem.19巻:759−769頁)。これは、コンジュゲート化の部位に溶媒が非常に接近し易いため特によく起きる一方、部分的に接近可能であり、正に帯電している環境を有する部位は、マレイミド環の加水分解を促進する(Junutulaら、2008年、Nat.Biotechnol.26巻:925−932頁)。認識されている解決策は、コンジュケート化から形成されるスクシンイミドを加水分解することであり、なぜなら、これは、抗体からの脱コンジュゲート化に対して抵抗性を示し、これにより、血清中においてADCが安定となるからである。スクシンイミド環が、アルカリ条件下において加水分解を受けることが既に報告されている(Kaliaら、2007年、Bioorg.Med.Chem.Lett.17巻:6286−6289頁)。抗体のコンジュゲート化条件下において自発的に加水分解して、安定性の改善されたADC種を与える、「自己安定型」マレイミド基の例の1つが、以下の概略図中に図示されている。米国出願公開第2013/0309256号を参照されたい。
Figure 2020152726
Polythericsは、ネイティブヒンジ(native hinge)ジスルフィド結合の還元に由来する、一対のスルフィドリル基を架橋するための方法を開示している。Badescuら、2014年、Bioconjugate Chem.25巻:1124−1136頁を参照されたい。この反応は、以下の概略図に図示されている。この方法の利点は、IgGの完全な還元によって均一なDAR4となるADCを合成し(四対のスルフィドリルを与える。)、次いで4当量のアルキル化剤と反応することが可能である点である。「架橋型ジスルフィド」を含有するADCもまた、安定性が改善されていることが主張されている。
Figure 2020152726
同様に、以下に図示されている通り、一対のスルフィドリル基を架橋することが可能なマレイミド誘導体が開発された。米国出願公開第2013/0224228号を参照されたい。
Figure 2020152726
5.2.2.4.リンカー選択の考慮点
当業者によって公知の通り、特定のADCのために選択されるリンカーは、以下に限定されないが、抗体への結合部位(例えば、lys、cysまたは他のアミノ酸残基)、薬物ファーマコフォアおよび薬物の脂溶性という構造的な制約を含めた、様々な因子によって影響を受け得る。ADCのために選択される特定のリンカーは、特異的抗体/薬物の組合せに対する、これらの様々な因子のバランスを追求するべきである。ADCにおけるリンカーの選択によって影響を受ける因子の総説に関して、Nolting、第5章「Linker Technology in Antibody−Drug Conjugates」、In:Antibody−Drug Conjugates:Methods in Molecular Biology、1045巻、71−100頁、Laurent Ducry(編)、Springer Science&Business Medica、LLC、2013年を参照されたい。
例えば、ADCは、抗原−陽性腫瘍細胞の周辺に存在しているバイスタンダー抗原陰性細胞を死滅させることが観察されている。ADCによってバイスタンダー細胞を死滅させる機構は、ADCの細胞内プロセシングの間に形成される代謝産物が役割を果たし得ることを示している。抗原陽性細胞におけるADCの代謝によって産生する中性な細胞毒性代謝産物は、バイスタンダー細胞の死滅において役割を果たしているように思われる一方、電荷を帯びた代謝産物は、膜を通過して媒体中に拡散するのが阻止され得、したがって、バイスタンダーの死滅に影響を及ぼすはずがない。ある種の実施形態において、リンカーは、ADCの細胞代謝産物によって引き起こされるバイスタンダー死滅効果を弱めるよう選択される。ある種の実施形態において、リンカーは、バイスタンダー死滅効果を高めるよう選択される。
リンカーの特性は、使用および/または保管の条件下、ADCの凝集にやはり影響を及ぼし得る。通常、文献に報告されているADCは、抗体分子あたり、3ー4つ以下の薬物分子を含有する(例えば、Chari、2008年、Acc Chem Res 41巻:98−107頁を参照されたい。)。特に、薬物とリンカーの両方が疎水性である場合、ADCの凝集のために、より高い薬物対抗体比(「DAR」)を得ようとする試みは失敗に終わることが多かった(Kingら、2002年、J Med Chem 45巻:4336−4343頁;Hollanderら、2008年、Bioconjugate Chem 19巻:358−361頁;Burkeら、2009年、Bioconjugate Chem 20巻:1242−1250頁。)。多数の例において、DARが3−4より大きくなれば、有効性を増大させる手段として有益となり得る。Bcl−xL阻害剤が性質として疎水性である場合、ADC凝集を低減する手段として、比較的親水性のリンカーを選択することが望ましくなり得、とりわけ、DARが3−4より大きい場合に望ましい。したがって、ある種の実施形態において、リンカーは、保管中および/または使用中に、ADCの凝集を低減する化学部分を組み込む。リンカーは、帯電基、または生理学的pH下において帯電する基のような極性基または親水性基を取り込んで、ADCの凝集を低減することができる。例えば、リンカーは、塩、または生理学的pHにおいて、脱プロトン化する基(例えば、カルボン酸イオン)またはプロトン化する基(例えば、アミン)を取り込むことができる。
多数のBcl−xL阻害剤を抗体に連結するために使用され得る、20もの高いDARをもたらすことが報告されている、例示的な多価リンカーは、これらの内容の全体が参照により本明細書に組み込まれている、米国特許第8,399,512号、米国出願公開第2010/0152725号、米国特許第8,524,214号、米国特許第8,349,308号、米国出願公開第2013/189218号、米国出願公開第2014/017265号、WO2014/093379、WO2014/093394、WO2014/093640に記載されている。
特定の実施形態において、保管中または使用中のADCの凝集は、サイズ排除クロマトグラフィー(SEC)によって決定すると、約40%未満である。特定の実施形態において、保管中または使用中のADCの凝集は、サイズ排除クロマトグラフィー(SEC)によって決定すると、約30%未満のような、約25%未満のような、約20%未満のような、約15%未満のような、約10%未満のような、約5%未満のような、約4%未満のような35%未満である、または一層低い。
一実施形態は、リンカーLが、リンカーIVa.1−IVa.7、IVb.1−IVb.15、IVc.1−IVc.2、Va.1−Va.12、Vb.1−Vb.4、Vc.1−Vc.9、Vd.1−Vd.2、VIa.1、V1c.1−V1c.2、V1d.1−V1d.3、およびこれらの塩からなる群から選択される、ADCまたはシントンに関する。
5.3 抗体
ADCの抗体は、対象とする標的細胞の表面上で発現される抗原に結合するが、通常、必ずしも特異的に結合しない、任意の抗体とすることができる。抗原は必要ではないが、一部の実施形態において、これに結合したADCを細胞に内部移行することができる。対象とする標的細胞は、例として非限定的に、Bcl−xLを発現または過剰発現する腫瘍細胞を含めた、抗アポトーシス性Bcl−xLタンパク質の阻害によるアポトーシスの誘導が望ましい細胞を一般に含む。標的抗原は、対象とする標的細胞に発現される、任意のタンパク質、グリコタンパク質、ポリサッカライド、リポタンパク質などであってもよいが、通常、正常細胞もしくは健全細胞と比べて、正常細胞もしくは健全細胞ではなく標的細胞において独自に発現される、または標的細胞において過剰発現されるかのどちらかであるタンパク質であり、したがって、ADCは、例えば、腫瘍細胞のような、対象とする特定の細胞を選択的に標的とする。当業者によって認識される通り、選択される特異抗原、従って抗体は、対象とする所望の標的細胞がいかなるものであるかに依存する。具体的な実施形態において、ADCの抗体は、ヒトへの投与に適した抗体である。
抗体(Ab)および免疫グロブリン(Ig)は、同じ構造上の特徴を有するグリコタンパク質である。抗体は、特定の標的に対して結合特異性を示すが、免疫グロブリンは、抗体と、標的特異性がない他の抗体様分子の両方を含む。自然抗体および免疫グロブリンは、通常、2つの同一の軽(L)鎖および2つの同一の重(H)鎖からなる、約150,000ダルトンのヘテロ四量体グリコタンパク質である。重鎖はそれぞれ、一端に可変ドメイン(VH)、この後にいくつかの定常ドメインを有する。軽鎖はそれぞれ、一端(VL)に1つの可変ドメイン、およびこのもう一方の端に1つの定常ドメインを有する。
「VH」を言う場合、Fv、scFvまたはFabの重鎖を含めた、抗体の免疫グロブリン重鎖の可変領域を指す。「VL」を言う場合、Fv、scFv、dsFvまたはFabの軽鎖を含めた、免疫グロブリンの軽鎖の可変領域を指す。
用語「抗体」は、本明細書において、最も広い意味で使用され、特定の抗原に特異的に結合する免疫グロブリン分子、または特定の抗原に免疫学的に反応性を示す免疫グロブリン分子を指し、抗体のポリクローナル形態、モノクローナル形態、遺伝子操作形態、および他には、以下に限定されないが、ネズミ抗体、キメラ抗体、ヒト化抗体、ヘテロコンジュゲート抗体(例えば、二特異性抗体、ダイアボディ、トリアボディおよびテトラボディ)、および抗体の抗原結合断片(例えば、Fab’、F(ab’)、Fab、Fv、rIgGおよびscFv断片を含む。)を含めた、修飾形態を含む。用語「scFv」とは、従来の抗体に由来する重鎖および軽鎖の可変ドメインが結合して1つの鎖を形成した、単一鎖Fv抗体を指す。
抗体は、ネズミ、ヒト、ヒト化、キメラであってもよく、他の種に由来してもよい。抗体は、特定の抗原を認識することおよびこれに結合することが可能な免疫系により産生するタンパク質である(Janeway、C.、Travers、P.、Walport、M.、Shlomchik(2001年) Immuno Biology、第5版、Garland Publishing、New York)。標的抗原は、一般に、多重抗体上のCDRによって認識されるエピトープとも呼ばれる、多数の結合部位を有する。様々なエピトープに特異的に結合する抗体はそれぞれ、異なる構造を有する。したがって、1つの抗原は2つ以上の対応する抗体を有することができる。抗体は、完全長免疫グロブリン分子、または完全長免疫グロブリン分子の免疫学的に活性な部分、すなわち、対象とする標的の抗原またはこの一部に免疫特異的に結合する抗原結合部位を含有する分子を含み、このような標的は、以下に限定されないが、がん細胞、または自己免疫疾患に伴う自己免疫抗体を産生する細胞を含む。本明細書において開示されている免疫グロブリンは、任意のタイプ(例えば、IgG、IgE、IgM、IgDおよびIgA)、免疫グロブリン分子のクラス(例えば、IgG1、IgG2、IgG3、IgG4、IgA1およびIgA2)または部分クラスとすることができる。免疫グロブリンは、任意の種に由来することができる。しかし、一態様において、免疫グロブリンは、ヒト、ネズミまたはウサギを起源とする。
用語「抗体断片」とは、完全長抗体の一部分、一般に、標的結合領域または可変領域を指す。抗体断片の例は、Fab、Fab’、F(ab’)およびFv断片を含む。「Fv」断片は、完全な標的認識および結合部位を含有する最小抗体断片である。この領域は、剛直な非共有結合性会合にある、1つの重鎖の可変ドメインおよび1つの軽鎖の可変ドメインの二量体からなる(VH−VL二量体)。各可変ドメインの3つのCDRは、VH−VL二量体の表面上の標的結合部位を規定するよう相互作用するのが、この配置においてである。多くの場合、6つのCDRは、抗体に標的結合特異性を付与する。しかし、いくつかの場合、単一可変ドメインでさえも(または、標的に対して特異的なCDRをたった3つしか含まない、Fvの半分)、標的を認識し、これに結合する能力を有することができる。「単鎖Fv」または「scFv」抗体断片は、単一ポリペプチド鎖中の抗体のVHおよびVLドメインを含む。一般に、Fvポリペプチドは、標的結合のために、scFvが所望の構造を形成するのを可能にする、VHドメインとVLドメインとの間のポリペプチドリンカーをさらに含む。「単一ドメイン抗体」は、標的に十分な親和性を示す、単一VHドメインまたはVLドメインからなる。特定の実施形態において、単一ドメイン抗体は、ラクダ化抗体である(例えば、Riechmann、1999年、Journal of Immunological Methods 231巻:25−38頁を参照されたい。)。
Fab断片は、軽鎖の定常ドメインおよび重鎖の第1定常ドメイン(CH)を含有している。Fab’断片は、抗体ヒンジ領域に由来する1つ以上のシステインを含めた、重鎖CHドメインのカルボキシ末端において、数個の残基が追加していることにより、Fab断片とは異なる。F(ab’)断片は、F(ab’)ペプシン消化産物のヒンジシステインにおいて、ジスルフィド結合の切断によって生成する。抗体断片の追加の化学的カップリングが、当業者に公知である。
軽鎖可変ドメインと重鎖可変ドメインの両方が、超可変領域としても知られている、相補性決定領域(CDR)を有する。可変ドメインのより高度に保存されている部分は、フレームワーク(FR)と呼ばれる。当分野において公知の通り、抗体の超可変領域を規定するアミノ酸/境界は、文脈、および当分野において公知の様々な定義に応じて変わり得る。可変ドメイン内のいくつかの位置は、これらの位置が一連の基準下における超可変領域内にあると見なされ得る一方、異なる一連の基準下において、超可変領域の外側にあると見なされるという点で、ハイブリッド超可変位置として見なされ得る。これらの位置の1つ以上が、拡張される超可変領域にも見いだされ得る。各鎖中のCDRは、FR領域によって近接して一緒に保持され、他の鎖に由来するCDRと共に、抗体の標的結合部位の形成に寄与する(Kabatら、Sequences of Proteins of Immunological Interest(National Institute of Health、Bethesda、Md.1987年)を参照されたい。)。本明細書において使用する場合、免疫グロブリンアミノ酸残基の番号付けは、特に示さない限り、Kabatらの免疫グロブリンアミノ酸残基番号付けシステムに準拠して行われる。
ある種の実施形態において、本開示中のADCの抗体は、モノクローナル抗体である。用語「モノクローナル抗体」(mAb)とは、例えば、真核生物クローン、原核生物クローンまたはファージクローンを含む単一コピーまたはクローンに由来する抗体を指し、産生される方法を指すわけではない。好ましくは、本開示のモノクローナル抗体は、均一集団または実質的に均一な集団で存在する。モノクローナル抗体は、無傷分子、およびタンパク質に特異的に結合することが可能な抗体断片(例えば、FabおよびF(ab’)断片のような)の両方を含む。FabおよびF(ab’)断片は、無傷抗体のFc断片に欠いており、動物の血液循環から一層迅速に排出され、無傷抗体ほど非特異的組織結合を有し得ない(Wahlら、1983年、J.Nucl.Med.24巻:316頁)。本開示の場合に有用なモノクローナル抗体は、ハイブリドーマ、組換え体およびファージディスプレー技法、またはこれらを組合せて使用することを含めた、当分野において公知の幅広い技法を使用して調製することができる。本開示の抗体は、キメラ抗体、霊長類化抗体、ヒト化抗体またはヒト抗体を含む。
ほとんどの場合、抗体は、遺伝子学的にコードされていたアミノ酸からしか構成されていないが、一部の実施形態において、コードされていないアミノ酸が特定の位置に組み込まれて、抗体に連結されているBcl−xL阻害剤の数、およびこれらの位置が制御され得る。化学量論および結合位置の制御において使用するために、抗体に組み込まれ得るコードされていないアミノ酸、およびこのような修飾抗体を作製する方法の例が、これらの全内容が参照により本明細書に組み込まれている、Tianら、2014、Proc Nat’l Acad Sci USA 111巻(5号):1766−1771頁およびAxupら、2012年、Proc Nat’l Acad Sci USA 109巻(40号):16101−16106頁に議論されている。ある種の実施形態において、コードされていないアミノ酸は、抗体あたりのBcl−xL阻害剤の数を約1−8または約2−4に制限する。
ある種の実施形態において、本明細書に記載されているADCの抗体はキメラ抗体である。用語「キメラ」抗体は、本明細書で使用する場合、ラット抗体またはマウス抗体のような非ヒト免疫グロブリンに由来する可変配列、および通常、ヒト免疫グロブリンテンプレートから選択されるヒト免疫グロブリン定常領域を有する抗体を指す。キメラ抗体を生成するための方法は、当分野において公知である。例えば、これらの全体が参照により本明細書において組み込まれている、Morrison、1985年、Science 229巻(4719号):1202−7頁;Oiら、1986年、BioTechniques 4巻:214−221頁;Gilliesら、1985年、J.Immunol.Methods 125巻:191−202頁、米国特許第5,807,715号、同第4,816,567号および同第4,816397号を参照されたい。
ある種の実施形態において、本明細書に記載されているADCの抗体はヒト化抗体である。非ヒト(例えば、ネズミ)抗体の「ヒト化」形態は、非ヒト免疫グロブリンに由来する最小配列を含有する、キメラ免疫グロブリン鎖、免疫グロブリン鎖またはこれらの断片(Fv、Fab、Fab’、F(ab’)、または抗体の他の標的結合サブドメインのような)である。一般に、ヒト化抗体は、少なくとも1つ、通常、2つの可変ドメインのすべてを実質的に含み、この場合、CDR領域のすべてまたは実質的にすべてが、非ヒト免疫グロブリンの領域に相当し、FR領域のすべてまたは実質的にすべてが、ヒト免疫グロブリン配列の領域である。ヒト化抗体はまた、免疫グロブリン定常領域(Fc)の少なくとも一部分、通常、ヒト免疫グロブリンコンセンサス配列の一部分を含むことができる。抗体のヒト化法は、当分野において公知である。例えば、これらのすべての全体が参照により本明細書に組み込まれている、Riechmannら、1988年、Nature 332巻:323−7頁;Queenらへの米国特許第5,530,101号;同第5,585,089号;同第5,693,761号;同第5,693,762号;および同第6,180,370号;EP239400;PCT公開WO91/09967;米国特許第5,225,539号;EP592106;EP519596;Padlan、1991年、Mol.Immunol.、28巻:489−498頁;Studnickaら、1994年、Prot.Eng.7巻:805−814頁;Roguskaら、1994年、Proc.Natl.Acad.Sci.91巻:969−973頁;および米国特許5,565,332号を参照されたい。
ある種の実施形態において、本明細書に記載されているADCの抗体はヒト抗体である。完全な「ヒト」抗体は、ヒト患者の治療処置にとって望ましいものとなり得る。本明細書において使用する場合、「ヒト抗体」は、ヒト免疫グロブリンのアミノ酸配列を有する抗体を含み、ヒト免疫グロブリンライブラリーからまたは1つ以上のヒト免疫グロブリンに対してトランスジェニックな動物から単離された抗体であって、内因性免疫グロブリンを発現しない抗体である。ヒト抗体は、ヒト免疫グロブリン配列に由来する抗体ライブラリーを使用して、ファージディスプレー法を含めた、当分野において公知の様々な方法によって作製され得る。参照により本明細書に組み込まれている、米国特許第4,444,887号、同第4,716,111号、同第6,114,598号、同第6,207,418号、同第6,235,883号、同第7,227,002号、同第8,809,151号および米国出願公開第2013/189218号を参照されたい。ヒト抗体はまた、機能的な内因性免疫グロブリンを発現することができないが、ヒト免疫グロブリン遺伝子を発現することができるトランスジェニックマウスを使用して生成され得る。例えば、それぞれの内容の全体が参照により本明細書に組み込まれている、米国特許第5,413,923号;同第5,625,126号;同第5,633,425号;同第5,569,825号;同第5,661,016号;同第5,545,806号;同第5,814,318号;同第5,885,793号;同第5,916,771号;同第5,939,598号;同第7,723,270号;同第8,809,051号、および米国出願公開第2013/117871号を参照されたい。さらに、Medarex(Princeton、NJ)、Astellas Pharma(Deerfield、IL)およびRegeneron(Tarrytown、NY)のような会社が、上記の技法に類似した技法を使用して、選択された抗原を対象とするヒト抗体を提供することに取り組んでいる。選択されたエピトープを認識する完全ヒト抗体は、「誘導選択」と称される技法を使用して生成され得る。この手法において、選択された非ヒトモノクローナル抗体、例えばマウス抗体が使用されて、同じエピトープを認識する完全ヒト抗体の選択を誘導する(Jespersら、1988年、Biotechnology 12巻:899−903頁)。
ある種の実施形態において、本明細書に記載されているADCの抗体は霊長類化抗体である。用語「霊長類化抗体」は、サルの可変領域およびヒト定常領域を含む抗体を指す。霊長類化抗体を生成するための方法は、当分野において公知である。例えば、これらの全体が参照により本明細書に組み込まれている、米国特許第5,658,570号;同第5,681,722号;および同第5,693,780号を参照されたい。
ある種の実施形態において、本明細書に記載されているADCの抗体は、二特異性抗体または二重可変ドメイン抗体(DVD)である。二特異性およびDVD抗体は、少なくとも2つの異なる抗原に対して結合特異性を有する、モノクローナル抗体、多くの場合、ヒト抗体またはヒト化抗体である。DVDは、例えば、この開示が参照により本明細書に組み込まれている、米国特許第7,612,181号に記載されている。
ある種の実施形態において、本明細書に記載されているADCの抗体は霊長類化抗体である。例えば、限定するものではないが、誘導体化抗体は、通常、グリコシル化、アセチル化、ペグ化、リン酸化、アミド化、公知の保護基/ブロック基による誘導体化、タンパク質分解による切断、細胞リガンドまたは他のタンパク質への連結基などにより修飾される。多数の化学的修飾のいずれも、以下に限定されないが、特異的な化学的切断、アセチル化、ホルミル化、ツニカマイシンの代謝合成を含めた、公知の技法により実施され得る。さらに、これらの誘導体は、例えば、Ambrx技法を使用して、1つ以上の非天然アミノ酸を含有することができる(例えば、Wolfson、2006年、Chem.Biol.13巻(10号):1011−2頁を参照されたい。)。
ある種の実施形態において、本明細書に記載されているADCの抗体は、対応する野生型配列に対して、定常領域が媒介する少なくとも1つの生物学的エフェクター機能を改変するよう修飾された配列を有する。例えば、一部の実施形態において、抗体は、非修飾抗体に対して、定常領域が媒介する少なくとも1つの生物学的エフェクター機能を低下させるよう修飾されて、例えば、Fc受容体(FcR)への結合が低下され得る。FcR結合は、FcR相互作用にとって必要な特定の領域において、抗体の免疫グロブリン定常領域セグメントを変異させることにより低下され得る(例えば、CanfieldおよびMorrison、1991年、J.Exp.Med.173巻:1483−1491頁;およびLundら、1991年、J.Immunol.147巻:2657−2662頁を参照されたい。)。
ある種の実施形態において、本明細書に記載されているADCの抗体は修飾されて、未修飾抗体に比べて、定常領域が媒介する少なくとも1つの生物学的エフェクター機能を獲得または改善して、例えば、FcγR相互作用を増強する(例えば、US2006/0134709を参照されたい。)。例えば、対応する野生型定常領域よりも大きな親和性を伴って、FcγRIIA、FcγRIIBおよび/またはFcγRIIIAに結合する定常領域を有する抗体は、本明細書に記載されている方法によって生成され得る。
ある種の特定の実施形態において、本明細書に記載されているADCの抗体は、細胞表面受容体または腫瘍関連抗原(TAA)に対する抗体のような腫瘍細胞に結合する抗体である。がん診断および治療のための有効な細胞標的を発見しようとする試みにおいて、研究者らは、膜貫通ポリペプチド、または他には、1つ以上の正常な非がん細胞と比べて、1つ以上の特定のタイプのがん細胞の表面に特異的に発現する腫瘍関連ポリペプチドを特定しようと探求してきた。多くの場合、このような腫瘍関連ポリペプチドは、非がん細胞の表面と比べて、がん細胞の表面に一層多量に発現される。このような細胞表面受容体および腫瘍関連抗原は当分野において公知であり、当分野における周知の方法および情報を使用して、抗体の生成に使用するために調製され得る。
5.3.1.例示的な細胞表面受容体およびTAA
本明細書に記載されているADCの抗体が標的とされ得る、細胞表面受容体およびTAAの例は、以下に限定されないが、以下に一覧表示されている様々な受容体およびTAAを含む。便宜上、これらの抗原に関連する情報は、このすべてが当分野において公知であるが、以下に一覧表示されており、国立生物工学情報センター(NCBI)の核酸およびタンパク質配列特定規定に従う、名称、代替名称、ジーンバンク受託番号および主要参照を含む。一覧表示されている細胞表面受容体およびTAAに対応する核酸およびタンパク質配列は、ジーンバンクのような公的データベースにおいて入手可能である。
4−1BB
5AC
5T4
アルファ−フェトプロテイン
アンジオポエチン2
ASLG659
TCL1
BMPR1B
ブレビカン(BCAN、BEHAB)
C242抗原
C5
CA−125
Ca−125(模倣)
CA−IX(カルボニックアンヒドラーゼ9)
CCR4
CD140a
CD152
CD19
CD20
CD200
CD21(C3DR)1)
CD22(B−細胞受容体CD22−Bアイソフォーム)
CD221
CD23(gE受容体)
CD28
CD30(TNFRSF8)
CD33
CD37
CD38(環式ADPリボースヒドロラーゼ)
CD4
CD40
CD44 v6
CD51
CD52
CD56
CD70
CD72(Lyb−2、B−細胞分化抗原CD72)
CD74
CD79a(CD79A、CD79α、免疫グロブリン関連アルファ)ジーンバンク受託番号NP_001774.10)
CD79b(CD79B、CD79β、B29)
CD80
CEA
CEA関連抗原
ch4D5
CLDN18.2
CRIPTO(CR、CR1、CRGF、TDGF1 奇形癌腫由来の増殖因子)
CTLA−4
CXCR5
DLL4
DR5
E16(LAT1、SLC7A5) EGFL7
EGFR
EpCAM
EphB2R(DRT、ERK、Hek5、EPHT3、Tyro5)
エピシアリン
ERBB3
ETBR(エンドセリンタイプB受容体)
FCRH1(Fc受容体様タンパク質1)
FcRH2(IFGP4、IRTA4、SPAP1、SPAP1B、SPAP1C、SH2ドメイン含有ホスファターゼアンカータンパク質
フィブロネクチンエクストラドメイン−B
葉酸受容体1
フリズルド受容体
GD2
GD3ガングリオシド
GEDA
GPNMB
HER1
HER2(ErbB2)
HER2/neu
HER3
HGF
HLA−DOB
HLA−DR
ヒト分散因子受容体キナーゼ
IGF−1受容体
IgG4
IL−13
IL20Rα(IL20Ra、ZCYTOR7)
IL−6
ILGF2
ILFR1R
インテグリンα
インテグリンαβ
インテグリンαβ
IRTA2(免疫グロブリンスーパーファミリー受容体転座関連2、遺伝子染色体1q21)
ルイスY抗原
LY64(RP105)
MCP−1
MDP(DPEP1)
MPF(MSLN、SMR、メソテリン、巨核球可能因子)
MS4A1
MSG783(RNF124、仮想タンパク質FLJ20315)
MUC1
ムチンCanAg
Napi3(NAPI−3B、NPTIIb、SLC34A2、タイプII ナトリウム依存性リン酸輸送体3b)
NCA(CEACAM6)
P2X5(プリン受容体P2Xリガンド開口型イオンチャネル5)
PD−1
PDCD1
PDGF−R α
前立腺特定的膜抗原
PSCA(前立腺幹細胞抗原前駆体)
PSCA hlg
RANKL
RON
SDC1
Sema 5b
SLAMF7(CS−1)
STEAP1
STEAP2(HGNC_8639、PCANAP1、STAMP1、STEAP2、STMP、前立腺がん関連遺伝子1)
TAG−72
TEM1
テネイシンC
TENB2、(TMEFF2、トモレグリン、TPEF、HPP1、TR)
TGF−β
TRAIL−E2
TRAIL−R1
TRAIL−R2
TrpM4(BR22450、FLJ20041、TRPM4、TRPM4B、一過性受容体電位陽イオンチャネルサブファミリーM、メンバー4)
TA CTAA16.88
TWEAK−R
TYRP1(グリコタンパク質75)
VEGF
VEGF−A
EGFR−1
VEGFR−2
ビメンチン
5.3.2.例示的な抗体
本開示のADCにより使用されることになる例示的な抗体は、以下に限定されないが、3F8(GD2)、アバゴボマブ(CA−125(模倣))、アデカツムマブ(EpCAM)、アフツズマブ(CD20)、アラシズマブペゴル(VEGFR2)、ALD518(IL−6)、アレムツズマブ(CD52)、アルツモマブペンテート(CEA)、アマツキシマブ(メソテリン)、アナツモマブマフェナトキス(TAG−72)、アポリズマブ(HLA−DR)、アルシツモマブ(CEA)、バビツキシマブ(ホスファチジルセリン)、ベクツモマブ(CD22)、ベリムバブ(BAFF)、ベシレソマブ(CEA関連抗原)、ベバシズマブ(VEGF−A)、ビバツズマブメルタンシン(CD44 v6)、ブリナツモマブ(CD19)、ブレンツキシマブベドチン((CD30(TNFRSF8))、カンツズマブメルタンシン(Mucin CanAg)、カンツズマブラブタンシン(MUC1)、カプロマブペンデチド(前立腺癌細胞)、カルルマブ(MCP−1)、カツマキソマブ(EpCAM、CD3)、CC49(Tag−72)、cBR96−DOX ADC(ルイスY抗原)、セツキシマブ(EGFR)、シタツズマブボガトクス(EpCAM)、シクスツムマブ(IGF−1受容体)、クリバツズマブテトラキセタン(MUC1)、コナツムマブ(TRAIL−E2)、ダセツズマブ(CD40)、ダロツズマブ(インスリン様成長因子I受容体)、ダラツズマブ((CD38(環式ADPリボースヒドロラーゼ))、デムシズマブ(DLL4)、デノスマブ(RANKL)、デツモマブ(B−リンパ腫細胞)、ドロジツマブ(DR5)、ドゥシギツマブ(ILGF2)、エクロメキシマブ(GD3ガングリオシド)、エクリズマブ(C5)、エドレコロマブ(EpCAM)、エロツズマブ(SLAMF7)、エルシリモマブ(IL−6)、エナバツズマブ(TWEAK受容体)、エノチクマブ(DLL4)、エンシツキシマブ(5AC)、エピツモマブシツキセタン(エピシアリン)、エプラツズマブ(CD22)、エルツマキソマブ(HER2/neu、CD3)、エタラシズマブ(インテグリンαβ)、ファルレツズマブ(葉酸受容体1)、FBTA05(CD20)、フィクラツズマブ(HGF)、フィギツムマブ(IGF−1受容体)、フランボツマブ((TYRP1(グリコタンパク質75))、フレソリムマブ(TGF−β)、ガリキシマブ(CD80)、ガニツマブ(IGF−I)、ゲムツズマブオゾガマイシン(CD33)、ギレンツキシズマブ(カルボニックアンヒドラーゼ9(CA−IX))、グレムバツムマブベドチン(GPNMB)、イブリツモマブチウキセタン(CD20)、イクルクマブ(VEGFR−1)、イゴモマブ(CA−125)、IMAB362(CLDN18.2)、イムガツムマブ(EGFR)、インダツキシマブラブタンシン(SDC1)、インテツムマブ(CD51)、イノツズマブオゾガマイシン(CD22)、イピリムマブ(CD152)、イラツムマブ((CD30(TNFRSF8))、ラベツズマブ(CEA)、ランブロリズマブ(PDCD1)、レクサツムマブ(TRAIL−R2)、リンツズマブ(CD33)、ロルボツズマブメルタンシン(CD56)、ルカツムマブ(CD40)、ルミリキシマブ(CD23(IgE受容体))、マパツムマブ(TRAIL−R1)、マルジェツキシマブ(ch4D5)、マツズマブ(EGFR)、ミラツズマブ(CD74)、ミツモマブ(GD3ガングリオシド)、モガムリズマブ(CCR4)、モキセツモマブシュードトクス(CD22)、ナコロマブタフェナトクス(C242抗原)、ナプツモマブエスタフェナトックス(5T4)、ナルナツマブ(RON)、ナタリズマブ(インテグリンα)、ネシツムマブ(EGFR)、ネスバクマブ(アンジオポエチン2)、ニモツズマブ(EGFR)、ニボルマブ(IgG4)、オナルツズマブ(CD20)、オファツムマブ(CD20)、オララツマブ(PDGF−Rα)、オナルツズマブ(ヒト分散因子受容体キナーゼ)、オンツキシズマブ(TEM1)、オポルツズマブモナト(EpCAM)、オレゴボマブ(CA−125)、オトレルツズマブ(CD37)、パニツムマブ(EGFR)、パンコマブ(MUC1の腫瘍特異的グリコシル化)、パルサツズマブ(EGFL7)、パトリツマブ(HER3)、ペムツモマブ(MUC1)、ペルツズマブ(HER2/neu)、ピジリズマブ(PD−1)、ピナツズマブベドチン(CD22)、プリツムマブ(ビメンチン)、ラコツモマブ(N−グリコリルノイラミン酸)、ラドレツマブ(フィブロネクチンエクストラドメイン−B)、ラムシルマブ(VEGFR2)、リロツムマブ(HGF)、リツキシマブ(CD20)、ロバツムマブ(IGF−1受容体)、サマリズマブ(CD200)、サツモマブペンデチド(TAG−72)、セリバンツマブ(ERBB3)、シブロツヅマブ(FAP)、SGN−CD19A(CD19)、SGN−CD33A(CD33)、シルツキシマブ(IL−6)、ソリトマブ(EpCAM)、ソネプシズマブ(スフィンゴシン−1−ホスフェート)、タバルマブ(BAFF)、タカツズマブテトラキセタン(アルファ−フェトプロテイン)、タプリツモマブパプトクス(CD19)、テナツモバブ(テネイシンC)、テプロツムマブ(CD221)、TGN1412(CD28)、チシリムマブ(CTLA−4)、チガツズマブ(TRAIL−R2)、TNX−650(IL−13)、トベツマブ(CD140a)、トラスツズマブ(HER2/neu)、TRBS07(GD2)、トレメリムマブ(CTLA−4)、ツコツズマブセルモロイキン(EpCAM)、ウブリツキシマブ(MS4A1)、ウレルマブ(4−1BB)、バンデタニブ(VEGF)、バンチクツマブ(フリズルド受容体)、ボロシキシマブ(インテグリンαβ)、ボルセツズマブマホドチン(CD70)、ボツムマブ(腫瘍抗原CTAA16.88)、ザルツムマブ(EGFR)、ザノリムマブ(CD4)およびザツキシマブ(HER1)を含む。
ある種の実施形態において、ADCの抗体は、EGFR、NCAM1またはEpCAMに結合する。
5.4.抗体を作製する方法
ADCの抗体は、宿主細胞における免疫グロブリン軽鎖および重鎖遺伝子の組換え発現によって調製され得る。例えば、抗体を組換えにより発現するために、宿主細胞は、抗体の免疫グロブリン軽鎖および重鎖が宿主細胞において発現され、宿主細胞が培養される培地に任意選択的に分泌されるよう、上記の軽鎖および重鎖をコードするDNA断片を有する1つ以上の組換え発現ベクターをトランスフェクトされ、上記の培地から抗体が回収され得る。標準的な組換えDNA法が使用され、抗体の重鎖および軽鎖の遺伝子を得て、これらの遺伝子を組換え発現ベクターに取り込ませ、Molecular Cloning;A Laboratory Manual、第2版(Sambrook、FritschおよびManiatis(編)、Cold Spring Harbor、N.Y.、1989年)、Current Protocols in Molecular Biology(Ausubel、F.M.ら(編)、Greene Publishing Associates、1989年)および米国特許第4,816,397号に記載されているもののような宿主細胞にベクターを導入する。
一実施形態において、Fc変異抗体は、この野生型の等価体と類似しているが、このFcドメインが変化している。このようなFc変異抗体をコードする核酸を生成するために、Fcドメインまたは野生型の抗体のFcドメイン(「野生型Fcドメイン」と称される。)の一部をコードするDNA断片が合成され、決まった手順の突然変異誘導技法を使用し、突然変異誘導のためのテンプレートとして使用して、本明細書に記載されている抗体が生成され得る。代替として、抗体をコードするDNA断片が直接、合成されることができる。
一旦、野生型FcドメインをコードするDNA断片が得られると、これらのDNA断片は、標準的な組換えDNA技法によってさらに操作され、例えば、定常領域遺伝子が完全長抗体鎖遺伝子に変換され得る。これらの操作において、CHをコードするDNA断片は、抗体可変領域またはフレキシブルリンカーのような、別のタンパク質をコードする別のDNA断片に効果的に連結される。用語「効果的に連結された」とは、本文脈において使用される場合、2つのDNA断片が結合され、2つのDNA断片によってコードされるアミノ酸配列が、依然として、インフレームの状態にあることを意味するよう意図されている。
Fc変異抗体を発現するために、遺伝子が転写制御配列および翻訳制御配列に効果的に連結されるよう、上記の通り得られた部分長または完全長軽鎖および重鎖をコードするDNAが、発現ベクターに挿入される。この文脈において、用語「効果的に連結された」は、ベクター内の転写制御配列および翻訳制御配列が、抗体遺伝子の転写および翻訳を調節するという所期の機能を果たすよう、抗体遺伝子がベクターにライゲーションされることを意味することが意図されている。発現ベクターおよび発現制御配列は、使用される発現宿主細胞と適合するよう選択される。変異抗体の軽鎖遺伝子およびこの抗体の重鎖遺伝子は、個別のベクターの挿入されることができ、またはより典型的に、両方の遺伝子が、同一発現ベクターに挿入される。
抗体遺伝子は、標準法(例えば、抗体遺伝子断片およびベクター上の相補的制限部位のライゲーション、または制限部位が存在しない場合、平滑末端ライゲーション)によって発現ベクターに挿入される。変異Fcドメイン配列の挿入前に、発現ベクターは、抗体可変領域配列を既に有することができる。さらにまたは代替として、組換え発現ベクターは、宿主細胞からの抗体鎖の分泌を促進するシグナルペプチドをコードすることができる。この抗体鎖遺伝子は、シグナルペプチドが抗体鎖遺伝子のアミノ末端にインフレームで連結されるよう、ベクターにクローニングされ得る。シグナルペプチドは、免疫グロブリンシグナルペプチドまたは非相同シグナルペプチド(すなわち、非免疫グロブリンタンパク質に由来するシグナルペプチド)とすることができる。
組換え発現ベクターは、抗体鎖遺伝子に加えて、宿主細胞における抗体鎖遺伝子の発現を制御する、調節配列を有する。用語「調節配列」は、抗体鎖遺伝子の転写または翻訳を制御する、プロモーター、エンヘンサー、および他の発現制御要素(例えば、ポリアデニル化シグナル)を含むことが意図されている。このような調節配列は、例えば、Goeddel、Gene Expression Technology:Methods in Enzymology 185(Academic Press、San Diego、CA、1990年)に記載されている。調節配列の選択を含めた、発現ベクターの設計は、形質変換されることになる宿主細胞の選択、所望のタンパク質の発現レベルなどのような因子に依存し得ることが当業者により理解されている。哺乳動物の宿主細胞の発現に好適な調節配列は、サイトメガウイルス(CMV)(CMVプロモーター/エンヘンサーのような)、サルウイルス40(SV40)(SV40プロモーター/エンヘンサーのような)、アデノウイルス(例えば、アデノウイルス主要後期プロモーター(AdMLP))およびポリオーマに由来するプロモーターおよび/またはエンヘンサーのような、哺乳動物細胞におけるタンパク質発現の高いレベルに向かわせるウイルス要素を含む。ウイルス調節要素およびこの配列のさらなる説明に関して、例えば、Stinskiによる米国特許第5,168,062号、Bellらによる米国特許第4,510,245号およびSchaffnerらによる米国特許第4,968,615号を参照されたい。
組換え発現ベクターは抗体鎖遺伝子および調節配列に加えて、宿主細胞におけるベクターの複製(例えば、複製の源)および選択可能なマーカー遺伝子を調節する配列のような追加の配列を有することができる。選択可能なマーカー遺伝子は、ベクターが導入される宿主細胞の選択を促進する(例えば、全部がAxelらによる、米国特許第4,399,216号、同第4,634,665号および同第5,179,017号)。例えば、通常、選択可能なマーカー遺伝子は、ベクターが導入された宿主細胞上に、G418、ピューロマイシン、ブラストサイジン、ハイグロマイシンまたはメトトレキセートのような薬物に抵抗性を付与する。好適な選択可能なマーカー遺伝子は、ジヒドロ葉酸レダクターゼ(DHFR)遺伝子(メトトレキセート選択/増幅によるDHFR宿主細胞において使用するため)およびneo遺伝子(G418選択用)を含む。軽鎖および重鎖の発現に関すると、重鎖および軽鎖をコードする発現ベクターは、標準的技法によって宿主細胞にトランスフェクトされる。用語「トランスフェクト」の様々な形態は、原核生物宿主細胞または真核生物宿主細胞への外因性DNAの導入のために一般に使用される幅広い技法、例えば、電気穿孔法、リポフェクション、リン酸カルシウム沈殿法、DEAE−デキストラントランスフェクションなどを包含することが意図されている。
原核生物または真核生物の宿主細胞のどちらかにおいて、抗体を発現することが可能である。ある種の実施形態において、適切にフォールドされた、免疫学的に活性な抗体の最適分泌のために、抗体の発現は、真核細胞、例えば哺乳動物の宿主細胞において行われる。組換え抗体を発現するための例示的な哺乳動物の宿主細胞は、チャイニーズハムスター卵巣(CHO細胞)(例えば、KaufmanおよびSharp、1982年、Mol.Biol.159巻:601−621頁に記載されているDHFR選択可能マーカーと共に使用される、UrlaubおよびChasin、1980年、Proc.Natl.Acad.Sci.USA 77巻:4216−4220頁において記載されているDHFRCHO細胞を含む。)、NS0骨髄腫細胞、COS細胞、293細胞およびSP2/0細胞を含む。抗体遺伝子をコードする組換え発現ベクターが哺乳動物の宿主細胞に導入される場合、この抗体は、宿主細胞における抗体の発現、または宿主細胞が増殖する培養培地への抗体の分泌が可能になるのに十分な時間、宿主細胞を培養することによって産生される。抗体は、標準的なタンパク質精製方法を使用して、培養培地から回収されることができる。宿主細胞はまた、Fab断片またはscFv分子のような、無傷の抗体の一部を産生するために使用され得る。
一部の実施形態において、ADCの抗体は、二機能性抗体とすることができる。1つの重鎖および1つの軽鎖が1つの抗原に特異的であり、他の重鎖および軽鎖が第2の抗原に特異的である、このような抗体は、標準的な化学クロスリンク法によって、ある抗体を第2の抗体にクロスリンクすることにより生成され得る。二機能性抗体はまた、二機能性抗体をコードするよう遺伝子操作されている核酸を発現することにより作製することもできる。
ある種の実施形態において、二重特異的抗体、すなわち、同じ結合部位を使用して1つの抗原および第2の無関係な抗原に結合する抗体は、軽鎖および/または重鎖CDRにおける、アミノ酸残基を変異させることにより生成され得る。例示的な第2の抗原は、炎症性サイトカイン(例えば、リンホトキシン、インターフェロン−γまたはインターロイキン−1のような)を含む。二重特異的抗体は、例えば、抗原結合部位の周辺におけるアミノ酸残基を変異させることによって生成され得る(例えば、Bostromら、2009年、Science 323巻:1610−1614頁を参照されたい。)。二重機能性抗体は、二重特異的抗体をコードするよう遺伝子操作されている核酸を発現することにより作製され得る。
抗体はまた、化学合成(例えば、Solid Phase Peptide Synthesis、第2版、1984年、The Pierce Chemical Co.、Rockford、III.に記載されている方法によって)によって生成され得る。抗体はまた、細胞不含プラットフォームを使用して生成され得る(例えば、Chuら、Biochemia 2巻、2001年(Roche Molecular Biologicals)を参照されたい。)。
Fc融合タンパク質の組換え発現の方法は、Flanaganら、Methods in Molecular Biology、378巻:Monoclonal Antibodies:Methods and Protocolsにおいて記載されている。
抗体が組換え発現によって、一端、生成されると、この抗体は、免疫グロブリン分子を精製するための当分野において公知の任意の方法、例えば、クロマトグラフィー(例えば、イオン交換、アフィニティー、特にプロテインAまたはプロテインGの選択後の抗原に対するアフィニティー、およびサイジングカラムクロマトグラフィー(sizing column chromatography))、遠心分離、溶解度差により、またはタンパク質を精製するための任意の他の標準的技法によって、精製され得る。
抗体は、一端、単離されると、所望の場合、例えば、高速液体クロマトグラフィー(例えば、Fisher、Laboratory Techniques In Biochemistry And Molecular Biology(Work and Burdon(編)、Elsevier、1980年)を参照されたい。)により、またはSuperdex(商標)75カラム(Pharmacia Biotech AB、Uppsala、スウェーデン)上のゲルろ過クロマトグラフィーによりさらに精製され得る。
5.5.抗体−薬物コンジュゲートシントン
抗体−薬物コンジュゲートシントンは、ADCを形成するために使用される合成中間体である。シントンは、一般に、構造式(III)による化合物:
(III) D−L−R
またはこの塩であり、式中、Dは、既に記載されているBcl−xL阻害剤であり、Lは、既に記載されているリンカーであり、Rは、シントンを抗体に共有結合により連結させるのに好適な官能基を含む部分である。具体的な実施形態において、シントンは、構造式(IIIa)による化合物またはこの塩であり、Ar、R、R、R、R10a、R10b、R10c、R11a、R11b、Z、Zおよびnは、構造式(IIa)に関して既に定義されている通りであり、LおよびRは、構造式(III)に関して定義されている通りである:
Figure 2020152726
ADCを合成するために、構造式(III)による中間シントンまたはこの塩は、官能基Rが、抗体上の「相補的な」官能基と反応して、共有結合性連結基を形成する条件下において、対象となる抗体と接触させる。
Figure 2020152726
基RおよびFが同一となるかは、シントンを抗体に連結するために使用される化学に依存する。一般に、使用される化学は、抗体の完全性、例えば、この抗体が標的に結合する能力を改変すべきではない。好ましくは、コンジュゲートされた抗体の結合特性は、非コンジュゲート抗体の結合特性に非常に似ている。分子を抗体のような生物分子にコンジュゲートするための様々な化学および技法が、当分野において公知であり、特に抗体へのコンジュゲートは周知である。例えば、Monoclonal Antibodies And Cancer Therapy、Reisfeldら(編)、Alan R.Liss、Inc.、1985年におけるAmonらの「Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy」;Controlled Drug Delivery、Robinsonら(編)、Marcel Dekker、Inc.、第2版、1987年におけるHellstromらの「Antibodies For Drug Delivery」;Monoclonal Antibodies ’84:Biological And Clinical Applications、Pincheraら(編)、1985年におけるThorpeの「Antibody Carriers Of Cytotoxic Agents In Cancer Therapy:A Review」;Monoclonal Antibodies For Cancer Detection And Therapy、Baldwinら(編)、Academic Press、1985年における「Analysis, Results, and Future Prospective of the Therapeutic Use of Radiolabeled Antibody In Cancer Therapy」;およびThorpeら、1982年、Immunol.Rev.62巻:119−58頁;およびWO89/12624を参照されたい。これらの化学のうちのいずれも、シントンを抗体に連結するために使用され得る。
一実施形態において、Rは、シントンを抗体のアミノ基に連結することが可能な官能基を含む。別の実施形態において、Rは、NHS−エステルまたはイソチオシアネートを含む。別の実施形態において、Rは、シントンを抗体のスルフィドリル基に連結することが可能な官能基を含む。別の実施形態において、Rは、ハロアセチルまたはマレイミドを含む。
通常、シントンは、例えば、利用可能なリシン残基の一級アミノ基、または利用可能なシステイン残基のスルフィドリル基を含めた、抗体のアミノ酸残基の側鎖に連結される。遊離スルフィドリル基は、ジスルフィド結合の鎖間を還元することにより得られる。
一実施形態において、LKは、抗体Abのアミノ基と形成される連結基である。別の実施形態において、LKは、アミドまたはチオウレアである。別の実施形態において、LKは、抗体Abのスルフィドリル基と形成される連結基である。別の実施形態において、LKは、チオエーテルである。
一実施形態において、Dは、W1.01、W1.02、W1.03、W1.04、W1.05、W1.06、W1.07およびW1.08およびこれらの塩からなる群から選択される。Lは、リンカーIVa.1−IVa.7、IVb.1−IVb.15、IVc.1−IVc.2、Va.1−Va.12、Vb.1−Vb.4、Vc.1−Vc.9、Vd.1−Vd.2、VIa.1、V1c.1−V1c.2、V1d.1−V1d.3、およびこれらの塩からなる群から選択される。LKは、アミド、チオウレアおよびチオエーテルからなる群から選択され、mは1から8の範囲の整数である。
シントンを利用可能なリシン残基に連結するのに有用ないくつかの官能基Rおよび化学は、公知であり、例として非限定的に、NHS−エステルおよびイソチオシアネートを含む。
シントンをシステイン残基の利用可能な遊離スルフィドリルに連結するのに有用ないくつかの官能基Rおよび化学は公知であり、例として非限定的に、ハロアセチルおよびマレイミドを含む。
一実施形態において、Dは、W1.01、W1.02、W1.03、W1.04、W1.05、W1.06、W1.07およびW1.08、ならびにこれらの塩からなる群から選択される。Lは、リンカーIVa.1−IVa.7、IVb.1−IVb.15、IVc.1−IVc.2、Va.1−Va.12、Vb.1−Vb.4、Vc.1−Vc.9、Vd.1−Vd.2、VIa.1、V1c.1−V1c.2、V1d.1−V1d.3、およびこれらの塩からなる群から選択される。Rは、NHS−エステル、イソチオシアネート、ハロアセチルおよびマレイミドからなる群から選択される官能基を含む。
しかし、コンジュゲート化化学は、利用可能な側鎖基に制限されない。アミンのような側鎖は、適切な低分子をアミンに連結することにより、ヒドロキシルのような他の有用な基に変換され得る。この戦略は、多官能性低分子を抗体の利用可能なアミノ酸残基の側鎖にコンジュゲートすることにより、抗体上の利用可能な連結部位の数を増加するために使用され得る。
抗体はまた、コンジュゲートするためのアミノ酸残基を含むよう、遺伝子工学操作されてもよい。ADCの文脈における、薬物をコンジュゲートするために有用な非遺伝子学的にコードされたアミノ酸残基を含ませるための抗体を遺伝子工学操作する手法は、Axupら、2003年、Proc Natl Acad Sci 109巻:16101−16106頁およびTianら、2014年、Proc Natl Acad Sci 111巻:1776−1771頁に記載されている。
本明細書に記載されているADCを作製するのに有用な例示的なシントンは、以下に限定されないが、以下のシントンを含む:
Figure 2020152726
Figure 2020152726
Figure 2020152726
Figure 2020152726
Figure 2020152726
Figure 2020152726
Figure 2020152726
Figure 2020152726
Figure 2020152726
5.6.抗体薬物コンジュゲート
本明細書に記載されているADCのBcl−xL阻害活性は、適切な標的細胞および/またはインビボアッセイを用いる細胞アッセイにおいて確認され得る。EGFR、EpCAMまたはNCAM1を標的とするADCの活性を確認するために使用され得る特異的アッセイは、実施例7および8に提示されている。一般に、ADCは、このような細胞アッセイにおいて、約5000nM未満のEC50を示すが、ADCは、例えば約500、300または100nM未満にもなる、かなり一層小さなEC50を示すことがある。特定の標的抗原を発現する細胞を用いる同様の細胞アッセイを使用して、他の抗原を標的とするADCのBcl−xL阻害活性を確認することができる。
5.7.合成方法
本明細書に記載されているBcl−xL阻害剤およびシントンは、標準的な有機化学の公知技法を使用して合成され得る。このまま使用され得る、または本明細書に記載されているBcl−xL阻害剤およびシントンの全範囲を合成するために修飾され得るBcl−xL阻害剤およびシントンを合成するための一般的なスキームが、以下に提示されている。指針のために有用となり得る例示的なBcl−xL阻害剤およびシントンを合成するための具体的な方法は、実施例の項目に提示されている。
ADCは、同様に、Hamblettら、2004年、「Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug Conjugate」、Clin.Cancer Res.10巻:7063−7070頁;Doroninaら、2003年、「Development of potent and highly efficacious monoclonal antibody auristatin conjugates for cancer therapy」Nat.Biotechnol.21巻(7号):778−784頁;およびFranciscoら、2003年、「cAClO−vcMMAE、an anti−CD30−monomethylauristatin E conjugate with potent and selective antitumor activity」Blood 102巻:1458−1465頁において記載されているものと類似の方法のような標準法によって調製され得る。例えば、抗体あたり4つの薬物を有するADCは、DTTまたはTCEPのような還元試薬を過剰量用いて、37℃で30分間、抗体を部分還元し、次に、DPBS中の1mM DTPAを用いるSEPHADEX(登録商標)G−25樹脂により溶出させることによる緩衝液交換によって調製され得る。この溶離液をさらなるDPBSにより希釈し、抗体のチオール濃度が5,5’−ジチオビス(2−ニトロ安息香酸)[Ellman試薬]を使用して測定され得る。過剰量のリンカー−薬物シントン、例えば5倍量を4℃において1時間、加え、実質的に過剰量のシステイン、例えば20倍量を添加することによって、コンジュゲート反応物をクエンチすることができる。得られたADC混合物は、PBSにおいて平衡にしたSEPHADEX G−25で精製し、未反応シントンを除去し、所望の場合、脱塩し、サイズ排除クロマトグラフィーにより精製することができる。次に、得られたADCを、例えば0.2μmのフィルターにより滅菌ろ過し、所望の場合、保管するために凍結乾燥してもよい。ある種の実施形態において、鎖間のシステインジスルフィド結合はすべて、リンカー−薬物コンジュゲートによって置きかえられる。
本明細書に記載されているADCの全範囲を合成するために使用され得る例示的なADCを合成するための具体的な方法は、実施例の項目において提示されている。
5.7.1.Bcl−xL阻害剤を合成するための一般的方法
5.7.1.1.化合物(9)の合成
Figure 2020152726
ピラゾール中間体である式(9)の合成が、スキーム1に記載されている。3−ブロモ−5,7−ジメチルアダマンタンカルボン酸(1)を、BH・THFにより処理すると、3−ブロモ−5,7−ジメチルアダマンタンメタノール(2)を得ることができる。この反応は、通常、以下に限定されないが、テトラヒドロフランのような溶媒中、周囲温度において行われる。1−((3−ブロモ−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル)−1H−ピラゾール(3)は、シアノメチレントリブチルホスホランの存在下、3−ブロモ−5,7−ジメチルアダマンタンメタノール(2)を1H−ピラゾールにより処理することによって調製することができる。この反応は、通常、以下に限定されないが、トルエンのような溶媒中、高温において行われる。1−((3−ブロモ−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル)−1H−ピラゾール(3)を、以下に限定されないが、トリエチルアミンのような塩基の存在下、エタン−1,2−ジオールにより処理すると、2−{[3,5−ジメチル−7−(1H−ピラゾール−1−イルメチル)トリシクロ[3.3.1.13,7]デカ−1−イル]オキシ}エタノール(4)を得ることができる。この反応は、通常、高温において行われ、この反応は、マイクロ波条件下において行われてもよい。2−{[3,5−ジメチル−7−(1H−ピラゾール−1−イルメチル)トリシクロ[3.3.1.13,7]デカ−1−イル]オキシ}エタノール(4)を、以下に限定されないが、n−ブチルリチウムのような強塩基により処理し、次いでヨードメタンを加えると、2−({3,5−ジメチル−7−[(5−メチル−1H−ピラゾール−1−イル)メチル]トリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エタノール(5)を得ることができる。添加および反応は、通常、以下に限定されないが、テトラヒドロフランのような溶媒中、低温で行った後、後処理のために周囲温度まで温める。2−({3,5−ジメチル−7−[(5−メチル−1H−ピラゾール−1−イル)メチル]トリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エタノール(5)をN−ヨードスクシンイミドにより処理することにより、1−({3,5−ジメチル−7−[2−(ヒドロキシ)エトキシ]トリシクロ[3.3.1.13,7]デカ−1−イル}メチル)−4−ヨード−5−メチル−1H−ピラゾール(6)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。式(7)の化合物は、以下に限定されないが、トリエチルアミンのような塩基の存在下、1−({3,5−ジメチル−7−[2−(ヒドロキシ)エトキシ]トリシクロ[3.3.1.13,7]デカ−1−イル}メチル)−4−ヨード−5−メチル−1H−ピラゾール(6)を塩化メタンスルホニルと反応させて、次にアミンであるHNRを添加することにより調製することができる。塩化メタンスルホニルによる反応は、通常、低温において行われた後、アミンとの反応のために昇温し、この反応は、通常、以下に限定されないがテトラヒドロフランのような溶媒において行われる。式(7)の化合物を、4−ジメチルアミノピリジンの存在下、ジ−tert−ブチルジカーボネートと反応させると式(8)の化合物を得ることができる。この反応は、通常、以下に限定されないが、テトラヒドロフランのような溶媒中、周囲温度において行われる。式(8)の化合物をホウ素化して式(9)の化合物を得るのは、本明細書に記載されているおよび文献において容易に入手可能な条件下において行うことができる。
5.7.1.2.化合物(14)の合成
Figure 2020152726
中間体である式(14)の合成が、スキーム2に記載されている。式(12)の化合物は、以下に限定されないが、N,N−ジイソプロピルエチルアミンまたはトリエチルアミンのような塩基の存在下、式(10)の化合物をtert−ブチル3−ブロモ−6−フルオロピコリン酸(11)と反応させることにより調製することができる。この反応は、通常、不活性雰囲気下、以下に限定されないが、ジメチルスルホキシドのような溶媒中、高温において行われる。式(12)の化合物を、本明細書または文献に記載されているホウ素化条件下、4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(13)と反応させると、式(14)の化合物を得ることができる。
5.7.1.3.化合物(24)の合成
Figure 2020152726
スキーム3は、アダマンタンおよびt−ブチルエステルとして保護されているピコリン酸エステルに繋がれた−Nu(求核剤)を含有する中間体を作製する方法を記載している。メチル2−(6−(tert−ブトキシカルボニル)−5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート(14)を、本明細書中または文献中に記載されているSuzukiカップリング条件下、1−({3,5−ジメチル−7−[2−(ヒドロキシ)エトキシ]トリシクロ[3.3.1.13,7]デカ−1−イル}メチル)−4−ヨード−5−メチル−1H−ピラゾール(6)と反応させると、メチル2−(6−(tert−ブトキシカルボニル)−5−(1−((3−(2−ヒドロキシエトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート(17)を得ることができる。メチル2−(6−(tert−ブトキシカルボニル)−5−(1−((3−(2−ヒドロキシエトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート(17)を、以下に限定されないがトリエチルアミンのような塩基、次いで塩化メタンスルホニルにより処理すると、メチル2−(6−(tert−ブトキシカルボニル)−5−(1−((3,5−ジメチル−7−(2−((メチルスルホニル)オキシ)エトキシ)アダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート(18)を得ることができる。この添加は、通常、以下に限定されないが、ジクロロメタンのような溶媒中、低温で行った後、周囲温度まで温められる。メチル2−(6−(tert−ブトキシカルボニル)−5−(1−((3,5−ジメチル−7−(2−((メチルスルホニル)オキシ)エトキシ)アダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート(18)を、式(19)の求核剤(Nu)と反応させると、式(20)の化合物を得ることができる。求核剤の例は、以下に限定されないが、アジ化ナトリウム、メチルアミン、アンモニアおよびジ−tert−ブチルイミノジカーボネートを含む。式(20)の化合物を水酸化リチウムと反応させることによって、式(21)の化合物を得ることができる。この反応は、通常、以下に限定されないが、テトラヒドロフラン、メタノール、水またはこれらの混合物のような溶媒中、周囲温度において行われる。式(21)の化合物を、本明細書に記載されている、または文献において容易に入手可能なアミド化条件下、式(22)の化合物(式中、Arは本明細書に記載されている通りである。)と反応させると、式(23)の化合物を得ることができる。式(23)の化合物を、以下に限定されないが、ジクロロメタンまたはジオキサンのような溶媒において、トリフルオロ酢酸またはHClのような酸により処理することによって、式(24)の化合物を得ることができる。
5.7.1.4.化合物(34)の合成
Figure 2020152726
化合物(34)の合成が、スキーム4に記載されている。式(25)の化合物を、本明細書に記載されている、または文献において容易に入手可能なアミド化条件下、式(26)の化合物(式中、Arは本明細書に記載されている通りである。)と反応させると、式(27)の化合物を得ることができる。式(27)の化合物を、以下に限定されないが、炭酸セシウムのような塩基の存在下、tert−ブチル3−ブロモ−6−フルオロピコリン酸(11)と反応させると、式(28)の化合物を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルアセトアミドのような溶媒中、高温において行われる。式(30)の化合物を、本明細書中または文献中に記載されているSuzukiカップリング条件下、式(28)の化合物を式(29)のボロン酸エステル(または、等価なボロン酸)と反応させることにより調製することができる。式(31)の化合物は、式(30)の化合物をトリフルオロ酢酸により処理することによって調製することができる。この反応は、通常、以下に限定されないが、ジクロロメタンのような溶媒中、周囲温度において行われる。式(31)の化合物を、2−メトキシアセトアルデヒド(32)、次いで、以下に限定されないが、水素化ホウ素ナトリウムのような還元剤と反応させることにより、式(33)の化合物を得ることができる。この反応は、通常、以下に限定されないが、ジクロロメタン、メタノールまたはこれらの混合物のような溶媒中、周囲温度において行われる。式(33)の化合物を、以下に限定されないが、ジクロロメタンまたはジオキサンのような溶媒において、トリフルオロ酢酸またはHClのような酸により処理することによって、式(34)の化合物を得ることができる。
5.7.2.シントンを合成するための一般的方法
以下のスキームにおいて、Arは、
式(IIa)の化合物における、
Figure 2020152726
を表し、可変基Arは、式(iia)の化合物において
Figure 2020152726
を表す。
5.7.2.1.化合物(89)の合成
Figure 2020152726
スキーム5に示されている通り、式(77)の化合物(式中、PGは、塩基に不安定な適切な保護基であり、AA(2)は、Cit、AlaまたはLysである。)を、本明細書に記載されているまたは文献において容易に入手することができるアミド化条件下、4−(アミノフェニル)メタノール(78)と反応させると、化合物(79)を得ることができる。化合物(80)は、化合物(79)を、以下に限定されないが、ジエチルアミンのような塩基と反応させることにより調製することができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。化合物(81)(式中、PGは、塩基または酸に不安定な適切な保護基であり、AA(1)は、ValまたはPheである。)を、本明細書に記載されている、または文献において容易に入手することができるアミド化条件下、化合物(80)と反応させると、化合物(82)が得られる。化合物(83)は、化合物(82)を適宜、ジエチルアミンまたはトリフルオロ酢酸により処理することによって調製することができる。この反応は、通常、以下に限定されないが、ジクロロメタンのような溶媒中、周囲温度において行われる。化合物(84)(式中、Spはスペーサーである。)を、化合物(83)と反応させることによって、化合物(85)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。化合物(85)を、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、ビス(4−ニトロフェニル)カーボネート(86)と反応させると、化合物(87)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。化合物(87)は、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、化合物(88)と反応させると、化合物(89)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。
5.7.2.2.化合物(94)および化合物(96)の合成
Figure 2020152726
スキーム6は、ジペプチドシントンへの代替mAb−リンカーの結合の導入を記載している。化合物(88)を、以下に限定されないがN,N−ジイソプロピルエチルアミンのような塩基の存在下、化合物(90)と反応させると、化合物(91)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。化合物(92)は、化合物(91)をジエチルアミンと反応させることによって調製することができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。化合物(93)(式中、Xは、Cl、BrまたはIである。)を、本明細書に記載されている、または文献において容易に入手可能なアミド化条件下、化合物(92)と反応させると、化合物(94)を得ることができる。化合物(92)を、本明細書に記載されている、または文献において容易に入手可能なアミド化条件下、式(95)の化合物と反応させると、化合物(96)を得ることができる。
5.7.2.3.化合物(106)の合成
Figure 2020152726
スキーム7は、ビニルグルクロニドリンカー中間体およびシントンの合成を記載している。(2R,3R,4S,5S,6S)−2−ブロモ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(97)を、酸化銀、次いで、4−ブロモ−2−ニトロフェノール(98)により処理すると、(2S,3R,4S,5S,6S)−2−(4−ブロモ−2−ニトロフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(99)を得ることができる。この反応は、通常、以下に限定されないが、アセトニトリルのような溶媒中、周囲温度において行われる。(2S,3R,4S,5S,6S)−2−(4−ブロモ−2−ニトロフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(99)を、以下に限定されないが、炭酸ナトリウムのような塩基および以下に限定されないが、トリス(ジベンジリデンアセトン)二パラジウム(Pd(dba))のような触媒の存在下、(E)−tert−ブチルジメチル((3−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)アリル)オキシ)シラン(100)と反応させると、(2S,3R,4S,5S,6S)−2−(4−((E)−3−((tert−ブチルジメチルシリル)オキシ)プロパ−1−エン−1−イル)−2−ニトロフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(101)を得ることができる。この反応は、通常、以下に限定されないが、テトラヒドロフランのような溶媒中、高温において行われる。(2S,3R,4S,5S,6S)−2−(2−アミノ−4−((E)−3−ヒドロキシプロパ−1−エン−1−イル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(102)は、以下に限定されないが、塩酸のような酸の存在下、(2S,3R,4S,5S,6S)−2−(4−((E)−3−((tert−ブチルジメチルシリル)オキシ)プロパ−1−エン−1−イル)−2−ニトロフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(101)を亜鉛と反応させることによって調製することができる。この添加は、通常、以下に限定されないが、テトラヒドロフラン、水、またはこれらの混合物のような溶媒中、低温で行った後、周囲温度まで温められる。(2S,3R,4S,5S,6S)−2−(2−アミノ−4−((E)−3−ヒドロキシプロパ−1−エン−1−イル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(102)を、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、(9H−フルオレン−9−イル)メチル(3−クロロ−3−オキソプロピル)カルバメート(103)と反応させると、(2S,3R,4S,5S,6S)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−((E)−3−ヒドロキシプロパ−1−エン−1−イル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(104)を得ることができる。この添加は、通常、以下に限定されないが、ジクロロメタンのような溶媒中、低温で行った後、周囲温度まで温められる。化合物(88)を、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、(2S,3R,4S,5S,6S)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−((E)−3−ヒドロキシプロパ−1−エン−1−イル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(104)を反応させて、次いで、後処理し、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、式(105)の化合物と反応させると、化合物(106)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。
5.7.2.4.化合物(115)の合成
Figure 2020152726
スキーム8は、代表的な2−エーテルグルクロニドリンカー中間体およびシントンの合成を記載している。(2S,3R,4S,5S,6S)−2−ブロモ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(97)を、炭酸銀の存在下、2,4−ジヒドロキシベンズアルデヒド(107)と反応させると、(2S,3R,4S,5S,6S)−2−(4−ホルミル−3−ヒドロキシフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(108)を得ることができる。この反応は、通常、以下に限定されないが、アセトニトリルのような溶媒中、高温において行われる。(2S,3R,4S,5S,6S)−2−(4−ホルミル−3−ヒドロキシフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(108)を、水素化ホウ素ナトリウムと処理すると、(2S,3R,4S,5S,6S)−2−(3−ヒドロキシ−4−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(109)を得ることができる。この添加は、通常、以下に限定されないが、テトラヒドロフラン、メタノールまたはこれらの混合物のような溶媒中、低温で行った後、周囲温度まで温められる。(2S,3R,4S,5S,6S)−2−(4−(((tert−ブチルジメチルシリル)オキシ)メチル)−3−ヒドロキシフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(110)は、イミダゾールの存在下、(2S,3R,4S,5S,6S)−2−(3−ヒドロキシ−4−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(109)を塩化tert−ブチルジメチルシリルと反応させることにより調製することができる。この反応は、通常、以下に限定されないが、ジクロロメタンのような溶媒中、低温において行われる。(2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−(((tert−ブチルジメチルシリル)オキシ)メチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(111)は、トリフェニルホスフィン、および以下に限定されないが、ジ−tert−ブチルジアゼン−1,2−ジカルボキシレートのようなアゾジカルボキシレートの存在下、(2S,3R,4S,5S,6S)−2−(4−(((tert−ブチルジメチルシリル)オキシ)メチル)−3−ヒドロキシフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(110)を(9H−フルオレン−9−イル)メチル(2−(2−ヒドロキシエトキシ)エチル)カルバメートと反応させることにより調製することができる。この反応は、通常、以下に限定されないが、トルエンのような溶媒中、周囲温度において行われる。(2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−(((tert−ブチルジメチルシリル)オキシ)メチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(111)を酢酸と処理することにより、(2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(112)を得ることができる。この反応は、通常、以下に限定されないが、水、テトラヒドロフランまたはこれらの混合物のような溶媒中、周囲温度において行われる。(2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(113)は、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、(2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(112)をビス(4−ニトロフェニル)カーボネートと反応させることにより調製することができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。(2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(113)を、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、化合物(88)と処理し、次に、水酸化リチウムにより処理すると、化合物(114)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミド、テトラヒドロフラン、メタノールまたはこれらの混合物のような溶媒中、周囲温度において行われる。化合物(115)は、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、化合物(114)を化合物(84)と反応させることにより調製することができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。
5.7.2.5.化合物(119)の合成
Figure 2020152726
スキーム9は、糖リンカーへの第2の可溶化基の導入を記載している。化合物(116)を、本明細書に記載されている、または文献において容易に入手可能なアミド化条件下、(R)−2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)−3−スルホプロパン酸(117)と反応させて、次いで以下に限定されないが、ジエチルアミンのような塩基により処理すると、化合物(118)を得ることができる。化合物(118)を、本明細書に記載されている、または文献において容易に入手可能なアミド化条件下、化合物(84)(式中、Spはスペーサーである。)と反応させると、化合物(119)を得ることができる。
5.7.2.6.化合物(129)の合成
Figure 2020152726
スキーム10は、4−エーテルグルクロニドリンカー中間体およびシントンの合成を記載している。4−(2−(2−ブロモエトキシ)エトキシ)−2−ヒドロキシベンズアルデヒド(122)は、以下に限定されないが、炭酸カリウムのような塩基の存在下、2,4−ジヒドロキシベンズアルデヒド(120)を1−ブロモ−2−(2−ブロモエトキシ)エタン(121)と反応させることにより調製することができる。この反応は、通常、以下に限定されないが、アセトニトリルのような溶媒中、高温において行われる。4−(2−(2−ブロモエトキシ)エトキシ)−2−ヒドロキシベンズアルデヒド(122)をアジ化ナトリウムにより処理することにより、4−(2−(2−アジドエトキシ)エトキシ)−2−ヒドロキシベンズアルデヒド(123)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。(2S,3R,4S,5S,6S)−2−(5−(2−(2−アジドエトキシ)エトキシ)−2−ホルミルフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(125)は、酸化銀の存在下、4−(2−(2−アジドエトキシ)エトキシ)−2−ヒドロキシベンズアルデヒド(123)を(3R,4S,5S,6S)−2−ブロモ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(124)と反応させることにより調製することができる。この反応は、通常、以下に限定されないが、アセトニトリルのような溶媒中、周囲温度において行われる。Pd/Cの存在下における、(2S,3R,4S,5S,6S)−2−(5−(2−(2−アジドエトキシ)エトキシ)−2−ホルミルフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(125)の水素化により、(2S,3R,4S,5S,6S)−2−(5−(2−(2−アミノエトキシ)エトキシ)−2−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(126)が得られる。この反応は、通常、以下に限定されないが、テトラヒドロフランのような溶媒中、周囲温度において行われる。(2S,3R,4S,5S,6S)−2−(5−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−2−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(127)は、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、(2S,3R,4S,5S,6S)−2−(5−(2−(2−アミノエトキシ)エトキシ)−2−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(126)を(9H−フルオレン−9−イル)メチルカルボノクロリデートにより処理することにより調製することができる。この反応は、通常、以下に限定されないが、ジクロロメタンのような溶媒中、低温において行われる。化合物(88)を、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、(2S,3R,4S,5S,6S)−2−(5−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−2−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(127)と反応させて、次に、水酸化リチウムにより処理すると、化合物(128)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、低温において行われる。化合物(129)は、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、化合物(128)を化合物(84)と反応させることにより調製することができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。
5.7.2.7.化合物(139)の合成
Figure 2020152726
スキーム11は、カルバメートグルクロニド中間体およびシントンの合成を記載している。2−アミノ−5−(ヒドロキシメチル)フェノール(130)を、水素化ナトリウムにより処理され、次に、2−(2−アジドエトキシ)エチル4−メチルベンゼンスルホネート(131)と反応させて、(4−アミノ−3−(2−(2−アジドエトキシ)エトキシ)フェニル)メタノール(132)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、高温において行われる。2−(2−(2−アジドエトキシ)エトキシ)−4−(((tert−ブチルジメチルシリル)オキシ)メチル)アニリン(133)は、イミダゾールの存在下、(4−アミノ−3−(2−(2−アジドエトキシ)エトキシ)フェニル)メタノール(132)をtert−ブチルジメチルクロロシランと反応させることによって調製することができる。この反応は、通常、以下に限定されないが、テトラヒドロフランのような溶媒中、周囲温度において行われる。2−(2−(2−アジドエトキシ)エトキシ)−4−(((tert−ブチルジメチルシリル)オキシ)メチル)アニリン(133)を、以下に限定されないがトリエチルアミンのような塩基の存在下、ホスゲンにより処理し、次いで、以下に限定されないがトリエチルアミンのような塩基の存在下において、(3R,4S,5S,6S)−2−ヒドロキシ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(134)と反応させると、2S,3R,4S,5S,6S)−2−(((2−(2−(2−アジドエトキシ)エトキシ)−4−(((tert−ブチルジメチルシリル)オキシ)メチル)フェニル)カルバモイル)オキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(135)を得ることができる。この反応は、通常、以下に限定されないが、トルエンのような溶媒中で行われ、添加は、通常、低温で行った後、ホスゲンを添加した後に周囲温度まで温め、(3R,4S,5S,6S)−2−ヒドロキシ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(134)の添加後に高温に加熱する。(2S,3R,4S,5S,6S)−2−(((2−(2−(2−アジドエトキシ)エトキシ)−4−(ヒドロキシメチル)フェニル)カルバモイル)オキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(136)は、2S,3R,4S,5S,6S)−2−(((2−(2−(2−アジドエトキシ)エトキシ)−4−(((tert−ブチルジメチルシリル)オキシ)メチル)フェニル)カルバモイル)オキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(135)をp−トルエンスルホン酸一水和物と反応させることにより調製することができる。この反応は、通常、以下に限定されないが、メタノールのような溶媒中、周囲温度において行われる。(2S,3R,4S,5S,6S)−2−(((2−(2−(2−アジドエトキシ)エトキシ)−4−(ヒドロキシメチル)フェニル)カルバモイル)オキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(136)を、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、ビス(4−ニトロフェニル)カーボネートと反応させることにより、(2S,3R,4S,5S,6S)−2−(((2−(2−(2−アジドエトキシ)エトキシ)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)カルバモイル)オキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(137)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。(2S,3R,4S,5S,6S)−2−(((2−(2−(2−アジドエトキシ)エトキシ)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)カルバモイル)オキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(137)を、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、化合物と反応させて、次に、水性水酸化リチウムにより処理すると、化合物(138)を得ることができる。第1工程は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度で行われ、第2の工程は、通常、以下に限定されないが、メタノールのような溶媒中、低温において行われる。化合物(138)を、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、トリス(2−カルボキシエチル))ホスフィン塩酸塩により処理し、次いで化合物(84)と反応させると、化合物(139)を得ることができる。トリス(2−カルボキシエチル))ホスフィン塩酸塩との反応は、通常、以下に限定されないが、テトラヒドロフラン、水またはこれらの混合物のような溶媒中、周囲温度において行われ、N−スクシンイミジル6−マレイミドヘキサノエートとの反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。
5.7.2.8.化合物(149)の合成
Figure 2020152726
スキーム20は、ガラクトシドリンカー中間体およびシントンの合成を記載している。(2S,3R,4S,5S,6R)−6−(アセトキシメチル)テトラヒドロ−2H−ピラン−2,3,4,5−テトライルテトラアセテート(140)を、酢酸中のHBrにより処理することにより、(2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−ブロモテトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(141)を得ることができる。この反応は、通常、窒素雰囲気下、周囲温度において行われる。(2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−(4−ホルミル−2−ニトロフェノキシ)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(143)は、4−ヒドロキシ−3−ニトロベンズアルデヒド(142)の存在下、(2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−ブロモテトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(141)を酸化銀(I)により処理することにより調製することができる。この反応は、通常、以下に限定されないが、アセトニトリルのような溶媒中、周囲温度において行われる。(2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−(4−ホルミル−2−ニトロフェノキシ)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(143)を、水素化ホウ素ナトリウムと処理することにより、(2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−(4−(ヒドロキシメチル)−2−ニトロフェノキシ)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(144)を得ることができる。この反応は、通常、以下に限定されないが、テトラヒドロフラン、メタノールまたはこれらの混合物のような溶媒中、低温において行われる。(2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−(2−アミノ−4−(ヒドロキシメチル)フェノキシ)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(145)は、塩酸の存在下、(2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−(4−(ヒドロキシメチル)−2−ニトロフェノキシ)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(144)を亜鉛により処理することによって調製することができる。この反応は、通常、窒素雰囲気下、以下に限定されないが、テトラヒドロフランのような溶媒中、低温において行われる。(2S,3R,4S,5S,6R)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−(ヒドロキシメチル)フェノキシ)−6−(アセトキシメチル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(146)は、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、(2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−(2−アミノ−4−(ヒドロキシメチル)フェノキシ)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(145)を(9H−フルオレン−9−イル)メチル(3−クロロ−3−オキソプロピル)カルバメート(103)と反応させることにより調製することができる。この反応は、通常、以下に限定されないが、ジクロロメタンのような溶媒中、低温において行われる。(2S,3R,4S,5S,6R)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−(ヒドロキシメチル)フェノキシ)−6−(アセトキシメチル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(146)を、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、ビス(4−ニトロフェニル)カーボネートと反応させることにより、(2S,3R,4S,5S,6R)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェノキシ)−6−(アセトキシメチル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(147)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、低温において行われる。(2S,3R,4S,5S,6R)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェノキシ)−6−(アセトキシメチル)テトラヒドロ−2H−ピラン−3,4,5−トリルトリアセテート(147)を、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、化合物(88)と反応させて、次に、水酸化リチウムにより処理すると、化合物(148)を得ることができる。第1工程は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、低温で行われ、第2の工程は、通常、以下に限定されないが、メタノールのような溶媒中、周囲温度において行われる。化合物(148)を、以下に限定されないが、N,N−ジイソプロピルエチルアミンのような塩基の存在下、化合物(84)(式中、Spはスペーサーである。)により処理すると、化合物(149)を得ることができる。この反応は、通常、以下に限定されないが、N,N−ジメチルホルムアミドのような溶媒中、周囲温度において行われる。
5.8.組成物
本明細書に記載されているBcl−xL阻害剤および/またはADCは、阻害剤またはADC、および1つ以上の担体、賦形剤および/または希釈剤を含む組成物の形態とすることができる。本組成物は、獣医学的使用またはヒトにおける医薬品使用のような、特定の使用のために製剤化され得る。使用される、組成物の形態(例えば、乾燥散剤、液状製剤など)、ならびに賦形剤、希釈剤および/または担体は、阻害剤および/またはADCの所期の使用、ならびに療的使用では投与形式に依存する。
治療的使用の場合、Bcl−xL阻害剤および/またはADC組成物は、医薬として許容される担体を含む、滅菌医薬組成物の一部として供給されてもよい。この組成物は、任意の好適な形態(患者にこの組成物を投与する所望の方法に応じて)とすることができる。本医薬組成物は、経口、経皮、皮下、鼻内、静脈内、経筋肉、鞘内、局所的または局部のような、様々な経路により患者に投与され得る。任意の所定の場合における投与に最も好適な経路は、具体的なBcl−xL阻害剤またはADC、対象、ならびに疾患の性質および重症度、ならびに対象の身体的状態に依存する。通常、Bcl−xL阻害剤は、経口または非経口により投与され、ADC医薬組成物は、静脈内または皮下に投与される。
医薬組成物は、用量あたり、所定量の本明細書に記載されているBcl−xL阻害剤またはADCを含有する単位剤形において都合良く提供され得る。当分野において周知の通り、単位用量中に含まれる阻害剤またはADCの量は、処置される疾患、および他の因子に依存する。Bcl−xL阻害剤の場合、このような単位投与量は、単回投与に好適な、Bcl−xL阻害剤の量を含有する、錠剤、カプセル剤、ロセンジ剤などの形態にあってもよい。ADCの場合、このような単位投与量は、単回投与に好適な量のADCを含有する凍結乾燥散剤の形態、または液剤の形態であってもよい。乾燥散剤の単位剤形は、投与に有用な、シリンジ、好適な量の希釈剤および/または他の構成成分を含むキット中に包装され得る。液状形態の単位投与量は、単回投与に好適な量のADCを予め充填したシリンジの形態で都合良く供給され得る。
本医薬組成物はまた、多回投与に好適な量のADCを含有するバルク形態として供給されてもよい。
ADCの医薬組成物は、凍結乾燥製剤または水溶剤として保管するために、所望の純度を有するADCと、任意選択的な医薬として許容される、通常、当分野において使用される、担体、賦形剤または安定剤(これらはすべて、本明細書において、「担体」と呼ばれる。)、すなわち、緩衝化剤、安定化剤、保存剤、等張剤、非イオン性洗剤、抗酸化剤、および他の種々の添加剤を混合物することにより調製され得る。Remington’s Pharmaceutical Sciences、第16版(Osol編、1980年)を参照されたい。このような添加剤は、使用される投与量および濃度において、レシピエントに無毒であるべきである。
緩衝化剤は、生理的条件に近づく範囲のpHを維持する一助となる。これらの緩衝化剤は、約2mMから約50mMの範囲の濃度において存在することができる。本開示により使用するのに好適な緩衝化剤は、クエン酸緩衝液(例えば、クエン酸一ナトリウム−クエン酸二ナトリウムの混合物、クエン酸−クエン酸三ナトリウムの混合物、クエン酸−クエン酸一ナトリウムの混合物など)、コハク酸塩緩衝液(例えば、コハク酸−コハク酸一ナトリウムの混合物、コハク酸−水酸化ナトリウムの混合物、コハク酸−コハク酸二ナトリウムの混合物など)、酒石酸塩緩衝液(例えば、酒石酸−酒石酸ナトリウムの混合物、酒石酸−酒石酸カリウムの混合物、酒石酸−水酸化ナトリウムの混合物など)、フマル酸塩緩衝液(例えば、フマル酸−フマル酸一ナトリウムの混合物、フマル酸−フマル酸二ナトリウムの混合物、フマル酸一ナトリウム−フマル酸二ナトリウムの混合物など)、グルコン酸塩緩衝液(例えば、グルコン酸−グルコン酸ナトリウムの混合物、グルコン酸−水酸化ナトリウムの混合物、グルコン酸−グルコン酸カリウムの混合物など)、シュウ酸塩緩衝液(例えば、シュウ酸−シュウ酸ナトリウムの混合物、シュウ酸−水酸化ナトリウムの混合物、シュウ酸−シュウ酸カリウムの混合物など)、乳酸塩緩衝液(例えば、乳酸−乳酸ナトリウムの混合物、乳酸−水酸化ナトリウムの混合物、乳酸−乳酸カリウムの混合物など)および酢酸緩衝液(例えば、酢酸−酢酸ナトリウムの混合物、酢酸−水酸化ナトリウムの混合物など)のような有機酸および無機酸とこれらの塩の両方を含む。さらに、リン酸緩衝液、ヒスチジン緩衝液およびトリスのようなトリメチルアミン塩が使用され得る。
保存剤は、微生物の増殖を遅延させるために加えられることができ、約0.2%−1%(w/v)の範囲の量で加えられ得る。本開示による使用に好適な保存剤は、フェノール、ベンジルアルコール、メタ−クレゾール、メチルパラベン、プロピルパラベン、塩化オクタデシルジメチルベンジルアンモニウム、ハロゲン化ベンザルコニウム(例えば、塩化物、臭化物およびヨウ化物)、塩化ヘキサメトニウム、およびメチルまたはプロピルパラベンのようなアルキルパラベン、カテコール、レゾルシノール、シクロヘキサノールおよび3−ペンタノールを含む。「安定剤」として公知の等張剤は、時として、本開示の液状組成物の等張性を確実とするために添加されることができ、多価糖アルコール、例えば、グリセリン、エリスリトール、アラビトール、キシリトール、ソルビトールおよびマンニトールのような三価またはそれ超の糖アルコールを含む。安定剤は、治療剤を溶解する、または変性もしくは容器の壁への付着を防止する一助となる、充填剤から添加剤までの機能に及ぶことができる、幅広い分類の賦形剤を指す。典型的な安定剤は、多価糖アルコール(上に列挙されたもの);アルギニン、リシン、グリシン、グルタミン、アスパラギン、ヒスチジン、アラニン、オルニチン、L−ロイシン、2−フェニルアラニン、グルタミン酸、トレオニンなどのようなアミノ酸、ラクトース、トレハロース,スタキオース、マンニトール、ソルビトール、キシリトール、リビトール、ミオイニシトール、ガラクチトールのような有機糖または糖アルコール、グリセロール(イノシトールのようなシクリトールを含む。)など;ポリエチレングリコール;アミノ酸ポリマー;ウレア、グルタチオン、チオクト酸、チオグリコール酸ナトリウム、チオグリセロール、α−モノチオグリセロールおよびチオ硫酸ナトリウムのような、硫黄含有還元剤;低分子量ポリペプチド(例えば、10以下の残基のペプチド);ヒト血清アルブミン、ウシ血清アルブミン、ゼラチンまたは免疫グロブリンのようなタンパク質;ポリビニルピロリドンのような親水性(hydrophylic)ポリマー、キシロース、マンノース、フルクトース、グルコースのようなモノサッカライド、ラクトース、マルトース、スクロースのようなジサッカライド;およびラフィノーゼのようなトリサッカライド;およびデキストランのようなポリサッカライドとすることができる。
非イオン性界面活性剤または洗剤(「湿潤剤」としても知られている。)は、グリコタンパク質を溶解する一助とするため、およびグリコタンパク質を撹拌により誘発される凝集から保護するために加えられてもよく、これらにより、やはり、製剤が、タンパク質の変性を引き起こすことなく、応力を受けたせん断表面に曝露されることを可能にする。好適な非イオン性界面活性剤は、ポリソルベート(20、80など)、ポリオキサマー(184、188など)、プルロニックポリオール、ポリオキシエチレンソルビタンモノエーテル(TWEEN(登録商標)−20、TWEEN(登録商標)−80など)を含む。非イオン性界面活性剤は、約0.05mg/mlから約1.0mg/ml、例えば約0.07mg/mlから約0.2mg/mlの範囲において存在し得る。
さらなる種々の賦形剤は、充填剤(例えば、デンプン)、キレート剤(例えば、EDTA)、抗酸化剤(例えば、アスコルビン酸、メチオニン、ビタミンE)、および共溶媒を含む。
5.9 使用方法
ADCに含まれるBcl−xL阻害剤、およびADCにより送達されるシントンは、Bcl−xL活性を阻害し、Bcl−xLを発現する細胞においてアポトーシスを誘導する。したがって、Bcl−xL阻害剤および/またはADCは、Bcl−xL活性を阻害する、および/または細胞におけるアポトーシスを誘導する方法において使用され得る。
Bcl−xL阻害剤の場合、本方法は、一般に、その生存がBcl−xL発現に少なくとも一部依存する細胞に、Bcl−xL活性を阻害するおよび/またはアポトーシスを誘導するのに十分な量のBcl−xL阻害剤を接触させるステップを含む。ADCの場合、本方法は、一般に、細胞であって、この生存がBcl−xL発現に少なくとも一部依存し、ADCの抗体に対する細胞表面の抗原を発現する、細胞に、ADCが抗原に結合する条件において、ADCを接触させるステップを含む。
ある種の実施形態において、とりわけADCを含むBcl−xL阻害剤が低いまたは非常に低い細胞透過性を有するものにおいて、ADCの抗体は、ADCを細胞に内部移行させることが可能な標的に結合し、この場合、ADCは、このBcl−xL阻害性シントンを送達することができる。本方法は、Bcl−xL活性を阻害する、および/もしくはアポトーシスを阻害する細胞アッセイにおいてインビトロで実施することができ、またはアポトーシスの阻害および/もしくはアポトーシスの誘導が望ましいと考えられる、疾患の処置に対する治療的手法として、インビボで実施することができる。
調節不全のアポトーシスは、例えば、自己免疫性障害(例えば、全身性エリテマトーデス、関節リウマチ、移植片対宿主病、重症筋無力症またはシェーグレン症候群)、慢性炎症状態(例えば、乾癬、喘息またはクローン病)、過剰増殖性障害(例えば、乳がん、肺がん)、ウイルス感染(例えば、ヘルペス、パピローマまたはHIV)、ならびに骨関節炎およびアテローム性動脈硬化のような他の状態を含めた様々な疾患に関連している。本明細書に記載されているBcl−xL阻害剤またはADCは、これらの疾患のいずれかを処置または改善するために使用され得る。このような処置は、一般に、疾患に罹患している対象に、治療的利益をもたらすのに十分な量の本明細書に記載されているBcl−xL阻害剤またはADCを投与するステップを含む。ADCに関すると、投与されるADCの抗体としていかなるものを用いるかは、処置されている疾患に依存し、したがって抗体は、Bcl−xL活性の阻害が有益と思われる、細胞タイプにおいて発現する細胞表面抗原に結合すべきである。実現される治療的利益はまた、処置されている具体的な疾患に依存する。ある種の場合、Bcl−xL阻害剤またはADCは、単剤療法として投与された場合に、疾患自体、または該疾患の症状を処置または改善することができる。他の例において、Bcl−xL阻害剤またはADCは、該阻害剤またはADCと一緒になって、処置されている疾患、または該疾患の症状を処置または改善する他の薬剤を含めた、総合的な処置レジメンの一部となり得る。本明細書に記載されているBcl−xL阻害剤および/またはADCへの補助として、またはこれらと共に投与され得る、特定の疾患を処置または改善するのに有用な薬剤は、当業者に明らかである。
絶対的な治癒は任意の治療レジメンにおいて常に望ましいが、治療的利益をもたらすのに、治癒の達成は必要ではない。治療的利益は、疾患の進行を停止または遅延させる、治癒することなく疾患を退行させる、および/または疾患の症状を改善するもしくはこの進行を遅延させることを含むことができる。クオリティーオブライフの統計的平均および/または改善と比べて、生存の延長も治療的利益と見なされ得る。
調節不全のアポトーシスを伴い、世界的に深刻な健康負荷となっている、疾患の特定のクラスの1つはがんである。特定の実施形態において、本明細書に記載されているBcl−xL阻害剤および/またはADCは、がんを処置するために使用され得る。がんは、例えば、固形腫瘍または血液腫瘍とすることができる。本明細書に記載されているADCを用いて処置され得るがんは、以下に限定されないが、膀胱がん、脳がん、乳がん、骨髄がん、子宮頚がん、慢性リンパ球性白血病、大腸がん、食道がん、肝細胞がん、リンパ芽球性白血病、濾胞性リンパ腫、T−細胞またはB−細胞由来のリンパ球悪性腫瘍、黒色腫、骨髄性白血病、骨髄腫、口腔がん、卵巣がん、非小細胞肺がん、慢性リンパ球性白血病、骨髄腫、前立腺がん、小細胞肺がんおよび脾臓がんを含む。抗体は、Bcl−xL阻害性シントンを特異的に腫瘍細胞を標的とさせるために使用され得るので、ADCは、とりわけがんの処置において有益となり得、これにより、非コンジュゲート阻害剤の全身投与に伴い得る、望ましくない副作用および/または毒性を回避または改善することができる可能性がある。一実施形態は、調節不全のアポトーシスを伴う疾患を有する対象に、治療的利益をもたらすのに有効な量の本明細書に記載されているADCを投与するステップを含む、調節不全の内因性アポトーシスを伴う疾患を処置する方法であって、内因性アポトーシスが調節不全となっている細胞の細胞表面受容体にADCの抗体が結合する方法に関する。一実施形態は、がんを処置する方法であって、がんを有する対象に、治療的利益をもたらすのに有効な量の、がん細胞の表面に発現する細胞表面受容体または腫瘍関連抗原に結合することが可能な、本明細書に記載されているADCを投与するステップを含む方法に関する。
腫瘍形成性がんの文脈において、治療的利益はまた、上記において議論された効果を含むことに加え、処置されているがんのタイプおよびステージに関する統計的平均と比べると、腫瘍成長の進行を停止または遅延させる、腫瘍成長を退行させる、1つ以上の腫瘍を根絶する、および/または患者の生存率を向上させることを具体的に含むことができる。一実施形態において、処置されるがんは、腫瘍形成性がんである。
Bcl−xL阻害剤および/またはADCは、単剤療法として投与されて、治療的利益をもたらすことができ、または他の化学治療剤および/もしくは放射線療法への補助として、またはこれらと共に投与されてもよい。本明細書に記載されている阻害剤および/またはADCが補助療法として利用され得る化学治療剤は、標的化されてもよく(例えば、他のBcl−xL阻害剤またはADC、タンパク質キナーゼ阻害剤など)、または標的化されていなくてもよい(例えば、ラジオヌクレオチド、アルキル化剤および挿入剤のような非特異的細胞毒性剤)。本明細書に記載されている阻害剤および/またはADCが、補助的に投与され得る、標的化されていない化学治療剤は、以下に限定されないが、メトトレキセート、タキソール、L−アスパラギナーゼ、メルカプトプリン、チオグアニン、ヒドロキシウレア、シタラビン、シクロホスファミド、イホスファミド、ニトロソウレア、シスプラチン、カルボプラチン、マイトマイシン、ダカルバジン、プロカルビジン、トポテカン、ナイトロジェンマスタード、シトキサン、エトポシド、5−フルオロウラシル、BCNU、イリノテカン、カンプトテシン、ブレオマイシン、ドキソルビシン、イダルビシン、ダウノルビシン、ダクチノマイシン、プリカマイシン、ミトキサントロン、アスパラギナーゼ、ビンブラスチン、ビンクリスチン、ビノレルビン、パクリタキセル、カリケアマイシンおよびドセタキセルを含む。
Bcl−xL発現の向上は、化学療法および放射線療法に対する抵抗性と関連することが示されている。本明細書におけるデータは、がんを処置するには、単剤療法として有効となり得ないBcl−xL阻害剤および/またはADCは、化学治療剤または放射線療法への補助として、またはこれらと共に投与されると、治療的利益がもたらされ得ることを実証している。操作のいかなる治療法によっても拘泥されることを意図するものではないが、標準治療である化学治療剤および/または放射線療法に対して抵抗性になった腫瘍に、本明細書に記載されているBcl−xL阻害剤および/またはADCを投与すると、該腫瘍を感作し、この結果、これらの腫瘍が、化学療法および/または放射線療法に再び応答すると考えられる。一実施形態は、本明細書に記載されているADCが、腫瘍細胞が標準的化学療法および/または放射線療法に感作するのに有効な量で投与される方法に関する。したがって、がんを処置するという文脈において、「治療的利益」は、腫瘍を化学的療法および/または放射線療法に対して感作する手段として、化学治療剤および/または放射線療法をまだ開始していない患者、もしくは抵抗性の徴候をまだ示していない患者、または抵抗性の徴候を示し始めた患者のいずれかにおいて、このような治療法への補助として、またはこれらと共に、本明細書に記載されている阻害剤および/またはADCを投与するステップを含む。
5.10.投与量および投与レジメン
投与されるADCの量は、以下に限定されないが、処置されている特定の疾患、投与形式、所望の治療的利益、疾患のステージまたは重症度、患者の年齢、体重および他の特徴などを含めた、様々な因子に依存する。有効な投与量の決定は、当業者の能力の範囲内にある。
有効な投与量は、細胞アッセイから最初に推定され得る。例えば、ヒトにおいて使用するための初期用量は、細胞アッセイにおいて測定された、特定の阻害性分子のIC50またはED50以上となる、Bcl−xL阻害剤の細胞濃度を達成すると予想されるADCの循環血液濃度または血清濃度を達成するよう製剤化され得る。
ヒトにおいて使用される初期投与量は、インビボでの動物モデルからも推定され得る。幅広い疾患に好適な動物モデルは、当分野において公知である。
他の化学治療剤のような他の薬剤への補助として、またはこれらと共に、ADCが投与された場合、これは、他の薬剤と同じスケジュールにおいて、または異なるスケジュールにおいて投与されてもよい。同じスケジュールにおいて投与される場合、ADCは、この他の薬剤の前、後または同時に投与され得る。ADCが、標準的な化学療法および/または放射線療法への補助として、またはこれらと共に投与される、一部の実施形態において、ADCは、上記の標準的治療法の開始に先立って、例えば、標準的化学療法および/または放射線療法の開始の、1日前、数日前、1週間前、数週間前、1か月前、または数か月も前でさえも開始されてもよい。
例えば、他の薬剤が標準的な化学治療剤のような他の薬剤への補助として、またはこれらと共に、投与された場合、経路、投与量および頻度に関する、上記薬剤の標準的な投与スケジュールに従って、通常、投与される。しかし、一部の場合、ADC療法への補助として投与された場合、有効となるのに、標準量未満しか必要としないことがある。
[実施例1]
例示的なBcl−xL阻害剤の合成
この実施例は、例示的なBcl−xL阻害剤化合物W1.01−W1.08の合成方法を提供する。Bcl−xL阻害剤(W1.01−W1.08)およびシントン(実施例2.1−2.53)は、ACD/Name2012発売(Build 56084、2012年4月5日、Advanced Chemistry Development Inc.、Toronto、Ontario)を使用して命名した。Bcl−xL阻害剤およびシントン中間体は、ACD/Name2012発売(Build 56084、2012年4月5日、Advanced Chemistry Development Inc.、Toronto、Ontario)、またはChemDraw(登録商標)バージョン9.0.7(CambridgeSoft、Cambridge、MA)、またはChemDraw(登録商標)Ultraバージョン12.0(CambridgeSoft、Cambridge、MA)を使用して命名した。
1.1. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−[1−({3,5−ジメチル−7−[2(メチルアミノ)エトキシ]トリシクロ[3.3.1.13,7]デカ−1−イル}メチル)−5−メチル−1H−ピラゾール−4−イル]ピリジン−2−カルボン酸(化合物W1.01)の合成
1.1.1. 3−ブロモ−5,7−ジメチルアダマンタンカルボン酸
50mLの丸底フラスコ中に、0℃で臭素(16mL)を加えた。鉄粉(7g)をその後加え、反応物を0℃で30分間撹拌した。3,5−ジメチルアダマンタン−1−カルボン酸(12g)をその後加えた。混合物を室温に加温し、3日間撹拌した。氷および濃HClの混合物を、反応混合物中に注ぎ入れた。得られた懸濁液をNa2SO3(水200mL中50g)で2回処理して、臭素を分解し、ジクロロメタンで3回抽出した。合わせた有機物を1N HCl水溶液で洗浄し、NaSOで脱水し、濾過し、濃縮して、粗標題化合物を得た。
1.1.2. 3−ブロモ−5,7−ジメチルアダマンタンメタノール
実施例1.1.1(15.4g)のテトラヒドロフラン(200mL)中溶液に、BH(テトラヒドロフラン中1M、150mL)を加えた。混合物を室温で終夜撹拌した。次いで反応混合物を、メタノールを滴下添加することにより注意深くクエンチした。次いで混合物を真空下で濃縮し、残渣を酢酸エチル(500mL)と2N HCl水溶液(100mL)との間で平衡させた。水性層を酢酸エチルで更に2回抽出し、合わせた有機抽出物を水およびブラインで洗浄し、NaSOで脱水し、濾過した。溶媒を蒸発させて、標題化合物を得た。
1.1.3. 1−((3−ブロモ−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル)−1H−ピラゾール
実施例1.1.2(8.0g)のトルエン(60mL)中溶液に、1H−ピラゾール(1.55g)およびシアノメチレントリブチルホスホラン(2.0g)を加えた。混合物を90℃で終夜撹拌した。反応混合物をその後濃縮し、残渣をシリカゲルカラムクロマトグラフィー(10:1ヘプタン:酢酸エチル)により精製して、標題化合物を得た。MS(ESI)m/e324.2(M+H)
1.1.4. 2−{[3,5−ジメチル−7−(1H−ピラゾール−1−イルメチル)トリシクロ[3.3.1.13,7]デカ−1−イル]オキシ}エタノール
実施例1.1.3(4.0g)のエタン−1,2−ジオール(12mL)中溶液に、トリエチルアミン(3mL)を加えた。混合物をマイクロ波条件(Biotage Initiator)下150℃で45分間撹拌した。混合物を水(100mL)中に注ぎ入れ、酢酸エチルで3回抽出した。合わせた有機抽出物を水およびブラインで洗浄し、NaSOで脱水し、濾過した。溶媒を蒸発させて粗生成物を得、これをヘプタン中20%酢酸エチルで、続いてジクロロメタン中5%メタノールで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e305.2(M+H)
1.1.5. 2−({3,5−ジメチル−7−[(5−メチル−1H−ピラゾール−1−イル)メチル]トリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エタノール
実施例1.1.4(6.05g)のテトラヒドロフラン(100mL)中冷却(−78℃)溶液に、n−BuLi(40mL、ヘキサン中2.5M)を加えた。混合物を−78℃で1.5時間撹拌した。ヨードメタン(10mL)を注射器に通して加え、混合物を−78℃で3時間撹拌した。次いで反応混合物をNHCl水溶液でクエンチし、酢酸エチルで2回抽出し、合わせた有機抽出物を水およびブラインで洗浄した。NaSOで脱水した後、溶液を濾過し、濃縮し、残渣をジクロロメタン中5%メタノールで溶出するシリカゲルカラムクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e319.5(M+H)
1.1.6. 1−({3,5−ジメチル−7−[2−(ヒドロキシ)エトキシ]トリシクロ[3.3.1.13,7]デカ−1−イル}メチル)−4−ヨード−5−メチル−1H−ピラゾール
実施例1.1.5(3.5g)のN,N−ジメチルホルムアミド(30mL)中溶液に、N−ヨードスクシンイミド(3.2g)を加えた。混合物を室温で1.5時間撹拌した。反応混合物を酢酸エチル(600mL)でその後希釈し、NaHSO水溶液、水およびブラインで洗浄した。NaSOで脱水した後、溶液を濾過し、濃縮し、残渣をシリカゲルクロマトグラフィー(ジクロロメタン中20%酢酸エチル)により精製して、標題化合物を得た。MS(ESI)m/e445.3(M+H)
1.1.7. 2−({3−[(4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチルメタンスルホネート
実施例1.1.6(6.16g)のジクロロメタン(100mL)中冷却溶液に、トリエチルアミン(4.21g)を、続いてメタンスルホニルクロリド(1.6g)を加えた。混合物を室温で1.5時間撹拌した。次いで反応混合物を酢酸エチル(600mL)で希釈し、水およびブラインで洗浄した。NaSOで脱水した後、溶液を濾過し、濃縮し、残渣を更には精製せずに次の反応に使用した。MS(ESI)m/e523.4(M+H)
1.1.8. 1−({3,5−ジメチル−7−[2−(メチルアミノ)エトキシ]トリシクロ[3.3.1.13,7]デカ−1−イル}メチル)−4−ヨード−5−メチル−1H−ピラゾール
実施例1.1.7(2.5g)のメタノール中2Mメチルアミン(15mL)中溶液を、マイクロ波条件(Biotage Initiator)下100℃で20分間撹拌した。反応混合物を真空下で濃縮した。次いで残渣を酢酸エチル(400mL)で希釈し、NaHCO水溶液、水およびブラインで洗浄した。NaSOで脱水した後、溶液を濾過し、濃縮し、残渣を更には精製せずに次の反応に使用した。MS(ESI)m/e458.4(M+H)
1.1.9. tert−ブチル[2−({3−[(4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル]メチルカルバメート
実施例1.1.8(2.2g)のテトラヒドロフラン(30mL)中溶液に、ジ−tert−ブチルジカルボネート(1.26g)および触媒量の4−ジメチルアミノピリジンを加えた。混合物を室温で1.5時間撹拌し、酢酸エチル(300mL)で希釈した。溶液を飽和NaHCO水溶液、水(60mL)およびブライン(60mL)で洗浄した。有機層をNaSOで脱水し、濾過し、濃縮した。残渣をジクロロメタン中20%酢酸エチルで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e558.5(M+H)
1.1.10. 6−フルオロ−3−ブロモピコリン酸
6−アミノ−3−ブロモピコリン酸(25g)の1:1ジクロロメタン/クロロホルム400mL中スラリー液を、ジクロロメタン(100mL)中のニトロソニウムテトラフルオロボレート(18.2g)に5℃で1時間かけて加えた。そして得られた混合物を更に30分間撹拌し、次いで35℃に加温し、終夜撹拌した。反応物を室温に冷却し、次いでNaHPO水溶液でpHを4に調整した。得られた溶液をジクロロメタンで3回抽出し、合わせた抽出物をブラインで洗浄し、硫酸ナトリウムで脱水し、濾過し、濃縮して、標題化合物を得た。
1.1.11. tert−ブチル3−ブロモ−6−フルオロピコリネート
パラ−トルエンスルホニルクロリド(27.6g)を、0℃で実施例1.1.10(14.5g)およびピリジン(26.7mL)のジクロロメタン(100mL)およびtert−ブタノール(80mL)中溶液に加えた。反応物を15分間撹拌し、室温に加温し、終夜撹拌した。溶液を濃縮し、酢酸エチルとNaCO水溶液との間で分配した。層を分離し、水性層を酢酸エチルで抽出した。有機層を合わせ、NaCO水溶液およびブラインですすぎ、硫酸ナトリウムで脱水し、濾過し、濃縮して、標題化合物を得た。
1.1.12. メチル2−(5−ブロモ−6−(tert−ブトキシカルボニル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート
メチル1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート塩酸塩(12.37g)および実施例1.1.11(15g)のジメチルスルホキシド(100mL)中溶液に、N,N−ジイソプロピルエチルアミン(12mL)を加えた。混合物を50℃で24時間撹拌した。次いで混合物を酢酸エチル(500mL)で希釈し、水およびブラインで洗浄し、NaSOで脱水した。濾過し、溶媒を蒸発させて残渣を得、これをヘプタン中20%酢酸エチルで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e448.4(M+H)
1.1.13. メチル2−(6−(tert−ブトキシカルボニル)−5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート
実施例1.1.12(2.25g)および[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)(205mg)のアセトニトリル(30mL)中溶液に、トリエチルアミン(3mL)およびピナコールボラン(2mL)を加えた。混合物を還流状態で3時間撹拌した。混合物を酢酸エチル(200mL)で希釈し、水およびブラインで洗浄し、NaSOで脱水した。濾過し、溶媒を蒸発させ、シリカゲルクロマトグラフィー(ヘプタン中20%酢酸エチルで溶出)により、標題化合物を得た。MS(ESI)m/e495.4(M+H)
1.1.14. メチル2−(6−(tert−ブトキシカルボニル)−5−(1−((3−(2−((tert−ブトキシカルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート
実施例1.1.13(4.94g)のテトラヒドロフラン(60mL)および水(20mL)中溶液に、実施例1.1.9(5.57g)、1,3,5,7−テトラメチル−8−テトラデシル−2,4,6−トリオキサ−8−ホスファアダマンタン(412mg)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(457mg)およびKPO(11g)を加えた。混合物を還流状態で24時間撹拌した。反応混合物を冷却し、酢酸エチル(500mL)で希釈し、水およびブラインで洗浄し、NaSOで脱水した。濾過し、溶媒を蒸発させて残渣を得、これをヘプタン中20%酢酸エチルで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e799.1(M+H)
1.1.15. 2−(6−(tert−ブトキシカルボニル)−5−(1−((3−(2−((tert−ブトキシカルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボン酸
実施例1.1.14(10g)のテトラヒドロフラン(60mL)、メタノール(30mL)および水(30mL)中溶液に、水酸化リチウム1水和物(1.2g)を加えた。混合物を室温で24時間撹拌した。反応混合物を2%HCl水溶液で中和し、真空下で濃縮した。残渣を酢酸エチル(800mL)で希釈し、水およびブラインで洗浄し、NaSOで脱水した。濾過し、溶媒を蒸発させて、標題化合物を得た。MS(ESI)m/e785.1(M+H)
1.1.16. tert−ブチル6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−{1−[(3−{2−[(tert−ブトキシカルボニル)(メチル)アミノ]エトキシ}−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル]−5−メチル−1H−ピラゾール−4−イル}ピリジン−2−カルボキシレート
実施例1.1.15(10g)のN,N−ジメチルホルムアミド(20mL)中溶液に、ベンゾ[d]チアゾール−2−アミン(3.24g)、フルオロ−N,N,N’,N’−テトラメチルホルムアミジニウムヘキサフルオロホスフェート(5.69g)およびN,N−ジイソプロピルエチルアミン(5.57g)を加えた。混合物を60℃で3時間撹拌した。反応混合物を酢酸エチル(800mL)で希釈し、水およびブラインで洗浄し、NaSOで脱水した。濾過し、溶媒を蒸発させて残渣を得、これをジクロロメタン中20%酢酸エチルで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e915.5(M+H)
1.1.17. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−[1−({3,5−ジメチル−7−[2−(メチルアミノ)エトキシ]トリシクロ[3.3.1.13,7]デカ−1−イル}メチル)−5−メチル−1H−ピラゾール−4−イル]ピリジン−2−カルボン酸
実施例1.1.16(5g)のジクロロメタン(20mL)中溶液に、トリフルオロ酢酸(10mL)を加えた。混合物を終夜撹拌した。溶媒を真空下で蒸発させ、残渣をジメチルスルホキシド/メタノール(1:1、10mL)に溶解し、10−85%アセトニトリルおよび水中0.1%トリフルオロ酢酸で溶出するAnalogixシステムおよびC18カートリッジ(300g)を用いる逆相によりクロマトグラフィーにかけて、標題化合物をTFA塩として得た。1H NMR (300 MHz, ジメチルスルホキシド d6) δ ppm 12.85 (s, 1H), 8.13-8.30 (m, 2H), 8.03 (d, 1H), 7.79 (d, 1H), 7.62 (d, 1H), 7.32-7.54 (m, 3H), 7.28 (d, 1H), 6.96 (d, 1H), 4.96 (dd, 1H), 3.80-3.92 (m, 4H), 3.48-3.59 (m, 1H), 2.91-3.11 (m, 2H), 2.51-2.59 (m, 4H), 2.03-2.16 (m, 2H), 1.21-1.49 (m, 6H), 0.97-1.20 (m, 4H), 0.87 (s, 6H). MS (ESI) m/e 760.4 (M+H)+.
1.2. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−(1−{[(1r,3R,5S,7s)−3,5−ジメチル−7−(2−{2−[2−(メチルアミノ)エトキシ]エトキシ}エトキシ)トリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−カルボン酸(化合物W1.02)の合成
1.2.1. 2−(2−(2−(((3−((1H−ピラゾール−1−イル)メチル)−5,7−ジメチルアダマンタン−1−イル)オキシ)エトキシ)エトキシ)エタノール
実施例1.1.3(2.65g)の2,2’−(エタン−1,2−ジイルビス(オキシ))ジエタノール(15g)中溶液に、トリエチルアミン(3mL)を加えた。混合物をマイクロ波条件(Biotage Initiator)下180℃で120分間撹拌した。混合物を水およびアセトニトリル(1:1、40mL)で希釈した。粗製物を逆相カラム(C18、SF65−800g)に加え、0.1%トリフルオロ酢酸を含む水中10−100%アセトニトリルで溶出して、標題化合物を得た。MS(ESI)m/e393.0(M+H)
1.2.2. 2−(2−(2−((3,5−ジメチル−7−((5−メチル−1H−ピラゾール−1−イル)メチル)アダマンタン−1−イル)オキシ)エトキシ)エトキシ)エタノール
実施例1.2.1(2.69g)のテトラヒドロフラン(20mL)中冷却(0℃)溶液に、n−BuLi(10mL、ヘキサン中2.5M)を加えた。混合物を0℃で1.5時間撹拌した。ヨードメタン(1mL)を注射器に通して加え、混合物を0℃で1.5時間撹拌した。反応混合物をトリフルオロ酢酸(1mL)でクエンチした。溶媒を蒸発させた後、残渣を次のステップに直接使用した。MS(ESI)m/e407.5(M+H)
1.2.3. 2−(2−(2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)−5,7−ジメチルアダマンタン−1−イル)オキシ)エトキシ)エトキシ)エタノール
実施例1.2.2(2.78g)のN,N−ジメチルホルムアミド(30mL)中冷却(0℃)溶液に、N−ヨードスクシンイミド(1.65g)を加えた。混合物を室温で2時間撹拌した。粗生成物を逆相カラム(C−18、SF65−800g)に加え、0.1%トリフルオロ酢酸を含む水中10−100%アセトニトリルで溶出して、標題化合物を得た。MS(ESI)m/e533.0(M+H)
1.2.4. 2−(2−(2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)−5,7−ジメチルアダマンタン−1−イル)オキシ)エトキシ)エトキシ)−N−メチルエタンアミン
実施例1.2.3(2.45g)のテトラヒドロフラン(10mL)中冷却(0℃)溶液に、トリエチルアミン(1mL)を、続いてメタンスルホニルクロリド(0.588g)を加えた。混合物を室温で2時間撹拌した。メタンアミン(10mL、メタノール中2M)を反応混合物に加え、20mLのマイクロ波管に移した。混合物をマイクロ波条件(Biotage Initiator)下100℃で60分間加熱した。室温に冷却した後、溶媒を真空下で除去した。残渣を逆相カラム(C18、SF40−300g)に加え、0.1%トリフルオロ酢酸を含む水中40−100%アセトニトリルで溶出して、標題化合物を得た。MS(ESI)m/e546.0(M+H)
1.2.5. tert−ブチル(2−(2−(2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)−5,7−ジメチルアダマンタン−1−イル)オキシ)エトキシ)エトキシ)エチル)(メチル)カルバメート
実施例1.2.4(1.41g)のテトラヒドロフラン(20mL)中溶液に、ジ−tert−ブチルジカルボネート(1g)および4−ジメチルアミノピリジン(0.6g)を加えた。混合物を室温で3時間撹拌し、溶媒を真空により除去した。残渣をヘキサン中10−100%酢酸エチルで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e645.8(M+H)
1.2.6. tert−ブチル(2−(2−(2−((3,5−ジメチル−7−((5−メチル−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1H−ピラゾール−1−イル)メチル)アダマンタン−1−イル)オキシ)エトキシ)エトキシ)エチル)(メチル)カルバメート
実施例1.2.5(1.25g)、ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル(0.09g)、ピナコールボラン(1.5mL)およびトリエチルアミン(1.5mL)のジオキサン(20mL)中溶液に、ビス(ベンゾニトリル)パラジウム(II)クロリド(0.042g)を加えた。脱気した後、混合物を90℃で終夜撹拌した。溶媒を蒸発させ、シリカゲルカラム精製(ヘキサン中20−100%酢酸エチルで溶出)により、標題化合物を得た。MS(ESI)m/e646.1(M+H)
1.2.7. tert−ブチル8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−カルボキシレート
2−(tert−ブトキシカルボニル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボン酸(6.8g)およびベンゾ[d]チアゾール−2−アミン(5.52g)のジクロロメタン(80mL)中溶液に、1−エチル−3−[3−(ジメチルアミノ)プロピル]−カルボジイミド塩酸塩(9.4g)および4−ジメチルアミノピリジン(6g)を加えた。混合物を室温で終夜撹拌した。反応混合物をジクロロメタン(400mL)で希釈し、5%HCl水溶液、水およびブラインで洗浄し、NaSOで脱水した。混合物を濾過し、濾液を減圧下で濃縮して、標題化合物を得た。
1.2.8. N−(ベンゾ[d]チアゾール−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキサミド二塩酸塩
実施例1.2.7(8.5g)のジクロロメタン(80mL)中溶液に、ジエチルエーテル中2N HCl(80mL)を加えた。反応混合物を室温で終夜撹拌し、減圧下で濃縮して、標題化合物を得た。
1.2.9. tert−ブチル6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)−3−ブロモピコリネート
実施例1.1.11(0.736g)、実施例1.2.8(1.62g)およびCs2CO(4.1g)を、無水N,N−ジメチルアセトアミド12mL中120℃で12時間撹拌した。次いで冷却した反応混合物を酢酸エチルおよび10%クエン酸で希釈した。有機相をクエン酸で3回、水およびブラインで1回洗浄し、NaSOで脱水した。濾過し、濃縮して粗製物を得、これを、ヘキサン中0−40%酢酸エチルを用いシリカゲル上でクロマトグラフィーにかけて、標題化合物を得た。
1.2.10. tert−ブチル6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)−3−(1−(((1s,7s)−3,5−ジメチル−7−((2,2,5−トリメチル−4−オキソ−3,8,11−トリオキサ−5−アザトリデカン−13−イル)オキシ)アダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピコリネート
実施例1.2.6(0.135g)のテトラヒドロフラン(1mL)および水(1mL)中溶液に、実施例1.2.9(0.12g)、1,3,5,7−テトラメチル−8−テトラデシル−2,4,6−トリオキサ−8−ホスファアダマンタン(0.023g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.015g)およびK3PO4(0.2g)を加えた。混合物をマイクロ波条件(Biotage Initiator)下140℃で5分間撹拌した。反応混合物をトルエン(5mL)で希釈し、濾過した。溶媒を蒸発させ、シリカゲル精製(ヘプタン中20−100%酢酸エチル)により、標題化合物を得た。MS(ESI)m/e1004.8(M+H)
1.2.11. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−(1−{[3,5−ジメチル−7−(2−{2−[2−(メチルアミノ)エトキシ]エトキシ}エトキシ)トリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−カルボン酸
ジクロロメタン(10mL)中の実施例1.2.10(1.42g)をトリフルオロ酢酸(6mL)で処理し、反応物を室温で24時間撹拌した。揮発物を減圧下で除去した。残渣を0.1容量/容量%トリフルオロ酢酸を含有する水中30−100%アセトニトリルで溶出するGilsonシステム(C18、SF40−300g)を用いる逆相クロマトグラフィーにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物をTFA塩として得た。1H NMR (300 MHz, ジメチルスルホキシド-d6) δ ppm 12.85 (br.s, 1H), 8.33 (br.s, 2H), 8.03 (d, 1H), 7.79 (d, 1H), 7.62 (d, 1H), 7.41-7.54 (m, 3H), 7.32-7.40 (m, 2H), 7.28 (s, 1H), 6.95 (d, 1H), 4.95 (s, 2H), 3.85-3.93 (m, 2H), 3.81 (s, 2H), 3.60-3.66 (m, 2H), 3.52-3.58 (m, 4H), 3.45 (s, 3H), 2.97-3.12 (m, 4H), 2.56 (t, 2H), 2.10 (s, 3H), 1.34-1.41 (m, 2H), 1.18-1.31 (m, 4H), 0.95-1.18 (m, 6H), 0.85 (s, 6H). MS (ESI) m/e 848.2 (M+H)+.
1.3. 3−(1−{[3−(2−アミノエトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)−6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]ピリジン−2−カルボン酸(化合物W1.03)の合成
1.3.1. メチル2−(6−(tert−ブトキシカルボニル)−5−(1−((3−(2−ヒドロキシエトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート
実施例1.1.13(2.25g)のテトラヒドロフラン(30mL)および水(10mL)中溶液に、実施例1.1.6(2.0g)、1,3,5,7−テトラメチル−6−フェニル−2,4,8−トリオキサ−6−ホスファアダマント(329mg)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(206mg)および三塩基性リン酸カリウム(4.78g)を加えた。混合物を終夜還流し、冷却し、酢酸エチル(500mL)で希釈した。得られた混合物を水およびブラインで洗浄し、有機層をNaSOで脱水し、濾過し、濃縮した。残渣をヘプタン中20%酢酸エチルで、次いでジクロロメタン中5%メタノールで溶出するフラッシュクロマトグラフィーにより精製して、標題化合物を得た。
1.3.2. メチル2−(6−(tert−ブトキシカルボニル)−5−(1−((3,5−ジメチル−7−(2−((メチルスルホニル)オキシ)エトキシ)アダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート
実施例1.3.1(3.32g)のジクロロメタン(100mL)中冷却溶液に、氷浴中でトリエチルアミン(3mL)およびメタンスルホニルクロリド(1.1g)を順次加えた。反応混合物を室温で1.5時間撹拌し、酢酸エチルで希釈し、水およびブラインで洗浄した。有機層をNaSOで脱水し、濾過し、濃縮して、標題化合物を得た。
1.3.3. メチル2−(5−(1−((3−(2−アジドエトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(tert−ブトキシカルボニル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート
実施例1.3.2(16.5g)のN,N−ジメチルホルムアミド(120mL)中溶液に、アジ化ナトリウム(4.22g)を加えた。混合物を80℃で3時間加熱し、冷却し、酢酸エチルで希釈し、水およびブラインで洗浄した。有機層をNaSOで脱水し、濾過し、濃縮した。残渣をヘプタン中20%酢酸エチルで溶出するフラッシュクロマトグラフィーにより精製して、標題化合物を得た。
1.3.4. 2−(5−(1−((3−(2−アジドエトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(tert−ブトキシカルボニル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボン酸
実施例1.3.3(10g)のテトラヒドロフラン(60mL)、メタノール(30mL)および水(30mL)の混合物中溶液に、水酸化リチウム1水和物(1.2g)を加えた。混合物を室温で終夜撹拌し、2%HCl水溶液で中和した。得られた混合物を濃縮し、残渣を酢酸エチル(800mL)に溶解し、水およびブラインで洗浄した。有機層をNaSOで脱水し、濾過し、濃縮して、標題化合物を得た。
1.3.5. tert−ブチル3−(1−((3−(2−アジドエトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリネート
実施例1.1.15の代わりに実施例1.3.4を用い、1.1.16に記載した手順に従うことにより、標題化合物を調製した。
1.3.6. tert−ブチル3−(1−((3−(2−アミノエトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリネート
実施例1.3.5(2.0g)のテトラヒドロフラン(30mL)中溶液に、Pd/C(10%、200mg)を加えた。混合物を水素雰囲気下終夜撹拌した。反応物を濾過し、濾液を濃縮して、標題化合物を得た。
1.3.7. 3−(1−{[3−(2−アミノエトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)−6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]ピリジン−2−カルボン酸
ジクロロメタン(3mL)中の実施例1.3.6(300mg)をトリフルオロ酢酸(3mL)で終夜処理した。反応混合物を濃縮し、残渣を0.1%トリフルオロ酢酸水溶液中の10−70%アセトニトリルで溶出するGilsonシステムを用いる逆相クロマトグラフィー(C18カラム300g)により精製して、標題化合物をトリフルオロ酢酸塩として得た。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.85 (s, 1H) 8.03 (d, 1H) 7.79 (d, 1H) 7.59-7.73 (m, 4H) 7.41-7.53 (m, 3H) 7.32-7.40 (m, 2H) 7.29 (s, 1H) 6.96 (d, 1H) 4.96 (s, 2H) 3.89 (t, 2H) 3.83 (s, 2H) 3.50 (t, 2H) 3.02 (t, 2H) 2.84-2.94 (m, 2H) 2.11 (s, 3H) 1.41 (s, 2H) 1.21-1.36 (m, 4H) 1.08-1.19 (m, 4H) 0.96-1.09 (m, 2H) 0.87 (s, 6H). MS (ESI) m/e 744.3 (M-H)-.
1.4. 3−[1−({3−[2−(2−アミノエトキシ)エトキシ]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}メチル)−5−メチル−1H−ピラゾール−4−イル]−6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]ピリジン−2−カルボン酸(化合物W1.04)の合成
1.4.1. 2−(2−((3−((1H−ピラゾール−1−イル)メチル)−5,7−ジメチルアダマンタン−1−イル)オキシ)エトキシ)エタノール
エタン−1,2−ジオールの代わりに2,2’−オキシジエタノールを用いることにより、実施例1.1.4に記載した通りに標題化合物を調製した。MS(ESI)m/e349.2(M+H)
1.4.2. 2−(2−((3,5−ジメチル−7−((5−メチル−1H−ピラゾール−1−イル)メチル)アダマンタン−1−イル)オキシ)エトキシ)エタノール
実施例1.1.4の代わりに実施例1.4.1を用いることにより、実施例1.1.5において記載した通りに標題化合物を調製した。MS(ESI)m/e363.3(M+H)
1.4.3. 2−(2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)−5,7−ジメチルアダマンタン−1−イル)オキシ)エトキシ)エタノール
実施例1.1.5の代わりに実施例1.4.2を用いることにより、実施例1.1.6において記載した通りに標題化合物を調製した。MS(ESI)m/e489.2(M+H)
1.4.4. 2−(2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)−5,7−ジメチルアダマンタン−1−イル)オキシ)エトキシ)エチルメタンスルホネート
実施例1.1.6の代わりに実施例1.4.3を用いることにより、実施例1.1.7において記載した通りに標題化合物を調製した。MS(ESI)m/e567.2(M+H)
1.4.5. 2−(2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)−5,7−ジメチルアダマンタン−1−イル)オキシ)エトキシ)エタンアミン
実施例1.1.7の代わりに実施例1.4.4およびメタノール中2Nメチルアミンの代わりにメタノール中7Nアンモニアを用いることにより、実施例1.1.8において記載した通りに標題化合物を調製した。MS(ESI)m/e488.2(M+H)
1.4.6. tert−ブチル(2−(2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)−5,7−ジメチルアダマンタン−1−イル)オキシ)エトキシ)エチル)カルバメート
実施例1.1.8の代わりに実施例1.4.5を用いることにより、実施例1.1.9において記載した通りに標題化合物を調製した。MS(ESI)m/e588.2(M+H)
1.4.7. メチル2−(6−(tert−ブトキシカルボニル)−5−(1−((3−(2−(2−((tert−ブトキシカルボニル)アミノ)エトキシ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート
実施例1.1.9の代わりに実施例1.4.6を用いることにより、実施例1.1.14において記載した通りに標題化合物を調製した。MS(ESI)m/e828.5(M+H)
1.4.8. 2−(6−(tert−ブトキシカルボニル)−5−(1−((3−(2−(2−((tert−ブトキシカルボニル)アミノ)エトキシ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボン酸
実施例1.1.14の代わりに実施例1.4.7を用いることにより、実施例1.1.15において記載した通りに標題化合物を調製した。MS(ESI)m/e814.5(M+H)
1.4.9. tert−ブチル6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)−3−(1−((3−(2−(2−((tert−ブトキシカルボニル)アミノ)エトキシ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピコリネート
実施例1.1.15の代わりに実施例1.4.8を用いることにより、実施例1.1.16において記載した通りに標題化合物を調製した。MS(ESI)m/e946.2(M+H)
1.4.10. 3−[1−({3−[2−(2−アミノエトキシ)エトキシ]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}メチル)−5−メチル−1H−ピラゾール−4−イル]−6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]ピリジン−2−カルボン酸
実施例1.1.16の代わりに実施例1.4.9を用いることにより、実施例1.1.17において記載した通りに標題化合物を調製した。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.85 (s, 1H), 7.99-8.08 (m, 1H), 7.60-7.82 (m, 4H), 7.20-7.52 (m, 5H), 6.93-6.99 (m, 1H), 4.96 (s, 2H), 3.45-3.60 (m, 6H), 2.09-2.14 (m, 4H), 0.95-1.47 (m, 19H), 0.81-0.91 (m, 6H). MS (ESI) m/e 790.2 (M+H)+.
1.5. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−{1−[(3−{2−[(2−メトキシエチル)アミノ]エトキシ}−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル]−5−メチル−1H−ピラゾール−4−イル}ピリジン−2−カルボン酸(化合物W1.05)の合成
1.5.1. tert−ブチル6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)−3−(1−(((1r,3r)−3−(2−((2−メトキシエチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピコリネート
実施例1.3.6(0.050g)および2−メトキシアセトアルデヒド(6.93mg)の溶液を、ジクロロメタン(0.5mL)中室温で1時間共に撹拌した。反応物に水素化ホウ素ナトリウム(2mg)のメタノール(0.2mL)中懸濁液を加えた。30分間撹拌した後、反応物をジクロロメタン(2mL)で希釈し、飽和重炭酸ナトリウム水溶液(1mL)でクエンチした。有機層を分離し、硫酸マグネシウムで脱水し、濾過し、濃縮して、標題化合物を得た。MS(ELSD)m/e860.5(M+H)
1.5.2. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−{1−[(3−{2−[(2−メトキシエチル)アミノ]エトキシ}−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル]−5−メチル−1H−ピラゾール−4−イル}ピリジン−2−カルボン酸
実施例1.5.1のジクロロメタン(1mL)中溶液を、トリフルオロ酢酸(0.5mL)で処理した。終夜撹拌した後、反応物を濃縮し、N,N−ジメチルホルムアミド(1.5mL)および水(0.5mL)に溶解し、0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物をTFA塩として得た。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.85 (s, 2H), 8.39 (s, 2H), 8.03 (d, 1H), 7.79 (d, 1H), 7.62 (d, 1H), 7.53-7.42 (m, 3H), 7.40-7.33 (m, 2H), 7.29 (s, 1H), 6.96 (d, 1H), 4.96 (s, 2H), 3.89 (t, 2H), 3.83 (s, 2H), 3.61-3.53 (m, 10H), 3.29 (s, 3H), 3.17-3.09 (m, 2H), 3.09-2.97 (m, 4H), 2.10 (s, 3H), 1.41 (s, 2H), 1.35-1.23 (m, 4H), 1.20-1.10 (m, 4H), 1.10-0.98 (m, 2H). MS (ESI) m/e 804.3 (M+H) +.
1.6. 3−(1−{[3−(2−アミノエトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)−6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−5−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル]ピリジン−2−カルボン酸(化合物W1.06)の合成
1.6.1. 3−シアノメチル−4−フルオロ安息香酸メチルエステル
トリメチルシランカルボニトリル(1.49mL)のテトラヒドロフラン(2.5mL)中溶液に、1Mテトラブチルアンモニウムフルオリド(11.13mL)を20分かけて滴下添加した。次いで溶液を室温で30分間撹拌した。メチル4−フルオロ−3−(ブロモメチル)ベンゾエート(2.50g)をアセトニトリル(12mL)に溶解し、最初の溶液に10分かけて滴下添加した。次いで溶液を80℃に60分間加熱し、冷却した。溶液を減圧下で濃縮し、ヘプタン中20−30%酢酸エチルで溶出するシリカゲル上でのフラッシュカラムクロマトグラフィーにより精製した。溶媒を減圧下で蒸発させて、標題化合物を得た。
1.6.2. 3−(2−アミノエチル)−4−フルオロ安息香酸メチルエステル
実施例1.6.1(1.84g)をテトラヒドロフラン(50mL)に溶解し、1Mボラン(テトラヒドロフラン中、11.9mL)を加えた。溶液を室温で16時間撹拌し、メタノールでゆっくりクエンチした。4M塩酸水溶液(35mL)を加え、溶液を室温で16時間撹拌した。混合物を減圧下で濃縮し、固体の炭酸カリウムを用いてpHを11と12の間に調整した。次いで溶液をジクロロメタン(3×100mL)で抽出した。有機抽出物を合わせ、無水硫酸ナトリウムで脱水した。溶液を濾過し、減圧下で濃縮し、物質をジクロロメタン中10−20%メタノールで溶出するシリカゲル上でのフラッシュカラムクロマトグラフィーにより精製した。溶媒を減圧下で蒸発させて、標題化合物を得た。
MS(ESI)m/e198(M+H)
1.6.3. 4−フルオロ−3−[2−(2,2,2−トリフルオロアセチルアミノ)エチル]安息香酸メチルエステル
実施例1.6.2(1.207g)をジクロロメタン(40mL)に溶解し、N,N−ジイソプロピルエチルアミン(1.3mL)を加えた。次いでトリフルオロ酢酸無水物(1.0mL)を滴下添加した。溶液を15分間撹拌した。水(40mL)を加え、溶液を酢酸エチル(100mL)で希釈した。1M塩酸水溶液(50mL)を加え、有機層を分離し、1M塩酸水溶液で洗浄し、その後ブラインで洗浄した。溶液を無水硫酸ナトリウムで脱水した。濾過後、溶媒を減圧下で蒸発させて、標題化合物を得た。
1.6.4. 5−フルオロ−2−(2,2,2−トリフルオロアセチル)−1,2,3,4−テトラヒドロイソキノリン−8−カルボン酸メチルエステル
実施例1.6.3(1.795g)およびパラホルムアルデヒド(0.919g)をフラスコに入れ、濃硫酸(15mL)を加えた。溶液を室温で1時間撹拌した。冷水(60mL)を加え、溶液を酢酸エチル(2×100mL)で抽出した。抽出物を合わせ、飽和重炭酸ナトリウム水溶液(100mL)および水(100mL)で洗浄し、無水硫酸ナトリウムで脱水した。溶液を濾過し、減圧下で濃縮し、物質をヘプタン中10−20%酢酸エチルで溶出するシリカゲル上でのフラッシュカラムクロマトグラフィーにより精製した。溶媒を減圧下で蒸発させて、標題化合物を得た。MS(ESI)m/e323(M+NH4)
1.6.5. 5−フルオロ−1,2,3,4−テトラヒドロイソキノリン−8−カルボン酸メチルエステル
実施例1.6.4(685mg)をメタノール(6mL)およびテトラヒドロフラン(6mL)に溶解した。水(3mL)を、続いて炭酸カリウム(372mg)を加えた。反応物を室温で3時間撹拌し、次いで酢酸エチル(100mL)で希釈した。溶液を飽和重炭酸ナトリウム水溶液で洗浄し、無水硫酸ナトリウム上で脱水した。溶媒を濾過し、減圧下で蒸発させて、標題化合物を得た。MS(ESI)m/e210(M+H)
1.6.6. 2−(5−ブロモ−6−tert−ブトキシカルボニルピリジン−2−イル)−5−フルオロ−1,2,3,4−テトラヒドロイソキノリン−8−カルボン酸メチルエステル
1.1.12において実施例1.6.5をメチル1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート塩酸塩の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e465、467(M+H)
1.6.7. 2−[6−tert−ブトキシカルボニル−5−(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロラン−2−イル)−ピリジン−2−イル]−5−フルオロ−1,2,3,4−テトラヒドロ−イソキノリン−8−カルボン酸メチルエステル
実施例1.1.13において実施例1.6.6を実施例1.1.12の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e513(M+H)
1.6.8. 2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)−5,7−ジメチルアダマンタン−1−イル)オキシ)エタンアミン
実施例1.1.7(4.5g)のメタノール中7Nアンモニア(15mL)中溶液を、マイクロ波条件(Biotage Initiator)下100℃で20分間撹拌した。反応混合物を真空下で濃縮し、残渣を酢酸エチル(400mL)で希釈し、NaHCO3水溶液、水(60mL)およびブライン(60mL)で洗浄した。有機層を無水NaSOで脱水し、濾過し、濃縮した。残渣を更には精製せずに次の反応に使用した。MS(ESI)m/e444.2(M+H)
1.6.9. tert−ブチル(2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)−5,7−ジメチルアダマンタン−1−イル)オキシ)エチル)カルバメート
実施例1.6.8(4.4g)のテトラヒドロフラン(100mL)中溶液に、ジ−t−ブチルジカルボネート(2.6g)およびN,N−ジメチル−4−アミノピリジン(100mg)を加えた。混合物を1.5時間撹拌した。次いで反応混合物を酢酸エチル(300mL)で希釈し、NaHCO水溶液、水(60mL)およびブライン(60mL)で洗浄した。脱水(無水NaSO)した後、溶液を濾過し、濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン中20%酢酸エチル)により精製して、標題化合物を得た。MS(ESI)m/e544.2(M+H)
1.6.10. 2−(6−tert−ブトキシカルボニル−5−{1−[5−(2−tert−ブトキシカルボニルアミノ−エトキシ)−3,7−ジメチル−アダマンタン−1−イルメチル]−5−メチル−1H−ピラゾール−4−イル}−ピリジン−2−イル)−5−フルオロ−1,2,3,4−テトラヒドロ−イソキノリン−8−カルボン酸メチルエステル
実施例1.1.14において実施例1.6.7を実施例1.1.13および実施例1.6.9を実施例1.1.9の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e802(M+H)
1.6.11. 2−(6−tert−ブトキシカルボニル−5−{1−[5−(2−tert−ブトキシカルボニルアミノ−エトキシ)−3,7−ジメチル−アダマンタン−1−イルメチル]−5−メチル−1H−ピラゾール−4−イル}−ピリジン−2−イル)−5−フルオロ−1,2,3,4−テトラヒドロ−イソキノリン−8−カルボン酸
実施例1.1.15において実施例1.6.10を実施例1.1.14の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e788(M+H)
1.6.12. 6−[8−(ベンゾチアゾール−2−イルカルバモイル)−5−フルオロ−3,4−ジヒドロ−1H−イソキノリン−2−イル]−3−{1−[5−(2−tert−ブトキシカルボニルアミノ−エトキシ)−3,7−ジメチル−アダマンタン−1−イルメチル]−5−メチル−1H−ピラゾール−4−イル}−ピリジン−2−カルボン酸tert−ブチルエステル
実施例1.1.16において実施例1.6.11を実施例1.1.15の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e920(M+H)
1.6.13. 3−(1−{[3−(2−アミノエトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)−6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−5−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル]ピリジン−2−カルボン酸
実施例1.1.17において実施例1.6.12を実施例1.1.16の代わりに用いることにより、標題化合物を調製した。1H NMR (400MHz, ジメチルスルホキシド-d6) δ ppm 12.88 (bs, 1H), 8.03 (d, 1H), 7.79 (d, 1H), 7.73 (m, 1H), 7.63 (m, 2H), 7.52 (d, 1H), 7.48 (t, 1H), 7.36 (t, 1H), 7.28 (dd, 2H), 7.04 (d, 1H), 5.02 (s, 2H), 3.95 (t, 2H), 3.83 (s, 2H), 3.49 (t, 2H), 2.90 (m, 4H), 2.11 (s, 3H), 1.41 (s, 2H), 1.35-1.23 (m, 4H), 1.19-0.99 (m, 6H), 0.87 (bs, 6H). MS (ESI) m/e 764 (M+H)+.
1.7 3−(1−{[3−(2−アミノエトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)−6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−6−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル]ピリジン−2−カルボン酸の合成
1.7.1 (3−ブロモ−5−フルオロ−フェニル)−アセトニトリル
実施例1.6.1において1−ブロモ−3−(ブロモメチル)−5−フルオロベンゼンをメチル4−フルオロ−3−(ブロモメチル)ベンゾエートの代わりに用いることにより、標題化合物を調製した。
1.7.2 2−(3−ブロモ−5−フルオロ−フェニル)−エチルアミン
実施例1.6.2において実施例1.7.1を実施例1.6.1の代わりに用いることにより、標題化合物を調製した。
1.7.3 [2−(3−ブロモ−5−フルオロ−フェニル)−エチル]−カルバミン酸tert−ブチルエステル
実施例1.7.2(1.40g)およびN,N−ジメチルピリジン−4−アミン(0.078g)をアセトニトリル(50mL)に溶解した。ジ−tert−ブチルジカルボネート(1.54g)を加えた。溶液を室温で30分間撹拌した。溶液をジエチルエーテル(150mL)で希釈し、0.1M HCl水溶液(25mL)で2回洗浄し、ブライン(50mL)で洗浄し、無水硫酸ナトリウム上で脱水した。溶液を濾過し、減圧下で濃縮し、粗製物をヘプタン中5−10%酢酸エチルで溶出するシリカゲル上でのフラッシュカラムクロマトグラフィーにより精製した。溶媒を減圧下で蒸発させて、標題化合物を得た。
1.7.4 3−(2−tert−ブトキシカルボニルアミノ−エチル)−5−フルオロ−安息香酸メチルエステル
実施例1.7.3(775mg)およびジクロロ[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)(36mg)を50mLの圧力ボトルに加えた。メタノール(10mL)およびトリメチルアミン(493mg)を加えた。溶液を脱気し、アルゴンで3回フラッシュし、続いて脱気し、一酸化炭素でフラッシュした。反応物を60psiの一酸化炭素下100℃に16時間加熱した。更にジクロロ[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)(36mg)を加え、脱気およびフラッシュ手順を繰り返した。反応物を60psiの一酸化炭素下100℃に更に16時間加熱した。溶媒を減圧下で除去し、残渣をヘプタン中20−30%酢酸エチルで溶出するシリカゲル上でのフラッシュカラムクロマトグラフィーにより精製した。溶媒を減圧下で蒸発させて、標題化合物を得た。
1.75 3−(2−アミノ−エチル)−5−フルオロ−安息香酸メチルエステル
実施例1.7.4(292mg)をジクロロメタン(3mL)に溶解した。2,2,2−トリフルオロ酢酸(1680mg)を加え、溶液を室温で2時間撹拌した。溶媒を減圧下で除去して標題化合物を得、これを更には精製せずに次のステップに使用した。
1.7.6 3−フルオロ−5−[2−(2,2,2−トリフルオロ−アセチルアミノ)−エチル]−安息香酸メチルエステル
実施例1.6.3において実施例1.7.5を実施例1.6.2の代わりに用いることにより、標題化合物を調製した。
1.7.7 6−フルオロ−2−(2,2,2−トリフルオロ−アセチル)−1,2,3,4−テトラヒドロ−イソキノリン−8−カルボン酸メチルエステル
実施例1.6.4において実施例1.7.6を実施例1.6.3の代わりに用いることにより、標題化合物を調製した。
1.7.8 6−フルオロ−1,2,3,4−テトラヒドロ−イソキノリン−8−カルボン酸メチルエステル
実施例1.6.5において実施例1.7.7を実施例1.6.4の代わりに用いることにより、標題化合物を調製した。
1.7.9 2−(5−ブロモ−6−tert−ブトキシカルボニル−ピリジン−2−イル)−6−フルオロ−1,2,3,4−テトラヒドロ−イソキノリン−8−カルボン酸メチルエステル
実施例1.1.12において実施例1.7.8をメチル1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート塩酸塩の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e464、466(M+H)
1.7.10 2−[6−tert−ブトキシカルボニル−5−(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロラン−2−イル)−ピリジン−2−イル]−6−フルオロ−1,2,3,4−テトラヒドロ−イソキノリン−8−カルボン酸メチルエステル
実施例1.1.13において実施例1.7.9を実施例1.1.12の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e513(M+H)、543(M+MeOH−H)
1.7.11 {2−[5−(4−ヨード−5−メチル−ピラゾール−1−イルメチル)−3,7−ジメチル−アダマンタン−1−イルオキシ]−エチル}−ジ−tert−ブチルイミノジカルボキシレート
実施例1.1.6(5.000g)をジクロロメタン(50mL)に溶解した。トリエチルアミン(1.543g)を加え、溶液を氷浴上で冷却した。メタンスルホニルクロリド(1.691g)を滴下添加した。溶液を室温に加温し、30分間撹拌した。飽和重炭酸ナトリウム水溶液(50mL)を加えた。層を分離し、有機層をブライン(50mL)で洗浄した。次いで水性部分を合わせ、ジクロロメタン(50mL)で逆抽出した。有機部分を合わせ、無水硫酸ナトリウムで脱水し、濾過し、濃縮した。残渣をアセトニトリル(50mL)に溶解した。ジ−tert−ブチルイミノジカルボキシレート(2.689g)および炭酸セシウム(7.332g)を加え、溶液を16時間還流した。溶液を冷却し、ジエチルエーテル(100mL)および水(100mL)に加えた。層を分離した。有機部分をブライン(50mL)で洗浄した。次いで水性部分を合わせ、ジエチルエーテル(100mL)で逆抽出した。有機部分を合わせ、無水硫酸ナトリウムで脱水し、濾過し、減圧下で濃縮した。物質をヘプタン中20%酢酸エチルで溶出するシリカゲル上でのフラッシュカラムクロマトグラフィーにより精製した。溶媒を減圧下で蒸発させて、標題化合物を得た。MS(ESI)m/e666(M+Na)
1.7.12 メチル2−(6−(tert−ブトキシカルボニル)−5−(1−((3−(2−(ジ−(tert−ブトキシカルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−6−フルオロ−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート
実施例1.1.14において実施例1.7.10を実施例1.1.13および実施例1.7.11を実施例1.1.9の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e902(M+H)
1.7.13 2−(6−(tert−ブトキシカルボニル)−5−(1−((3−(2−(ジ−(tert−ブトキシカルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−6−フルオロ−1,2,3,4−テトラヒドロイソキノリン−8−カルボン酸
実施例1.1.15において実施例1.7.12を実施例1.1.14の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e888(M+H)、886(M−H)
1.7.14 tert−ブチル6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−6−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル)−3−(1−((3−(2−(ジ−(tert−ブトキシカルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピコリネート
実施例1.1.16において実施例1.7.13を実施例1.1.15の代わりに用いることにより、標題化合物を調製した。
1.7.15 3−(1−{[3−(2−アミノエトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)−6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−6−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル]ピリジン−2−カルボン酸
実施例1.1.17において実施例1.7.14を実施例1.1.16の代わりに用いることにより、標題化合物を調製した。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 8.04 (d, 1H), 7.79 (d, 1H), 7.65 (bs, 3H), 7.50 (m, 2H), 7.40-7.29 (m, 3H), 6.98 (d, 1H), 4.91 (d, 2H), 3.88 (t, 2H), 3.83 (s, 2H), 3.02 (t, 2H), 2.89 (t, 4H), 2.10 (s, 3H), 1.44-1.20 (m, 6H), 1.19-1.00 (m, 6H), 0.86 (bs, 6 H). MS (ESI) m/e 764 (M+H)+, 762 (M-H)-.
1.8 3−(1−{[3−(2−アミノエトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)−6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−7−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル]ピリジン−2−カルボン酸の合成
1.8.1 [2−(3−ブロモ−4−フルオロ−フェニル)−エチル]−カルバミン酸tert−ブチルエステル
実施例1.7.3において2−(3−ブロモ−4−フルオロフェニル)エタンアミン塩酸塩を実施例1.7.2の代わりに用いることにより、標題化合物を調製した。
1.8.2 5−(2−tert−ブトキシカルボニルアミノ−エチル)−2−フルオロ−安息香酸メチルエステル
実施例1.7.4において実施例1.8.1を実施例1.7.3の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e315(M+NH
1.8.3 5−(2−アミノ−エチル)−2−フルオロ−安息香酸メチルエステル
実施例1.7.5において実施例1.8.2を実施例1.7.4の代わりに用いることにより、標題化合物を調製した。
1.8.4 2−フルオロ−5−[2−(2,2,2−トリフルオロ−アセチルアミノ)−エチル]−安息香酸メチルエステル
実施例1.6.3において実施例1.8.3を実施例1.6.2の代わりに用いることにより、標題化合物を調製した。
1.8.5 7−フルオロ−2−(2,2,2−トリフルオロ−アセチル)−1,2,3,4−テトラヒドロ−イソキノリン−8−カルボン酸メチルエステル
実施例1.6.4において実施例1.8.4を実施例1.6.3の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e323(M+NH
1.8.6 7−フルオロ−1,2,3,4−テトラヒドロ−イソキノリン−8−カルボン酸メチルエステル
実施例1.6.5において実施例1.8.5を実施例1.6.4の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e210(M+H)、208(M−H)
1.8.7 2−(5−ブロモ−6−tert−ブトキシカルボニル−ピリジン−2−イル)−7−フルオロ−1,2,3,4−テトラヒドロ−イソキノリン−8−カルボン酸メチルエステル
実施例1.1.12において実施例1.8.6をメチル1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート塩酸塩の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e465,467(M+H)
1.8.8 2−[6−tert−ブトキシカルボニル−5−(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロラン−2−イル)−ピリジン−2−イル]−7−フルオロ−1,2,3,4−テトラヒドロ−イソキノリン−8−カルボン酸メチルエステル
実施例1.1.13において実施例1.8.7を実施例1.1.12の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e513(M+H)、543(M+MeOH−H)
1.8.9 メチル2−(6−(tert−ブトキシカルボニル)−5−(1−((3−(2−(ジ−(tert−ブトキシカルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−7−フルオロ−1,2,3,4−テトラヒドロイソキノリン−8−カルボキシレート
実施例1.1.14において実施例1.8.8を実施例1.1.13および実施例1.7.11を実施例1.1.9の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e902(M+H)、900(M−H)
1.8.10 2−(6−(tert−ブトキシカルボニル)−5−(1−((3−(2−(ジ−(tert−ブトキシカルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−イル)−7−フルオロ−1,2,3,4−テトラヒドロイソキノリン−8−カルボン酸
実施例1.1.15において実施例1.8.9を実施例1.1.14の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e788(M+H)、786(M−H)
1.8.11 tert−ブチル6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−7−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル)−3−(1−((3−(2−(ジ−(tert−ブトキシカルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピコリネート
実施例1.1.16において実施例1.8.10を実施例1.1.15の代わりに用いることにより、標題化合物を調製した。
1.8.12 3−(1−{[3−(2−アミノエトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)−6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−7−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル]ピリジン−2−カルボン酸
実施例1.1.17において実施例1.8.11を実施例1.1.16の代わりに用いることにより、標題化合物を調製した。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 13.08 (bs, 1H), 11.41 (bs, 1H), 8.05 (d, 1H), 7.81 (d, 1H), 7.63 (m, 4H), 7.55-7.22 (m, 6H), 6.95 (d, 1H), 4.78 (s, 2H), 3.86 (m, 4H), 3.50 (m, 2H), 2.97 (m, 2H), 2.90 (m, 2H), 2.09 (s, 3H), 1.48-1.40 (m, 2H), 1.38-1.23 (m, 4H), 1.20-1.01 (m, 6H), 0.88 (bs, 6H). MS (ESI) m/e 764 (M+H)+, 762 (M-H)-.
[実施例2]
例示的なシントンの合成
この実施例は、ADCsを作製するために使用できる例示的なシントンのための合成方法を提供する。
2.1. N−[19−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−17−オキソ−4,7,10,13−テトラオキサ−16−アザノナデカン−1−オイル]−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−N−カルバモイル−L−オルニチンアミド(シントンE)の合成
2.1.1. (S)−(9H−フルオレン−9−イル)メチル(1−((4−(ヒドロキシメチル)フェニル)アミノ)−1−オキソ−5−ウレイドペンタン−2−イル)カルバメート
(S)−2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)−5−ウレイドペンタン酸(40g)をジクロロメタン(1.3L)に溶解した。(4−アミノフェニル)メタノール(13.01g)、2−(3H−[1,2,3]トリアゾロ[4,5−b]ピリジン−3−イル)−1,1,3,3−テトラメチルイソウロニウムヘキサフルオロホスフェート(V)(42.1g)およびN,N−ジイソプロピルエチルアミン(0.035L)を溶液に加え、得られた混合物を室温で16時間撹拌した。生成物を濾取し、ジクロロメタンですすいだ。合わせた固体を真空乾燥して標題化合物を得、これを更には精製せずに次のステップに使用した。MS(ESI)m/e503.3(M+H)
2.1.2. (S)−2−アミノ−N−(4−(ヒドロキシメチル)フェニル)−5−ウレイドペンタンアミド
実施例2.1.1(44g)をN,N−ジメチルホルムアミド(300mL)に溶解した。溶液をジエチルアミン(37.2mL)で処理し、室温で1時間撹拌した。反応混合物を濾過し、溶媒を減圧下で濃縮した。粗生成物を酢酸エチル中0−30%メタノールの濃度勾配で溶出する塩基性アルミナクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e281.2(M+H)
2.1.3. tert−ブチル((S)−1−(((S)−1−((4−(ヒドロキシメチル)フェニル)アミノ)−1−オキソ−5−ウレイドペンタン−2−イル)アミノ)−3−メチル−1−オキソブタン−2−イル)カルバメート
(S)−2−(tert−ブトキシカルボニルアミノ)−3−メチルブタン酸(9.69g)をN,N−ジメチルホルムアミド(200mL)に溶解した。溶液に2−(3H−[1,2,3]トリアゾロ[4,5−b]ピリジン−3−イル)−1,1,3,3−テトラメチルイソウロニウムヘキサフルオロホスフェート(V)(18.65g)を加え、反応物を室温で1時間撹拌した。実施例2.1.2(12.5g)およびN,N−ジイソプロピルエチルアミン(15.58mL)を加え、反応混合物を室温で16時間撹拌した。溶媒を減圧下で濃縮し、残渣をジクロロメタン中10%メタノールで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e480.2(M+H)
2.1.4. (S)−2−((S)−2−アミノ−3−メチルブタンアミド)−N−(4−(ヒドロキシメチル)フェニル)−5−ウレイドペンタンアミド
実施例2.1.4(31.8g)をジクロロメタン(650mL)に溶解し、トリフルオロ酢酸(4.85mL)を溶液に加えた。反応混合物を室温で3時間撹拌した。溶媒を減圧下で濃縮して、粗製の標題化合物および4−((S)−2−((S)−2−アミノ−3−メチルブタンアミド)−5−ウレイドペンタンアミド)ベンジル2,2,2−トリフルオロアセテートの混合物を得た。粗製物を1:1ジオキサン/水溶液(300mL)に溶解し、溶液に水酸化ナトリウム(5.55g)を加えた。混合物を室温で3時間撹拌した。溶媒を真空下で濃縮し、粗生成物を0.05容量/容量%水酸化アンモニウムを含有する水中5−60%アセトニトリルの濃度勾配で溶出するCombiFlashシステムを用いる逆相HPLCにより精製して、標題化合物を得た。MS(ESI)m/e380.2(M+H)
2.1.5. 1−(3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパンアミド)−N−((S)−1−(((S)−1−((4−(ヒドロキシメチル)フェニル)アミノ)−1−オキソ−5−ウレイドペンタン−2−イル)アミノ)−3−メチル−1−オキソブタン−2−イル)−3,6,9,12−テトラオキサペンタデカン−15−アミド
実施例2.1.4(1.5g)のN,N−ジメチルホルムアミド(50mL)中溶液に、2,5−ジオキソピロリジン−1−イル1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16−テトラオキサ−4−アザノナデカン−19−オエート(2.03g)を加えた。混合物を室温で3日間撹拌した。粗製物を逆相カラム(C18、SF65−800g)に加え、0.1%トリフルオロ酢酸を含む水中20−100%アセトニトリルで溶出して、標題化合物を得た。MS(ESI)m/e778.3(M+1)
2.1.6. 4−((2S,5S)−25−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−5−イソプロピル−4,7,23−トリオキソ−2−(3−ウレイドプロピル)−10,13,16,19−テトラオキサ−3,6,22−トリアザペンタコサンアミド)ベンジル(4−ニトロフェニル)カルボネート
実施例2.1.5(2.605g)およびN,N−ジイソプロピルアミン(1.8mL)のN,N−ジメチルホルムアミド(20mL)中溶液に、ビス(4−ニトロフェニル)カルボネート(1.23g)を加えた。混合物を室温で16時間撹拌した。粗製物を逆相カラム(C18、SF65−800g)に加え、0.1%トリフルオロ酢酸を含む水中20−100%アセトニトリルで溶出して、標題化合物を得た。MS(ESI)m/e943.2(M+1)
2.1.7. N−[19−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−17−オキソ−4,7,10,13−テトラオキサ−16−アザノナデカン−1−オイル]−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−N−カルバモイル−L−オルニチンアミド
実施例2.1.6(49.6mg)および実施例1.1.17(30mg)のN,N−ジメチルホルムアミド(2mL)中混合物に、0℃でN,N−ジイソプロピルエチルアミン(0.018mL)を加えた。反応混合物を室温で終夜撹拌し、ジメチルスルホキシドで希釈し、0.1%トリフルオロ酢酸水溶液中の20−70%アセトニトリルで溶出するGilsonシステムを用いるRP−HPLCにより精製して、標題化合物を得た。MS(ESI)m/e1563.4(M+H)
2.2. N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−N−カルバモイル−L−オルニチンアミド(シントンD)の合成
4−((S)−2−((S)−2−(6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサンアミド)−3−メチルブタンアミド)−5−ウレイドペンタンアミド)ベンジル4−ニトロフェニルカルボネート(Synchemから購入、57mg)および実施例1.1.17(57mg)のN,N−ジメチルホルムアミド(6mL)中溶液に、N,N−ジイソプロピルエチルアミン(0.5mL)を加えた。混合物を終夜撹拌し、次いで真空下で濃縮した。残渣をメタノール(3mL)および酢酸(0.3mL)で希釈し、0.1%トリフルオロ酢酸を含有する水中30−70%アセトニトリルで溶出するRP−HPLC(Gilsonシステム、C18カラム)により精製した。生成物フラクションを凍結乾燥して、標題化合物を得た。1H NMR (300 MHz, ジメチルスルホキシド-d6) δ ppm 12.86 (d, 1H), 9.98 (s, 1H), 7.96-8.10 (m, 2H), 7.74-7.83 (m, 2H), 7.54-7.64 (m, 3H), 7.31-7.52 (m, 6H), 7.24-7.29 (m, 3H), 6.99 (s, 2H), 6.94 (d, 1H), 4.96 (d, 4H), 4.33-4.43 (m, 2H), 4.12-4.24 (m, 2H), 3.22-3.42 (m, 7H), 2.77-3.07 (m, 7H), 1.86-2.32 (m, 7H), 0.92-1.70 (m, 22H), 0.72-0.89 (m, 13H). MS (ESI) m/e 1358.2 (M+H)+.
2.3. N−[19−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−17−オキソ−4,7,10,13−テトラオキサ−16−アザノナデカン−1−オイル]−L−アラニル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−L−アラニンアミド(シントンJ)の合成
2.3.1. (S)−2−((S)−2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)プロパン酸
(S)−2,5−ジオキソピロリジン−1−イル2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパノエート(5g)のジメトキシエタン40mL中溶液を、L−アラニン(1.145g)および重炭酸ナトリウム(1.08g)の水(40mL)中溶液に加えた。反応混合物を室温で16時間撹拌した。クエン酸水溶液(15容量/容量%、75mL)を反応物に加えた。沈殿物を濾過し、水(2×250mL)で洗浄し、真空乾燥した。固体をジエチルエーテル(100mL)で更に摩砕し、濾過し、硫酸ナトリウムで脱水して生成物を得、これを更には精製せずに次のステップに使用した。MS(ESI)m/e383.0(M+H)
2.3.2. (9H−フルオレン−9−イル)メチル((S)−1−(((S)−1−((4−(ヒドロキシメチル)フェニル)アミノ)−1−オキソプロパン−2−イル)アミノ)−1−オキソプロパン−2−イル)カルバメート
N−エトキシカルボニル−2−エトキシ−1,2−ジヒドロキノリン(EEDQ)(6.21g)を、実施例2.3.1(3.2g)および4−アミノベンジルアルコール(1.546g)の2:1ジクロロメタン:メタノール50mL中溶液に加えた。反応物を室温で2日間撹拌した。溶媒を真空下で濃縮した。残渣を酢酸エチル75mLで摩砕し、固体を濾取し、真空乾燥して標題化合物を得、これを更には精製せずに次のステップに使用した。MS(ESI)m/e488.0(M+H)
2.3.3. (S)−2−アミノ−N−((S)−1−((4−(ヒドロキシメチル)フェニル)アミノ)−1−オキソプロパン−2−イル)プロパンアミド
ジエチルアミン(11.75mL)を、実施例2.3.2(1.58g)のN,Nジメチルホルムアミド(50mL)中溶液に加え、反応物を室温で16時間静置した。溶媒を真空下で蒸発させた。残渣を酢酸エチル(100mL)で摩砕し、生成物を濾取し、真空乾燥して標題化合物を得、これを更には精製せずに次のステップに使用した。MS(ESI)m/e266.0(M+H)
2.3.4. 1−(3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパンアミド)−N−((S)−1−(((S)−1−((4−(ヒドロキシメチル)フェニル)アミノ)−1−オキソプロパン−2−イル)アミノ)−1−オキソプロパン−2−イル)−3,6,9,12−テトラオキサペンタデカン−15−アミド
実施例2.3.3(1.033g)を、2,5−ジオキソピロリジン−1−イル1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16−テトラオキサ−4−アザノナデカン−19−オエート(2g)と1%N,N−ジイソプロピルエチルアミンを含むN,N−ジメチルホルムアミド(19.5mL)中で16時間混合した。粗製の反応物を0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18 25×100mmカラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物を得た。MS(ESI)m/e664.0(M+H)
2.3.5. 4−((2S,5S)−25−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−2,5−ジメチル−4,7,23−トリオキソ−10,13,16,19−テトラオキサ−3,6,22−トリアザペンタコサンアミド)ベンジル(4−ニトロフェニル)カルボネート
実施例2.3.4(1.5g)を、ビス(4−ニトロフェニル)カルボネート(1.38g)と1%N,N−ジイソプロピルエチルアミンを含むN,N−ジメチルホルムアミド(11.3mL)中で混合した。反応物を室温で16時間撹拌した。粗製の反応物を0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18 25×100mmカラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物を得た。MS(ESI)m/e829.0(M+H)
2.3.6. N−[19−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−17−オキソ−4,7,10,13−テトラオキサ−16−アザノナデカン−1−オイル]−L−アラニル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−L−アラニンアミド
実施例1.1.17のトリフルオロ酢酸塩(15mg)を、実施例2.3.5(21.3mg)とN,N−ジメチルホルムアミド(1mL)およびN,N−ジイソプロピルエチルアミン(0.006mL)中で混合した。反応混合物を室温で1時間撹拌した。粗製の反応物を0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18 25×100mmカラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物を得た。MS(ESI)m/e1450.7(M+H)
2.4. N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−L−アラニル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−L−アラニンアミド(シントンK)の合成
2.4.1. 6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−N−((S)−1−(((S)−1−((4−(ヒドロキシメチル)フェニル)アミノ)−1−オキソプロパン−2−イル)アミノ)−1−オキソプロパン−2−イル)ヘキサンアミド
実施例2.3.4においてN−スクシンイミジル6−マレイミドヘキサノエートを2,5−ジオキソピロリジン−1−イル1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16−テトラオキサ−4−アザノナデカン−19−オエートの代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e640.8(M+NH
2.4.2. 4−((S)−2−((S)−2−(6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサンアミド)プロパンアミド)プロパンアミド)ベンジル(4−ニトロフェニル)カルボネート
実施例2.3.5において実施例2.4.1を実施例2.3.4の代わりに用いることにより、標題化合物を調製した。
2.4.3. N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−L−アラニル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−L−アラニンアミド
実施例2.3.6において実施例2.4.2を実施例2.3.5の代わりに用いることにより、標題化合物を調製した。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 9.56 (s, 1H), 7.98 (d, 1H), 7.76 (d, 1H), 7.71-7.52 (m, 3H), 7.51-7.21 (m, 4H), 6.97-6.84 (m, 1H), 4.98 (d, 2H), 4.42 (p, 1H), 4.27 (p, 1H), 3.89 (t, 1H), 3.80 (s, 2H), 3.43 (d, 19H), 3.03 (t, 7H), 2.87 (s, 2H), 2.32 (s, 1H), 2.11 (d, 3H), 1.52 (h, 2H), 1.41-0.94 (m, 12H), 0.84 (s, 3H). MS (ESI) m/e 1244.2 (M+H)+.
2.5. N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−L−バリル−N−{4−[12−({(1s,3s)−3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]トリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)−4−メチル−3−オキソ−2,7,10−トリオキサ−4−アザドデカ−1−イル]フェニル}−N−カルバモイル−L−オルニチンアミド(シントンL)の合成
2.5.1. (3−ブロモアダマンタン−1−イル)メタノール
実施例1.1.2において3−ブロモアダマンタン−1−カルボン酸を実施例1.1.1の代わりに用いることにより、標題化合物を調製した。
2.5.2. 1−((3−ブロモアダマンタン−1−イル)メチル)−1H−ピラゾール
実施例1.1.3において実施例2.5.1を実施例1.1.2の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e295.2(M+H)
2.5.3. 2−(2−(2−((3−((1H−ピラゾール−1−イル)メチル)アダマンタン−1−イル)オキシ)エトキシ)エトキシ)エタノール
実施例1.2.1において実施例2.5.2を実施例1.1.3の代わりに、硫酸銀をトリエチルアミンの代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e365.1(M+H)
2.5.4. 2−(2−(2−((3−((5−メチル−1H−ピラゾール−1−イル)メチル)アダマンタン−1−イル)オキシ)エトキシ)エトキシ)エタノール
実施例1.2.2において実施例2.5.3を実施例1.2.1の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e379.1(M+H)
2.5.5. 2−(2−(2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)アダマンタン−1−イル)オキシ)エトキシ)エトキシ)エタノール
実施例1.2.3において実施例2.5.4を実施例1.2.2の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e504.9(M+H)
2.5.6. 2−(2−(2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)アダマンタン−1−イル)オキシ)エトキシ)エトキシ)−N−メチルエタンアミン
実施例1.2.4において実施例2.5.5を実施例1.2.3の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e518.4(M+H)
2.5.7. tert−ブチル(2−(2−(2−((3−((4−ヨード−5−メチル−1H−ピラゾール−1−イル)メチル)アダマンタン−1−イル)オキシ)エトキシ)エトキシ)エチル)(メチル)カルバメート
実施例1.2.5において実施例2.5.6を実施例1.2.4の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e617.9(M+H)
2.5.8. tert−ブチルメチル(2−(2−(2−((3−((5−メチル−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1H−ピラゾール−1−イル)メチル)アダマンタン−1−イル)オキシ)エトキシ)エトキシ)エチル)カルバメート
実施例1.2.6において実施例2.5.7を実施例1.2.5の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e618.2(M+H)
2.5.9. tert−ブチル6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)−3−(5−メチル−1−((3−((2,2,5−トリメチル−4−オキソ−3,8,11−トリオキサ−5−アザトリデカン−13−イル)オキシ)アダマンタン−1−イル)メチル)−1H−ピラゾール−4−イル)ピコリネート
実施例1.2.10において実施例2.5.8を実施例1.2.6の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e976.1(M+H)
2.5.10. 6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)−3−(5−メチル−1−(((1s,3s)−3−(2−(2−(2−(メチルアミノ)エトキシ)エトキシ)エトキシ)アダマンタン−1−イル)メチル)−1H−ピラゾール−4−イル)ピコリン酸
実施例1.2.11において実施例2.5.9を実施例1.2.10の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e820.3(M+H)
2.5.11. N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−L−バリル−N−{4−[12−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]トリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)−4−メチル−3−オキソ−2,7,10−トリオキサ−4−アザドデカ−1−イル]フェニル}−N−カルバモイル−L−オルニチンアミド
実施例2.2において実施例2.5.10を実施例1.1.17の代わりに用いることにより、標題化合物を調製した。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 9.96 (br.s, 1H), 7.96-8.12 (m, 2H), 7.73-7.83 (m, 2H), 7.29-7.66 (m, 9H), 7.17-7.30 (m, 3H), 6.89-7.01 (m, 2H), 4.86-5.01 (m, 4H), 4.28-4.45 (m, 1H), 4.12-4.21 (m, 1H), 3.69-3.92 (m, 3H), 3.27-3.62 (m, 9H), 2.78-3.06 (m, 7H), 2.01-2.23 (m, 7H), 1.87-2.01 (m, 1H), 1.54-1.72 (m, 4H), 1.01-1.54 (m, 22H), 0.72-0.89 (m, 6H). MS (ESI) m/e 1418.4 (M+H)+.
2.6. N−[19−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−17−オキソ−4,7,10,13−テトラオキサ−16−アザノナデカン−1−オイル]−L−バリル−N−{4−[12−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]トリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)−4−メチル−3−オキソ−2,7,10−トリオキサ−4−アザドデカ−1−イル]フェニル}−N−カルバモイル−L−オルニチンアミド(シントンM)の合成
実施例2.1.7において実施例2.5.10を実施例1.1.17の代わりに用いることにより、標題化合物を調製した。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 9.97 (s, 1H), 8.07-8.13 (m, 1H), 7.97-8.05 (m, 2H), 7.86 (d, 1H), 7.78 (d, 1H), 7.55-7.63 (m, 3H), 7.40-7.51 (m, 3H), 7.32-7.38 (m, 2H), 7.25-7.30 (m, 2H), 6.98 (s, 1H), 6.93 (d, 1H), 4.91-5.01 (m, 4H), 4.31-4.41 (m, 1H), 4.17-4.24 (m, 1H), 3.83-3.91 (m, 2H), 3.76 (s, 2H), 3.30-3.62 (m, 21H), 3.10-3.17 (m, 1H), 2.89-3.05 (m, 4H), 2.81-2.88 (m, 3H), 2.42-2.47 (m, 1H), 2.27-2.40 (m, 3H), 2.04-2.15 (m, 5H), 1.91-2.00 (m, 1H), 1.30-1.72 (m, 16H), 0.76-0.88 (m, 6H). MS (ESI) m/e 1623.3 (M+H)+.
2.7. N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−L−バリル−N−{4−[12−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)−4−メチル−3−オキソ−2,7,10−トリオキサ−4−アザドデカ−1−イル]フェニル}−N−カルバモイル−L−オルニチンアミド(シントンV)の合成
実施例2.2において実施例1.2.11を実施例1.1.17の代わりに用いることにより、標題化合物を調製した。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 9.61 (s, 1H), 7.97 (d, 1H), 7.76 (d, 1H), 7.67 (d, 1H), 7.61 (d, 1H), 7.51-7.57 (m, 2H), 7.38-7.48 (m, 4H), 7.29-7.36 (m, 2H), 7.23-7.28 (m, 3H), 6.86-6.94 (m, 2H), 4.97 (d, 4H), 4.38-4.45 (m, 1H), 4.12-4.19 (m, 1H), 3.89 (t, 2H), 3.80 (s, 2H), 3.47-3.54 (m, 5H), 3.44 (s, 3H), 3.33-3.41 (m, 6H), 2.93-3.06 (m, 6H), 2.87 (s, 2H), 2.11-2.22 (m, 2H), 2.08 (s, 3H), 1.97-2.05 (m, 1H), 1.70-1.81 (m, 2H), 1.33-1.68 (m, 10H), 0.95-1.32 (m, 14H), 0.80-0.91 (m, 13H). MS (+ESI) m/e 1446.3 (M+H)+.
2.8. N−({2−[2−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)エトキシ]エトキシ}アセチル)−L−バリル−N−{4−[12−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)−4−メチル−3−オキソ−2,7,10−トリオキサ−4−アザドデカ−1−イル]フェニル}−N−カルバモイル−L−オルニチンアミド(シントンDS)の合成2.8.1. (S)−2−((S)−2−(2−(2−(2−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)エトキシ)エトキシ)アセトアミド)−3−メチルブタンアミド)−N−(4−(ヒドロキシメチル)フェニル)−5−ウレイドペンタンアミド
実施例2.1.5において2,5−ジオキソピロリジン−1−イル2−(2−(2−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)エトキシ)エトキシ)アセテートを2,5−ジオキソピロリジン−1−イル1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16−テトラオキサ−4−アザノナデカン−19−オエートの代わりに用いることにより、標題化合物を調製した。
2.8.2. 4−((2S,5S)−14−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−5−イソプロピル−4,7−ジオキソ−2−(3−ウレイドプロピル)−9,12−ジオキサ−3,6−ジアザテトラデカンアミド)ベンジル(4−ニトロフェニル)カルボネート
実施例2.3.5において実施例2.8.1を実施例2.3.4の代わりに用いることにより、標題化合物を調製した。
2.8.3. N−({2−[2−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)エトキシ]エトキシ}アセチル)−L−バリル−N−{4−[12−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)−4−メチル−3−オキソ−2,7,10−トリオキサ−4−アザドデカ−1−イル]フェニル}−N−カルバモイル−L−オルニチンアミド
実施例2.2において実施例1.2.11を実施例1.1.17および実施例2.8.2を4−((S)−2−((S)−2−(6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサンアミド)−3−メチルブタンアミド)−5−ウレイドペンタンアミド)ベンジル4−ニトロフェニルカルボネートの代わりに用いることにより、標題化合物を調製した。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 9.64 (s, 1H), 7.97 (d, 1H), 7.92 (d, 1H), 7.75 (d, 1H), 7.60 (d, 1H), 7.54 (d, 2H), 7.45 (d, 2H), 7.38-7.43 (m, 1H), 7.29-7.36 (m, 2H), 7.22-7.28 (m, 4H), 6.88-6.93 (m, 2H), 4.98 (d, 4H), 4.39-4.46 (m, 1H), 4.24-4.31 (m, 1H), 3.86-3.93 (m, 4H), 3.80 (s, 2H), 3.46-3.61 (m, 15H), 3.43-3.45 (m, 5H), 3.33-3.38 (m, 4H), 2.87 (s, 3H), 1.99-2.11 (m, 4H), 1.56-1.80 (m, 2H), 1.34-1.50 (m, 4H), 0.94-1.32 (m, 11H), 0.80-0.91 (m, 13H). MS (+ESI) m/e 1478.3 (M+H).
2.9. この段落は意図的に空白のままにする。
2.10. N−[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−N−カルバモイル−L−オルニチンアミド(シントンBG)の合成
2.10.1. (S)−2−((S)−2−(3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパンアミド)−3−メチルブタンアミド)−N−(4−(ヒドロキシメチル)フェニル)−5−ウレイドペンタンアミド
実施例2.1.4(3g)および2,5−ジオキソピロリジン−1−イル3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノエート(1.789g)をメタノール(30mL)に溶解し、室温で3時間撹拌した。溶媒を減圧下で濃縮し、残渣をジクロロメタン中5−30%メタノールの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e531.0(M+H)
2.10.2. 4−((S)−2−((S)−2−(3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパンアミド)−3−メチルブタンアミド)−5−ウレイドペンタンアミド)ベンジル(4−ニトロフェニル)カルボネート
ビス(4−ニトロフェニル)カルボネート(2.293g)、N,N−ジイソプロピルエチルアミン(1.317mL)および実施例2.10.1(2g)をN,N−ジメチルホルムアミド(30mL)に溶解し、室温で16時間撹拌した。溶媒を減圧下で濃縮し、残渣をジクロロメタン中0−10%メタノールの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e696.9(M+H)
2.10.3. N−[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−N−カルバモイル−L−オルニチンアミド
実施例2.9.5において実施例2.10.2を実施例2.9.4の代わりに用いることにより、標題化合物を調製した。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.86 (bs, 1H), 9.95 (s, 1H), 8.10 (d, 1H), 8.01 (dd, 2H), 7.79 (d, 1H), 7.65-7.56 (m, 3H), 7.55-7.40 (m, 3H), 7.40-7.33 (m, 2H), 7.35-7.24 (m, 3H), 6.99 (s, 2H), 6.95 (d, 1H), 4.42-4.28 (m, 1H), 4.15 (dd, 1H), 3.92-3.85 (m, 2H), 3.83-3.77 (m, 2H), 3.77-3.52 (m, 2H), 3.45-3.38 (m, 2H), 3.30-3.23 (m, 2H), 3.08-2.90 (m, 4H), 2.90-2.81 (m, 3H), 2.09 (s, 3H), 2.02-1.86 (m, 1H), 1.79-1.52 (m, 2H), 1.52-0.92 (m, 15H), 0.91-0.75 (m, 13H). MS (ESI) m/e 1316.1 (M+H)+.
2.11. この段落は意図的に空白のままにする。
2.12. N−[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]−L−アラニル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−L−アラニンアミド(シントンBI)の合成
2.12.1. 3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−N−((S)−1−(((S)−1−((4−(ヒドロキシメチル)フェニル)アミノ)−1−オキソプロパン−2−イル)アミノ)−1−オキソプロパン−2−イル)プロパンアミド
実施例2.3.3(9g)および2,5−ジオキソピロリジン−1−イル3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノエート(9.03g)のN,N−ジメチルホルムアミド(50mL)中混合物を、室温で16時間撹拌した。反応混合物を水で希釈した。水性層を塩化メチレン(3×100mL)で逆抽出した。有機溶媒を真空下で濃縮した。得られた粗生成物をシリカゲル上に吸着し、50:1ジクロロメタン/メタノールで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e439.1(M+Na)
2.12.2. 4−((S)−2−((S)−2−(3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパンアミド)プロパンアミド)プロパンアミド)ベンジル(4−ニトロフェニル)カルボネート
実施例2.10.2において実施例2.12.1を実施例2.10.1の代わりに用いることにより、標題化合物を調製した。生成物を25%テトラヒドロフラン/ジクロロメタンで溶出するシリカゲルクロマトグラフィーシリカにより精製した。MS(ESI)m/e604.0(M+H)
2.12.3. N−[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]−L−アラニル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−L−アラニンアミド
実施例2.9.5において実施例2.12.2を実施例2.9.4の代わりに用いることにより、標題化合物を調製した。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 9.51 (s, 1H), 7.97 (dd, 1H), 7.90-7.83 (m, 1H), 7.76 (d, 1H), 7.72-7.66 (m, 1H), 7.64-7.57 (m, 1H), 7.60-7.55 (m, 1H), 7.55 (s, 1H), 7.48-7.37 (m, 3H), 7.37-7.29 (m, 2H), 7.29-7.22 (m, 3H), 6.91 (d, 1H), 6.88 (s, 1H), 4.98 (s, 2H), 4.96 (bs, 2H), 4.40 (p, 1H), 4.24 (p, 1H), 3.89 (t, 2H), 3.79 (s, 2H), 3.64 (t, 2H), 3.44 (t, 2H), 3.29-3.14 (m, 2H), 3.02 (t, 2H), 2.86 (s, 3H), 2.08 (s, 3H), 1.36 (bs, 2H), 1.31 (d, 3H), 1.29-0.94 (m, 14H), 0.83 (s, 6H). MS (ESI) m/e 1202.1 (M+H)+.
2.13. この段落は意図的に空白のままにする。
2.14. この段落は意図的に空白のままにする。
2.15. この段落は意図的に空白のままにする。
2.16. この段落は意図的に空白のままにする。
2.17. N−[(2R)−4−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−2−スルホブタノイル]−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−N−カルバモイル−L−オルニチンアミド(シントンBO)の合成
2.17.1. 3−(1−((3−(2−((((4−((S)−2−((S)−2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)−3−メチルブタンアミド)−5−ウレイドペンタンアミド)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.3.6において(9H−フルオレン−9−イル)メチル((S)−3−メチル−1−(((S)−1−((4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)−1−オキソ−5−ウレイドペンタン−2−イル)アミノ)−1−オキソブタン−2−イル)カルバメートを実施例2.3.5の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e1387.3(M+H)
2.17.2. 3−(1−((3−(2−((((4−((S)−2−((S)−2−アミノ−3−メチルブタンアミド)−5−ウレイドペンタンアミド)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.17.1(15mg)を、30%ジエチルアミンのN,N−ジメチルホルムアミド(0.5mL)中溶液と混合し、反応混合物を室温で終夜撹拌した。粗製の反応混合物をC18カラムおよび0.1%トリフルオロ酢酸を含有する水中10−100%アセトニトリルの濃度勾配を用いる逆相HPLCにより直接精製した。生成物を含むフラクションを凍結乾燥して、標題化合物をトリフルオロ酢酸塩として得た。MS(ESI)m/e1165.5(M+H)
2.17.3. 4−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−1−((2,5−ジオキソピロリジン−1−イル)オキシ)−1−オキソブタン−2−スルホネート
窒素でスパージした100mLのフラスコ中、1−カルボキシ−3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパン−1−スルホネートをジメチルアセトアミド(20mL)に溶解した。この溶液にN−ヒドロキシスクシンイミド(440mg)および1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(1000mg)を加え、反応物を窒素雰囲気下室温で16時間撹拌した。溶媒を減圧下で濃縮し、残渣を0.1容量/容量%酢酸を含有するジクロロメタン中1−2%メタノールの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を約80%活性化エステルおよび20%酸の混合物として得、これを更には精製せずに次のステップに使用した。MS(ESI)m/e360.1(M+H)
2.17.4. N−[(2R)−4−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−2−スルホブタノイル]−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−N−カルバモイル−L−オルニチンアミド
実施例2.17.2のトリフルオロ酢酸塩(6mg)を、実施例2.17.3(16.85mg)およびN,N−ジイソプロピルエチルアミン(0.025mL)とN,N−ジメチルホルムアミド(0.500mL)中で混合し、反応混合物を室温で終夜撹拌した。粗製の反応混合物を0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18 25×100mmカラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、ラセミ体の実施例2.17.3に由来する新規に加えられた位置での立体化学が異なる2種のジアステレオマーを得た。この中心での2種の生成物の立体化学はランダムに割り当てられた。MS(ESI)m/e1408.5(M−H)
2.18. N−[(2S)−4−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−2−スルホブタノイル]−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]フェニル}−N−カルバモイル−L−オルニチンアミド(シントンBP)の合成
標題化合物は、実施例2.17.4に記載した通りに、実施例2.17.4の調製の間に単離した2番目のジアステレオマーである。MS(ESI)m/e1408.4(M−H)
2.19. この段落は意図的に空白のままにする。
2.20. この段落は意図的に空白のままにする。
2.21. N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−3−スルホ−L−アラニル−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル]カルバモイル}オキシ)メチル]フェニル}−L−アラニンアミド(シントンIQ)の合成
2.21.1. (S)−(9H−フルオレン−9−イル)メチル(1−((4−(ヒドロキシメチル)フェニル)アミノ−1−オキソプロパン−2−イル)カルバメート
(S)−2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパン酸(50g)のメタノール(400mL)およびジクロロメタン(400mL)中溶液に、(4−アミノフェニル)メタノール(23.73g)およびエチル2−エトキシキノリン−1(2H)−カルボキシレート(79g)を加え、反応物を室温で終夜撹拌した。溶媒を蒸発させ、残渣をジクロロメタンにより洗浄して、標題化合物を得た。
2.21.2. (S)−2−アミノ−N−(4−(ヒドロキシメチル)フェニル)プロパンアミド
実施例2.21.1(10g)のN,N−ジメチルホルムアミド(100mL)中溶液に、ピペリジン(40mL)を加え、反応物を2時間撹拌した。溶媒を蒸発させ、残渣をメタノールに溶解した。固体を濾別し、濾液を濃縮して、粗生成物を得た。
2.21.3. (9H−フルオレン−9−イル)メチル((S)−1−(((S)−1−((4−(ヒドロキシメチル)フェニル)アミノ)−1−オキソプロパン−2−イル)アミノ)−3−メチル−1−オキソブタン−2−イル)カルバメート
実施例2.21.2(5g)のN,N−ジメチルホルムアミド(100mL)中溶液に、(S)−2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)−3−メチルブタン酸(10.48g)および2−(1H−ベンゾ[d][1,2,3]トリアゾール−1−イル)−1,1,3,3−テトラメチルイソウロニウムヘキサフルオロホスフェート(V)(14.64g)を加え、反応物を終夜撹拌した。溶媒を蒸発させ、残渣をジクロロメタンで洗浄し、固体を濾過して、粗生成物を得た。
2.21.4. (9H−フルオレン−9−イル)メチル((S)−3−メチル−1−(((S)−1−((4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)アミノ)−1−オキソプロパン−2−イル)アミノ)−1−オキソブタン−2−イル)カルバメート
実施例2.10.2において実施例2.21.3を実施例2.10.1の代わりに用いることにより、標題化合物を調製した。
2.21.5. 3−(1−((3−(2−((((4−((S)−2−((S)−2−アミノ−3−メチルブタンアミド)プロパンアミド)ベンジル)オキシ)カルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例1.3.7(0.102g)、実施例2.21.4(0.089g)およびN,N−ジイソプロピルエチルアミン(0.104mL)の溶液を、N,N−ジメチルホルムアミド(1mL)中室温で共に撹拌した。終夜撹拌した後、ジエチルアミン(0.062mL)を加え、反応物を更に2時間撹拌した。反応物を水(1mL)で希釈し、トリフルオロ酢酸でクエンチし、0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。
2.21.6. 3−(1−((3−(2−((((4−((S)−2−((S)−2−((R)−2−アミノ−3−スルホプロパンアミド)−3−メチルブタンアミド)プロパンアミド)ベンジル)オキシ)カルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
(R)−2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)−3−スルホプロパン酸(0.028g)および2−(3H−[1,2,3]トリアゾロ[4,5−b]ピリジン−3−イル)−1,1,3,3−テトラメチルイソウロニウムヘキサフルオロホスフェート(V)(0.027g)のN,N−ジメチルホルムアミド(1mL)中溶液に、N,N−ジイソプロピルエチルアミン(0.042mL)を加え、反応物を5分間撹拌した。混合物を実施例2.21.5(0.050g)に加え、混合物を1時間撹拌した。次いでジエチルアミン(0.049mL)を反応物に加え、更に1時間撹拌を続けた。反応物をN,N−ジメチルホルムアミド(1mL)および水(0.5mL)で希釈し、トリフルオロ酢酸でクエンチし、0.1容量/容量%トリフルオロ酢酸を含有する水中10−88%アセトニトリルで溶出するGilsonシステムを用いる逆相HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。MS(ESI)m/e1214.4(M−H)
2.21.7. N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−3−スルホ−L−アラニル−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル]カルバモイル}オキシ)メチル]フェニル}−L−アラニンアミド
実施例2.21.6(0.030g)および2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエート(8.34mg)のN,N−ジメチルホルムアミド(0.5mL)中溶液に、N,N−ジイソプロピルエチルアミン(0.020mL)を加え、反応物を1時間撹拌した。反応物をN,N−ジメチルホルムアミド(1mL)および水(0.5mL)で希釈し、0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.84 (s, 1H), 9.41 (s, 1H), 8.26 (d, 1H), 8.11-7.95 (m, 3H), 7.79 (d, 1H), 7.68 (d, 2H), 7.61 (d, 1H), 7.57-7.27 (m, 6H), 7.24 (d, 2H), 7.12 (t, 1H), 7.02-6.90 (m, 3H), 4.94 (d, 4H), 4.67 (td, 2H), 4.34-4.22 (m, 2H), 4.04-3.94 (m, 2H), 3.88 (t, 2H), 3.82 (s, 2H), 3.42-3.27 (m, 4H), 3.11-2.96 (m, 5H), 2.84 (dd, 1H), 2.30-1.98 (m, 6H), 1.56-1.41 (m, 4H), 1.41-0.79 (m, 28H). MS (ESI) m/e 1409.1 (M+H)+.
2.22. 4−[(1E)−3−({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)プロパ−1−エン−1−イル]−2−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸(シントンDB)の合成
2.22.1. (E)−tert−ブチルジメチル((3−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)アリル)オキシ)シラン
フラスコにtert−ブチルジメチル(プロパ−2−イン−1−イルオキシ)シラン(5g)およびジクロロメタン(14.7mL)を仕込み、窒素雰囲気下4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(3.94g)を滴下添加した。混合物を室温で1分間撹拌し、次いで窒素でスパージしたCpZrClH(クロリドビス(η−シクロペンタジエニル)ヒドリドジルコニウム、シュワルツ試薬)(379mg)を含むフラスコにカヌーレにより移した。得られた反応混合物を室温で16時間撹拌した。混合物を水(15mL)で注意深くクエンチし、次いでジエチルエーテル(3×30mL)で抽出した。合わせた有機相を水(15mL)で洗浄し、MgSOで脱水し、濾過し、濃縮し、ヘプタン中の0−8%酢酸エチルからの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/z316.0(M+NH
2.22.2. (2S,3R,4S,5S,6S)−2−(4−ブロモ−2−ニトロフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
(2R,3R,4S,5S,6S)−2−ブロモ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート(5g)をアセトニトリル(100mL)に溶解した。AgO(2.92g)を溶液に加え、反応物を室温で5分間撹拌した。4−ブロモ−2−ニトロフェノール(2.74g)を加え、反応混合物を室温で4時間撹拌した。銀塩残渣を珪藻土に通して濾過し、濾液を減圧下で濃縮した。残渣をヘプタン中10−70%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI+)m/z550.9(M+NH
2.22.3. (2S,3R,4S,5S,6S)−2−(4−((E)−3−((tert−ブチルジメチルシリル)オキシ)プロパ−1−エン−1−イル)−2−ニトロフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.22.2(1g)、炭酸ナトリウム(0.595g)、トリス(ジベンジリデンアセトン)ジパラジウム(0.086g)および1,3,5,7−テトラメチル−6−フェニル−2,4,8−トリオキサ−6−ホスファアダマンタン(0.055g)を、還流冷却器を装着した50−mLの3ッ口丸底フラスコ中で合わせ、システムを窒素で脱気した。別途、実施例2.22.1(0.726g)のテトラヒドロフラン(15mL)中溶液を、窒素で30分間脱気した。後者の溶液を、固体試薬を含むフラスコ中にカヌーレにより移し、続いて脱気した水(3mL)を注射器により加えた。反応物を60℃に2時間加熱した。反応混合物を酢酸エチル(3×30mL)と水(30mL)との間で分配した。合わせた有機相を脱水(NaSO)し、濾過し、濃縮した。残渣をヘプタン中0−35%酢酸エチルからの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI+)m/z643.1(M+NH
2.22.4. (2S,3R,4S,5S,6S)−2−(2−アミノ−4−((E)−3−ヒドロキシプロパ−1−エン−1−イル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
圧力均等添加漏斗を装着した500−mLの3ッ口フラスコを窒素でフラッシュし、亜鉛末(8.77g)を仕込んだ。脱気した実施例2.22.3(8.39g)のテトラヒドロフラン(67mL)中溶液をカヌーレにより加えた。得られた懸濁液を氷浴中で冷却し、反応物の内温が35℃を超えない速度で、添加漏斗により6N HCl(22.3mL)を滴下添加した。添加完了後、反応物を室温で2時間撹拌し、珪藻土のパッドに通して濾過し、水および酢酸エチルですすいだ。水層がもはや酸性でなくなるまで、濾液を飽和NaHCO水溶液で処理し、混合物を濾過して、得られた固体を除去した。濾液を分液漏斗に移し、層を分離した。水性層を酢酸エチル(3×75mL)で抽出し、合わせた有機層を水(100mL)で洗浄し、NaSOで脱水し、濾過し、濃縮した。残渣をジエチルエーテルで摩砕し、固体を濾取して、標題化合物を得た。MS(ESI+)m/z482.0(M+H)
2.22.5. (9H−フルオレン−9−イル)メチル(3−クロロ−3−オキソプロピル)カルバメート
3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパン酸(5.0g)のジクロロメタン(53.5mL)中溶液に、亜硫酸ジクロリド(0.703mL)を加えた。混合物を60℃で1時間撹拌した。混合物を冷却し、濃縮して標題化合物を得、これを更には精製せずに次のステップに使用した。
2.22.6. (2S,3R,4S,5S,6S)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−((E)−3−ヒドロキシプロパ−1−エン−1−イル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.22.4(6.78g)をジクロロメタン(50mL)に溶解し、溶液を氷浴中で0℃に冷却した。N,N−ジイソプロピルエチルアミン(3.64g)を加え、続いて実施例2.22.5(4.88g)のジクロロメタン(50mL)中溶液を滴下添加した。反応物を16時間撹拌し、氷浴を室温にした。飽和NaHCO水溶液(100mL)を加え、層を分離した。水性層をジクロロメタン(2×50mL)で更に抽出した。抽出物をNaSOで脱水し、濾過し、濃縮し、5−95%酢酸エチル/ヘプタンの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、出発物のアニリンと所望の生成物との分離出来ない混合物を得た。混合物を1N HCl水溶液(40mL)とジエチルエーテルおよび酢酸エチルの1:1混合物(40mL)との間で分配し、次いで水性相を酢酸エチル(2×25mL)で更に抽出した。有機相を合わせ、水(2×25mL)で洗浄し、NaSOで脱水し、濾過し、濃縮して、標題化合物を得た。MS(ESI+)m/z774.9(M+H)
2.22.7. (2S,3R,4S,5S,6S)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−((E)−3−(((4−ニトロフェノキシ)カルボニル)オキシ)プロパ−1−エン−1−イル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.22.6(3.57g)をジクロロメタン(45mL)に溶解し、ビス(4−ニトロフェニル)カルボネート(2.80g)を加え、続いてN,N−ジイソプロピルエチルアミン(0.896g)を滴下添加した。反応混合物を室温で2時間撹拌した。シリカゲル(20g)を反応溶液に加え、浴温を25℃以下に維持しながら、混合物を減圧下で濃縮乾固した。シリカ残渣をカラムの頂点に加え、生成物を0−100%酢酸エチル−ヘプタンからの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、部分的に精製された生成物を得、これはニトロフェノールを不純物として含んでいた。物質をメチルtert−ブチルエーテル(250mL)で摩砕し、得られたスラリー液を1時間静置した。生成物を濾取した。連続した3回のクロップを同様の方法で集めて、標題化合物を得た。MS(ESI+)m/z939.8(M+H)
2.22.8. 3−(1−((3−(2−(((((E)−3−(3−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−(((2S,3R,4S,5S,6S)−3,4,5−トリアセトキシ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−2−イル)オキシ)フェニル)アリル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例1.1.17のトリフルオロ酢酸塩(77mg)および実施例2.22.7(83mg)のN,N−ジメチルホルムアミド(3.5mL)中冷却(0℃)溶液に、N,N−ジイソプロピルエチルアミン(0.074mL)を加えた。反応物を室温にゆっくり加温し、16時間撹拌した。反応物を水および酢酸エチルの添加によりクエンチした。層を分離し、水溶液を更に酢酸エチルで2回抽出した。合わせた有機物を無水硫酸ナトリウムで脱水し、濾過し、減圧下で濃縮して標題化合物を得、これを更には精製せずに引き続くステップに使用した。
2.22.9. 3−(1−((3−(2−(((((E)−3−(3−(3−アミノプロパンアミド)−4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)フェニル)アリル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.22.8(137mg)のメタノール(3mL)中周囲温度溶液に、2M水酸化リチウム溶液(0.66mL)を加えた。反応混合物を35℃で2時間撹拌し、酢酸(0.18mL)の添加によりクエンチした。反応物を濃縮乾固し、残渣をメタノールで希釈した。粗生成物を0.1容量/容量%トリフルオロ酢酸を含有する水中20−75%アセトニトリルで溶出するGilsonシステムおよびC18 25×100mmカラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物をトリフルオロ酢酸塩として得た。MS(ESI)m/e1220.3(M+Na)
2.22.10. 4−[(1E)−3−({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)プロパ−1−エン−1−イル]−2−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸
実施例2.22.9のトリフルオロ酢酸塩(41.9mg)のN,N−ジメチルホルムアミド(1mL)中溶液に、N−スクシンイミジル6−マレイミドヘキサノエート(9.84mg)およびN,N−ジイソプロピルエチルアミン(0.010mL)を加え、反応物を室温で16時間撹拌した。粗製の反応物を0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18 25×100mmカラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物を得た。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 12.86 (bs, 2H), 9.03 (s, 1H), 8.25 (bs, 1H), 8.03 (d, 1H), 7.97-7.85 (m, 1H), 7.79 (d, 1H), 7.64-7.59 (m, 1H), 7.56-7.39 (m, 3H), 7.40-7.32 (m, 2H), 7.28 (s, 1H), 7.14-7.06 (m, 1H), 7.04 (d, 1H), 6.98 (s, 2H), 6.95 (d, 1H), 6.60-6.52 (m, 1H), 6.22-6.12 (m, 1H), 4.95 (bs, 2H), 4.90-4.75 (m, 1H), 4.63 (d, 2H), 4.24-4.05 (m, 1H), 4.08-3.62 (m, 8H), 3.50-3.24 (m, 10H), 3.04-2.97 (m, 2H), 2.92-2.82 (m, 3H), 2.11-2.06 (m, 3H), 2.03 (t, J = 7.4 Hz, 2H), 1.53-1.39 (m, 4H), 1.41-0.73 (m, 23H). MS (ESI) m/e 1413.3 (M+Na)+.
2.23. 4−{(1E)−3−[({2−[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エトキシ]エチル}カルバモイル)オキシ]プロパ−1−エン−1−イル}−2−({N−[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸(シントンDM)の合成
2.23.1. 3−(1−((3−(2−(2−(((((E)−3−(3−(3−アミノプロパンアミド)−4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)フェニル)アリル)オキシ)カルボニル)アミノ)エトキシ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.22.7(94mg)および実施例1.4.10(90mg)の冷却(0℃)溶液に、N,N−ジイソプロピルアミン(0.054mL)を加えた。反応物を室温にゆっくり加温し、終夜撹拌した。反応物を水および酢酸エチルの添加によりクエンチした。層を分離し、水性層を更に酢酸エチルで2回抽出した。合わせた有機物を無水硫酸ナトリウムで脱水し、濾過し、減圧下で濃縮した。粗製物をテトラヒドロフラン/メタノール/HO(2:1:1、8mL)に溶解し、これに水酸化リチウム1水和物(40mg)を加えた。反応混合物を終夜撹拌した。混合物を真空下で濃縮し、トリフルオロ酢酸で酸性化し、ジメチルスルホキシド/メタノールに溶解した。溶液を水中0.1%トリフルオロ酢酸中の10−85%アセトニトリルで溶出するGilsonシステムおよびC18カラムを用いる逆相HPLCにより精製して、標題化合物を得た。MS(ESI)m/e1228.1(M+H)
2.23.2. 4−{(1E)−3−[({2−[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エトキシ]エチル}カルバモイル)オキシ]プロパ−1−エン−1−イル}−2−({N−[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸
実施例2.23.1(20mg)および2,5−ジオキソピロリジン−1−イル3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノエート(5.5mg)のN,N−ジメチルホルムアミド(2mL)中溶液に、N,N−ジイソプロピルエチルアミン(0.054mL)を加えた。反応物を終夜撹拌した。反応混合物をメタノール(2mL)で希釈し、トリフルオロ酢酸で酸性化した。溶液を水中0.1%トリフルオロ酢酸中の10−85%アセトニトリルで溶出するGilsonシステムおよびC18カラムを用いる逆相HPLCにより精製して、標題化合物を得た。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.85 (s, 1H), 9.03 (s, 1H), 8.24 (s, 1H), 7.95-8.11 (m, 2H), 7.79 (d, 1H), 7.61 (d, 1H), 7.32-7.52 (m, 5H), 7.28 (s, 1H), 7.02-7.23 (m, 3H), 6.91-6.96 (m, 3H), 6.57 (d, 1H), 6.05-6.24 (m, 1H), 4.95 (s, 2H), 4.87 (d, 1H), 4.59 (d, 2H), 3.78-3.95 (m, 4H), 3.13 (q, 2H), 3.01 (t, 2H), 2.51-2.57 (m, 2H), 2.27-2.39 (m, 3H), 2.11 (s, 3H), 0.92-1.43 (m, 16H), 0.83 (s, 6H). MS (ESI) m/e 1379.2 (M+H)+.
2.24. 4−{(1E)−3−[({2−[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エトキシ]エチル}カルバモイル)オキシ]プロパ−1−エン−1−イル}−2−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸(シントンDL)の合成
実施例2.23.1(20mg)および2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエート(6.5mg)のN,N−ジメチルホルムアミド(2mL)中溶液に、N,N−ジイソプロピルエチルアミン(0.054mL)を加えた。反応混合物を終夜撹拌した。反応混合物をメタノール(2mL)で希釈し、トリフルオロ酢酸で酸性化した。混合物を水中0.1%トリフルオロ酢酸中の10−85%アセトニトリルで溶出するGilsonシステムおよびC18カラムを用いる逆相HPLCにより精製して、標題化合物を得た。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.85 (s, 1H), 9.03 (s, 1H), 8.24 (s, 1H), 8.03 (d, 1H), 7.87 (t, 1H), 7.78 (s, 1H), 7.61 (d, 1H), 7.32-7.55 (m, 5H), 6.90-7.19 (m, 5H), 6.56 (d, 1H), 6.08-6.24 (m, 1H), 4.91-4.93 (m, 1H), 4.86 (s, 1H), 4.59 (d, 2H), 3.27-3.46 (m, 14H), 3.13 (q, 3H), 2.96-3.02 (m, 2H), 2.50-2.59 (m, 3H), 2.09 (s, 3H), 2.00-2.05 (m, 3H), 0.94-1.54 (m, 20H), 0.83 (s, 6H). MS (ESI) m/e 1421.2 (M+H)+.
2.25. 4−[(1E)−14−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)−6−メチル−5−オキソ−4,9,12−トリオキサ−6−アザテトラデカ−1−エン−1−イル]−2−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸(シントンDR)の合成
2.25.1. 3−(1−((3−(((E)−14−(3−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−(((2S,3R,4S,5S,6S)−3,4,5−トリアセトキシ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−2−イル)オキシ)フェニル)−9−メチル−10−オキソ−3,6,11−トリオキサ−9−アザテトラデカ−13−エン−1−イル)オキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.22.7(90mg)および実施例1.2.11(92mg)の冷却(0℃)溶液に、N,N−ジイソプロピルアミン(0.050mL)を加えた。氷浴を除去し、反応物を終夜撹拌した。反応物を水および酢酸エチルの添加によりクエンチした。層を分離し、水溶液を更に酢酸エチルで2回抽出した。合わせた有機物を無水硫酸ナトリウムで脱水し、濾過し、減圧下で濃縮して標題化合物を得、これを更には精製せずに引き続くステップに使用した。MS(ESI)m/e1648.2(M+H)
2.25.2. 3−(1−((3−(((E)−14−(3−(3−アミノプロパンアミド)−4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)フェニル)−9−メチル−10−オキソ−3,6,11−トリオキサ−9−アザテトラデカ−13−エン−1−イル)オキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.25.1(158mg)のメタノール(2.0mL)中冷却(0℃)溶液に、2M水酸化リチウム水溶液(0.783mL)を加えた。反応物を4時間撹拌し、酢酸(0.1mL)の添加によりクエンチした。反応物を濃縮乾固し、残渣を水中0.1%トリフルオロ酢酸中の10−85%アセトニトリルで溶出するBiotage Isolera Oneシステムおよび逆相C18カラム40gを用いてクロマトグラフィーにかけた。生成物を含むフラクションを凍結乾燥して、標題化合物を固体として得た。MS(ESI)m/e1286.2(M+H)
2.25.3. 4−[(1E)−14−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)−6−メチル−5−オキソ−4,9,12−トリオキサ−6−アザテトラデカ−1−エン−1−イル]−2−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸
実施例2.25.2(9.03mg)のN,N−ジメチルホルムアミド(1.0mL)中周囲温度溶液に、2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエート(4mg)およびN,N−ジイソプロピルアミン(0.020mL)を加え、反応物を終夜撹拌した。反応物をジメチルスルホキシドおよびメタノールで希釈し、0.1容量/容量%トリフルオロ酢酸を含有する水中10から75%アセトニトリルの濃度勾配で溶出するBiotage Isoleraクロマトグラフィーユニット(C18カラム40g)上でのRP−HPLCにより精製した。生成物を含むフラクションを凍結乾燥により濃縮して、標題化合物を固体として得た。1H NMR (400MHz, ジメチルスルホキシド-d6) δ ppm 12.85 (s, 1H), 8.04 (d, 1H), 7.99 (t, 1H), 7.79 (d, 1H), 7.60 (d, 1H), 7.53-7.41 (m, 3H), 7.40-7.32 (m, 2H), 7.28 (s, 1H), 6.99 (s, 2H), 6.98-6.92 (m, 1H), 4.95 (bs, 2H), 3.92-3.85 (m, 1H), 3.81 (s, 2H), 3.63-3.55 (m, 4H), 3.55-3.31 (m, 28H), 3.18-3.10 (m, 2H), 3.05-2.98 (m, 2H), 2.97 (s, 2H), 2.80 (s, 2H), 2.59-2.50 (m, 1H), 2.32 (t, 2H), 2.10 (s, 3H), 1.39-1.34 (m, 2H), 1.31-1.18 (m, 4H), 1.20-0.92 (m, 6H), 0.84 (s, 6H). MS (ESI) m/e 1479.3 (M+H)+.
2.26. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−3−[2−(2−{[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]アミノ}エトキシ)エトキシ]フェニルβ−D−グルコピラノシドウロン酸(シントンDZ)の合成
2.26.1. (2S,3R,4S,5S,6S)−2−(4−ホルミル−3−ヒドロキシフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
2,4−ジヒドロキシベンズアルデヒド(15g)および(2S,3R,4S,5S,6S)−2−ブロモ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート(10g)のアセトニトリル中溶液に、炭酸銀(10g)を加え、反応物を40℃に加熱した。4時間撹拌した後、反応物を冷却し、濾過し、濃縮した。粗生成物をジクロロメタンに懸濁し、珪藻土に通して濾過し、濃縮した。残渣をヘプタン中10−100%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。
2.26.2. (2S,3R,4S,5S,6S)−2−(3−ヒドロキシ−4−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.26.1(16.12g)のテトラヒドロフラン(200mL)およびメタノール(200mL)中溶液を0℃に冷却し、水素化ホウ素ナトリウム(1.476g)を少しずつ加えた。反応物を20分間撹拌し、次いで水:飽和重炭酸ナトリウム溶液の1:1混合物(400mL)でクエンチした。得られた固体を濾別し、酢酸エチルですすいだ。相を分離し、水性層を酢酸エチルで4回抽出した。合わせた有機層を硫酸マグネシウムで脱水し、濾過し、濃縮した。粗生成物をヘプタン中10−100%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e473.9(M+NH
2.26.3. (2S,3R,4S,5S,6S)−2−(4−(((tert−ブチルジメチルシリル)オキシ)メチル)−3−ヒドロキシフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
ジクロロメタン(168mL)中の実施例2.26.2(7.66g)およびtert−ブチルジメチルシリルクロリド(2.78g)に、−5℃でイミダゾール(2.63g)を加え、反応混合物を終夜撹拌すると、反応物の内温は12℃に加温した。反応混合物を飽和塩化アンモニウム水溶液中に注ぎ入れ、ジクロロメタンで4回抽出した。合わせた有機物をブラインで洗浄し、硫酸マグネシウムで脱水し、濾過し、濃縮した。粗生成物をヘプタン中10−100%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e593.0(M+Na)
2.26.4. (2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−(((tert−ブチルジメチルシリル)オキシ)メチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
トルエン(88mL)中の実施例2.26.3(5.03g)およびトリフェニルホスフィン(4.62g)に、ジ−tert−ブチル−アゾジカルボキシレート(4.06g)を加え、反応混合物を30分間撹拌した。(9H−フルオレン−9−イル)メチル(2−(2−ヒドロキシエトキシ)エチル)カルバメートを加え、反応物を更に1.5時間撹拌した。反応物をヘプタン中10−100%酢酸エチルの濃度勾配で溶出するシリカゲル上に直接ロードして、標題化合物を得た。
2.26.5. (2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.26.4(4.29g)を、酢酸:水:テトラヒドロフランの3:1:1溶液(100mL)中で終夜撹拌した。反応混合物を飽和重炭酸ナトリウム水溶液中に注ぎ入れ、酢酸エチルで抽出した。有機層を硫酸マグネシウムで脱水し、濾過し、濃縮した。粗生成物をヘプタン中10−100%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。
2.26.6. (2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.26.5(0.595g)およびビス(4−ニトロフェニル)カルボネート(0.492g)のN,N−ジメチルホルムアミド(4mL)中溶液に、N,N−ジイソプロピルアミン(0.212mL)を加えた。1.5時間後、反応物を高真空下で濃縮した。残渣をヘプタン中10−100%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e922.9(M+Na)
2.26.7. 3−(1−((3−(2−((((2−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−(((2S,3R,4S,5S,6S)−3,4,5−トリアセトキシ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例1.1.17(0.106g)および実施例2.26.6(0.130g)のN,N−ジメチルホルムアミド(1.5mL)中溶液に、N,N−ジイソプロピルアミン(0.049mL)を加えた。6時間後、更にN,N−ジイソプロピルアミン(0.025mL)を加え、反応物を終夜撹拌した。反応物を酢酸エチル(50mL)で希釈し、水(10mL)で、続いてブライン(15mL)で4回洗浄した。有機層を硫酸マグネシウムで脱水し、濾過し、濃縮して標題化合物を得、これを更には精製せずに次のステップに使用した。
2.26.8. 3−(1−((3−(2−((((2−(2−(2−アミノエトキシ)エトキシ)−4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.26.7(0.215g)のメタノール(2mL)中懸濁液を、2.0M水酸化リチウム水溶液(1mL)で処理した。1時間撹拌した後、反応物を酢酸(0.119mL)の添加によりクエンチした。得られた懸濁液をジメチルスルホキシド(1mL)で希釈し、0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。
2.26.9. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−3−[2−(2−{[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]アミノ}エトキシ)エトキシ]フェニルβ−D−グルコピラノシドウロン酸
実施例2.26.8(0.050g)のN,N−ジメチルホルムアミド(1mL)中溶液に、N,N−ジイソプロピルアミン(0.037mL)を、続いて2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエート(0.017g)を加え、反応物を室温で撹拌した。1時間撹拌した後、反応物を水で希釈し、0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出するGilsonシステムを用いる逆相HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 12.86 (s, 1H), 8.03 (d, 1H), 7.82-7.77 (m, 2H), 7.62 (d, 1H), 7.53-7.41 (m, 3H), 7.40-7.33 (m, 2H), 7.28 (s, 1H), 7.19 (d, 1H), 6.98 (s, 2H), 6.95 (d, 1H), 6.66 (s, 1H), 6.60 (d, 1H), 5.06 (t, 1H), 5.00-4.93 (m, 4H), 4.18-4.04 (m, 2H), 3.95-3.85 (m, 2H), 3.85-3.77 (m, 2H), 3.71 (t, 2H), 3.41-3.30 (m, 4H), 3.30-3.23 (m, 4H), 3.19 (q, 2H), 3.01 (t, 2H), 2.85 (d, 3H), 2.09 (s, 3H), 2.02 (t, 2H), 1.53-1.40 (m, 4H), 1.40-0.78 (m, 24H). MS (ESI) m/e 1380.5 (M-H)-.
2.27. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−3−[2−(2−{[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]アミノ}エトキシ)エトキシ]フェニルβ−D−グルコピラノシドウロン酸(シントンEA)の合成
実施例2.26.8(0.031g)のN,N−ジメチルホルムアミド(1mL)中溶液に、N,N−ジイソプロピルアミン(0.023mL)を、続いて2,5−ジオキソピロリジン−1−イル3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノエート(9mg)を加え、反応物を室温で撹拌した。1時間撹拌した後、反応物を水で希釈し、0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.84 (s, 1H), 8.03 (d, 1H), 8.00 (t, 1H), 7.79 (d, 1H), 7.61 (d, 1H), 7.54-7.41 (m, 3H), 7.40-7.32 (m, 2H), 7.28 (s, 1H), 7.19 (d, 1H), 6.97 (s, 2H), 6.95 (d, 1H), 6.66 (s, 1H), 6.60 (d, 1H), 5.11-5.02 (m, 1H), 4.96 (s, 4H), 4.18-4.02 (m, 2H), 3.96-3.84 (m, 2H), 3.80 (s, 2H), 3.71 (t, 2H), 3.43-3.22 (m, 12H), 3.17 (q, 2H), 3.01 (t, 2H), 2.85 (d, 3H), 2.33 (t, 2H), 2.09 (s, 3H), 1.44-0.76 (m, 18H). MS (ESI) m/e 1338.5 (M-H)-.
2.28. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−{1−[(3−{2−[({[3−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−β−アラニル}アミノ)−4−(β−D−ガラクトピラノシルオキシ)ベンジル]オキシ}カルボニル)(メチル)アミノ]エトキシ}−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル]−5−メチル−1H−ピラゾール−4−イル}ピリジン−2−カルボン酸(シントンEO)の合成
2.28.1. (2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−ブロモテトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
乾燥した100mLの丸底フラスコを窒素でスパージし、これに(2S,3R,4S,5S,6R)−6−(アセトキシメチル)テトラヒドロ−2H−ピラン−2,3,4,5−テトライルテトラアセテート(5g)を仕込み、窒素雰囲気下ゴム製セプタムで密栓した。氷酢酸中の臭化水素溶液(33重量%、11.06mL)を加え、反応物を室温で2時間撹拌した。反応混合物をジクロロメタン(75mL)で希釈し、氷冷水250mL中に注ぎ入れた。層を分離し、有機層を氷冷水(3×100mL)および飽和重炭酸ナトリウム水溶液(100mL)で更に洗浄した。有機層をMgSO4で脱水し、濾過し、減圧下で濃縮した。残った酢酸をトルエン(3×50mL)からこれを共沸することにより除去した。溶媒を減圧下で濃縮して標題化合物を得、これを更には精製せずに次のステップに使用した。MS(ESI)m/e429.8(M+NH
2.28.2. (2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−(4−ホルミル−2−ニトロフェノキシ)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.28.1(5.13g)をアセトニトリル(100mL)に溶解した。酸化銀(I)(2.89g)を加え、反応物を20分間撹拌した。4−ヒドロキシ−3−ニトロベンズアルデヒド(2.085g)を加え、反応混合物を室温で4時間撹拌し、次いでMillipore0.22μmフィルターに通して真空濾過して、銀塩を除去した。溶媒を減圧下で濃縮して標題化合物を得、これを更には精製せずに次のステップに使用した。MS(ESI)m/e514.9(M+NH
2.28.3. (2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−(4−(ヒドロキシメチル)−2−ニトロフェノキシ)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
窒素でスパージした乾燥1Lの丸底フラスコに、実施例2.28.2(5.0g)の細粒粉を仕込み、窒素雰囲気下で維持した。テトラヒドロフラン(70mL)を加え、溶液を2分間超音波処理して、懸濁液を得た。メタノール(140mL)を加え、懸濁液を更に3分間超音波処理した。懸濁液を氷浴上に置き、窒素雰囲気下20分間撹拌して、平衡に達した(0℃)。水素化ホウ素ナトリウム(0.380g)を20分かけて少しずつ加え、冷却(0℃)した反応物を30分間撹拌した。酢酸エチル(200mL)を反応混合物に加え、反応物を氷上で飽和塩化アンモニウム溶液300mLを、続いて水200mLを加えてクエンチした。反応混合物を酢酸エチル(3×300mL)で抽出し、ブライン(300mL)で洗浄し、MgSOで脱水し、濾過し、溶媒を減圧下で濃縮して、標題化合物を得た。MS(ESI)m/e516.9(M+NH
2.28.4. (2R,3S,4S,5R,6S)−2−(アセトキシメチル)−6−(2−アミノ−4−(ヒドロキシメチル)フェノキシ)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.22.3において実施例2.28.3を実施例2.22.2の代わりに用い、摩砕ステップを省略することにより、標題化合物を調製した。生成物を更には精製せずに次のステップに使用した。MS(ESI)m/e469.9(M+H)
2.28.5. (2S,3R,4S,5S,6R)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−(ヒドロキシメチル)フェノキシ)−6−(アセトキシメチル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.22.5において実施例2.28.4を実施例2.22.3の代わりに用いることにより、標題化合物を調製した。反応物をジクロロメタンと水との間で分配することによりクエンチした。層を分離し、水溶液を酢酸エチルで2回抽出した。合わせた有機層を1N塩酸水溶液およびブラインで洗浄し、NaSOで脱水し、濾過し、減圧下で濃縮した。生成物をヘプタン中10−100%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e762.9(M+H)
2.28.6. (2S,3R,4S,5S,6R)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェノキシ)−6−(アセトキシメチル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.28.5(3.2g)およびビス(4−ニトロフェニル)カルボネート(1.914g)のN,N−ジメチルホルムアミド(20mL)中周囲温度溶液に、N,N−ジイソプロピルエチルアミン(1.10mL)を滴下添加した。反応物を室温で1.5時間撹拌した。溶媒を減圧下で濃縮した。粗生成物をヘプタン中10−100%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e927.8(M+H)、950.1(M+Na)
2.28.7. 3−(1−((3−(2−((((3−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−(((2S,3R,4S,5S,6R)−3,4,5−トリアセトキシ−6−(アセトキシメチル)テトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.22.8において実施例2.28.6を実施例2.22.7の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e1548.3(M+H)
2.28.8. 3−(1−((3−(2−((((3−(3−アミノプロパンアミド)−4−(((2S,3R,4S,5R,6R)−3,4,5−トリヒドロキシ−6−(ヒドロキシメチル)テトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.22.8において実施例2.28.7を実施例2.22.7の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e1158.3(M+H)
2.28.9. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−{1−[(3−{2−[({[3−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−β−アラニル}アミノ)−4−(β−D−ガラクトピラノシルオキシ)ベンジル]オキシ}カルボニル)(メチル)アミノ]エトキシ}−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル]−5−メチル−1H−ピラゾール−4−イル}ピリジン−2−カルボン酸
実施例2.22.9において実施例2.28.8を実施例2.22.8の代わりに用いることにより、標題化合物を調製した。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.85 (bs, 1H), 9.13 (bs, 1H), 8.19 (bs, 1H), 8.03 (d, 1H), 7.88 (d, 1H), 7.79 (d, 1H), 7.62 (d, 1H), 7.55-7.39 (m, 3H), 7.41-7.30 (m, 2H), 7.28 (s, 1H), 7.14 (d, 1H), 7.05-6.88 (m, 4H), 4.96 (bs, 4H), 3.57-3.48 (m, 1H), 3.49-3.09 (m, 11H), 3.08-2.57 (m, 7H), 2.33 (d, 1H), 2.14-1.97 (m, 6H), 1.55-0.90 (m, 20H), 0.86-0.79 (m, 6H). MS (ESI) m/e 1351.3 (M+H)+.
2.29. 2−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−5−[2−(2−{[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]アミノ}エトキシ)エトキシ]フェニルβ−D−グルコピラノシドウロン酸(シントンFB)の合成
2.29.1. 4−(2−(2−ブロモエトキシ)エトキシ)−2−ヒドロキシベンズアルデヒド
2,4−ジヒドロキシベンズアルデヒド(1.0g)、1−ブロモ−2−(2−ブロモエトキシ)エタン(3.4g)および炭酸カリウム(1.0g)のアセトニトリル(30mL)中溶液を、75℃に2日間加熱した。反応物を冷却し、酢酸エチル(100mL)で希釈し、水(50mL)およびブライン(50mL)で洗浄し、硫酸マグネシウムで脱水し、濾過し、濃縮した。ヘプタン中5−30%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより残渣を精製して、標題化合物を得た。MS(ELSD)m/e290.4(M+H)
2.29.2. 4−(2−(2−アジドエトキシ)エトキシ)−2−ヒドロキシベンズアルデヒド
実施例2.29.1(1.26g)のN,N−ジメチルホルムアミド(10mL)中溶液に、アジ化ナトリウム(0.43g)を加え、反応物を室温で終夜撹拌した。反応物をジエチルエーテル(100mL)で希釈し、水(50mL)およびブライン(50mL)で洗浄し、硫酸マグネシウムで脱水し、濾過し、濃縮した。ヘプタン中5−30%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより残渣を精製して、標題化合物を得た。MS(ELSD)m/e251.4(M+H)
2.29.3. (2S,3R,4S,5S,6S)−2−(5−(2−(2−アジドエトキシ)エトキシ)−2−ホルミルフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.29.2(0.84g)、(3R,4S,5S,6S)−2−ブロモ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート(1.99g)および酸化銀(I)(1.16g)の溶液を、アセトニトリル(15mL)中で共に撹拌した。終夜撹拌した後、反応物をジクロロメタン(20mL)で希釈した。珪藻土を加え、反応物を濾過し、濃縮した。ヘプタン中5−75%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより残渣を精製して、標題化合物を得た。
2.29.4. (2S,3R,4S,5S,6S)−2−(5−(2−(2−アジドエトキシ)エトキシ)−2−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.9.3(0.695g)のメタノール(5mL)およびテトラヒドロフラン(2mL)中溶液を0℃に冷却した。水素化ホウ素ナトリウム(0.023g)を加え、反応物を室温に加温した。合計1時間撹拌した後、反応物を酢酸エチル(75mL)および水(25mL)の混合物中に注ぎ入れ、飽和重炭酸ナトリウム水溶液(10mL)を加えた。有機層を分離し、ブライン(50mL)で洗浄し、硫酸マグネシウムで脱水し、濾過し、濃縮した。ヘプタン中5−85%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより残渣を精製して、標題化合物を得た。MS(ELSD)m/e551.8(M−HO)
2.29.5. (2S,3R,4S,5S,6S)−2−(5−(2−(2−アミノエトキシ)エトキシ)−2−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
テトラヒドロフラン(20mL)中の実施例2.29.4(0.465g)に、50mLの圧力ボトル中で5%Pd/C(0.1g)を加え、混合物を水素30psi下16時間振盪した。反応物を濾過し、濃縮して標題化合物を得、これを更には精製せずに使用した。MS(ELSD)m/e544.1(M+H)
2.29.6. (2S,3R,4S,5S,6S)−2−(5−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−2−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.29.5(0.443g)のジクロロメタン(8mL)中溶液を0℃に冷却し、次いでN,N−ジイソプロピルアミン(0.214mL)および(9H−フルオレン−9−イル)メチルカルボノクロリデート(0.190g)を加えた。1時間後、反応物を濃縮した。ヘプタン中5−95%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより残渣を精製して、標題化合物を得た。MS(ELSD)m/e748.15(M−OH)
2.29.7. (2S,3R,4S,5S,6S)−2−(5−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−2−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.29.6(0.444g)のN,N−ジメチルホルムアミド(5mL)中溶液に、N,N−ジイソプロピルアミン(0.152mL)およびビス(4−ニトロフェニル)カルボネート(0.353g)を加え、反応物を室温で撹拌した。5時間後、反応物を濃縮した。ヘプタン中5−90%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより残渣を精製して、標題化合物を得た。
2.29.8. 3−(1−((3−(2−((((4−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−2−(((2S,3R,4S,5S,6S)−3,4,5−トリアセトキシ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例1.1.17(0.117g)および実施例2.29.7(0.143g)のN,N−ジメチルホルムアミド(1.5m)中溶液に、N,N−ジイソプロピルアミン(0.134mL)を加え、反応物を終夜撹拌した。反応物を酢酸エチル(75mL)で希釈し、次いで水(20mL)で、続いてブライン(4×20mL)で洗浄した。有機層を硫酸マグネシウムで脱水し、濾過し、濃縮して標題化合物を得、これを更には精製せずに使用した。
2.29.9. 3−(1−((3−(2−((((4−(2−(2−アミノエトキシ)エトキシ)−2−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.29.8(0.205g)のメタノール(2mL)中懸濁液を、水酸化リチウム水和物(0.083g)の水(1mL)中溶液で処理した。1時間撹拌した後、反応物を酢酸(0.113mL)の添加によりクエンチし、ジメチルスルホキシドで希釈し、0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。
2.29.10. 2−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−5−[2−(2−{[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]アミノ}エトキシ)エトキシ]フェニルβ−D−グルコピラノシドウロン酸
実施例2.29.9(0.080g)のN,N−ジメチルホルムアミド(1mL)中溶液に、N,N−ジイソプロピルアミン(0.054mL)を、続いて2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエート(0.025g)を加え、反応物を室温で撹拌した。1時間撹拌した後、反応物を水(0.5mL)で希釈し、0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出する分取HPLC(Gilsonシステム)により精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 12.86 (s, 1H), 8.03 (d, 1H), 7.86-7.81 (m, 1H), 7.79 (d, 1H), 7.62 (d, 1H), 7.52-7.41 (m, 3H), 7.39-7.32 (m, 2H), 7.28 (s, 1H), 7.19 (d, 1H), 6.99 (s, 2H), 6.95 (d, 1H), 6.68 (d, 1H), 6.59 (d, 1H), 5.09-4.99 (m, 3H), 4.96 (s, 2H), 4.05 (s, 2H), 3.94 (d, 1H), 3.88 (t, 2H), 3.81 (d, 2H), 3.47-3.24 (m, 15H), 3.19 (q, 2H), 3.01 (t, 2H), 2.86 (d, 3H), 2.09 (s, 3H), 2.03 (t, 2H), 1.51-1.41 (m, 4H), 1.41-0.78 (m, 18H), MS (ESI) m/e 1382.2 (M+H)+.
2.30. 2−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル]カルバモイル}オキシ)メチル]−5−[2−(2−{[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]アミノ}エトキシ)エトキシ]フェニルβ−D−グルコピラノシドウロン酸(シントンKX)の合成
2.30.1. 3−(1−((3−(2−((((4−(2−(2−アミノエトキシ)エトキシ)−2−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例1.3.7(0.071g)および実施例2.29.7(0.077g)のN,N−ジメチルホルムアミド(0.5mL)中溶液に、N,N−ジイソプロピルアミン(0.072mL)を加え、反応物を3時間撹拌した。反応物を濃縮し、得られた油状物をテトラヒドロフラン(0.5mL)およびメタノール(0.5mL)に溶解し、水酸化リチウム1水和物(0.052g)の水(0.5mL)中溶液で処理した。1時間撹拌した後、反応物をN,N−ジメチルホルムアミド(lmL)で希釈し、0.1容量/容量%トリフルオロ酢酸を含有する水中10−75%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。MS(ESI)m/e1175.2(M+H)
2.30.2. 2−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル]カルバモイル}オキシ)メチル]−5−[2−(2−{[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]アミノ}エトキシ)エトキシ]フェニルβ−D−グルコピラノシドウロン酸
実施例2.30.1(0.055g)および2,5−ジオキソピロリジン−1−イル3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノエート(0.012g)のN,N−ジメチルホルムアミド(0.5mL)中溶液に、N,N−ジイソプロピルアミン(0.022mL)を加え、反応物を室温で撹拌した。1時間撹拌した後、反応物をN,N−ジメチルホルムアミドおよび水の1:1溶液(2mL)で希釈し、0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.85 (s, 1H), 8.07 - 8.00 (m, 2H), 7.79 (d, 1H), 7.62 (d, 1H), 7.55 - 7.41 (m, 3H), 7.40 - 7.32 (m, 2H), 7.28 (s, 1H), 7.20 (d, 1H), 7.11 (t, 1H), 6.98 (s, 2H), 6.95 (d, 1H), 6.66 (s, 1H), 6.60 (dd, 1H), 5.04 (d, 1H), 5.00 (s, 2H), 4.96 (s, 2H), 4.10 - 4.03 (m, 2H), 3.95 (d, 2H), 3.88 (t, 2H), 3.70 (t, 2H), 3.59 (t, 2H), 3.46 - 3.38 (m, 4H), 3.36 - 3.25 (m, 4H), 3.17 (q, 2H), 3.08 - 2.98 (m, 4H), 2.33 (t, 2H), 2.10 (s, 3H), 1.37 (s, 2H), 1.25 (q, 4H), 1.18 - 0.93 (m, 6H), 0.84 (s, 6H), MS (ESI) m/e 1325.9 (M+H)+.
2.31. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−3−(3−{[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]アミノ}プロポキシ)フェニルβ−D−グルコピラノシドウロン酸(シントンFF)の合成
2.31.1. (2S,3R,4S,5S,6S)−2−(3−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロポキシ)−4−ホルミルフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
(9H−フルオレン−9−イル)メチル(3−ヒドロキシプロピル)カルバメート(0.245g)およびトリフェニルホスフィン(0.216g)のテトラヒドロフラン(2mL)中溶液に、0℃でジイソプロピルアゾジカルボキシレート(0.160mL)を滴下添加した。15分間撹拌した後、実施例2.26.1(0.250g)を加え、氷浴を除去し、反応物を室温に加温した。2時間後、反応物を濃縮した。ヘプタン中5−70%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより残渣を精製して、標題化合物を得た。MS(APCI)m/e512.0(M−FMOC)
2.31.2. (2S,3R,4S,5S,6S)−2−(3−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロポキシ)−4−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.31.1(0.233g)のメタノール(3mL)およびテトラヒドロフラン(1mL)中懸濁液に、水素化ホウ素ナトリウム(6mg)を加えた。30分後、反応物を酢酸エチル(50mL)および水(25mL)中に注ぎ入れ、続いて飽和重炭酸ナトリウム水溶液(5mL)を加えた。有機層を分離し、ブライン(25mL)で洗浄し、硫酸マグネシウムで脱水し、濾過し、濃縮した。ヘプタン中5−80%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより残渣を精製して、標題化合物を得た。MS(APCI)m/e718.1(M−OH)
2.31.3. (2S,3R,4S,5S,6S)−2−(3−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロポキシ)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.31.2(0.140g)およびビス(4−ニトロフェニル)カルボネート(0.116g)のN,N−ジメチルホルムアミド(1mL)中溶液に、N,N−ジイソプロピルアミン(0.050mL)を加えた。1.5時間後、反応物を高真空下で濃縮した。ヘプタン中10−70%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより残渣を精製して、標題化合物を得た。
2.31.4. 3−(1−((3−(2−((((2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロポキシ)−4−(((2S,3R,4S,5S,6S)−3,4,5−トリアセトキシ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例1.1.17(0.065g)および実施例2.31.3(0.067g)のN,N−ジメチルホルムアミド(0.75mL)中溶液に、N,N−ジイソプロピルアミン(0.065mL)を加えた。6時間後、更にN,N−ジイソプロピルアミン(0.025mL)を加え、反応混合物を終夜撹拌した。反応物を酢酸エチル(50mL)で希釈し、水(20mL)で、続いてブライン(20mL)で洗浄した。酢酸エチル層を硫酸マグネシウムで脱水し、濾過し、濃縮して標題化合物を得、これを更には精製せずに次のステップに使用した。
2.31.5. 3−(1−((3−(2−((((2−(3−アミノプロポキシ)−4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.31.4(0.064g)をメタノール(0.75mL)に溶解し、水酸化リチウム1水和物(0.031g)で水(0.75mL)中溶液として処理した。2時間撹拌した後、反応物をN,N−ジメチルホルムアミド(1mL)で希釈し、トリフルオロ酢酸(0.057mL)でクエンチした。溶液を0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。
2.31.6. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−3−(3−{[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]アミノ}プロポキシ)フェニルβ−D−グルコピラノシドウロン酸
実施例2.31.5(0.020g)および2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエート(5.8mg)のN,N−ジメチルホルムアミド(0.5mL)中溶液に、N,N−ジイソプロピルアミン(0.014mL)を加えた。2時間撹拌した後、反応物をN,N−ジメチルホルムアミド(1.5mL)および水(0.5mL)で希釈した。溶液を0.1容量/容量%トリフルオロ酢酸を含有する水中10−75%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 12.83 (s, 1H), 8.03 (d, 1H), 7.83 (t, 1H), 7.79 (d, 1H), 7.62 (d, 1H), 7.54-7.42 (m, 3H), 7.37 (d, 1H), 7.34 (d, 1H), 7.28 (s, 1H), 7.19 (d, 1H), 6.98 (s, 2H), 6.95 (d, 1H), 6.64 (d, 1H), 6.59 (d, 1H), 5.05 (t, 1H), 4.96 (d, 4H), 4.02-3.94 (m, 2H), 3.88 (t, 2H), 3.46-3.22 (m, 14H), 3.18 (q, 2H), 3.01 (t, 2H), 2.85 (d, 3H), 2.09 (s, 3H), 2.02 (t, 2H), 1.81 (p, 2H), 1.54-1.41 (m, 4H), 1.41-0.78 (m, 18H). MS (ESI) m/e 1350.5 (M-H)-.
2.32. 1−O−({4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−2−[2−(2−{[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]アミノ}エトキシ)エトキシ]フェニル}カルバモイル)−β−D−グルコピラヌロン酸(シントンFU)の合成
2.32.1. 2−アミノ−5−(ヒドロキシメチル)フェノール
水素化ジイソブチルアルミニウム(ジクロロメタン中1M、120mL)を、−78℃でジクロロメタン50mL中のメチル4−アミノ−3−ヒドロキシベンゾエート(10g)に5分かけて加え、溶液を0℃に加温した。反応混合物を2時間撹拌した。更に水素化ジイソブチルアルミニウム60mL(ジクロロメタン中1M)を加え、反応物を0℃で更に1時間撹拌した。メタノール(40mL)を注意深く加えた。飽和酒石酸カリウムナトリウム溶液(100mL)を加え、混合物を終夜撹拌した。混合物を酢酸エチルで2回抽出し、合わせた抽出物を濃縮して、容量をおよそ100mLにし、混合物を濾過した。固体を集め、溶液を濃縮して極めて少量にし、濾過した。合わせた固体を乾燥して、標題化合物を得た。
2.32.2. 2−(2−アジドエトキシ)エチル4−メチルベンゼンスルホネート
2−(2−アジドエトキシ)エタノール(4.85g)、トリエチルアミン(5.16mL)およびN,N−ジメチルピリジン−4−アミン(0.226g)のジクロロメタン(123mL)中周囲温度溶液に、4−メチルベンゼン−1−スルホニルクロリド(7.05g)を加えた。反応物を終夜撹拌し、ジクロロメタンおよび飽和塩化アンモニウム水溶液の添加によりクエンチした。層を分離し、有機層をブラインで2回洗浄した。有機層を無水硫酸ナトリウムで脱水し、濾過し、減圧下で濃縮して標題化合物を得、これを更には精製せずに引き続く反応に使用した。MS(ESI)m/e302.9(M+NH
2.32.3. (4−アミノ−3−(2−(2−アジドエトキシ)エトキシ)フェニル)メタノール
実施例2.32.1(0.488g)のN,N−ジメチルホルムアミド(11.68mL)中周囲温度溶液に、水素化ナトリウム(0.140g)を加えた。混合物を0.5時間撹拌し、実施例2.32.2(1.0g)をN,N−ジメチルホルムアミド(2.0mL)中の溶液として加えた。反応物を50℃に終夜加熱した。反応混合物を水および酢酸エチルの添加によりクエンチした。層を分離し、水性層を酢酸エチルで2回抽出した。合わせた有機物を無水硫酸ナトリウムで脱水し、濾過し、減圧下で濃縮した。残渣を25−100%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e253.1(M+H)
2.32.4. 2−(2−(2−アジドエトキシ)エトキシ)−4−(((tert−ブチルジメチルシリル)オキシ)メチル)アニリン
実施例2.32.3(440mg)およびイミダゾール(178mg)のテトラヒドロフラン(10.6mL)中周囲温度溶液に、tert−ブチルジメチルクロロシラン(289mg)を加えた。反応混合物を16時間撹拌し、酢酸エチル(30mL)および飽和重炭酸ナトリウム水溶液(20mL)の添加によりクエンチした。層を分離し、水溶液を酢酸エチルで2回抽出した。合わせた有機物を無水硫酸ナトリウムで脱水し、濾過し、減圧下で濃縮した。残渣をヘプタン中0から50%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e366.9(M+H)。
2.32.5. (2S,3R,4S,5S,6S)−2−(((2−(2−(2−アジドエトキシ)エトキシ)−4−(((tert−ブチルジメチルシリル)オキシ)メチル)フェニル)カルバモイル)オキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.32.4(410mg)を、50mLの乾燥丸底フラスコ中高真空下で終夜乾燥した。実施例2.32.4(410mg)およびトリエチルアミン(0.234mL)のトルエン(18mL)中冷却(浴温0℃)溶液に、ホスゲン(0.798mL、ジクロロメタン中1M)を加えた。反応物を室温にゆっくり加温し、1時間撹拌した。反応物を冷却(0℃浴温)し、(3R,4S,5S,6S)−2−ヒドロキシ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート(411mg)およびトリエチルアミン(0.35mL)のトルエン(5mL)中溶液を加えた。反応物を室温に加温し、50℃に2時間加熱した。反応物を飽和重炭酸塩水溶液および酢酸エチルの添加によりクエンチした。層を分離し、水性層を酢酸エチルで2回抽出した。合わせた有機層を無水硫酸ナトリウムで脱水し、濾過し、減圧下で濃縮した。残渣をヘプタン中0−40%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e743.9(M+NH
2.32.6. (2S,3R,4S,5S,6S)−2−(((2−(2−(2−アジドエトキシ)エトキシ)−4−(ヒドロキシメチル)フェニル)カルバモイル)オキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.32.5(700mg)のメタノール(5mL)中溶液に、p−トルエンスルホン酸1水和物(18.32mg)のメタノール(2mL)中溶液を加えた。反応物を室温で1時間撹拌した。反応物を飽和重炭酸ナトリウム水溶液およびジクロロメタンの添加によりクエンチした。層を分離し、水性層を更にジクロロメタンで抽出した。合わせた有機物をMgSO4で脱水し、濾過し、溶媒を減圧下で蒸発させて標題化合物を得、これを更には精製せずに引き続くステップに使用した。MS(ESI)m/e629.8(M+NH
2.32.7. (2S,3R,4S,5S,6S)−2−(((2−(2−(2−アジドエトキシ)エトキシ)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェニル)カルバモイル)オキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
N,N−ジイソプロピルエチルアミン(0.227mL)を、実施例2.32.6(530mg)およびビス(4−ニトロフェニル)カルボネート(395mg)のN,N−ジメチルホルムアミド(4.3mL)中周囲温度溶液に滴下添加した。反応混合物を周囲温度で1.5時間撹拌した。溶媒を減圧下で濃縮した。残渣をヘプタン中0−50%酢酸エチルの濃度勾配で溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e794.9(M+NH
2.32.8. 3−(1−((3−(2−((((3−(2−(2−アジドエトキシ)エトキシ)−4−(((((2S,3R,4S,5S,6S)−3,4,5−トリアセトキシ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−2−イル)オキシ)カルボニル)アミノ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例1.1.17のトリフルオロ酢酸塩(111mg)および実施例2.32.7(98.5mg)のN,N−ジメチルホルムアミド(3.5mL)中冷却(0℃)溶液に、N,N−ジイソプロピルエチルアミン(0.066mL)を加えた。反応物を室温にゆっくり加温し、16時間撹拌した。反応物を水および酢酸エチルの添加によりクエンチした。層を分離し、水性層を酢酸エチルで2回抽出した。合わせた有機物を無水硫酸ナトリウムで脱水し、濾過し、減圧下で濃縮して標題化合物を得、これを更には精製せずに引き続くステップに使用した。MS(ESI)m/e1398.2(M+H)
2.32.9. 3−(1−((3−(2−((((3−(2−(2−アジドエトキシ)エトキシ)−4−(((((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)カルボニル)アミノ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.32.8(150mg)のメタノール(3.0mL)中冷却(0℃)溶液に、2M水酸化リチウム溶液(0.804mL)を加えた。反応物を1時間撹拌し、酢酸(0.123mL)を加えることによりクエンチし、その間0℃のままであった。粗製の反応溶液を0.1容量/容量%トリフルオロ酢酸を含有する水中10−100%アセトニトリルの濃度勾配で溶出するC18カラムを有するGilsonシステムを用いる逆相HPLCにより精製した。生成物を含むフラクションを凍結乾燥して、標題化合物を得た。MS(ESI)m/e1258.2(M+H)
2.32.10. 3−(1−((3−(2−((((3−(2−(2−アミノエトキシ)エトキシ)−4−(((((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)カルボニル)アミノ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
2:1テトラヒドロフラン:水(0.3mL)に溶解した実施例2.32.9(45mg)の溶液に、トリス(2−カルボキシエチル)ホスフィン塩酸塩の溶液(水0.2mL中51.3mg)を加えた。反応物を室温で16時間撹拌した。溶媒を減圧下で部分的に濃縮して、ほとんどのテトラヒドロフランを除去した。粗製の反応物を0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18 25×100mmカラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物をトリフルオロ酢酸塩として得た。MS(ESI)m/e1232.3(M+H)
2.32.11. 1−O−({4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−2−[2−(2−{[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]アミノ}エトキシ)エトキシ]フェニル}カルバモイル)−β−D−グルコピラヌロン酸
実施例2.32.10のトリフルオロ酢酸塩(15mg)のN,N−ジメチルホルムアミド1mL中溶液に、2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエート(4.12mg)およびN,N−ジイソプロピルエチルアミン(0.010mL)を加え、反応物を室温で16時間撹拌した。粗製の反応混合物を0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18 25×100mmカラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物を得た。1H NMR (500 MHz, ジメチルスルホキシド-d6) δppm 12.84 (s, 1H),8.58 (d, 1H), 8.03 (d, 1H), 7.79 (t, 2H),7.68 (s, 1H), 7.61 (d, 1H), 7.40-7.54 (m, 3H), 7.36 (q, 2H),7.27 (s, 1H), 7.05 (s, 1H), 6.97 (s, 2H), 6.93 (t, 2H), 5.41(d, Hz, 1H), 5.38 (d, 1H), 5.27 (d, 1H),4.85-5.07 (m, 4H), 4.11 (t, 2H), 3.87 (t, 2H), 3.80(s, 2H), 3.71-3.77 (m, 3H), 3.46 (s, 3H), 3.22 (d, 2H), 3.00(t, 2H), 2.86 (d, 3H), 2.08 (s, 3H), 2.01 (t, 2H), 1.44 (dd, 4H), 1.34 (d, 2H), 0.89-1.29(m, 16H), 0.82 (d, 7H), 3.51-3.66 (m, 3H). MS (ESI) m/e 1447.2 (M+Na)+.
2.33. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−(1−{[3−(2−{[({3−[(N−{[2−({N−[19−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−17−オキソ−4,7,10,13−テトラオキサ−16−アザノナデカン−1−オイル]−3−スルホ−D−アラニル}アミノ)エトキシ]アセチル}−β−アラニル)アミノ]−4−(β−D−ガラクトピラノシルオキシ)ベンジル}オキシ)カルボニル](メチル)アミノ}エトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−カルボン酸(シントンGH)の合成
2.33.1. (R)−28−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−7,10,26−トリオキソ−8−(スルホメチル)−3,13,16,19,22−ペンタオキサ−6,9,25−トリアザオクタコサン−1−酸
本明細書に記載した通りに固相ペプチド合成を用いて、標題化合物を合成した。2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)酢酸(1543mg)をジオキサン10mLに溶解し、溶媒を減圧下で濃縮した。(手順を2回繰り返した。)。物質を終夜凍結乾燥した。ジオキサンで乾燥したアミノ酸をシーブ乾燥したジクロロメタン20mLに溶解し、これにN,N−ジイソプロピルエチルアミン(4.07mL)を加えた。溶液を2−クロロトリチル固体担持樹脂(8000mg)に加え、これをシーブ乾燥したジクロロメタンで(2回)予め洗浄した。樹脂およびアミノ酸の混合物を周囲温度で4時間振盪し、水分を切り、17:2:1ジクロロメタン:メタノール:N,N−ジイソプロピルエチルアミンで洗浄し、N,N−ジメチルホルムアミドで3回洗浄した。次いでシーブ乾燥したジクロロメタンとメタノールとを交互に用いて混合物を更に3回洗浄した。担持済の樹脂を真空乾燥機中40℃で乾燥した。N,N−ジメチルホルムアミド中20%ピペリジンで処理することにより既知量の樹脂を脱保護化することにより得られた溶液を、301nmにて吸光度を測定する定量的Fmoc−担持試験により樹脂への担持量を決定した。N,N−ジメチルホルムアミド中にて樹脂を20%ピペリジンで20分間処理し、続いてN,N−ジメチルホルムアミドを用いる洗浄ステップにより、全てのFmoc脱保護化ステップを行った。アミノ酸(R)−2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)−3−スルホプロパン酸、引き続き1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16−テトラオキサ−4−アザノナデカン−19−酸のカップリングを、4当量のアミノ酸を4当量の((1H−ベンゾ[d][1,2,3]トリアゾール−1−イル)オキシ)トリ(ピロリジン−1−イル)ホスホニウムヘキサフルオロホスフェート(V)および8当量のN,N−ジイドプロピルエチルアミンでN,N−ジメチルホルムアミド中にて1分間活性化し、続いて樹脂と1時間インキュベートさせることにより行った。標題化合物を、ジクロロメタン中5%トリフルオロ酢酸で30分間処理することにより樹脂から脱離させた。樹脂を濾過し、濾液を減圧下で濃縮して標題化合物を得、これを更には精製せずに次のステップに使用した。MS(ESI)m/e669.0(M+H)
2.33.2. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−(1−{[3−(2−{[({3−[(N−{[2−({N−[19−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−17−オキソ−4,7,10,13−テトラオキサ−16−アザノナデカン−1−オイル]−3−スルホ−D−アラニル}アミノ)エトキシ]アセチル}−β−アラニル)アミノ]−4−(β−D−ガラクトピラノシルオキシ)ベンジル}オキシ)カルボニル](メチル)アミノ}エトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−カルボン酸
実施例2.33.1(5.09mg)を、2−(3H−[1,2,3]トリアゾロ[4,5−b]ピリジン−3−イル)−1,1,3,3−テトラメチルイソウロニウムヘキサフルオロホスフェート(V)(2.63mg)およびN,N−ジイソプロピルエチルアミン(0.004mL)とN,N−ジメチルホルムアミド1mL中で混合し、2分間撹拌した。実施例2.28.8(8.8mg)を加え、反応混合物を室温で1.5時間撹拌した。粗製の反応混合物を0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18 25×100mmカラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物を得た。MS(ESI)m/e1806.5(M−H)
2.34. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−3−[3−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−3−スルホ−L−アラニル}アミノ)プロポキシ]フェニルβ−D−グルコピラノシドウロン酸(シントンFX)の合成
2.34.1. 3−(1−((3−(2−((((2−(3−((R)−2−アミノ−3−スルホプロパンアミド)プロポキシ)−4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
(R)−2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)−3−スルホプロパン酸(0.019g)および2−(3H−[1,2,3]トリアゾロ[4,5−b]ピリジン−3−イル)−1,1,3,3−テトラメチルイソウロニウムヘキサフルオロホスフェート(V)(0.019g)のN,N−ジメチルホルムアミド(0.5mL)中溶液に、N,N−ジイソプロピルアミン(7.82μl)を加えた。2分間撹拌した後、反応物を室温で実施例2.31.5(0.057g)およびN,N−ジイソプロピルアミン(0.031mL)のN,N−ジメチルホルムアミド(0.5mL)中溶液に加え、3時間撹拌した。ジエチルアミン(0.023mL)を反応物に加え、更に2時間撹拌を続けた。反応物を水(1mL)で希釈し、トリフルオロ酢酸(0.034mL)でクエンチし、溶液を0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。MS(ESI)m/e1310.1(M+H)
2.34.2. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−3−[3−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−3−スルホ−L−アラニル}アミノ)プロポキシ]フェニルβ−D−グルコピラノシドウロン酸
実施例2.34.1(0.0277g)および2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエート(7.82mg)のN,N−ジメチルホルムアミド(0.5mL)中溶液に、N,N−ジイソプロピルアミン(0.018mL)を加え、反応物を室温で撹拌した。反応物を0.1容量/容量%トリフルオロ酢酸を含有する水中10−85%アセトニトリルで溶出するGilsonシステムを用いる分取HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.81 (s, 1H), 8.02 (d, 1H), 7.89-7.81 (m, 2H), 7.78 (d, 1H), 7.60 (d, 1H), 7.53-7.40 (m, 3H), 7.39-7.31 (m, 2H), 7.29 (s, 1H), 7.16 (d, 1H), 6.98-6.92 (m, 3H), 6.63 (s, 1H), 6.56 (d, 1H), 5.08-4.99 (m, 1H), 4.95 (s, 4H), 4.28 (q, 2H), 3.90-3.85 (m, 4H), 3.48-3.06 (m, 12H), 3.00 (t, 2H), 2.88-2.64 (m, 8H), 2.08 (s, 3H), 2.04 (t, 2H), 1.80 (p, 2H), 1.51-1.39 (m, 4H), 1.39-0.75 (m, 18H). MS (ESI) m/e 1501.4 (M-H)-.
2.35. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−2−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸(シントンH)の合成
2.35.1. (2S,3R,4S,5S,6S)−2−(4−ホルミル−2−ニトロフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
(2R,3R,4S,5S,6S)−2−ブロモ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート(4g)のアセトニトリル(100mL)中溶液に、酸化銀(I)(10.04g)および4−ヒドロキシ−3−ニトロベンズアルデヒド(1.683g)を加えた。反応混合物を室温で4時間撹拌し、濾過した。濾液を濃縮し、残渣をヘプタン中5−50%酢酸エチルで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e(M+18)
2.35.2. (2S,3R,4S,5S,6S)−2−(4−(ヒドロキシメチル)−2−ニトロフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.35.1(6g)のクロロホルム(75mL)およびイソプロパノール(18.75mL)の混合物中溶液に、シリカゲル0.87gを加えた。得られた混合物を0℃に冷却し、NaBH(0.470g)を加え、得られた懸濁液を0℃で45分間撹拌した。反応混合物をジクロロメタン(100mL)で希釈し、珪藻土に通して濾過した。濾液を水およびブラインで洗浄し、濃縮して粗生成物を得、これを更には精製せずに使用した。MS(ESI)m/e(M+NH
2.35.3. (2S,3R,4S,5S,6S)−2−(2−アミノ−4−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.35.2(7g)の酢酸エチル(81mL)中撹拌溶液を、触媒として10%Pd/C(1.535g)を用い1気圧のH下20℃で12時間水素化した。反応混合物を珪藻土に通して濾過し、溶媒を減圧下で蒸発させた。残渣を95/5のジクロロ−ジクロロメタン/メタノールで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。
2.35.4. 3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパン酸
3−アミノプロパン酸(4.99g)を、500mLのフラスコ中10%NaCO水溶液(120mL)に溶解し、氷浴で冷却した。得られた溶液に、1,4−ジオキサン(100mL)中の(9H−フルオレン−9−イル)メチルカルボノクロリデート(14.5g)を徐々に加えた。反応混合物を室温で4時間撹拌し、次いで水(800mL)を加えた。水性相層を反応混合物から分離し、ジエチルエーテル(3×750mL)で洗浄した。水性層を2N HCl水溶液でpH値を2に酸性化し、酢酸エチル(3×750mL)で抽出した。有機層を合わせ、濃縮して、粗生成物を得た。粗生成物を酢酸エチル:ヘキサン1:2の混合溶媒(300mL)中で再結晶化して、標題化合物を得た。
2.35.5. (9H−フルオレン−9−イル)メチル(3−クロロ−3−オキソプロピル)カルバメート
実施例2.35.4のジクロロメタン(160mL)中溶液に、亜硫酸ジクロリド(50mL)を加えた。混合物を60℃で1時間撹拌した。混合物を冷却し、濃縮して、標題化合物を得た。
2.35.6. (2S,3R,4S,5S,6S)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.35.3(6g)のジクロロメタン(480mL)中溶液に、N,N−ジイソプロピルエチルアミン(4.60mL)を加えた。実施例2.35.5(5.34g)を加え、混合物を室温で30分間撹拌した。混合物を飽和重炭酸ナトリウム水溶液中に注ぎ入れ、酢酸エチルで抽出した。合わせた抽出物を水およびブラインで洗浄し、硫酸ナトリウムで脱水した。濾過し、濃縮して残渣を得、これを移動相として石油エーテル中の0−100%酢酸エチルを用いるラジアルクロマトグラフィーにより精製して、標題化合物を得た。
2.35.7. (2S,3R,4S,5S,6S)−2−(2−(3−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパンアミド)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.35.6(5.1g)のN,N−ジメチルホルムアミド(200mL)中混合物に、ビス(4−ニトロフェニル)カルボネート(4.14g)およびN,N−ジイソプロピルエチルアミン(1.784mL)を加えた。混合物を室温で16時間撹拌し、減圧下で濃縮した。粗製物をジクロロメタンに溶解し、1mmのラジアルChromatotronプレート上に直接吸引し、ヘキサン中50−100%酢酸エチルで溶出して、標題化合物を得た。MS(ESI)m/e(M+H)
2.35.8. 3−(1−((3−(2−((((3−(3−アミノプロパンアミド)−4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例1.1.17(325mg)および実施例2.35.7(382mg)のN,N−ジメチルホルムアミド(9mL)中溶液に、0℃でN,N−ジイソプロピルアミン(49.1mg)を加えた。反応混合物を0℃で5時間撹拌し、酢酸(22.8mg)を加えた。得られた混合物を酢酸エチルで希釈し、水およびブラインで洗浄した。有機層をNaSOで脱水し、濾過し、濃縮した。残渣をテトラヒドロフラン(10mL)およびメタノール(5mL)の混合物に溶解した。この溶液に0℃で1M水酸化リチウム水溶液(3.8mL)を加えた。得られた混合物を0℃で1時間撹拌し、酢酸で酸性化し、濃縮した。濃縮物を凍結乾燥して、粉体を得た。粉体をN,N−ジメチルホルムアミド(10mL)に溶解し、氷浴中で冷却し、0℃でピペリジン(1mL)を加えた。混合物を0℃で15分間撹拌し、酢酸1.5mLを加えた。溶液を0.1容量/容量%トリフルオロ酢酸を含有する水中30−80%アセトニトリルで溶出するGilsonシステムを用いる逆相HPLCにより精製して、標題化合物を得た。MS(ESI)m/e1172.2(M+H)
2.35.9. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−2−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸
N,N−ジメチルホルムアミド(5mL)中の実施例2.35.8(200mg)に、0℃で2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエート(105mg)およびN,N−ジイソプロピルエチルアミン(0.12mL)を加えた。混合物を0℃で15分間撹拌し、室温に加温し、0.1容量/容量%トリフルオロ酢酸を含有する水中30−80%アセトニトリルで溶出する100gのC18カラムを用いるGilsonシステム上での逆相HPLCにより精製して、標題化合物を得た。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 12.85 (s, 2H) 9.07 (s, 1H) 8.18 (s, 1H) 8.03 (d, 1H) 7.87 (t, 1H) 7.79 (d, 1H) 7.61 (d, 1H) 7.41-7.53 (m, 3H) 7.36 (q, 2H) 7.28 (s, 1H) 7.03-7.09 (m, 1H) 6.96-7.03 (m, 3H) 6.94 (d, 1H) 4.95 (s, 4H) 4.82 (t, 1H) 3.88 (t, 3H) 3.80 (d, 2H) 3.01 (t, 2H) 2.86 (d, 3H) 2.54 (t, 2H) 2.08 (s, 3H) 2.03 (t, 2H) 1.40-1.53 (m, 4H) 1.34 (d, 2H) 0.90-1.28 (m, 12H) 0.82 (d, 6H).MS(ESI)m/e1365.3(M+H)
2.36. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−2−({N−[19−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−17−オキソ−4,7,10,13−テトラオキサ−16−アザノナデカン−1−オイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸(シントンI)の合成
2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエートの代わりに2,5−ジオキソピロリジン−1−イル1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16−テトラオキサ−4−アザノナデカン−19−オエートを用い、実施例2.35.9における手順を用いて標題化合物を調製した。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 8.95 (s, 1H) 8.16 (s, 1H) 7.99 (d, 1H) 7.57-7.81 (m, 4H) 7.38-7.50 (m, 3H) 7.34 (q, 2H) 7.27 (s, 1H) 7.10 (d, 1H) 7.00 (d, 1H) 6.88-6.95 (m, 2H) 4.97 (d, 4H) 4.76 (d, 2H) 3.89 (t, 2H) 3.84 (d, 2H) 3.80 (s, 2H) 3.57-3.63 (m, 4H) 3.44-3.50 (m, 4H) 3.32-3.43 (m, 6H) 3.29 (t, 2H) 3.16 (q, 2H) 3.02 (t, 2H) 2.87 (s, 3H) 2.52-2.60 (m, 2H) 2.29-2.39 (m, 3H) 2.09 (s, 3H) 1.37 (s, 2H) 1.20-1.29 (m, 4H) 1.06-1.18 (m, 4H) 0.92-1.05 (m, 2H) 0.83 (s, 6H).MS(ESI)m/e1568.6(M−H)
2.37. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−2−({N−[4−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ブタノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸(シントンKQ)の合成
2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエートの代わりに2,5−ジオキソピロリジン−1−イル4−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ブタノエートを用い、実施例2.35.9における手順を用いて標題化合物を調製した。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 12.86 (s, 3H) 9.08 (s, 2H) 8.17 (s, 1H) 8.03 (d, 1H) 7.89 (t, 1H) 7.79 (d, 1H) 7.61 (d, 1H) 7.46-7.53 (m, 1H) 7.41-7.46 (m, 1H) 7.31-7.40 (m, 1H) 7.28 (s, 1H) 7.03-7.10 (m, 1H) 6.91-7.03 (m, 2H) 4.69-5.08 (m, 4H) 3.83-3.95 (m, 2H) 3.74-3.83 (m, 2H) 3.21-3.47 (m, 12H) 2.95-3.08 (m, 1H) 2.86 (d, 2H) 1.98-2.12 (m, 3H) 1.62-1.79 (m, 2H) 0.90-1.43 (m, 8H) 0.82 (d, 3H). MS (ESI) m/e 1337.2 (M+H)+.
2.38. 4−[12−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)−4−メチル−3−オキソ−2,7,10−トリオキサ−4−アザドデカ−1−イル]−2−{[N−({2−[2−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)エトキシ]エトキシ}アセチル)−β−アラニル]アミノ}フェニルβ−D−グルコピラノシドウロン酸(シントンKP)の合成
2.38.1. 3−(1−((−((1−(3−(3−アミノプロパンアミド)−4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)フェニル)−4−メチル−3−オキソ−2,7,10−トリオキサ−4−アザドデカン−12−イル)オキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.35.8において実施例1.2.11を実施例1.1.17の代わりに用いることにより、標題化合物を調製した。
2.38.2. 4−[12−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)−4−メチル−3−オキソ−2,7,10−トリオキサ−4−アザドデカ−1−イル]−2−{[N−({2−[2−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)エトキシ]エトキシ}アセチル)−β−アラニル]アミノ}フェニルβ−D−グルコピラノシドウロン酸
実施例2.35.9において実施例2.38.1を実施例2.35.8および2,5−ジオキソピロリジン−1−イル2−(2−(2−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)エトキシ)エトキシ)アセテートを2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエートの代わりに用いることにより、標題化合物を調製した。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 8.92 (s, 1H), 8.12-8.15 (m, 1H), 7.97 (d, 1H), 7.76 (d, 1H), 7.61 (d, 1H), 7.28-7.49 (m, 6H), 7.25 (s, 1H), 7.09 (d, 1H), 6.97-7.02 (m, 1H), 6.88-6.94 (m, 2H), 4.97 (d, 4H), 4.75 (d, 1H), 3.76-3.93 (m, 9H), 3.47-3.60 (m, 16H), 3.32-3.47 (m, 15H), 2.88 (s, 3H), 2.59 (t, 2H), 2.08 (s, 3H), 1.38 (s, 2H), 0.93-1.32 (m, 11H), 0.84 (s, 6H). MS (ESI) m/e 1485.2 (M+H)+.
2.39. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−2−[(N−{6−[(エテニルスルホニル)アミノ]ヘキサノイル}−β−アラニル)アミノ]フェニルβ−D−グルコピラノシドウロン酸(シントンHA)の合成
2.39.1. メチル6−(ビニルスルホンアミド)ヘキサノエート
6−メトキシ−6−オキソヘキサン−1−アミニウムクロリド(0.3g)およびトリエチルアミン(1.15mL)のジクロロメタン中溶液に、0℃でエテンスルホニルクロリド(0.209g)を滴下添加した。反応混合物を室温に加温し、1時間撹拌した。混合物をジクロロメタンで希釈し、ブラインで洗浄した。有機層を硫酸ナトリウムで脱水し、濾過し、濃縮して、標題化合物を得た。MS(ESI)m/e471.0(2M+H)
2.39.2. 6−(ビニルスルホンアミド)ヘキサン酸
実施例2.39.1(80mg)および水酸化リチウム1水和物(81mg)のテトラヒドロフラン(1mL)および水(1mL)の混合物中溶液を、2時間撹拌し、次いで水(20mL)で希釈し、ジエチルエーテル(10mL)で洗浄した。水性層を1N HCl水溶液でpH4に酸性化し、ジクロロメタン(3×10mL)で抽出した。有機層をブライン(5mL)で洗浄し、硫酸ナトリウムで脱水し、濾過し、濃縮して、標題化合物を得た。
2.39.3. 2,5−ジオキソピロリジン−1−イル6−(ビニルスルホンアミド)ヘキサノエート
実施例2.39.2(25mg)、1−エチル−3−[3−(ジメチルアミノ)プロピル]−カルボジイミド塩酸塩(43.3mg)および1−ヒドロキシピロリジン−2,5−ジオン(15.6mg)のジクロロメタン(8mL)中混合物を終夜撹拌し、飽和塩化アンモニウム水溶液およびブラインで洗浄し、濃縮して、標題化合物を得た。
2.39.4. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−2−[(N−{6−[(エテニルスルホニル)アミノ]ヘキサノイル}−β−アラニル)アミノ]フェニルβ−D−グルコピラノシドウロン酸
2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエートの代わりに実施例2.39.3を用い、実施例2.35.9における手順を用いて標題化合物を調製した。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 12.85 (s, 2H) 9.07 (s, 1H) 8.18 (s, 1H) 8.03 (d, 1H) 7.87 (t, 1H) 7.79 (d, 1H) 7.61 (d, 1H) 7.41-7.53 (m, 3H) 7.33-7.39 (m, 2H) 7.28 (s, 1H) 7.17 (t, 1H) 7.04-7.08 (m, 1H) 6.98-7.03 (m, 1H) 6.95 (d, 1H) 6.65 (dd, 1H) 5.91-6.04 (m, 2H) 4.96 (s, 4H) 4.82 (s, 1H) 3.22-3.48 (m, 11H) 3.01 (t, 2H) 2.86 (d, 3H) 2.73-2.80 (m, 2H) 2.51-2.57 (m, 2H) 1.99-2.12 (m, 5H) 1.29-1.52 (m, 6H) 0.90-1.29 (m, 12H) 0.82 (d, 6H). MS (ESI) m/e 1375.3 (M+H)+.
2.40. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−2−({N−[6−(エテニルスルホニル)ヘキサノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸(シントンHB)の合成
2.40.1. エチル6−((2−ヒドロキシエチル)チオ)ヘキサノエート
エチル6−ブロモヘキサノエート(3g)、2−メルカプトエタノール(0.947mL)およびKCO(12g)のエタノール(100mL)中混合物を終夜撹拌し、濾過した。濾液を濃縮した。残渣をジクロロメタン(100mL)に溶解し、水およびブラインで洗浄した。有機層をNaSOで脱水し、濾過し、濃縮して、標題化合物を得た。
2.40.2. 6−((2−ヒドロキシエチル)チオ)ヘキサン酸
実施例2.39.2の代わりに実施例2.40.1を用い、実施例2.39.2における手順を用いて標題化合物を調製した。MS(ESI)m/e175.1(M−HO)−。
2.40.3. 6−((2−ヒドロキシエチル)スルホニル)ヘキサン酸
実施例2.40.2(4g)の水(40mL)および1,4−ジオキサン(160mL)の混合物中撹拌溶液に、Oxone(登録商標)(38.4g)を加えた。混合物を終夜撹拌した。混合物を濾過し、濾液を濃縮した。残った水性層をジクロロメタンで抽出した。抽出物を合わせ、NaSOで脱水し、濾過し、濃縮して、標題化合物を得た。
2.40.4. 6−(ビニルスルホニル)ヘキサン酸
実施例2.40.3(1g)のジクロロメタン(10mL)中撹拌溶液に、アルゴン下0℃でトリエチルアミン(2.8mL)を加え、続いてメタンスルホニルクロリド(1.1mL)を加えた。混合物を終夜撹拌し、水およびブラインで洗浄した。有機層を硫酸ナトリウムで脱水し、濾過し、濃縮して、標題化合物を得た。
2.40.5. 2,5−ジオキソピロリジン−1−イル6−(ビニルスルホニル)ヘキサノエート
実施例2.40.4(0.88g)のジクロロメタン(10ml)中撹拌溶液に、1−ヒドロキシピロリジン−2,5−ジオン(0.54g)およびN,N’−メタンジイリデンジシクロヘキサンアミン(0.92g)を加えた。混合物を終夜撹拌し、濾過した。濾液を濃縮し、石油中10−25%酢酸エチルで溶出するフラッシュクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e304.1(M+1)
2.40.6. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−2−({N−[6−(エテニルスルホニル)ヘキサノイル]−β−アラニル}アミノ)フェニルβ−D−グルコピラノシドウロン酸
2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエートの代わりに実施例2.40.5を用い、実施例2.35.9における手順を用いて標題化合物を調製した。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 12.84 (s, 2H) 9.07 (s, 1H) 8.18 (s, 1H) 8.03 (d, 1H) 7.89 (t, 1H) 7.79 (d, 1H) 7.61 (d, 1H) 7.41-7.53 (m, 3H) 7.32-7.40 (m, 2H) 7.28 (s, 1H) 7.04-7.11 (m, 1H) 6.98-7.03 (m, 1H) 6.88-6.97 (m, 2H) 6.17-6.26 (m, 2H) 4.95 (s, 4H) 4.82 (s, 1H) 3.74-3.99 (m, 8H) 3.41-3.46 (m, 8H) 3.24-3.41 (m, 8H) 2.97-3.08 (m, 4H) 2.86 (d, 3H) 2.54 (t, 2H) 2.00-2.13 (m, 5H) 1.43-1.64 (m, 4H) 0.89-1.40 (m, 15H) 0.82 (d, 6H). MS (ESI) m/e 1360.2 (M+H)+.
2.41. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−5−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル]カルバモイル}オキシ)メチル]−3−[2−(2−{[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]アミノ}エトキシ)エトキシ]フェニルβ−D−グルコピラノシドウロン酸(シントンLB)の合成
2.41.1. 3−(1−((3−(2−((((2−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−(((2S,3R,4S,5S,6S)−3,4,5−トリアセトキシ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−5−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.26.7において実施例1.6.13を実施例1.1.17の代わりに用いることにより、標題化合物を調製した。
2.41.2. 3−(1−((3−(2−((((2−(2−(2−アミノエトキシ)エトキシ)−4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−5−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.26.8において実施例2.41.1を実施例2.26.7の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e1193(M+H)、1191(M−H)
2.41.3. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−5−フルオロ−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル]カルバモイル}オキシ)メチル]−3−[2−(2−{[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]アミノ}エトキシ)エトキシ]フェニルβ−D−グルコピラノシドウロン酸
実施例2.27において実施例2.41.2を実施例2.26.8の代わりに用いることにより、標題化合物を調製した。1H NMR (400MHz, ジメチルスルホキシド-d6) δ ppm 12.88 (bs, 1H), 8.03 (d, 1H), 8.02 (t, 1H), 7.78 (d, 1H), 7.73 (1H), 7.53 (d, 1H), 7.47 (td, 1H), 7.35 (td, 1H), 7.29 (s, 1H), 7.26 (t, 1H), 7.26 (t, 1H), 7.19 (d, 1H), 7.02 (d, 1H), 6.98 (s, 1H), 6.65 (d, 1H), 6.59 (dd, 1H), 5.07 (d, 1H), 5.01 (s, 1H), 4.92 (1H), 4.08 (m, 2H), 3.94 (t, 2H), 3.90 (d, 2H), 3.87 (s, 2H), 3.70 (m, 6H), 3.60 (m, 6H), 3.44 (t, 2H), 3.39 (t, 2H), 3.32 (t, 1H), 3.28 (dd, 1H), 3.17 (q, 2H), 3.03 (q, 2H), 2.92 (t, 2H), 2.33 (t, 2H), 2.10 (s, 3H), 1.37 (s, 2H), 1.25 (q, 4H), 1.11 (q, 4H), 1.00 (dd, 2H), 0.83 (s, 6H). MS (ESI) m/e 1366 (M+Na)+, 1342 (M-H)-.
2.42. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−3−{2−[2−({N−[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]−3−スルホ−L−アラニル}アミノ)エトキシ]エトキシ}フェニルβ−D−グルコピラノシドウロン酸(シントンNF)の合成
2.42.1. (2S,3R,4S,5S,6S)−2−(4−ホルミル−3−ヒドロキシフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
2,4−ジヒドロキシベンズアルデヒド(15g)および(2S,3R,4S,5S,6S)−2−ブロモ−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート(10g)をアセトニトリルに溶解し、続いて炭酸銀(10g)を加え、反応物を49℃に加熱した。4時間撹拌した後、反応物を冷却し、濾過し、濃縮した。粗製の標題化合物をジクロロメタン中で懸濁し、珪藻土に通して濾過し、濃縮した。残渣を1−100%酢酸エチル/ヘプタンで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。
2.42.2. (2S,3R,4S,5S,6S)−2−(3−ヒドロキシ−4−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.42.1(16.12g)のテトラヒドロフラン(200mL)およびメタノール(200mL)中溶液を0℃に冷却し、水素化ホウ素ナトリウム(1.476g)を少しずつ加えた。反応物を20分間撹拌し、水:飽和重炭酸ナトリウム水溶液の1:1混合物(400mL)でクエンチした。得られた固体を濾別し、酢酸エチルですすいだ。相を分離し、水性層を酢酸エチルで4回抽出した。合わせた有機層を硫酸マグネシウムで脱水し、濾過し、濃縮した。粗製の標題化合物を1−100%酢酸エチル/ヘプタンで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e473.9(M+NH
2.42.3. (2S,3R,4S,5S,6S)−2−(4−(((tert−ブチルジメチルシリル)オキシ)メチル)−3−ヒドロキシフェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
ジクロロメタン(168mL)中の実施例2.42.2(7.66g)およびtert−ブチルジメチルシリルクロリド(2.78g)に、−5℃でイミダゾール(2.63g)を加え、反応物を終夜撹拌して反応物の内温を12℃に加温した。反応混合物を飽和塩化アンモニウム水溶液中に注ぎ入れ、ジクロロメタンで4回抽出した。合わせた有機物をブラインで洗浄し、硫酸マグネシウムで脱水し、濾過し、濃縮した。粗製の標題化合物を1−50%酢酸エチル/ヘプタンで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。MS(ESI)m/e593.0(M+Na)
2.42.4. (2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−(((tert−ブチルジメチルシリル)オキシ)メチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
トルエン(88mL)中の実施例2.42.3(5.03g)およびトリフェニルホスフィン(4.62g)に、ジ−tert−ブチル−アゾジカルボキシレート(4.06g)を加え、反応物を30分間撹拌した。(9H−フルオレン−9−イル)メチル(2−(2−ヒドロキシエトキシ)エチル)カルバメートを加え、反応物を更に1.5時間撹拌した。反応物をシリカゲル上に直接ロードし、1−50%酢酸エチル/ヘプタンで溶出して、標題化合物を得た。
2.42.5. (2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−(ヒドロキシメチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.42.4(4.29g)を、酢酸:水:テトラヒドロフランの3:1:1溶液(100mL)中で終夜撹拌した。反応物を飽和重炭酸ナトリウム水溶液中に注ぎ入れ、酢酸エチルで抽出した。有機層を硫酸マグネシウムで脱水し、濾過し、濃縮した。粗製の標題化合物を1−50%酢酸エチル/ヘプタンで溶出するシリカゲルクロマトグラフィーにより精製して、標題化合物を得た。
2.42.6. (2S,3R,4S,5S,6S)−2−(3−(2−(2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)エトキシ)エトキシ)−4−((((4−ニトロフェノキシ)カルボニル)オキシ)メチル)フェノキシ)−6−(メトキシカルボニル)テトラヒドロ−2H−ピラン−3,4,5−トリイルトリアセテート
実施例2.42.5(0.595g)およびビス(4−ニトロフェニル)カルボネート(0.492g)のN,N−ジメチルホルムアミド(4mL)中溶液に、N−エチル−N−イソプロピルプロパン−2−アミン(0.212mL)を加えた。1.5時間後、反応物を高真空下で濃縮した。反応物をシリカゲル上に直接ロードし、1−50%酢酸エチル/ヘプタンを用いて溶出して、標題化合物を得た。MS(ESI)m/e922.9(M+Na)
2.42.7. 3−(1−((3−(2−((((2−(2−(2−アミノエトキシ)エトキシ)−4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例1.1.17(92mg)をジメチルホルムアミド(0.6mL)に溶解した。実施例2.42.6(129mg)およびN−エチル−N−イソプロピルプロパン−2−アミン(0.18mL)を加えた。反応物を室温で1時間撹拌した。次いで反応物を濃縮し、残渣をテトラヒドロフラン(0.6mL)およびメタノール(0.6mL)に溶解した。LiOH水溶液(1.94N、0.55mL)を加え、混合物を室温で1時間撹拌した。0.1%TFA水中の10−90%アセトニトリルで溶出する逆相クロマトグラフィー(C18カラム)により精製して、標題化合物をトリフルオロ酢酸塩として得た。MS(ESI)m/e1187.4(M−H)
2.42.8. 3−(1−((3−(2−((((2−(2−(2−((R)−2−アミノ−3−スルホプロパンアミド)エトキシ)エトキシ)−4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.34.1において実施例2.26.8を実施例2.31.5の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e1338.4(M−H)
2.42.9. 6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)−3−(1−((3−(2−((((4−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)−2−(2−(2−((R)−2−(3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパンアミド)−3−スルホプロパンアミド)エトキシ)エトキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピコリン酸
実施例2.34.2において実施例2.42.2を実施例2.34.1および2,5−ジオキソピロリジン−1−イル3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノエートを2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエートの代わりに用いることにより、標題化合物を調製した。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 8.06 (d, 1H), 8.02 (d, 1H), 7.80 (m, 2H), 7.61 (d,1H), 7.52 (d, 1H), 7.45 (m, 2H), 7.36 (m, 2H), 7.30 (s, 1H), 7.18 (d, 1H), 6.97 (s, 2H), 6.96 (m,2H), 6.66 (d, 1H), 6.58 (dd, 1H), 5.06 (br m, 1H), 4.96 (s, 4H), 4.31 (m, 1H), 4.09 (m, 2H), 3.88 (m, 3H), 3.80 (m, 2H), 3.71 (m, 2H), 3.59 (t, 2H), 3.44 (m, 6H), 3.28 (m, 4H), 3.19 (m, 2H), 3.01 (m, 2H), 2.82 (br m, 3H), 2.72 (m, 1H), 2.33 (m, 2H), 2.09 (s, 3H), 1.33 (br m, 2H), 1.28-0.90 (m, 10H), 0.84, 0.81 (ともにs, 計6H). MS (ESI-) m/e 1489.5 (M-1).
2.43. 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−3−{2−[2−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−3−スルホ−L−アラニル}アミノ)エトキシ]エトキシ}フェニルβ−D−グルコピラノシドウロン酸(シントンNG)の合成
実施例2.34.2において実施例2.42.1を実施例2.34.1の代わりに用いることにより、標題化合物を調製した。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 8.02 (d, 1H), 7.87 (d, 1H), 7.80 (m, 2H), 7.61 (d,1H), 7.52 (d, 1H), 7.45 (m, 2H), 7.36 (m, 2H), 7.30 (s, 1H), 7.18 (d, 1H), 6.97 (s, 2H), 6.96 (m,2H), 6.66 (d, 1H), 6.58 (dd, 1H), 5.06 (br m, 1H), 4.96 (s, 4H), 4.31 (m, 1H), 4.09 (m, 2H), 3.88 (m, 3H), 3.80 (m, 2H), 3.71 (m, 2H), 3.59 (t, 2H), 3.44 (m, 6H), 3.28 (m, 4H), 3.19 (m, 2H), 3.01 (m, 2H), 2.82 (br m, 3H), 2.72 (m, 1H), 2.09 (s, 3H), 2.05 (t, 2H), 1.46 (br m, 4H), 1.33 (br m, 2H), 1.28-0.90 (m, 12H), 0.84, 0.81 (ともにs, 計6H). MS (ESI-) m/e 1531.5 (M-1).
2.44. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−{1−[(3−{[22−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−メチル−4,20−ジオキソ−7,10,13,16−テトラオキサ−3,19−ジアザドコサ−1−イル]オキシ}−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル]−5−メチル−1H−ピラゾール−4−イル}ピリジン−2−カルボン酸(シントンAS)の合成
実施例1.1.17(56.9mg)およびN,N−ジイソプロピルエチルアミン(0.065mL)のN,N−ジメチルホルムアミド(1.0mL)中溶液に、2,5−ジオキソピロリジン−1−イル1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16−テトラオキサ−4−アザノナデカン−19−オエート(50mg)を加えた。反応物を終夜撹拌し、溶液を0.1容量/容量%トリフルオロ酢酸を含有する水中20−80%アセトニトリルで溶出するGilsonシステムを用いる逆相HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。1H NMR (400 MHz ジメチルスルホキシド-d6) δ ppm 12.85 (s, 1H), 8.08-7.95 (m, 1H), 7.79 (d, 1H), 7.62 (d, 1H), 7.55-7.40 (m, 3H), 7.40-7.32 (m, 2H), 7.28 (s, 1H), 7.01-6.89 (m, 3H), 4.95 (s, 2H), 3.89 (s, 2H), 3.81 (s, 2H), 3.55-3.25 (m, 23H), 3.14 (d, 2H), 2.97 (t, 4H), 2.76 (d, 2H), 2.57 (s, 1H), 2.31 (d, 1H), 2.09 (s, 3H), 1.35 (s, 2H), 1.30-0.93 (m, 12H), 0.85 (d, 6H). MS (ESI) m/e 1180.3 (M+Na)+.
2.45. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−{1−[(3−{[28−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−9−メチル−10,26−ジオキソ−3,6,13,16,19,22−ヘキサオキサ−9,25−ジアザオクタコサ−1−イル]オキシ}−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル]−5−メチル−1H−ピラゾール−4−イル}ピリジン−2−カルボン酸(シントンAT)の合成
実施例1.2.11(50mg)およびN,N−ジイソプロピルエチルアミン(0.051mL)のN,N−ジメチルホルムアミド(1.0mL)中溶液に、2,5−ジオキソピロリジン−1−イル1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16−テトラオキサ−4−アザノナデカン−19−オエート(39mg)を加えた。反応物を終夜撹拌し、0.1容量/容量%トリフルオロ酢酸を含有する水中20−80%アセトニトリルで溶出するGilsonシステムを用いる逆相HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。1H NMR (400 MHz ジメチルスルホキシド-d6) δ ppm 12.85 (s, 1H), 8.04 (d, 1H), 7.99 (t, 1H), 7.79 (d, 1H), 7.60 (d, 1H), 7.53-7.41 (m, 3H), 7.40-7.32 (m, 2H), 7.28 (s, 1H), 6.99 (s, 2H), 6.98-6.92 (m, 1H), 4.95 (bs, 2H), 3.92-3.85 (m, 1H), 3.81 (s, 2H), 3.63-3.55 (m, 4H), 3.55-3.31 (m, 28H), 3.18-3.10 (m, 2H), 3.05-2.98 (m, 2H), 2.97 (s, 2H), 2.80 (s, 2H), 2.59-2.50 (m, 1H), 2.32 (t, 2H), 2.10 (s, 3H), 1.39-1.34 (m, 2H), 1.31-1.18 (m, 4H), 1.20-0.92 (m, 6H), 0.84 (s, 6H). MS (ESI) m/e 1268.4 (M+Na)+.
2.46. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−{1−[(3−{2−[2−(2−{[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル](メチル)アミノ}エトキシ)エトキシ]エトキシ}−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル]−5−メチル−1H−ピラゾール−4−イル}ピリジン−2−カルボン酸(シントンAU)の合成
実施例1.2.11(50mg)およびN,N−ジイソプロピルエチルアミン(0.051mL)のN,N−ジメチルホルムアミド(1.0mL)中溶液に、2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエート(18mg)を加えた。反応物を終夜撹拌し、0.1容量/容量%トリフルオロ酢酸を含有する水中20−80%アセトニトリルで溶出するGilsonシステムを用いる逆相HPLCにより精製した。所望のフラクションを合わせ、凍結乾燥して、標題化合物を得た。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 12.92-12.82 (m, 1H), 8.03 (d, 1H), 7.79 (d, 1H), 7.62 (d, 1H), 7.53-7.41 (m, 3H), 7.40-7.32 (m, 2H), 7.28 (s, 1H), 7.01-6.97 (m, 2H), 6.98-6.92 (m, 1H), 4.95 (bs, 2H), 4.04-3.84 (m, 3H), 3.86-3.75 (m, 3H), 3.49-3.32 (m, 10H), 3.01 (s, 2H), 2.95 (s, 2H), 2.79 (s, 2H), 2.31-2.19 (m, 2H), 2.10 (s, 3H), 1.52-1.40 (m, 4H), 1.36 (s, 2H), 1.31-0.94 (m, 14H), 0.84 (s, 6H). MS (ESI) m/e 1041.3 (M+H)+.
2.47. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−(1−{[3−(2−{[4−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−2−スルホブタノイル](メチル)アミノ}エトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−カルボン酸(シントンBK)の合成
2.47.1. 4−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−1−((2,5−ジオキソピロリジン−1−イル)オキシ)−1−オキソブタン−2−スルホネート
窒素でスパージした100mLのフラスコ中、1−カルボキシ−3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパン−1−スルホネートを、ジメチルアセトアミド(20mL)に溶解した。この溶液にN−ヒドロキシスクシンイミド(440mg)および1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(1000mg)を加え、反応物を窒素雰囲気下室温で16時間撹拌した。溶媒を減圧下で濃縮し、溶媒中に含有された0.1容量/容量%酢酸を含むジクロロメタン中1−2%メタノールの濃度勾配で実行するシリカゲルクロマトグラフィーにより残渣を精製して、標題化合物を約80%活性化エステルおよび20%酸の混合物として得、これを更には精製せずに次のステップに使用した。MS(ESI)m/e360.1(M+H)
2.47.2. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−(1−{[3−(2−{[4−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−2−スルホブタノイル](メチル)アミノ}エトキシ)−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル]メチル}−5−メチル−1H−ピラゾール−4−イル)ピリジン−2−カルボン酸
実施例1.1.17(5mg)および実施例2.47.1(20.55mg)のN,N−ジメチルホルムアミド(0.25mL)中溶液に、N,N−ジイソプロピルエチルアミン(0.002mL)を加え、反応物を室温で16時間撹拌した。粗製の反応混合物を0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18 25×100mmカラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物を得た。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 8.01-7.95 (m, 1H), 7.76 (d, 1H), 7.60 (dd, 1H), 7.49-7.37 (m, 3H), 7.37-7.29 (m, 2H), 7.28-7.22 (m, 1H), 6.92 (d, 1H), 6.85 (s, 1H), 4.96 (bs, 2H), 3.89 (t, 2H), 3.80 (s, 2H), 3.35 (bs, 5H), 3.08-2.96 (m, 3H), 2.97-2.74 (m, 2H), 2.21 (bs, 1H), 2.08 (s, 4H), 1.42-1.38 (m, 2H), 1.31-1.23 (m, 4H), 1.23-1.01 (m, 6H), 0.97 (d, 1H), 0.89-0.79 (m, 6H). MS (ESI) m/e 1005.2 (M+H)+.
2.48. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−{1−[(3−{[34−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−メチル−4,32−ジオキソ−7,10,13,16,19,22,25,28−オクタオキサ−3,31−ジアザテトラトリアコンタ−1−イル]オキシ}−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル]−5−メチル−1H−ピラゾール−4−イル}ピリジン−2−カルボン酸(シントンBQ)の合成
2,5−ジオキソピロリジン−1−イル1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16−テトラオキサ−4−アザノナデカン−19−オエートの代わりに2,5−ジオキソピロリジン−1−イル1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16,19,22,25,28−オクタオキサ−4−アザヘントリアコンタン−31−オエート(MAL−dPEG8−NHS−Ester)を用いることにより、
実施例2.44において記載した通りに標題化合物を調製した。MS(ESI)m/e1334.3(M+H)
2.49. 6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−3−{1−[(3−{[28−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−メチル−4,26−ジオキソ−7,10,13,16,19,22−ヘキサオキサ−3,25−ジアザオクタコサ−1−イル]オキシ}−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル)メチル]−5−メチル−1H−ピラゾール−4−イル}ピリジン−2−カルボン酸(シントンBR)の合成
2,5−ジオキソピロリジン−1−イル1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16−テトラオキサ−4−アザノナデカン−19−オエートの代わりに2,5−ジオキソピロリジン−1−イル1−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)−3−オキソ−7,10,13,16,19,22−ヘキサオキサ−4−アザペンタコサン−25−オエート(MAL−dPEG6−NHS−エステル)を用いることにより、実施例2.44において記載した通りに標題化合物を調製した。MS(ESI)m/e1246.3(M+H)
2.50 2−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−5−{2−[2−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−3−スルホ−L−アラニル}アミノ)エトキシ]エトキシ}フェニルβ−D−グルコピラノシドウロン酸の合成
2.50.1 3−(1−((3−(2−((((4−(2−(2−アミノエトキシ)エトキシ)−2−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.30.1において実施例1.1.17を実施例1.3.7の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e1189.5(M+H)
2.50.2 3−(1−((3−(2−((((4−(2−(2−((R)−2−アミノ−3−スルホプロパンアミド)エトキシ)エトキシ)−2−(((2S,3R,4S,5S,6S)−6−カルボキシ−3,4,5−トリヒドロキシテトラヒドロ−2H−ピラン−2−イル)オキシ)ベンジル)オキシ)カルボニル)(メチル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.34.1において実施例2.50.1を実施例2.31.5の代わりに用いることにより、標題化合物を調製した。MS(ESI)m/e1339.5(M+H)
2.50.3 2−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−5−{2−[2−({N−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−3−スルホ−L−アラニル}アミノ)エトキシ]エトキシ}フェニルβ−D−グルコピラノシドウロン酸
実施例2.34.2において実施例2.50.2を実施例2.34.1の代わりに用いることにより、標題化合物を調製した。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 12.83 (s, 2H); 8.01 (dd, 1H), 7.86 (d, 1H), 7.80 - 7.71 (m, 2H), 7.60 (dd, 1H), 7.52 - 7.26 (m, 7H), 7.16 (d, 1H), 6.94 (d, 3H), 6.69 (d, 1H), 6.61 - 6.53 (m, 1H), 5.09 - 4.91 (m, 5H), 3.46 - 3.08 (m, 14H), 2.99 (t, 2H), 2.88 - 2.63 (m, 5H), 2.13 - 1.94 (m, 5H), 1.52 - 0.73 (m, 27H). MS (ESI) m/e 1531.4 (M-H)-.
2.51 N2−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−N6−(37−オキソ−2,5,8,11,14,17,20,23,26,29,32,35−ドデカオキサヘプタトリアコンタン−37−イル)−L−リシル−L−アラニル−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル]カルバモイル}オキシ)メチル]フェニル}−L−アラニンアミドの合成
2.51.1 (S)−6−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)−2−((tert−ブトキシカルボニル)アミノ)ヘキサン酸
(S)−6−アミノ−2−((tert−ブトキシカルボニル)アミノ)ヘキサン酸(8.5g)の5%NaHCO水溶液(300mL)および1,4−ジオキサン(40mL)の混合物中冷却(氷浴)溶液に、(9H−フルオレン−9−イル)メチルピロリジン−1−イルカルボネート(11.7g)の1,4−ジオキサン(40mL)中溶液を滴下添加した。反応混合物を室温に加温し、24時間撹拌した。更に3つのバイアルを上記した通りに準備した。反応が完了した後、4つの反応混合物を合わせ、有機溶媒を真空下で除去した。水性層を塩酸水溶液(1N)でpH3に酸性化し、次いで酢酸エチル(3×500mL)で抽出した。合わせた有機層をブラインで洗浄し、硫酸マグネシウムで脱水し、濾過し、真空下で濃縮して粗製の化合物を得、これをメチルtert−ブチルエーテルから再結晶化して、標題化合物を得た。1H NMR (400MHz, クロロホルム-d) δ 11.05 (br. s., 1H), 7.76 (d, 2H), 7.59 (d, 2H), 7.45 - 7.27 (m, 4H), 6.52 - 6.17 (m, 1H), 5.16 - 4.87 (m, 1H), 4.54 - 4.17 (m, 4H), 3.26 - 2.98 (m, 2H), 1.76 - 1.64 (m, 1H), 1.62 - 1.31 (m, 14H).
2.51.2 tert−ブチル17−ヒドロキシ−3,6,9,12,15−ペンタオキサヘプタデカン−1−オエート
3,6,9,12−テトラオキサテトラデカン−1,14−ジオール(40g)のトルエン(800mL)中溶液に、カリウムtert−ブトキシド(20.7g)を少しずつ加えた。混合物を室温で30分間撹拌した。tert−ブチル2−ブロモアセテート(36g)を混合物に滴下添加した。反応物を室温で16時間撹拌した。更に2つのバイアルを上記した通りに準備した。反応が完了した後、3つの反応混合物を合わせた。水(500mL)を合わせた混合物に加え、容量を濃縮して、1リットルにした。混合物をジクロロメタンで抽出し、1Nカリウムtert−ブトキシド水溶液(1L)で洗浄した。有機層を無水硫酸ナトリウムで脱水し、濾過し、減圧下で濃縮した。残渣をジクロロメタン:メタノール50:1で溶出するシリカゲルカラムクロマトグラフィーにより精製して、標題化合物を得た。1H NMR (400MHz, クロロホルム-d) δ 4.01 (s, 2H), 3.75 - 3.58 (m, 21H), 1.46 (s, 9H).
2.51.3 tert−ブチル17−(トシルオキシ)−3,6,9,12,15−ペンタオキサヘプタデカン−1−オエート
実施例2.51.2(30g)のジクロロメタン(500mL)中溶液に、窒素雰囲気下0℃で4−メチルベンゼン−1−スルホニルクロリド(19.5g)およびトリエチルアミン(10.3g)のジクロロメタン(500mL)中溶液を滴下添加した。混合物を室温で18時間撹拌し、水(100mL)中に注ぎ入れた。溶液をジクロロメタン(3×150mL)で抽出し、有機層を塩酸(6N、15mL)、次いでNaHCO(5%水溶液、15mL)、続いて水(20mL)で洗浄した。有機層を無水硫酸ナトリウムで脱水し、濾過し、濃縮して残渣を得、これを石油エーテル:酢酸エチル10:1からジクロロメタン:メタノール5:1で溶出するシリカゲルカラムクロマトグラフィーにより精製して、標題化合物を得た。1H NMR (400 MHz, クロロホルム-d) δ 7.79 (d, 2H), 7.34 (d, 2H), 4.18 - 4.13 (m, 2H), 4.01 (s, 2H), 3.72 - 3.56 (m, 18H), 2.44 (s, 3H), 1.47 (s, 9H).
2.51.4 2,5,8,11,14,17,20,23,26,29,32,35−ドデカオキサヘプタトリアコンタン−37−酸
実施例2.51.3(16g)のテトラヒドロフラン(300mL)中溶液に、0℃で水素化ナトリウム(1.6g)を加えた。混合物を室温で4時間撹拌した。2,5,8,11,14,17−ヘキサオキサノナデカン−19−オール(32.8g)のテトラヒドロフラン(300mL)中溶液を、室温で反応混合物に滴下添加した。得られた反応混合物を室温で16時間撹拌し、水(20mL)を加えた。混合物を室温で更に3時間撹拌して、tert−ブチルエステル加水分解を完了させた。最後の反応混合物を減圧下で濃縮して、有機溶媒を除去した。水性残渣をジクロロメタン(2×150mL)で抽出した。水性層をpH3に酸性化し、次いで酢酸エチル(2×150mL)で抽出した。最後に、水性層を濃縮して粗生成物を得、これを石油エーテル:酢酸エチル1:1からジクロロメタン:メタノール5:1の濃度勾配で溶出するシリカゲルカラムクロマトグラフィーにより精製して、標題化合物を得た。1H NMR (400MHz, クロロホルム-d) δ 4.19 (s, 2H), 3.80 - 3.75 (m, 2H), 3.73 - 3.62 (m, 40H), 3.57 (dd, 2H), 3.40 (s, 3H)
2.51.5 (43S,46S)−43−((tert−ブトキシカルボニル)アミノ)−46−メチル−37,44−ジオキソ−2,5,8,11,14,17,20,23,26,29,32,35−ドデカオキサ−38,45−ジアザヘプタテトラコンタン−47−酸
標準のFmoc固相ペプチド合成手順および2−クロロトリチル樹脂を用いて、実施例2.51.5を合成した。具体的には、シーブ乾燥した無水ジクロロメタン(100mL)中の2−クロロトリチル樹脂(12g)、(S)−2−((((9H−フルオレン−9−イル)メトキシ)カルボニル)アミノ)プロパン酸(10g)およびN,N−ジイソプロピルエチルアミン(44.9mL)を14℃で24時間振盪した。混合物を濾過し、ケーキをジクロロメタン(3×500mL)、N,N−ジメチルホルムアミド(2×250mL)およびメタノール(2×250mL)(各ステップ5分)で洗浄した。上記樹脂に20%ピペリジン/N,N−ジメチルホルムアミド(100mL)を加えて、Fmoc基を除去した。混合物に窒素ガスを15分間吹き込み、濾過した。樹脂を20%ピペリジン/N,N−ジメチルホルムアミド(100mL)で更に5回(各洗浄ステップ5分)洗浄し、N,N−ジメチルホルムアミド(5×100mL)で洗浄して、脱保護化したL−Ala担持樹脂を得た。
実施例2.51.1(9.0g)のN,N−ジメチルホルムアミド(50mL)中溶液に、ヒドロキシベンゾトリアゾール(3.5g)、2−(6−クロロ−1H−ベンゾトリアゾール−1−イル)−1,1,3,3−テトラメチルアミニウムヘキサフルオロホスフェート(9.3g)およびN,N−ジイソプロピルエチルアミン(8.4mL)を加えた。混合物を20℃で30分間撹拌した。上記混合物をL−Ala担持樹脂に加え、窒素ガスを室温で90分間吹き込むことにより混合した。混合物を濾過し、樹脂をN,N−ジメチルホルムアミド(各ステップ5分)で洗浄した。上記樹脂に約20%ピペリジン/N,N−ジメチルホルムアミド(100mL)を加えて、Fmoc基を除去した。混合物に窒素ガスを15分間吹き込み、濾過した。樹脂を20%ピペリジン/N,N−ジメチルホルムアミド(100mL×5)およびN,N−ジメチルホルムアミド(100mL×5)(各洗浄ステップ5分)で洗浄した。
実施例2.51.4(11.0g)のN,N−ジメチルホルムアミド(50mL)中溶液に、ヒドロキシベンゾトリアゾール(3.5g)、2−(6−クロロ−1H−ベンゾトリアゾール−1−イル)−1,1,3,3−テトラメチルアミニウムヘキサフルオロホスフェート(9.3g)およびN,N−ジイソプロピルエチルアミン(8.4mL)を加え、混合物を樹脂に加え、窒素ガスを室温で3時間吹き込むことにより混合した。混合物を濾過し、残渣をN,N−ジメチルホルムアミド(5×100mL)、ジクロロメタン(8×100mL)(各ステップ5分)で洗浄した。
最終の樹脂に1%トリフルオロ酢酸/ジクロロメタン(100mL)を加え、窒素ガスを5分間吹き込むことにより混合した。混合物を濾過し、濾液を集めた。開裂操作を4回繰り返した。合わせた濾液をNaHCOでpH7にし、水で洗浄した。有機層を無水硫酸ナトリウムで脱水し、濾過し、濃縮して、標題化合物を得た。1H NMR (400MHz, メタノール-d4) δ 4.44 - 4.33 (m, 1H), 4.08 - 4.00 (m, 1H), 3.98 (s, 2H), 3.77 - 3.57 (m, 42H), 3.57 - 3.51 (m, 2H), 3.36 (s, 3H), 3.25 (t, 2H), 1.77 (br. s., 1H), 1.70 - 1.51 (m, 4H), 1.44 (s, 9H), 1.42 - 1.39 (m, 3H).
2.51.6 3−(1−((3−(2−((((4−((S)−2−((S)−2−アミノ−3−メチルブタンアミド)プロパンアミド)ベンジル)オキシ)カルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例1.3.7のトリフルオロ酢酸塩(0.102g)、実施例2.21.4(0.089g)およびN,N−ジイソプロピルエチルアミン(0.104mL)の溶液を、N,N−ジメチルホルムアミド(1mL)中室温で16時間撹拌した。ジエチルアミン(0.062mL)を加え、反応物を室温で2時間撹拌した。反応物を水(1mL)で希釈し、トリフルオロ酢酸(0.050mL)でクエンチし、0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18カラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物を得た。MS(LC−MS)m/e1066.5(M+H)
2.51.7 6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)−3−(1−((3−(2−((((4−((43S,46S,49S,52S)−43−((tert−ブトキシカルボニル)アミノ)−49−イソプロピル−46,52−ジメチル−37,44,47,50−テトラオキソ−2,5,8,11,14,17,20,23,26,29,32,35−ドデカオキサ−38,45,48,51−テトラアザトリペンタコンタンアミド)ベンジル)オキシ)カルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)ピコリン酸
実施例2.51.5(16.68mg)を、1−[ビス(ジメチルアミノ)メチレン]−1H−1,2,3−トリアゾロ[4,5−b]ピリジニウム3−オキシドヘキサフルオロホスフェート(7.25mg)およびN,N−ジイソプロピルエチルアミン(0.015mL)とN−メチルピロリドン(1mL)中で10分間混合し、実施例2.51.6(25mg)およびN,N−ジイソプロピルエチルアミン(0.015mL)のN−メチルピロリジノン(1.5mL)中溶液に加えた。反応混合物を室温で2時間撹拌した。反応混合物を0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18カラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物を得た。MS(ESI)m/e961.33(2M+H)2+
2.51.8 3−(1−((3−(2−((((4−((43S,46S,49S,52S)−43−アミノ−49−イソプロピル−46,52−ジメチル−37,44,47,50−テトラオキソ−2,5,8,11,14,17,20,23,26,29,32,35−ドデカオキサ−38,45,48,51−テトラアザトリペンタコンタンアミド)ベンジル)オキシ)カルボニル)アミノ)エトキシ)−5,7−ジメチルアダマンタン−1−イル)メチル)−5−メチル−1H−ピラゾール−4−イル)−6−(8−(ベンゾ[d]チアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル)ピコリン酸
実施例2.51.7(25mg)をトリフルオロ酢酸1mLで5分間処理した。窒素を穏やかに流すことにより溶媒を除去した。残渣を1:1アセトニトリル:水から凍結乾燥して標題化合物を得、これを更には精製せずに次のステップに使用した。MS(LC−MS)m/e1822.0(M+H)
2.51.9 N2−[6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノイル]−N6−(37−オキソ−2,5,8,11,14,17,20,23,26,29,32,35−ドデカオキサヘプタトリアコンタン−37−イル)−L−リシル−L−アラニル−L−バリル−N−{4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル]カルバモイル}オキシ)メチル]フェニル}−L−アラニンアミド
実施例2.51.8(23mg)、N−スクシンイミジル6−マレイミドヘキサノエート(4.40mg)およびヒドロキシベンゾトリアゾール(0.321mg)のN−メチルピロリドン(1.5mL)中溶液に、N,N−ジイソプロピルエチルアミン(8.28μL)を加えた。反応混合物を室温で16時間撹拌した。反応混合物を0.1容量/容量%トリフルオロ酢酸を含有する水中5−85%アセトニトリルで溶出するGilsonシステムおよびC18カラムを用いる逆相HPLCにより精製した。生成物フラクションを凍結乾燥して、標題化合物を得た。1H NMR (400 MHz, ジメチルスルホキシド-d6) δ ppm 7.76 (dq, 3H), 7.64 - 7.51 (m, 5H), 7.45 (dd, 4H), 7.35 (td, Hz, 3H), 4.97 (d, 5H), 3.95 - 3.79 (m, 8H), 3.57 (d, 46H), 3.50 - 3.30 (m, 14H), 1.58 - 0.82 (m, 59H). MS (LC-MS) m/e 1007.8 (2M+H)2+.
2.52 2−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−5−[2−(2−{[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]アミノ}エトキシ)エトキシ]フェニルβ−D−グルコピラノシドウロン酸の合成
実施例2.30.2において実施例2.50.1を実施例2.30.1の代わりに用いることにより、標題化合物を調製した。1H NMR (500 MHz, ジメチルスルホキシド-d6) δ ppm 12.87 (s, 2H); 8.06 - 7.98 (m, 1H), 7.78 (d, 1H), 7.61 (dd, 1H), 7.52 - 7.41 (m, 2H), 7.39 - 7.26 (m, 2H), 7.18 (d, 1H), 7.01 - 6.91 (m, 2H), 6.68 (d, 1H), 6.59 (d, 1H), 5.08 - 4.98 (m, 2H), 4.95 (s, 1H), 3.59 (t, 1H), 3.46 - 3.36 (m, 3H), 3.34 - 3.22 (m, 2H), 3.16 (q, 1H), 3.01 (t, 1H), 2.85 (d, 2H), 2.32 (t, 1H), 2.09 (s, 2H), 1.44 - 0.71 (m, 10H). MS (ESI) m/e 1338.4 (M-H)-.
2.53 4−[({[2−({3−[(4−{6−[8−(1,3−ベンゾチアゾール−2−イルカルバモイル)−3,4−ジヒドロイソキノリン−2(1H)−イル]−2−カルボキシピリジン−3−イル}−5−メチル−1H−ピラゾール−1−イル)メチル]−5,7−ジメチルトリシクロ[3.3.1.13,7]デカ−1−イル}オキシ)エチル](メチル)カルバモイル}オキシ)メチル]−3−[3−({N−[3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノイル]−3−スルホ−L−アラニル}アミノ)プロポキシ]フェニルβ−D−グルコピラノシドウロン酸の合成
2,5−ジオキソピロリジン−1−イル3−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)プロパノエートを2,5−ジオキソピロリジン−1−イル6−(2,5−ジオキソ−2,5−ジヒドロ−1H−ピロール−1−イル)ヘキサノエートおよびN−メチル−2−ピロリドンをN,N−ジメチルホルムアミドの代わりに用いることにより、実施例2.34.2において記載した通りに標題化合物を調製した。MS(ESI)m/e1458.0(M−H)
[実施例3]
例示的なBcl−xL阻害性ADCの合成
例示的なADCは、以下に記載されている4つの例示的な方法の1つを使用して合成した。表1は、例示的なADCのそれぞれを合成するためにどの方法を使用したかを関係づけたものである。
方法A.37℃に予め加熱した抗体(10mg/mL、1mL)の溶液にTCEP(10mM、0.017mL)の溶液を加えた。この反応混合物を37℃において1時間、維持した。リンカー−ウォーヘッドペイロード(warhead payload)の溶液(3.3mM、DMSO中の0.160mL)に還元した抗体の溶液を加え、30分間、穏やかに混合した。脱塩カラム(使用前にDPBSにより3回、洗浄したPD10)、次いでDPBS(1.6mL)に、この反応溶液をロードし、追加のDPBS(3mL)を用いて溶出した。精製されたADC溶液を0.2ミクロンの低タンパク質結合13mmシリンジフィルターによりろ過し、4℃において保管した。
方法B.37℃に予め加熱した抗体(10mg/mL、1mL)の溶液にTCEP(10mM、0.017mL)の溶液を加えた。この反応混合物を37℃において1時間、維持した。ホウ酸緩衝液(0.05mL、0.5M、pH8)を添加することにより、還元した抗体の溶液をpH=8に調節し、リンカー−ウォーヘッドペイロードの溶液(3.3mM、DMSO中の0.160mL)に加え、4時間、穏やかに混合した。この反応溶液を脱塩カラム(使用前にDPBSにより3回、洗浄したPD10)にロードし、次いでDPBS(1.6mL)をロードし、追加のDPBS(3mL)を用いて溶出した。精製したADC溶液を0.2ミクロンの低タンパク質結合13mmシリンジフィルターによりろ過し、4℃において保管した。
方法C.拡張デッキ上に、I235/96チップモジュラーディスペンステクノロジー(MDT)、グリッパーアーム(部品7400358)を含有する使い捨てヘッド(部品70243540)および8−チップVarispanピペッティングアーム(部品7002357)を備えた、PerkinElmer Janus(部品AJL8M01)ロボット型液体取り扱いシステムを使用して、コンジュゲートを行った。このPerkinElmer Janusシステムは、WinPREPバージョン4.8.3.315ソフトウェアを使用して制御した。
Pallフィルタープレート5052は、MDTを使用して100μL 1×DPBSにより予め湿らせた。真空を10秒間、このフィルタープレートに適用し、この後に、5秒間、排気し、フィルタープレートからDPBSを除去した。DPBS中のプロテインA樹脂(GE MabSelect Sure)の50%スラリーを、磁気ボールを備えた8ウェルレザーバーに注ぎ入れ、このレザーバープレートの下にある移動式磁石を通過させることによって樹脂を混合した。導電性チップ1mLを備えた8チップVarispanアームを使用して、樹脂を吸引(250μL)し、96ウェルフィルタープレートに移した。真空を2サイクル適用して、緩衝液の大部分を除去した。MDTを使用して、150μLの1×PBSを吸引し、樹脂を保持している96ウェルフィルタープレートに分注した。真空を適用して、樹脂からの緩衝液を除去した。洗浄/真空サイクルを3回、繰り返した。2mLの96ウェルコレクションプレートをJanusデッキに装着し、後ほど使用するために、MDTにより、5×DPBSを450μL、上記のコレクションプレートに移した。DPBS(200μL)中の溶液としての還元抗体(2mg)を、条件Aに関して上記の通り、調製し、96ウェルプレートに予めロードした。樹脂を含有するフィルタープレートウェルに還元抗体の溶液を移し、この混合物を、MDTを用いて、1サイクルあたり45秒間、ウェル内の100μLの量を繰り返し吸引/分注することによって混合した。吸引/分注サイクルを5分間の過程にわたり、合計で5回、繰り返した。真空を2サイクルの間、フィルタープレートに適用し、これにより、過剰量の抗体を除去した。MDTチップを5サイクル、水により洗浄した(200μL、合計量1mL)。MDTを吸引し、樹脂に結合されている抗体を含有するフィルタープレートウェルにDPBS150μLを分注し、真空を2サイクル、適用した。洗浄および真空という順序をさらに2回、繰り返した。最後の真空サイクルの後、1×DPBSの100μLを樹脂結合抗体を含有するウェルに分注した。次に、MDTにより、96ウェルフォーマット中にプレート培養されているシントンの3.3mMジメチルスルホキシド溶液30μLの各々を採集し、この溶液を、DPBS中の樹脂結合抗体を含有するフィルタープレートに分注した。コンジュゲート混合物を含有するウェルを、MDTを用いて、1サイクルあたり45秒間、ウェル内の100μLの量を繰り返し吸引/分注することによって混合した。吸引/分注という順序を5分間の過程にわたり、合計で5回、繰り返した。真空を2サイクル適用して、過剰量のシントンを除去して廃棄した。MDTチップを5サイクル、水により洗浄した(200μL、合計量1mL)。MDTによりDPBS(150μL)を吸引して、コンジュゲート混合物に分注し、真空を2サイクル、適用した。洗浄および真空という順序をさらに2回、繰り返した。次に、MDTのグリッパーをフィルタープレートに移動し、保持ステーションに巻き付けた。MDTにより、真空マニホールド内部に、10×DPBSの450μLを含有する2mLコレクションプレートを置いた。MDTにより、フィルタープレートおよび巻き付け体を配置することによって、真空マニホールドを再度、組み立てた。MDTチップを5サイクル、水により洗浄した(200μL、合計量1mL)。MDTにより吸引して、IgG Elution Buffer3.75(Pierce)100μLをコンジュゲート混合物に分注した。1分後、真空を2サイクル、適用し、この溶離液を、450μLの5×DPBSを含有する受け用プレート中に捕捉した。吸引/分注という順序を3回、さらに繰り返し、DPBS中、pH7.4において、1.5−2.5mg/mLの範囲の濃度を有するADC試料がもたらされた。
方法D.拡張デッキ上に、I235/96チップモジュラーディスペンステクノロジー(MDT)、グリッパーアーム(部品7400358)を含有する使い捨てヘッド(部品70243540)および8−チップVarispanピペッティングアーム(部品7002357)を備えた、PerkinElmer Janus(部品AJL8M01)ロボット型液体取り扱いシステムを使用して、コンジュゲートを行った。PerkinElmer Janusシステムは、WinPREPバージョン4.8.3.315ソフトウェアを使用して制御した。
Pallフィルタープレート5052は、MDTを使用して100μL 1×DPBSにより予め湿らせた。真空を10秒間、このフィルタープレートに適用し、この後に、5秒間、排気し、フィルタープレートからDPBSを除去した。DPBS中のプロテインA樹脂(GE MabSelect Sure)の50%スラリーを、磁気ボールを備えた8ウェルレザーバーに注ぎ入れ、このレザーバープレートの下にある移動式磁石を通過させることによって樹脂を混合した。導電性チップ1mLを備えた8チップVarispanアームを使用して、樹脂を吸引(250μL)し、96ウェルフィルタープレートに移した。真空をフィルタープレートに2サイクル適用して、緩衝液の大部分を除去した。MDTにより吸引して、樹脂を含有するフィルタープレートウェルにDPBS150μLを分注した。洗浄および真空という順序をさらに2回、繰り返した。2mLの96ウェルコレクションプレートをJanusデッキに装着し、後ほど使用するために、MDTにより、5×DPBSを450μL、上記のコレクションプレートに移した。DPBS(200μL)中の溶液としての還元抗体(2mg)を、条件Aに関して上記の通り、調製し、96ウェルプレートに分注した。次に、MDTにより、96ウェルフォーマット中にプレート培養されているシントンの3.3mMジメチルスルホキシド溶液30μLをそれぞれ採集し、この溶液を、DPBS中の還元抗体をロードしたプレートに分注した。MDTを用いて、ウェル内において100μLの量の吸引/分注を2回、繰り返すことにより、この混合物を混合した。5分後、コンジュゲートした反応混合物(230μL)を、樹脂を含有する96ウェルフィルタープレートに移した。コンジュゲート混合物および樹脂を含有するウェルを、MDTを用いて、1サイクルあたり45秒間、ウェル内の100μLの量を繰り返し吸引/分注することによって混合した。吸引/分注という順序を5分間の過程にわたり、合計で5回、繰り返した。真空を2サイクル適用して、過剰量のシントンおよびタンパク質を除去して廃棄した。MDTチップを5サイクル、水により洗浄した(200μL、合計量1mL)。MDTによりDPBS(150μL)を吸引して、コンジュゲート混合物に分注し、真空を2サイクル、適用した。洗浄および真空という順序をさらに2回、繰り返した。次に、MDTのグリッパーをフィルタープレートに移動し、保持ステーションに巻き付けた。MDTにより、真空マニホールド内部に、10×DPBSの450μLを含有する2mLコレクションプレートを置いた。MDTにより、フィルタープレートおよび巻き付け体を配置することによって、真空マニホールドを再度、組み立てた。MDTチップを5サイクル、水により洗浄した(200μL、合計量1mL)。MDTにより吸引して、IgG Elution Buffer 3.75(P)100μLをコンジュゲート混合物に分注した。1分後、真空を2サイクル、適用し、この溶離液を、450μLの5×DPBSを含有する受け用プレート中に捕捉した。吸引/分注の順序を3回、さらに繰り返し、DPBS中、pH7.4において1.5−2.5mg/mLの範囲の濃度を有するADC試料がもたらされた。
方法E.室温において、抗体(10mg/mL、1mL)の溶液にTCEP(10mM、0.017mL)の溶液を加えた。この反応混合物を75分間、37℃まで加熱した。還元抗体の溶液を室温まで冷却し、シントン(10mM、DMSO中の0.040mL)溶液に加え、次いで、ホウ酸緩衝液(0.1mL、1M、pH8)を添加した。この反応溶液を室温において3日間、静置し、脱塩カラム(使用前に、DPBSにより3×5mLにより洗浄したPD10)にロードし、次いでDPBS(1.6mL)をロードし、追加のDPBS(3mL)を用いて溶出した。精製されたADC溶液を0.2ミクロンの低タンパク質結合13mmシリンジフィルターによりろ過し、4Cにおいて保管した。
以下の表1は、どの例示的な方法により、例示的なADCを合成したかを示している。EpCAM(ING−1)と称されるEpCAMに対するモノクローナル抗体は、Studnickaら、1994年、Protein Engineering、7巻:805−814頁およびAmmonsら、2003年、Neoplasia 5巻:146−154頁に記載されている。N901と称されるNCAM−1抗体は、Roguskaら、1994年、Proc Natl Acad Sci USA 91巻:969−973頁に記載された。AB033と称されるEGFR抗体は、WO2009/134776に記載されている(120頁を参照されたい。)。
Figure 2020152726
Figure 2020152726
Figure 2020152726
[実施例4]
例示的なBcl−xL阻害剤はBcl−xLに結合する
実施例1.1、1.2、1.3、1.4、1.5、1.6、1.7、および1.8(それぞれ、化合物W1.01−W1.08)の例示的なBclxL阻害剤がBcl−xLに結合する能力を、時間分解蛍光共鳴エネルギー移動(TR−FRET)アッセイを使用して実証した。Tb−抗GST抗体は、Invitrogen(カタログ番号PV4216)から購入した。
4.1 プローブ合成
4.1.1. 試薬
試薬はすべて、別段の指定がない限り、供給業者から得たままで使用した。ジイソプロピルエチルアミン(DIEA)、ジクロロメタン(DCM)、N−メチルピロリドン(NMP)、2−(1H−ベンゾトリアゾール−1−イル)−1,1,3,3−テトラメチルウロニウムヘキサフルオロホスフェート(HBTU)、N−ヒドロキシベンゾトリアゾール(HOBt)およびピペリジンを含むペプチド合成試薬は、Applied Biosystems,Inc.(ABI)、Foster City、CAまたはAmerican Bioanalytical、Natick、MAから得た。
予めロードされた9−フルオレニルメチルオキシカルボニル(Fmoc)アミノ酸カートリッジ(Fmoc−Ala−OH、Fmoc−Cys(Trt)−OH、Fmoc−Asp(tBu)−OH、Fmoc−Glu(tBu)−OH、Fmoc−Phe−OH、Fmoc−Gly−OH、Fmoc−His(Trt)−OH、Fmoc−Ile−OH、Fmoc−Leu−OH、Fmoc−Lys(Boc)−OH、Fmoc−Met−OH、Fmoc−Asn(Trt)−OH、Fmoc−Pro−OH、Fmor−Gln(Trt)−OH、Fmoc−Arg(Pbf)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Thr(tBu)−OH、Fmoc−Val−OH、Fmoc−Trp(Boc)−OH、Fmoc−Tyr(tBu)−OH)は、ABIまたはAnaspec、San Jose、CAから得た。
ペプチド合成用樹脂(Fmoc−RinkアミドMBHA樹脂)およびFmoc−Lys(Mtt)−OHは、Novabiochem、San Diego、CAから得た。
単一異性体の6−カルボキシフルオレセインスクシンイミジルエステル(6−FAM−NHS)はAnaspecから得た。
トリフルオロ酢酸(TFA)は、Oakwood Products、West Columbia、SCから得た。
チオアニソール、フェノール、トリイソプロピルシラン(TIS)、3,6−ジオキサ−1,8−オクタンジチオール(DODT)およびイソプロパノールは、Aldrich Chemical Co.、Milwaukee、WIから得た。
マトリックス支援レーザー脱離イオン化質量スペクトル(MALDI−MS)は、Applied Biosystems Voyager DE−PRO MSで記録した。
エレクトロスプレー質量スペクトル(ESI−MS)は、陽イオンモードおよび陰イオンモードのどちらも、Finnigan SSQ7000(Finnigan Corp.、San Jose、CA)で記録した。
4.1.2. 固相ペプチド合成(SPPS)の一般手順
ペプチドは、250μmolスケールのFastmoc(商標)カップリングサイクルを使用する、ABI 433Aペプチド合成装置において、250μmol以下の予め充填されているWang樹脂/容器を用いて合成した。フルオロフォアの結合位を除いて、標準Fmoc−アミノ酸1mmolを含有する事前充填カートリッジ(1mmolのFmoc−Lys(Mtt)−OHがカートリッジに入っている。)を、コンダクティビティフィードバックモニタリング(conductivity feedback monitoring)と共に使用した。N末端基アセチル化は、標準カップリング条件下、カートリッジ中、1mmolの酢酸を使用することにより行った。
4.1.3. リシンから4−メチルトリチル(Mtt)の除去
合成装置からの樹脂を、ジクロロメタンにより3回洗浄して、濡れたまま維持した。95:4:1のジクロロメタン:トリイソプロピルシラン:トリフルオロ酢酸150mLを30分間かけて、上記の樹脂床に流した。この混合物は深黄色になり、次に、退色して淡黄色になった。DMF100mLを15分間かけて、上記の床に流した。次に、この樹脂をDMFにより3回、洗浄し、ろ過した。ニンヒドリン試験は、一級アミンの強いシグナルを示した。
4.1.4. 6−カルボキシフルオレセイン−NHS(6−FAM−NHS)により標識した樹脂
樹脂を1% DIEA/DMF中の2当量の6−FAM−NHSにより処理し、一晩、周囲温度において撹拌または振盪した。完了すると、この樹脂から液を廃棄し、DMFにより3回、(1×ジクロロメタンおよび1×メタノール)により3回、洗浄して乾燥すると、ニンヒドリン試験に陰性のオレンジ色樹脂が得られた。
4.1.5. 樹脂結合ペプチドの切断および脱保護の一般手順
ペプチドは、80%のTFA、5%の水、5%のチオアニソール、5%のフェノール、2.5%のTISおよび2.5%のEDT(1mL/0.1g樹脂)からなる切断カクテル中、周囲温度において3時間、振盪することにより樹脂から切断した。この樹脂をろ過により除去し、TFAにより2回、すすいだ。TFAをろ液から蒸発させて、エーテル(10mL/0.1g樹脂)を用いて生成物を沈殿させて、遠心分離により回収し、エーテル(10mL/0.1g樹脂)により2回、洗浄して乾燥すると、粗製ペプチドが得られた。
4.1.6. ペプチドを精製する一般手順
粗製ペプチドは、100Åの細孔サイズを有する、Delta−Pak(商標)C18 15μm粒子を充填した、2つの25×100mm区画を含有する放射状圧縮カラムにおいて、Unipoint(登録商標)分析ソフトウェア(Gilson、Inc.、Middleton、WI)を操作するGilson分取HPLCシステムにおいて精製し、一覧表示されているグラジエント法の1つを用いて溶出した。1回の注射あたり、1から2ミリリットルの粗製ペプチド溶液(90%DMSO/水中10mg/mL)を精製した。各実施からの生成物を含有するピークをプールしておき、凍結乾燥した。すべての分取操作は、緩衝液A:0.1%TFA−水および緩衝液B:アセトニトリルとしての溶離液を用いて、20mL/分において実施した。
4.1.7. 分析用HPLCの一般手順
分析用HPLCは、120Åの細孔サイズを有するODS−AQ 5μm粒子を充填した4.6×250mmYMCカラム上、HPLC 3D ChemStationソフトウェアバージョンA.03.04(Hewlett−Packard.Palo Alto、CA)を操作する、ダイオードアレー検出器およびHewlett−Packard1046A蛍光検出器を備えた、Hewlett−Packard1200シリーズシステムにおいて行い、7分間、開始条件において予め平衡にした後、以下に一覧表示されているグラジエント法の1つを用いて溶出した。溶離液は、緩衝液A:0.1%TFA−水および緩衝液B:アセトニトリルであった。すべてのグラジエントの流速は1mL/分とした。
4.1.8. F−Bakプローブの合成
Bcl−xLに結合するペプチドプローブF−bakは、以下に記載されている通り合成した。プローブであるF−Bakは、N末端においてアセチル化され、C末端においてアミド化されており、アミノ酸配列GQVGRQLAIIGDKINRを有する。これは、6−FAMによりリシン残基(K)においてフルオレセイン化されている。プローブF−Bakは、以下の通り略すことができる。アセチル−GQVGRQLAIIGDK(6−FAM)INR−NH
プローブF−Bakを作製するため、Fmoc−RinkアミドMBHA樹脂を一般的なペプチド合成手順を使用して伸長し、保護されている樹脂結合ペプチド(1.020g)を得た。Mtt基を除去し、6−FAM−NHSにより標識し、切断し、本明細書の上に記載されている通り脱保護すると、粗生成物がオレンジ色固体(0.37g)として得られた。この生成物を、RP−HPLCによって精製した。主要ピークにかかるフラクションを分析用RP−HPLCによって試験し、純粋なフラクションを単離して凍結乾燥し、この主要ピークは、黄色固体としての表題化合物(0.0802g)が得られた。MALDI−MS m/z=2137.1[(M+H)]。
4.1.9. ペプチドプローブF−Bakの代替合成
代替方法において、保護ペプチドは、フルオレセイン(6−FAM)標識リシン(1mmolのFmoc−Lys(4−メチルトリチル)をカートリッジに秤量した。)を除いて、事前充填されている1mmolのアミノ酸カートリッジを使用して、Fastmoc(商標)カップリングサイクルを操作するApplied Biosystems 433A自動ペプチド合成装置において、0.25mmolのFmoc−RinkアミドMBHA樹脂(Novabiochem)上で構築した。N末端アセチル基は、本明細書の上に記載されているカートリッジおよびカップリングにおいて、1mmolの酢酸を投入することにより組み込んだ。4−メチルトリチル基の選択的除去は、樹脂に15分間かけて流した95:4:1のDCM:TIS:TFA(v/v/v)の溶液を用い、次いで、ジメチルホルムアミドを流してクエンチすることによって行った。単一異性体の6−カルボキシフルオレセイン−NHSをDMF中の1%DIEA中のリシン側鎖と反応させて、ニンヒドリン試験により完了していることを確認した。このペプチドは、80:5:5:5:2.5:2.5のTFA/水/フェノール/チオアニソール/トリイソプロピルシラン:3,6−ジオキサ−1,8−オクタンジチオール(v/v/v/v/v/v)を用いて処理することにより樹脂から切断し、側鎖を脱保護し、粗製ペプチドをジエチルエーテルにより沈殿させることによって回収した。粗製ペプチドは、逆相高速液体クロマトグラフィーによって精製し、この純度および同一性は、分析用の逆相高速液体クロマトグラフィーおよびマトリックス支援レーザー脱離質量分析法(m/z=2137.1.(M+H)))により確認した。
4.2.時間分解蛍光共鳴エネルギー移動(TR−FRET)アッセイ
例示的なBcl−xL阻害剤W1.01−W1.08がBcl−xLに結合するためのプローブF−Bakと競合する能力を、時間分解蛍光共鳴エネルギー移動(TR−FRET)結合アッセイを使用して実証した。
4.2.1 方法
アッセイに関して、試験化合物を50μM(2×の開始濃度、10%DMSO)から始めて、DMSOに段階希釈し、10μLを384ウェルプレートに移した。次に、タンパク質/プローブ/抗体のミックス10μLを、以下に一覧表示されている最終濃度において、各ウェルに加えた。
Figure 2020152726
次に、試料を1分間、振盪器において混合し、さらに2時間、室温においてインキュベートした。各アッセイプレートに関すると、プローブ/抗体およびタンパク質/抗体/プローブ混合物は、それぞれ、ネガティブ対照およびポジティブ対照として含ませた。蛍光は、340/35nmの励起フィルターと520/525(F−Bak)および495/510nm(Tb標識抗his抗体)発光フィルターを使用して、Envision(Perkin Elmer)において測定した。解離定数(K)は、Wangの式(Wang、1995年、FEBS Lett.360巻:111−114頁)を使用して決定した。TR−FRETアッセイは、ヒト血清(HS)またはウシ胎児血清(FBS)の様々な濃度の存在下において行うことができる。化合物は、HSなしに、および1%HSの存在下の両方において試験した。
4.2.2. 結果
結合アッセイ(ナノモル濃度でのK)の結果は、以下の表2に提示されている。
Figure 2020152726
[実施例5]
Molt−4細胞の生存アッセイにおいて、例示的なBcl−xL阻害剤は、Bcl−xLを阻害する
例示的なBcl−xL阻害剤の能力は、様々な細胞株およびマウス腫瘍モデルを使用して、細胞に基づく死滅アッセイにおいて決定することができる。例えば、細胞生存率に及ぼすこれらの活性は、培養した腫瘍形成性細胞株および非腫瘍形成性細胞株、ならびに一次マウスまたはヒト細胞集団のパネルに関して評価することができる。例示的なBcl−xL阻害剤のBcl−xL阻害活性は、Molt−4細胞を用いる細胞生存アッセイにおいて確認した。
5.1. 方法
一連の例示的な条件において、Molt−4(ATCC、Manassas、VA)ヒト急性リンパ芽球性白血病細胞は、384ウェル組織培養プレート(Corning、Corning、NY)中の、10%ヒト血清(Sigma−Aldrich、St.Louis、MO)を補給した組織培養培地の全量25μL中、ウェルあたり12,500個の細胞をプレート培養し、対象とする化合物の10μMから0.0005μMまでの3倍段階希釈液を用いて処理した。濃度はそれぞれ、二連で、少なくとも個別に3回、試験した。化合物の処理の48時間後の生存細胞数は、製造業者の推奨(Promega Corp.、Madison、WI)に従い、CellTiter−Glo(登録商標)蛍光細胞生存アッセイを使用して決定した。化合物は、10%HSの存在下において試験した。
5.2. 結果
実施例1.1−1.6(それぞれ、化合物W1.01−W1.08)の例示的なBcl−xL阻害剤について、10%HSの存在下において実施したMolt−4細胞生存アッセイ(ナノモル濃度のEC50)の結果が以下の表3に提示されている。
Figure 2020152726
[実施例6]
例示的なADCのDARおよび凝集
上記の実施例3に記載されている通り合成した例示的なADCのDARおよび凝集率は、LC−MSおよびサイズ排除クロマトグラフィー(SEC)によってそれぞれ決定した。
6.1. LC−MSの一般方法
LC−MS分析は、Agilent LC/MSD TOF6220 ESI質量分析計に接続したAgilent 1100 HPLCシステムを使用して行った。5mM(最終濃度)Bond−Breaker(登録商標)TCEP溶液(Thermo Scientific、Rockford、IL)によりADCを還元し、Protein Microtrap(Michrom Bioresorces、Auburn、CA)脱塩カートリッジにロードし、周囲温度において、0.2分間で10%のBから75%のBまでのグラジエントにより溶出した。移動相Aは、0.1%ギ酸(FA)含むHOであり、移動相Bは、0.1%FAを含むアセトニトリルであり、流速は0.2mL/分であった。共溶出した軽鎖および重鎖のエレクトロスプレー飛行時間型質量スペクトルは、Agilent MassHunter(商標)収集ソフトウェアを使用して得た。抽出強度対m/zスペクトルは、MassHunterソフトウェアの最大エントロピーフィーチャ(Maximum Entropy feature)を使用してデコンボリューション(deconvolute)し、各還元抗体断片の質量を決定した。DARは、軽鎖および重鎖に対する生のピークおよび補正ピークの強度を合計することにより、デコンボリューションしたスペクトルから算出され、強度を結合させた薬物の数と乗算することにより、正規化した。合計した、正規化強度を、強度の合計により除算し、2本の軽鎖および2本の重鎖の合計した結果により、全ADCに対する最終的な平均DAR値が求まる。
6.2. サイズ排除クロマトグラフィーの一般方法
サイズ排除クロマトグラフィーは、0.75ml/分の流速において、0.25mM塩化カリウムおよび15%IPAを含む0.2Mリン酸カリウム(pH6.2)中、Shodex KW802.5カラムを使用して行った。280nmにおけるピーク面積吸光度は、曲線下面積の積分によって、高分子量およびモノマーの溶離液のそれぞれについて決定した。コンジュゲート試料の%凝集率は、高分子量の溶離液に関する280nMにおけるピーク面積吸光度を、高分子量およびモノマーの溶離液の280nMにおけるピーク面積吸光度の合計により除算し、100%を乗算することにより決定した。
6.3. 結果
例示的なADCに関する上のLC−MA法により決定された平均DAR値および%凝集率を表4に報告する。EpCAMを標的とする、モノクローナル抗体ING−1を含むADC(Studnickaら、1994年、Protein Engineering、7巻:805−814頁およびAmmonsら、2003年、Neoplasia 5巻:146−154頁)をアッセイにおいて評価した。EGFRを標的とする抗体AB033は、WO2009/134776に記載されている。モノクローナル抗体N901(NCAM−1を標的とする。)は、Roguskaら、1994年、Proc Natl Acad Sci USA 91巻:969−973頁に記載されている。
Figure 2020152726
Figure 2020152726
[実施例7]
EGFRを標的とするADCは、がん細胞の増殖をインビトロにおいて阻害する
抗体AB033を含む、ある種の例示的なADCを評価した。抗体AB033はヒトEGFRを標的とする。抗体AB033の可変重鎖および可変軽鎖の配列は、WO2009/134776に記載されている(120頁を参照されたい。)。抗体AB033が、がん細胞の増殖を阻害する能力は、mcl−1−/−マウスの胚線維芽(MEF)細胞を用いて実証した。mcl−1−/−MEFは、生存するために、Bcl−xLに依存する(Lesseneら、2013年、Nature Chemical Biology 9巻:390−397頁)。例示的なAB033を標的とするBcl−xL−ADCの有効性を評価するため、mcl−1−/−MEFにおいて、ヒトEGFRを過剰発現させた。
7.1. 方法
レトロウイルス上澄み液は、huEGFR配列を含有するレトロウイルス構築体pLVC−IRES−Hygro(Clontech)、またはFuGENE6トランスフェクト試薬(Roche Molecular Biochemicals、Mannheim、ドイツ)を利用する空ベクターによるGP2−293パッキング細胞株(Clontech)のトランスフェクトによって生成した。培養の48時間後、ウイルス含有上澄み液を収穫し、ポリブレン(8μg/ml、Sigma)の存在下、さらに48時間、75cmの培養用フラスコ中、mcl−1−/−MEFに適用(フラスコあたり0.5×10)した。3日後、mcl−1−/−MEFを洗浄し、培地の全補給物中の250μg/mlのハイグロマイシンB(Invitrogen)により選択した。huEGFRの発現はフローサイトメトリーにより確認し、親細胞株、または空ベクターをトランスフェクトした細胞株と比較した。
huEGFRを発現するmcl−1−/−MEFまたはpLVX空ベクター(Vct Ctrl)を、AB033を標的とするBcl−xL−ADC、AB033単独またはMSL109を標的とするBcl−xL−ADCにより、10%FBSを含有するDMEM中、96時間、処理した。アッセイに関すると、これらの細胞を、アッセイ培地(DMEMおよび10% HI FBS)25μLの全量中、384ウェル組織培養プレート(Corning、Corning、NY)において、ウェルあたり250個細胞でプレート培養した。プレート培養した細胞を、Echo550 Acoustic Liquid Handler(Labcyte)により分注した、1μMから1pMの対象とする抗体薬物コンジュゲートの4倍段階希釈液により処理した。濃度はそれぞれ、Mcl−1−/−MEF huEGFR細胞株の場合、十二連で、およびMcl−1−/−MEFベクター細胞株の場合、六連で試験した。37℃および5%COにおける、抗体薬物コンジュゲート処理の96時間後の生存細胞の割合は、製造業者の推奨(Promega Corp.、Madison、WI)に従い、CellTiter−Glo(登録商標)蛍光細胞生存アッセイを使用して決定した。プレートを、0.5秒間の積分時間による蛍光プロトコルを使用して、Perkin Elmer Envisionにおいて読み取った。各希釈点に関する反復値を平均し、抗体薬物コンジュゲートのEC50値を、GraphPad Prism5(GraphPadソフトウェア、Inc.)を用い、線形回帰を使用するシグモイド曲線モデルである、Y=((Bottom−Top)/(1+((x/K))))+Top(式中、Yは測定された応答値であり、xは化合物濃度であり、nはHill傾きであり、KはEC50であり、BottomおよびTopは、それぞれ、一番下の漸近線および一番上の漸近線である。)にデータの当てはめを行うことにより生成した。曲線の目視検査を使用して、曲線当てはめの結果を確認した。mcl−1−/−MEFは、WalterおよびEliza Hall Institute of Medical ResearchのDavid C.S.Huangから得た。
7.2. 結果
代表的な実施例に関する細胞生存アッセイ結果(ナノモル濃度のEC50)が、以下の表5に提示されている。
Figure 2020152726
Figure 2020152726
mcl−1−/−MEFベクター細胞株に対する、代表的な実施例3.28、3.29および3.35に関する細胞生存アッセイ結果(ナノモル濃度のEC50)は、それぞれ、67nM、69nMおよび249nMである。
[実施例8]
EpCAM−およびNCAM1を標的とする抗体薬物コンジュゲートは、がん細胞の成長をインビトロにおいて阻害する
ヒト細胞接着分子(EpCAM)を標的としBcl−xLを阻害するおよびアポトーシスを誘導する抗体を含む、ある種の例示的なADCの能力は、内因性EpCAMタンパク質を発現するヒト乳がん細胞株であるNCC38細胞を用いて実証した。ヒト中性細胞接着分子であるNCAM−1を標的とする、ある種の例示的なADCの細胞毒性は、内因性NCAM−1を発現するヒト小細胞肺がん系である、NCI−H146細胞において実証した。
8.1. 方法
アッセイに関して、10%FBSを含有する、RPMI 1640培地(Invitrogen、#11995)において、HCC38とNCI−H146の両方の細胞株を培養した。アッセイに先立って、細胞を培養培地に4×10細胞/mlに再懸濁し、次に、最終濃度3,000個細胞/ウェルとなるよう、75μL細胞/ウェルで96ウェル細胞培養プレートに加えた。次に、このアッセイプレートを37℃および5%COにおいて、一晩、インキュベートした。翌日、EpCAM、NCAM−1またはネガティブ対照(MSL109)のADCを培養培地において段階希釈し、25μl/ウェルにおいて、アッセイプレートに加えた。次に、このアッセイプレートを37℃および5%COにおいて、72時間、インキュベートした。細胞生存率は、CellTiter−Glo(登録商標)蛍光細胞生存アッセイキット(Promega、#G7573)によって測定した。
8.2. 結果
データは、Graphpad Prismソフトウェアを使用して分析した。IC50値(細胞の最大成長阻害の50%を達成するためのADCの濃度)は、表6および7にそれぞれ報告されている。
表6に示されている通り、EpCAMを標的とするADCは、HCC38乳がん細胞を強力に死滅させる(IC50≦0.4nM)一方、ネガティブ対照であるADC MSL109−DBは、弱い活性を示した。表7において分かる通り、NCAM1−DBおよびNCAM1−H ADCもまた、NCI−146小細胞肺がん細胞(IC50は約20nM)に対して特異的な活性を示した。
Figure 2020152726
Figure 2020152726
[実施例9]
EGFRを標的とするBcl−xL阻害性抗体薬物コンジュゲート(ADC)は、単独でおよびドセタキセルと組み合わされて、非小細胞肺がん(NSCLC)の異種移植片の成長をインビボにおいて阻害する。
EGFRなどの腫瘍関連抗原(TAA)を標的とする、例示的なBcl−xL阻害性ADC(本明細書において、Bcl−xLi ADCとも称される。)の有効性および選択性は、2種のNSCLC異種移植片モデルであるNCI−H1650およびEBC−1において実証される。免疫組織化学によって明らかにされている通り、異種移植した腫瘍における抗原の膜発現が、以下の表8に例示されている。
Figure 2020152726
[実施例10]
EGFRを標的とするBcl−xL抗体薬物コンジュゲートは、NSCLC腫瘍細胞の成長をインビボにおいて阻害する
ある種の例示的なEGFRを標的とするADCが、マウスにおいて、EGFRを発現する腫瘍細胞の成長を選択的に阻害する能力は、ヒトNSCLC細胞株であるNCI−H1650およびEBC−1に由来する異種移植片モデルにおいて実証された。
10.1. 方法
NSCLC細胞株であるNCI−H1650は、American Type Culture Collection(ATCC、Manassas、VA)から購入した。細胞は、ウシ胎児血清(FBS、Hyclone、Logan、UT)を補給したRPMI1640培養培地(Invitrogen、Carlsbad、CA)において、単層として培養した。扁平上皮肺癌の細胞株であるEBC−1は、Japanese Collection of Research Biosources(JCRB、大阪、日本)から得た。細胞は、10%ウシ胎児血清(FBS、Hyclone、Logan、UT)を補給したMEM培養培地(Invitrogen、Carlsbad、CA)において、単層として培養した。異種移植片を生成するため、5×10個の生存細胞を、免疫不全雌SCID/bgマウス(Charles River Laboratories、Wilmington、MA)の右脇腹に皮下接種した。注入量は0.2mlであり、S−MEMとMatrigel(BD、Franklin Lakes、NJ)との1:1混合物からなった。腫瘍は、約200mmに一致するサイズであった。抗体およびコンジュゲートは、リン酸緩衝生理食塩水(PBS)において製剤化し、腹腔内に注射した。注入量は400μlを超過しなかった。治療は、腫瘍のサイズが一致した後、24時間以内に開始した。治療の開始時に、マウスは約25gと秤量された。腫瘍体積は、1週間に2回から3回、見積もった。腫瘍の長さ(L)および幅(W)の測定は、電子ノギスによって行い、容積は、以下の式:V=L×W/2に従って算出した。腫瘍体積が3,000mmに到達する、または皮膚潰瘍形成が起った場合、マウスを安楽死させた。1ケージあたり、8匹から10匹のマウスを収容した。餌および水は、自由摂取可能であった。マウスは、実験の開始に先立って、少なくとも1週間、動物施設に順応させた。動物は、12時間の明:12時間の暗スケジュール(6:00時に明かりをオンにする。)の光相において試験した。実験はすべて、実験動物管理評価認定協会によって認定されている施設において、AbbVieの動物実験委員会および国立衛生研究所の実験動物の管理と使用に関する指針を順守して実施した。
10.2.結果の説明および解析
治療剤の有効性を参照するため、治療応答の振幅(TGImax)、持続性(TGD)および応答度数(CR、PR、OR)を使用する。
TGImaxは、実験中の最大腫瘍成長阻害である。腫瘍成長阻害は100×(1−T/C)により算出され、式中、TおよびCは、それぞれ、処置群および対照群の平均腫瘍体積である。
TGD、すなわち腫瘍成長の遅延は、対照群に対して、処置を受けた腫瘍が1cmの体積に到達するのに必要な時間が延長されることである。TGDは、100×(T/C−1)によって算出され、式中、TおよびCは、それぞれ、処置群および対照群が1cmに到達するまでの中央値時間である。
特定の群における応答振幅の分布は、完全応答者(CR)、部分応答者(PR)および総合的応答者(OR)の度数によって与えられる。CRは、少なくとも3回の測定に対する、25mmの腫瘍負荷を有する群内のマウスの割合である。PRは、少なくとも3回の測定に対する、25mmより大きな腫瘍負荷であるが、処置の開始時の半分未満の体積を有する群内のマウスの割合である。ORは、CRとPRの合計である。
両側スチューデント検定およびカプラン−マイアーログランク検定を使用して、それぞれ、TGImaxおよびTGDの差の有意性を決定した。
10.3.肺腺癌モデルNCI−H1650(これ以降、H1650と呼ぶ)の成長阻害
10.3.1.EGFRを標的とするADC
EGFRを標的とするADCの場合、実施例2.2(シントンD)、実施例2.35(シントンH)および実施例2.36(シントンI)のシントンを、それぞれ、実施例3.2、3.35および3.36に記載されている、EGFRを標的とする抗体AB033にコンジュゲートし、それぞれ、ADC AB033−D、AB033−HおよびAB033−Iが得られた。シントンH、DBまたはIのコンジュゲート、およびサイトメガウイルス(CMV)を標的とする抗体MSL109(MSL109−H、MSL109−DBまたはMSL−109−I)を、受動的標的化対照として使用した。これらのコンジュゲートは、この担体抗体が、腫瘍関連抗原を認識しないので、これ以降、「標的化しないADC」とも称される。MSL109は、Drobyskiら、1991年、Transplantation 51巻:1190−1196頁および米国特許第5,750,106号に記載されている。破傷風トキソイド(抗体AB095)を標的とする抗体は、IgGの投与効果に対する対照として使用した。Larrickら、1992年、Immunological Reviews 69−85頁を参照されたい。
10.3.2.EGFRを標的とするADCを用いた結果
EGFRを標的とするADCによるH1650異種移植片の成長阻害の有効性および選択性は、以下の図1および表9によって例示されている。図1において、1回の投与あたりに投与された量は、凡例に明記されている。処置は、腫瘍細胞の接種後、16日目に開始した。処置における平均腫瘍サイズは、210mmであった。AB095、AB033−H、AB033−I、MSL109−HおよびMSL109−Iのレジメンは、Q4Dx6であった。標準治療である化学治療剤のドセタキセル(DTX)を、単剤としてまたはADCとの組合せのどちらかにおいて、7.5mg/kg(QDx1)の用量で使用した。抗体およびコンジュゲートは、腹腔内に注射した。DTXは、静脈内投与した。曲線の各点は、5個の腫瘍の平均を表す。エラーバーは、標準誤差を図示している。
Bcl−xL阻害剤A−1331852(Leversonら、2015年、Sci.Transl.Med.7巻:279ra40)を低分子として投与すると、異種移植片の成長が、57%のTGImaxおよび78%のTGDによって実証される通り、かなり阻害された(表9)。EGFRを標的とするBcl−xLi ADC(30mg/kg、Q4Dx6)は、単剤として投与されると、標的化されていないADC MSL109Hおよび裸の抗EGFR抗体AB033よりも約1.5倍、腫瘍成長(TGImax)を阻害した。DTX処置の成長阻害および応答の持続性は、標的化しないADC MSL109−HおよびMSL109−Iによって増強された。EGFRを標的とするADC AB033−HおよびAB033−Iは、DTXに加えられると、標的化しないADCの添加よりも持続性の腫瘍退縮を引き起こした(表9および図1)。
Figure 2020152726
以前の実験により、H1650の成長は、EGFRを標的とするBcl−xL阻害性ADCによって著しく阻害されたことが示された。したがって、これらのコンジュゲートの最小有効用量をさらに探索するため、およびさらに有効なBcl−xL阻害剤を特定するため、このモデルを適合させた。表10および図2は、EGFRを標的とするBcl−xLi ADCである、AB033−HおよびAB033−DBの用量−応答関係を例示している。処置は、腫瘍細胞の接種後、12日目に開始した。処置における平均腫瘍サイズは、215mmであった。抗体およびコンジュゲートに関するレジメンは、Q4Dx6とした。1回の投与あたりの投与量は、凡例に明記されている。抗体およびコンジュゲートは、腹腔内に注射した。図2における曲線の各点は、10個の腫瘍の平均を表す。エラーバーは、標準誤差を図示している。
担体抗体AB033は、腫瘍成長を阻害するが、ADCのBcl−xL阻害剤−リンカーの部分は、主に、コンジュゲートの有効性の一因となる。AB033による阻害の持続性は、用量応答性であり、Q4Dx6レジメンにおいて、3および30mg/kgの用量において44%と80%のTGDの間にある。この有効性は、AB033−HおよびAB033−DBの有効性と比較して、かなり低い。これらのコンジュゲート(AB033−DB)の最小のTGDは、3mg/kgにおいて160%であった。さらに、AB033による処置は、測定可能な応答率をもたらさない一方、Bcl−xL ADCは、3mg/kgでさえも、最低でも90%の総合的な応答率を誘発する。EGFRを標的とするコンジュゲートの有効性はまた、MSL109の担体抗体としての使用は、いかなる応答率の存在もなしに、無視できる程の成長阻害しかもたらさなかったので、受動的標的化の作用によって引き起こされる可能性は低い。
Figure 2020152726
AB033に連結されている様々なBcl−xL阻害剤の単回用量によるH1650異種移植片の成長の阻害が、表11にまとめられている。処置は、腫瘍細胞の接種後、11日目に開始した。処置における平均腫瘍サイズは、216mmであった。抗体およびコンジュゲートに関するレジメンは、QDx1とした。10mg/kgを単回用量として投与した。抗体およびコンジュゲートは、腹腔内に投与した。処置群はそれぞれ、8匹のマウスからなった。
EGFRを標的とするBcl−xLi ADCは、対照のコンジュゲートよりも、一貫して有効であった。単回用量の投与にもかかわらず、標的ADCは、133から507%超の範囲のTGDによって示される通り、持続性応答を誘発した。
Figure 2020152726
AB033に連結されている2種のさらなるBcl−xL阻害剤によるH1650異種移植片の成長の阻害を個別の実験において評価した(表12)。処置は、腫瘍細胞の接種後、12日目に開始した。処置における平均腫瘍サイズは、213mmであった。抗体およびコンジュゲートに関するレジメンは、10mg/kgの用量において投与した、QDx1とした。抗体およびコンジュゲートは、腹腔内に投与した。処置群はそれぞれ、8匹のマウスからなった。
Figure 2020152726
10.4.扁平NSCLCモデルであるEBC−1の成長阻害
10.4.1.EGFRを標的とするADCの方法
異種移植片の生成の一般的な方法、腫瘍成長のモニタリングおよびデータ解析は、実施例2に提示されている。EGFRを標的とするADCの場合、実施例2.2(シントンD)、実施例2.35(シントンH)および実施例2.36(シントンI)のシントンを、それぞれ、実施例3.2、3.35および3.36に記載されている、EGFRを標的とする抗体AB033にコンジュゲートし、それぞれ、ADCs AB033、AB033およびAB033−Iが得られた。シントンHおよびCMVを標的とする抗体であるMSL109(MSL109−H)からなるコンジュゲートは、受動的標的化対照として使用した。破傷風トキソイド(抗体AB095)を標的とする抗体は、IgGの投与効果に対する対照として使用した。
10.4.2.EGFRを標的とするADCを用いた結果
扁平上皮癌EBC−1の異種移植片モデルを処置した場合、EGFRを標的とするADCの治療有効性も観察した。EGFRに標的とするADCを用いたこの実験の結果は、以下の図3および表13に示されている。図3において、1回の投与あたりの用量は、凡例に明記されている。曲線の各点は、5個の腫瘍の平均を表す。エラーバーは、標準誤差を図示している。処置は、腫瘍細胞の接種後、9日目に開始した。処置における平均腫瘍サイズは、215mmであった。AB095、AB033、AB033−D、AB033−H、AB033−IおよびMSL109−Hのレジメンは、Q4Dx6とした。DTXは、QDx1で投与した。抗体およびコンジュゲートは、腹腔内に注射した。DTXは、静脈内投与した。
30mg/kgの用量における、CMVを標的とするADC MSL109−Hは、腫瘍成長を43%、阻害し、したがってこれは、受動的標的化に関連する抗腫瘍活性を示している。標準治療である化学治療剤のドセタキセル(DTX)を、この実験全体を通じて、単剤としてまたはADCとの組合せのどちらかにおいて、7.5mg/kgの用量で使用した。単剤として、DTXは、76%のTGIを引き起こした。MSL109−H(30mg/kg)は、DTXと組み合わせると、TGIを76から83%、およびTGDを44から89%、向上させた(表13、図3A)。受動的標的化により達成された有効性は、EGFRを標的とする抗体であるAB033を使用するADCの場合に見られる有効性に劣る。30mg/kgのEGFRを標的とするADC AB033−HのTGImaxは、64%である(図3C)。AB033−H(30mg/kg)をDTXに添加すると、TGImaxを76から98%およびTGDを44から178%向上させた。AB033−Iの投与は、66%の最大腫瘍成長阻害を引き起こした(図3D)。このコンジュゲートは、組み合わせて投与されると、DTXのTGImaxおよびTGDをそれぞれ、98%および178%、高めた。AB033−Dは、単剤として投与されると、かろうじて有効性となった(TGImax=49%)。それにもかかわらず、このコンジュゲートをDTXに加えると、DTXのTGImaxおよびTGDを、それぞれ94%および156%に向上させた(表13、図3B)。留意すべきことには、10mg/kgで投与されたEGFRを標的とするコンジュゲートも、DTXの有効性を高めた(表13)。標的化BCl−xLi ADCをDTXに添加する治療的利益は、応答の増幅の増強よりもむしろ、持続性の向上である。
Figure 2020152726
Figure 2020152726
[実施例11]
NCAM−1を標的とするBcl−xL阻害性ADCは、単独でおよびBcl−2−選択的阻害剤と組み合わされて、小細胞肺がん(SCLC)の腫瘍の成長をインビボにおいて阻害する。
2種の小細胞肺がん(SCLC)異種移植片モデル;NCI−H146およびNCI−H1963.FP5にあるような腫瘍細胞の成長の阻害における、NCAM1を標的とする例示的なBcl−xLi ADCの、単独およびBcl−2の低分子選択的阻害剤である化合物ABT−199との組合せの両方における有効性
11.1. 方法
SCLC細胞株であるNCI−H146(これ以降、H146と呼ぶ)は、American Type Culture Collection(ATCC、Manassas、VA)から購入した。細胞は、10%ウシ胎児血清(FBS、Hyclone、Logan、UT)を補給したRPMI−1640培養培地(Invitrogen、Carlsbad、CA)において、単層として培養した。SCLC癌細胞株であるNCI−H1963.FP5(これ以降、H1963.FP5と呼ぶ)は、免疫無防備マウスの脇腹における、5代連続の継代後のNCI−H1963(ATCC)に由来した。細胞は、ウシ胎児血清(FBS、Hyclone、Logan、UT)を補給したRPMI−1640培養培地(Invitrogen、Carlsbad、CA)において、単層として培養した。異種移植片を生成するため、510個の生存細胞を、免疫不全雌SCID/bgマウス(Charles River Laboratories、Wilmington、MA)の右脇腹に皮下接種した。注射量は0.2mlであり、S−MEMとMatrigelとの1:1混合物(BD、Franklin Lakes、NJ)からなった。腫瘍は、約200mmに一致するサイズであった。抗体およびコンジュゲートは、リン酸緩衝生理食塩水(PBS)において製剤化し、腹腔内に注射した。注射量は400μlを超過しなかった。治療は、腫瘍のサイズが一致した後、24時間以内に開始した。治療の開始時に、マウスは約25gと秤量された。腫瘍体積の決定および動物の管理は、実施例10に記載されている通り実施した。
アッセイに関して、NCAM1を標的とするADC α−NCAM1−H(N901−Hとも称される。)を使用した。評価したADCは、モノクローナル抗体NCAM−1(N901)を含んだ(Roguskaら、1994年、Proc Natl Acad Sci USA 91巻:969−973頁を参照されたい。)。標的化腫瘍に関連する抗原NCAM1は、H146およびH1963.FP5細胞の表面上に発現される。以前の実験と同様に、抗体Ab095をネガティブ対照として使用した。Bcl−xLi ADCは、単剤として、およびABT−199と組み合わせて投与した。
11.2. 結果
11.2.1. H146 SCLC異種移植片の成長に対するNCAM−1標的ADCの有効性
処置は、腫瘍細胞の接種後、10日目に開始した。処置における平均腫瘍サイズは、216mmであった。AB095およびα−NCAM−1−Hのレジメンは、Q4Dx6とし、ABT−199のレジメンは、QDx21とした。この実験の結果が図4および表14に示されている。Bcl−xL ADCは、単剤として、およびABT−199と組み合わせて投与した。抗体およびコンジュゲートは、腹腔内に注射した。ABT−199は経口投与した。図4において、1回の投与あたりの投与量は、凡例に明記されている。曲線の各点は、7匹のマウスを含んだMSL109−Hにより処置した群を除き、10個の腫瘍の平均を表す。エラーバーは、標準誤差を図示している。
NCAM1を標的とするBcl−xLi ADCは、単剤として投与されると、腫瘍成長を阻害した。標的化されたADC α−NCAM1−Hは、腫瘍成長を88%、阻害し、1cmの体積に到達する時間を144%、増加した(図4、表14)。NCAM1−H ADCの有効性は、裸の抗体α−NCAM1または標的化されていない対照であるMSL109−Hの有効性よりもかなり高いので、選択的であった(表14)。さらに、α−NCAM1−Hによる処置が、選択的Bcl−2阻害剤であるABT−199の投与と組み合わされると、著しい添加剤効果が認められた。TGI、TGDおよび完全応答率は、それぞれ、88%、144%および0%から、98%、204%および80%に向上した。
Figure 2020152726
11.2.2.H1963.FP5 SCLC異種移植片の成長に対するNCAM−1標的ADCの有効性
さらなる異種移植片実験を、H1963異種移植片を用いて行った。これらの異種移植片は、NCAM1を発現する。処置は、腫瘍細胞の接種後、15日目に開始した。処置における平均腫瘍サイズは、233mmであった。AB095およびα−NCAM1−Hのレジメンは、Q4Dx6とし、ABT−199のレジメンは、QDx21とした。この実験の結果が図5および表15に示されている。Bcl−xLi ADCは、単剤として、およびABT−199と組み合わせて投与した。抗体およびコンジュゲートは、腹腔内に注射した。ABT−199は経口投与した。図5において、1回の投与あたりの用量は、凡例に明記されている。曲線の各点は、5匹のマウスを含んだα MSL109−Hにより処置した群を除き、9個の腫瘍の平均を表す。エラーバーは、標準誤差を図示している。
11.2.3. 結果
H1963.FP5異種移植片の実験の結果が、以下の表15に提示されている。NCAM1を標的とするコンジュゲートは、単剤として投与された場合、腫瘍成長の阻害を引き起こした。α−NCAM1−H(N901−H)は、腫瘍成長を74%、阻害した(図5、表15)。α−NCAM1−H(N901−Hとも称される。)の有効性は、裸の抗体または標的化されていない対照であるMSL109−Hの有効性のどちらかよりもかなり高いので、選択的であった(表15)。H146異種移植片において観察された有効性と同様に、α−NCAM1−Hによる処置が、選択的Bcl−2阻害剤であるABT−199の投与と組み合わされると、著しい添加剤効果が認められた。
Figure 2020152726
[実施例12]
Bcl−xLi抗体−薬物コンジュゲートは全身性毒性を軽減する
12.1 血小板減少症の回避
抗体薬物コンジュゲートとしてのBcl−xLi ADCの投与は、腫瘍を選択的に標的とすることにより、低分子の全身性毒性をおそらく回避することができる。この方法において、ADCは、全身性毒性を回避することができ、2つの可能な機構により、腫瘍に特異的な有効性を可能にする。第1に、細胞膜透過性Bcl−xL阻害剤を有するADCの場合、担体抗体への結合は、低分子への全身性曝露を制限することができる。第2に、ADCは、非透過性Bcl−xL阻害剤の内部移行を推進することができ、こうして、標的とされる抗原を有する腫瘍細胞に選択的に影響を及ぼす。第1の機構の証拠は、図6に示されている。
12.1.1. 方法および結果
マウスにおける、循環血小板数に及ぼす2種のBcl−xL阻害性ADC(Bcl−xLi ADC)の影響を、単回腹腔内注射後に試験した(阻害性ADCは、抗EGFRの抗体AB033を含み、AB033−HおよびAB033−Iと呼ばれる。)。抗破傷風トキソイド抗体AB095をネガティブ対照として使用した。ナビトクラックス(ABT−263、二重Bcl−2およびBcl−xL阻害剤)、A−1331852(選択的Bcl−xL阻害剤、Leversonら、2015年、Sci.Transl.Med.7:279ra40)および非コンジュゲートBcl−xL阻害剤は、血小板減少症を引き起こし、これは、本化合物の注射の6時間後に極大となった。30mg/kgでのBcl−xL ADCにおいて見いだされるBcl−xL阻害剤と等量となる、0.61mg/kgの用量により、約6*10/mmの正常数から6*10/mmへと血小板数が100分の1に低下した。
対照的に、Bcl−xL阻害性ADCのいずれも、投与の6時間後(表16)、または14日間の間の観察中のどの時間点においても、血小板の有意な減少を引き起こさなかった。後者の観察により、ADCからの阻害剤のゆっくりとした放出により引き起こされる血小板減少症が誘発される可能性はほとんどない。
Figure 2020152726
様々な具体的な実施形態が例示されて、記載されてきたが、本開示の趣旨および範囲から逸脱することなく、様々な変更を行うことができることが理解される。

Claims (93)

  1. リンカーによって抗体に連結されている薬物を含む抗体薬物コンジュゲート(ADC)であって、薬物が、構造式(IIa):
    Figure 2020152726
    によるBcl−xL阻害剤または医薬として許容されるこの塩(式中、
    Arは、ハロ、シアノ、メチルおよびハロメチルから独立して選択される1つ以上の置換基により置換されていてもよい
    Figure 2020152726
    から選択され、
    は、N、CHおよびC−CNから選択され、
    は、NH、CH、O、S、S(O)およびS(O)から選択され、
    は、メチル、クロロおよびシアノから選択され、
    は、水素、メチル、クロロおよびシアノから選択され、
    は、水素、C1−4アルカニル、C2−4アルケニル、C2−4アルキニル、C1−4ハロアルキルまたはC1−4ヒドロキシアルキルであり、R1−4アルカニル、C2−4アルケニル、C2−4アルキニル、C1−4ハロアルキルおよびC1−4ヒドロキシアルキルは、OCH、OCHCHOCHおよびOCHCHNHCHから独立して選択される1つ以上の置換基により置換されていてもよく、
    10a、R10bおよびR10cは、それぞれ、水素、ハロ、C1−6アルカニル、C2−6アルケニル、C2−6アルキニルおよびC1−6ハロアルキルから相互に独立して選択され、
    11aおよびR11bは、それぞれ、水素、メチル、エチル、ハロメチル、ヒドロキシル、メトキシ、ハロ、CNおよびSCHから相互に独立して選択され、
    nは、0、1、2または3であり、
    #は、リンカーLへの結合点を表す。)である、抗体薬物コンジュゲート。
  2. 1−10の薬物対抗体比を有する、請求項1に記載のADCまたは医薬として許容されるこの塩。
  3. リンカーが、リソソーム酵素によって切断可能である、請求項1に記載のADCまたは医薬として許容されるこれらの塩。
  4. リソソーム酵素がカテプシンBである、請求項3に記載のADCまたは医薬として許容されるこれらの塩。
  5. リンカーが、構造式(IVa)、(IVb)または(IVc)によるセグメント:
    Figure 2020152726
    またはこれらの塩を含み、式中、
    ペプチドは、リソソーム酵素により切断可能なペプチド(N→Cで表示されており、この場合、ペプチドは、アミノおよびカルボキシ「末端」を含む。)を表し、
    Tは、1つ以上のエチレングリコール単位を含むポリマー、もしくはアルキレン鎖、またはこれらの組合せを表し、
    は、水素、アルキル、スルホネートおよびスルホン酸メチルから選択され、
    pは、0から5の範囲の整数であり、
    qは、0または1であり、
    xは、0または1であり、
    yは、0または1であり、
    Figure 2020152726
    は、Bcl−xL阻害剤へのリンカーの結合点を表し、
    は、リンカーの残りへの結合点を表す、
    請求項3に記載のADCまたは医薬として許容されるこれらの塩。
  6. ペプチドが、Val−Cit、Cit−Val、Ala−Ala、Ala−Cit、Cit−Ala、Asn−Cit、Cit−Asn、Cit−Cit、Val−Glu、Glu−Val、Ser−Cit、Cit−Ser、Lys−Cit、Cit−Lys、Asp−Cit、Cit−Asp、Ala−Val、Val−Ala、Phe−Lys、Lys−Phe、Val−Lys、Lys−Val、Ala−Lys、Lys−Ala、Phe−Cit、Cit−Phe、Leu−Cit、Cit−Leu、Ile−Cit、Cit−Ile、Phe−Arg、Arg−Phe、Cit−TrpおよびTrp−Cit、またはこれらの塩からなる群から選択される、請求項5に記載のADCまたは医薬として許容されるこれらの塩。
  7. リソソーム酵素がβ−グルクロニダーゼまたはβ−ガラクトシダーゼである、請求項3に記載のADCまたは医薬として許容されるこれらの塩。
  8. リンカーが、構造式(Va)、(Vb)、(Vc)または(Vd)によるセグメント:
    Figure 2020152726
    Figure 2020152726
    またはこれらの塩を含み、式中、
    qは、0または1であり、
    rは、0または1であり、
    は、OまたはNHであり、
    Figure 2020152726
    は、薬物へのリンカーの結合点を表し、
    は、リンカーの残りへの結合点を表す、
    請求項7に記載のADCまたは医薬として許容されるこれらの塩。
  9. リンカーが、1から6つのエチレングリコール単位を有するポリエチレングリコールセグメントを含む、請求項1に記載のADCまたは医薬として許容されるこれらの塩。
  10. 抗体が、腫瘍細胞に発現する細胞表面受容体または腫瘍関連抗原に結合する、請求項1に記載のADCまたは医薬として許容されるこれらの塩。
  11. 抗体が、EGFR、EpCAMおよびNCAM1から選択される細胞表面受容体または腫瘍関連抗原の1つに結合する、請求項10に記載のADCまたは医薬として許容されるこれらの塩。
  12. 抗体が、EGFR、EpCAMまたはNCAM1に結合する、請求項11に記載のADCまたは医薬として許容されるこれらの塩。
  13. 抗体がEpCAMに結合する、請求項11に記載のADCまたは医薬として許容されるこの塩。
  14. 構造式(I)による化合物:、
    Figure 2020152726
    またはこの塩(式中、
    Dは薬物であり、
    Lはリンカーであり、
    Abは抗体であり、
    LKは、リンカーLを抗体Abに連結する共有結合性連結基を表し、
    mは、1から20の範囲の整数である。)である、請求項1に記載のADCまたは医薬として許容されるこの塩。
  15. mが1−8の範囲の整数である、請求項14に記載のADC、または医薬として許容されるこの塩。
  16. mが、2、3または4である、請求項14に記載のADCまたは医薬として許容されるこの塩。
  17. Arが、
    Figure 2020152726
    から選択され、ハロ、シアノ、メチルおよびハロメチルから独立して選択される1つ以上の置換基により置換されていてもよい、請求項14に記載のADCまたは医薬として許容されるこの塩。
  18. Arが、
    Figure 2020152726
    である、請求項14に記載のADCまたは医薬として許容されるこの塩。
  19. が、Nである、請求項14に記載のADCまたは医薬として許容されるこの塩。
  20. が、CHである、請求項14に記載のADCまたは医薬として許容されるこの塩。
  21. が、Oである、請求項14に記載のADCまたは医薬として許容されるこの塩。
  22. が、メチルおよびクロロから選択される、請求項14に記載のADCまたは医薬として許容されるこの塩。
  23. が、水素およびメチルから選択される、請求項14に記載のADCまたは医薬として許容されるこの塩。
  24. が、水素である、請求項14に記載のADCまたは医薬として許容されるこの塩。
  25. 10aがハロであり、R10bおよびR10cが、それぞれ水素である、請求項14に記載のADCまたは医薬として許容されるこの塩。
  26. 10aがフルオロであり、R10bおよびR10cが、それぞれ水素である、請求項14に記載のADCまたは医薬として許容されるこの塩。
  27. 10a、R10bおよびR10cが、それぞれ水素である、請求項14に記載のADCまたは医薬として許容されるこの塩。
  28. 11aおよびR11bが、同一である、請求項14に記載のADCまたは医薬として許容されるこの塩。
  29. 11aおよびR11bがそれぞれメチルである、請求項14に記載のADCまたは医薬として許容されるこの塩。
  30. nが、0または1である、請求項14に記載のADCまたは医薬として許容されるこの塩。
  31. Dが、W1.01、W1.02、W1.03、W1.04、W1.05、W1.06、W1.07およびW1.08、ならびに医薬として許容されるこれらの塩からなる群から選択される、請求項14に記載のADC。
  32. リンカーLが、IVa.1−IVa.7、IVb.1−IVb.15、IVc.1−IVc.2、Va.1−Va.12、Vb.1−Vb.4、Vc.1−Vc.9、Vd.1−Vd.2、VIa.1、V1c.1−V1c.2、V1d.1−V1d.3、および医薬として許容されるこれらの塩からなる群から選択される、請求項14に記載のADC。
  33. LKが、抗体Abのアミノ基と形成される連結基である、請求項14に記載のADCまたは医薬として許容されるこれらの塩。
  34. LKが、アミドまたはチオウレアである、請求項33に記載のADCまたは医薬として許容されるこれらの塩。
  35. LKが、抗体Abのスルフヒドリル基と形成される連結基である、請求項14に記載のADCまたは医薬として許容されるこれらの塩。
  36. LKが、チオエーテルである、請求項35に記載のADCまたは医薬として許容されるこれらの塩。
  37. 抗体Abが、EGFRまたはNCAM1に結合する、請求項14に記載のADCまたは医薬として許容されるこれらの塩。
  38. 抗体Abが、EGFRに結合する、請求項14に記載のADCまたは医薬として許容されるこれらの塩。
  39. Dが、W1.01、W1.02、W1.03、W1.04、W1.05、W1.06、W1.07およびW1.08、ならびに医薬として許容されるこれらの塩からなる群から選択され、
    Lが、リンカーIVa.1−IVa.7、IVb.1−IVb.15、IVc.1−IVc.2、Va.1−Va.12、Vb.1−Vb.4、Vc.1−Vc.9、Vd.1−Vd.2、VIa.1、V1c.1−V1c.2、V1d.1−V1d.3、およびこれらの塩からなる群から選択され、
    LKが、アミド、チオウレアおよびチオエーテルからなる群から選択され、
    mが、1から8の範囲の整数である、
    請求項14に記載のADC。
  40. Abが、EGFRまたはNCAM1に結合する、請求項39に記載のADCまたは医薬として許容されるこれらの塩。
  41. 請求項1から40のいずれか一項に記載のADC、ならびに担体、賦形剤および/または希釈剤を含む組成物。
  42. ヒトにおいて医薬として使用するために製剤化されている、請求項41に記載の組成物。
  43. 単位剤形である、請求項42に記載の組成物。
  44. 構造式D−L−Rによるシントンまたは医薬として許容されるこの塩(式中、
    Dが薬物であり、
    Lが、リンカーであり、
    が、シントンを抗体に共有結合により連結することが可能な官能基を含む部分であり、
    さらに、薬物Dが、構造式:
    Figure 2020152726
    によるBcl−xL阻害剤または医薬として許容されるこれらの塩であり、
    式中、
    Arは、ハロ、シアノ、メチルおよびハロメチルから独立して選択される1つ以上の置換基により置換されていてもよい
    Figure 2020152726
    から選択され、
    は、N、CHおよびC−CNから選択され、
    は、NH、CH、O、S、S(O)およびS(O)から選択され、
    は、メチル、クロロおよびシアノから選択され、
    は、水素、メチル、クロロおよびシアノから選択され、
    は、水素、C1−4アルカニル、C2−4アルケニル、C2−4アルキニル、C1−4ハロアルキルまたはC1−4ヒドロキシアルキルであり、R1−4アルカニル、C2−4アルケニル、C2−4アルキニル、C1−4ハロアルキルおよびC1−4ヒドロキシアルキルは、OCH、OCHCHOCHおよびOCHCHNHCHから独立して選択される1つ以上の置換基により置換されていてもよく、
    10a、R10bおよびR10cは、それぞれ、水素、ハロ、C1−6アルカニル、C2−6アルケニル、C2−6アルキニルおよびC1−6ハロアルキルから相互に独立して選択され、
    11aおよびR11bは、それぞれ、水素、メチル、エチル、ハロメチル、ヒドロキシル、メトキシ、ハロ、CNおよびSCHから相互に独立して選択され、
    nは、0、1、2または3であり、
    #は、リンカーLへの結合点を表す。)。
  45. リンカーが、リソソーム酵素によって切断可能である、請求項44に記載のシントンまたは医薬として許容されるこれらの塩。
  46. リソソーム酵素がカテプシンBである、請求項45に記載のシントンまたは医薬として許容されるこの塩。
  47. リンカーが、構造式(IVa)、(IVb)または(IVc)によるセグメント:
    Figure 2020152726
    を含み、
    式中、
    ペプチドが、リソソーム酵素により切断可能なペプチド(N→Cで表示されており、この場合、ペプチドはアミノおよびカルボキシ「末端」を含む。)を表し、
    Tは、1つ以上のエチレングリコール単位を含むポリマー、もしくアルキレン鎖、またはこれらの組合せを表し、
    は、水素、アルキル、スルホネートおよびスルホン酸メチルから選択され、
    pは、0から5の範囲の整数であり、
    qは、0または1であり、
    xは、0または1であり、
    yは、0または1であり、
    Figure 2020152726
    は、Bcl−xL阻害剤へのリンカーの結合点を表し、
    は、リンカーの残りへの結合点を表す、
    請求項44に記載のシントンまたは医薬として許容されるこの塩。
  48. ペプチドが、Val−Cit、Cit−Val、Ala−Ala、Ala−Cit、Cit−Ala、Asn−Cit、Cit−Asn、Cit−Cit、Val−Glu、Glu−Val、Ser−Cit、Cit−Ser、Lys−Cit、Cit−Lys、Asp−Cit、Cit−Asp、Ala−Val、Val−Ala、Phe−Lys、Lys−Phe、Val−Lys、Lys−Val、Ala−Lys、Lys−Ala、Phe−Cit、Cit−Phe、Leu−Cit、Cit−Leu、Ile−Cit、Cit−Ile、Phe−Arg、Arg−Phe、Cit−TrpおよびTrp−Citからなる群から選択される、請求項47に記載のシントンまたは医薬として許容されるこれらの塩。
  49. リソソーム酵素がβ−グルクロニダーゼまたはβ−ガラクトシダーゼである、請求項44に記載のシントンまたは医薬として許容されるこれらの塩。
  50. リンカーが、構造式(Va)、(Vb)または(Vc)によるセグメント:
    Figure 2020152726
    または医薬として許容されるこれらの塩を含み、式中、
    qは、0または1であり、
    rは、0または1であり、
    は、OまたはNHであり、
    Figure 2020152726
    は、薬物へのリンカーの結合点を表し、
    は、リンカーの残りへの結合点を表す、
    請求項49に記載のシントン。
  51. リンカーが、1から6つのエチレングリコール単位を有するポリエチレングリコールセグメントを含む、請求項44に記載のシントンまたは医薬として許容されるこれらの塩。
  52. Arが、
    Figure 2020152726
    から選択され、ハロ、シアノ、メチルおよびハロメチルから独立して選択される1つ以上の置換基により置換されていてもよい、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  53. Arが、
    Figure 2020152726
    である、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  54. がNである、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  55. がCHである、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  56. がOである、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  57. が、メチルおよびクロロから選択される、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  58. が、水素およびメチルから選択される、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  59. が水素である、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  60. 10aがハロであり、R10bおよびR10cが、それぞれ水素である、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  61. 10aがフルオロであり、R10bおよびR10cが、それぞれ水素である、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  62. 10a、R10bおよびR10cが、それぞれ水素である、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  63. 11aおよびR11bが、同一である、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  64. 11aおよびR11bが、それぞれメチルである、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  65. nが、0または1である、請求項44に記載のシントンまたは医薬として許容されるこの塩。
  66. Dが、W1.01、W1.02、W1.03、W1.04、W1.05、W1.06、W1.07およびW1.08、ならびに医薬として許容されるこれらの塩からなる群から選択される、請求項44に記載のシントン。
  67. リンカーLが、リンカーIVa.1−IVa.7、IVb.1−IVb.15、IVc.1−IVc.2、Va.1−Va.12、Vb.1−Vb.4、Vc.1−Vc.9、Vd.1−Vd.2、VIa.1、V1c.1−V1c.2、V1d.1−V1d.3および医薬として許容されるこれらの塩からなる群から選択される、請求項44に記載のシントンおよび医薬として許容されるこの塩。
  68. が、シントンを抗体のアミノ基に連結することが可能な官能基を含む、請求項44に記載のシントンおよび医薬として許容されるこれらの塩。
  69. が、NHS−エステルまたはイソチオシアネートを含む、請求項68に記載のシントンおよび医薬として許容されるこれらの塩。
  70. が、シントンを抗体のスルフィドリル基に連結することが可能な官能基を含む、請求項66に記載のシントンおよび医薬として許容されるこれらの塩。
  71. が、ハロアセチルまたはマレイミドを含む、請求項70に記載のシントンおよび医薬として許容されるこれらの塩。
  72. Dが、W1.01、W1.02、W1.03、W1.04、W1.05、W1.06、W1.07およびW1.08、ならびに医薬として許容されるこれらの塩からなる群から選択され、
    Lが、リンカーIVa.1−IVa.7、IVb.1−IVb.15、IVc.1−IVc.2、Va.1−Va.12、Vb.1−Vb.4、Vc.1−Vc.9、Vd.1−Vd.2、VIa.1、V1c.1−V1c.2、V1d.1−V1d.3、およびこれらの塩からなる群から選択され、
    が、NHS−エステル、イソチオシアネート、ハロアセチルおよびマレイミドからなる群から選択される官能基を含む、請求項66に記載のシントンまたは医薬として許容されるこの塩。
  73. 請求項44から72のいずれか一項に記載のシントンが抗体に共有結合により連結する条件下において、腫瘍細胞に発現する細胞表面受容体または腫瘍関連抗原に結合する抗体をシントンに接触させるステップにより形成されるADC。
  74. 接触させるステップが、ADCが2、3または4のDARを有するような条件下において行われる、請求項73に記載のADC。
  75. 請求項73または74に記載のADC、ならびに賦形剤、担体および/または希釈剤を含む、組成物。
  76. ヒトにおいて医薬として使用するために製剤化されている、請求項75に記載の組成物。
  77. 単位剤形である、請求項76に記載の組成物。
  78. ADCを作製する方法であって、請求項63から69のいずれか一項に記載のシントンが抗体に共有結合により連結する条件下において、シントンを抗体に接触させるステップを含む方法。
  79. Bcl−xLを発現する細胞におけるBcl−xL活性を阻害する方法であって、細胞に結合することが可能な、請求項1から40および73から74のいずれか一項に記載のADCが細胞に結合する条件下において、細胞をADCに接触させるステップを含む方法。
  80. Bcl−xLを発現する細胞におけるアポトーシスを誘導する方法であって、細胞に結合することが可能な、請求項1から40および73から74のいずれか一項に記載のADCが細胞に結合する条件下において、細胞をADCに接触させるステップを含む方法。
  81. 調節不全の内因性アポトーシスを伴う疾患を処置する方法であって、調節不全のアポトーシスを伴う疾患を有する対象に、治療的利益をもたらすのに有効な量の請求項1から40および73から74のいずれか一項に記載のADCを投与するステップを含む、内因性アポトーシスが調節不全となっている細胞の細胞表面受容体に、ADCの抗体が結合する、方法。
  82. がんを処置する方法であって、がんを有する対象に、治療的利益をもたらすのに有効な量の、がん細胞の表面に発現する細胞表面受容体または腫瘍関連抗原に結合することが可能な、請求項1から40および73から74のいずれか一項に記載のADCを投与するステップを含む方法。
  83. ADCが単剤療法として投与される、請求項74に記載の方法。
  84. 処置されているがんが、腫瘍形成性がんである、請求項74に記載の方法。
  85. ADCが、別の化学治療剤放射線療法の補助として投与される、請求項74に記載の方法。
  86. ADCが、化学療法および/または放射線療法の開始と同時に投与される、請求項85に記載の方法。
  87. ADCが、化学療法および/または放射線療法の開始前に投与される、請求項85に記載の方法。
  88. ADCが、腫瘍細胞が標準的化学療法および/または放射線療法に対して感作するのに有効な量で投与される、請求項85から87のいずれか一項に記載の方法。
  89. 標準的な細胞毒性剤および/または放射線に対して腫瘍を感作する方法であって、この腫瘍に結合することが可能な、請求項1から40および73から74のいずれか一項に記載のADCを、標準的な細胞毒性剤および/または放射線に対して腫瘍細胞を感作するのに有効な量で腫瘍に接触させるステップを含む方法。
  90. 腫瘍が標準的な細胞毒性剤および/または放射線による処置に抵抗性となった、請求項89に記載の方法。
  91. 腫瘍が標準的な細胞毒性剤および/または放射線療法にこれまで曝露されてこなかった、請求項89に記載の方法。
  92. シントンの実施例2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.10、2.12、2.17、2.18、2.21、2.22、2.23、2.24、2.25、2.26、2.27、2.28、2.29、2.30、2.31、2.32、2.33、2.34、2.35、2.36、2.37、2.38、2.39、2.40、2.41、2.42、2.43、2.44、2.45、2.46、2.47、2.48、2.49、2.50、2.51、2.52、2.53からなる群および医薬として許容されるこれらの塩から選択される、シントン。
  93. 抗体にコンジュゲートされている請求項92に記載のシントンを含む抗体薬物コンジュゲート(ADC)または医薬として許容されるこれらの塩。
JP2020078046A 2014-12-09 2020-04-27 細胞透過性Bcl−xL阻害剤との抗体薬物コンジュゲート Pending JP2020152726A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462089766P 2014-12-09 2014-12-09
US62/089,766 2014-12-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017530616A Division JP2018506509A (ja) 2014-12-09 2015-12-09 細胞透過性Bcl−xL阻害剤との抗体薬物コンジュゲート

Publications (1)

Publication Number Publication Date
JP2020152726A true JP2020152726A (ja) 2020-09-24

Family

ID=55069111

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017530616A Pending JP2018506509A (ja) 2014-12-09 2015-12-09 細胞透過性Bcl−xL阻害剤との抗体薬物コンジュゲート
JP2020078046A Pending JP2020152726A (ja) 2014-12-09 2020-04-27 細胞透過性Bcl−xL阻害剤との抗体薬物コンジュゲート

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017530616A Pending JP2018506509A (ja) 2014-12-09 2015-12-09 細胞透過性Bcl−xL阻害剤との抗体薬物コンジュゲート

Country Status (9)

Country Link
US (2) US20170182179A1 (ja)
EP (2) EP3229844B1 (ja)
JP (2) JP2018506509A (ja)
CN (2) CN107249643A (ja)
AU (2) AU2015360609A1 (ja)
BR (1) BR112017012377A2 (ja)
CA (1) CA2969908A1 (ja)
MX (1) MX2017007641A (ja)
WO (1) WO2016094505A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566082B2 (en) 2014-11-17 2023-01-31 Cytiva Bioprocess R&D Ab Mutated immunoglobulin-binding polypeptides
SG11201704710PA (en) * 2014-12-09 2017-07-28 Abbvie Inc Bcl xl inhibitory compounds having low cell permeability and antibody drug conjugates including the same
MX2017007637A (es) * 2014-12-09 2017-09-05 Abbvie Inc Compuestos inhibidores de bcl-xl y conjugados de anticuerpo-farmaco que los incluyen.
US10889615B2 (en) 2016-05-11 2021-01-12 Cytiva Bioprocess R&D Ab Mutated immunoglobulin-binding polypeptides
EP3455241B1 (en) 2016-05-11 2022-02-23 Cytiva BioProcess R&D AB Method of cleaning and/or sanitizing a separation matrix
JP7031934B2 (ja) 2016-05-11 2022-03-08 サイティバ・バイオプロセス・アールアンドディ・アクチボラグ 分離マトリックス
US10703774B2 (en) 2016-09-30 2020-07-07 Ge Healthcare Bioprocess R&D Ab Separation method
US10730908B2 (en) 2016-05-11 2020-08-04 Ge Healthcare Bioprocess R&D Ab Separation method
EP3455240B1 (en) 2016-05-11 2025-01-01 Cytiva BioProcess R&D AB Method of storing a separation matrix
US10654887B2 (en) 2016-05-11 2020-05-19 Ge Healthcare Bio-Process R&D Ab Separation matrix
WO2017194597A1 (en) 2016-05-11 2017-11-16 Ge Healthcare Bioprocess R&D Ab Separation matrix
MX2018015280A (es) * 2016-06-08 2019-08-12 Abbvie Inc Conjugados de anticuerpo y farmaco anti-egfr.
PE20190512A1 (es) * 2016-06-08 2019-04-10 Abbvie Inc Conjugados de anticuerpo anti-egfr y farmaco
CA3027044A1 (en) 2016-06-08 2017-12-14 Abbvie Inc. Anti-b7-h3 antibodies and antibody drug conjugates
AU2017279550A1 (en) * 2016-06-08 2019-01-03 Abbvie Inc. Anti-B7-H3 antibodies and antibody drug conjugates
WO2017214233A1 (en) 2016-06-08 2017-12-14 Abbvie Inc. Anti-egfr antibody drug conjugates
MX2018015274A (es) 2016-06-08 2019-10-07 Abbvie Inc Anticuerpos anti-cd98 y conjugados de anticuerpo y farmaco.
US20180369401A1 (en) 2017-05-10 2018-12-27 Sanofi Novel peptidic linkers and cryptophycin conjugates, their preparation and their therapeutic use
US11491206B1 (en) 2018-02-13 2022-11-08 Duke University Compositions and methods for the treatment of trail-resistant cancer
TWI851577B (zh) * 2018-06-07 2024-08-11 美商思進公司 喜樹鹼結合物
CN110872339A (zh) * 2018-08-30 2020-03-10 中国人民解放军军事科学院军事医学研究院 含有芳硝基的连接子、含连接子的抗体偶联药物及连接子的用途
UY38700A (es) 2019-05-20 2020-12-31 Novartis Ag Conjugados de anticuerpo-fármaco inhibidores de mcl-1 y sus métodos de uso
CN112142849B (zh) * 2019-06-27 2022-04-05 北京师范大学 靶向钙调蛋白磷酸酶与其底物t细胞激活核因子的短肽抑制剂及其应用
CN115867322A (zh) * 2020-03-31 2023-03-28 奥隆制药 新降解剂缀合物
AU2021386367A1 (en) 2020-11-24 2023-06-22 Les Laboratoires Servier Bcl-xl inhibitor antibody-drug conjugates and methods of use thereof
AR124681A1 (es) 2021-01-20 2023-04-26 Abbvie Inc Conjugados anticuerpo-fármaco anti-egfr
CA3206906A1 (en) 2021-02-02 2022-08-11 Andras Herner Selective bcl-xl protac compounds and methods of use
KR20230158005A (ko) 2021-03-18 2023-11-17 씨젠 인크. 생물학적 활성 화합물의 내재화된 접합체로부터의 선택적 약물 방출
EP4525925A1 (en) 2022-05-20 2025-03-26 Novartis AG Epha2 bcl-xl inhibitor antibody-drug conjugates and methods of use thereof
KR20250027285A (ko) 2022-05-20 2025-02-25 노파르티스 아게 항신생물 화합물의 항체-약물 접합체 및 그의 사용 방법
AR129382A1 (es) 2022-05-20 2024-08-21 Novartis Ag Conjugados de anticuerpo-fármaco inhibidores de bcl-xl y met y sus métodos de uso
CN119421881A (zh) * 2022-06-24 2025-02-11 南京瑞初医药有限公司 酯类化合物及其应用
CN115887481A (zh) * 2022-12-09 2023-04-04 中国科学院近代物理研究所 Bclx基因反义寡核苷酸在制备脑胶质瘤放疗增敏试剂中的应用
WO2024153185A1 (zh) * 2023-01-18 2024-07-25 苏州宜联生物医药有限公司 包含bcl-2家族蛋白降解剂的抗体药物偶联物及其制备方法和用途
WO2024189481A1 (en) 2023-03-10 2024-09-19 Novartis Ag Panras inhibitor antibody-drug conjugates and methods of use thereof
US12178876B2 (en) 2023-04-18 2024-12-31 Astrazeneca, Ab Conjugates comprising cleavable linkers
WO2025111450A1 (en) 2023-11-22 2025-05-30 Les Laboratoires Servier Anti-cd74 antibody-drug conjugates and methods of use thereof
WO2025111431A1 (en) 2023-11-22 2025-05-30 Les Laboratoires Servier Anti-cd7 antibody-drug conjugates and methods of use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530238A (ja) * 2011-10-14 2014-11-17 アッヴィ・インコーポレイテッド 癌ならびに免疫疾患および自己免疫疾患の治療のためのアポトーシス誘発剤としての8−カルバモイル−2−(2,3−ジ置換ピリド−6−イル)−1,2,3,4−テトラヒドロイソキノリン誘導体

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1726514A (en) 1926-11-01 1929-08-27 Firm Ferd Liebschner & Sohn Picker for looms
US4444887A (en) 1979-12-10 1984-04-24 Sloan-Kettering Institute Process for making human antibody producing B-lymphocytes
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US5179017A (en) 1980-02-25 1993-01-12 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4634665A (en) 1980-02-25 1987-01-06 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4716111A (en) 1982-08-11 1987-12-29 Trustees Of Boston University Process for producing human antibodies
US4510245A (en) 1982-11-18 1985-04-09 Chiron Corporation Adenovirus promoter system
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
US5168062A (en) 1985-01-30 1992-12-01 University Of Iowa Research Foundation Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence
US4968615A (en) 1985-12-18 1990-11-06 Ciba-Geigy Corporation Deoxyribonucleic acid segment from a virus
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
ATE120454T1 (de) 1988-06-14 1995-04-15 Cetus Oncology Corp Kupplungsmittel und sterisch gehinderte, mit disulfid gebundene konjugate daraus.
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5413923A (en) 1989-07-25 1995-05-09 Cell Genesys, Inc. Homologous recombination for universal donor cells and chimeric mammalian hosts
GB8928874D0 (en) 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies
HK1007330A1 (en) 1990-01-12 1999-04-09 Amgen Fremont Inc. Generation of xenogeneic antibodies
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
EP0814159B1 (en) 1990-08-29 2005-07-27 GenPharm International, Inc. Transgenic mice capable of producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
EP0519596B1 (en) 1991-05-17 2005-02-23 Merck & Co. Inc. A method for reducing the immunogenicity of antibody variable domains
IE922437A1 (en) 1991-07-25 1993-01-27 Idec Pharma Corp Recombinant antibodies for human therapy
ES2136092T3 (es) 1991-09-23 1999-11-16 Medical Res Council Procedimientos para la produccion de anticuerpos humanizados.
ATE408012T1 (de) 1991-12-02 2008-09-15 Medical Res Council Herstellung von autoantikörpern auf phagenoberflächen ausgehend von antikörpersegmentbibliotheken
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
US5750106A (en) 1993-01-28 1998-05-12 Novartis Ag Human monoclonal antibodies to cytomegalovirus
EP0822830B1 (en) 1995-04-27 2008-04-02 Amgen Fremont Inc. Human anti-IL-8 antibodies, derived from immunized xenomice
US5916771A (en) 1996-10-11 1999-06-29 Abgenix, Inc. Production of a multimeric protein by cell fusion method
CA2616914C (en) 1996-12-03 2012-05-29 Abgenix, Inc. Egfr-binding antibody
DE69800716T2 (de) 1997-04-14 2001-09-20 Micromet Gesellschaft Fuer Biomedizinische Forschung Mbh Neues verfahren zur herstellung von anti-humanen antigenrezeptoren und deren verwendungen
US6235883B1 (en) 1997-05-05 2001-05-22 Abgenix, Inc. Human monoclonal antibodies to epidermal growth factor receptor
EP1243276A1 (en) 2001-03-23 2002-09-25 Franciscus Marinus Hendrikus De Groot Elongated and multiple spacers containing activatible prodrugs
PT2357006E (pt) 2002-07-31 2016-01-22 Seattle Genetics Inc Conjugados de fármacos e sua utilização para tratamento do cancro, de uma doença autoimune ou de uma doença infeciosa
WO2004019993A1 (en) 2002-08-30 2004-03-11 Ramot At Tel Aviv University Ltd. Self-immolative dendrimers releasing many active moieties upon a single activating event
WO2004043493A1 (en) 2002-11-14 2004-05-27 Syntarga B.V. Prodrugs built as multiple self-elimination-release spacers
JP5356648B2 (ja) 2003-02-20 2013-12-04 シアトル ジェネティックス, インコーポレイテッド 抗cd70抗体−医薬結合体、ならびに癌および免疫障害の処置のためのそれらの使用
KR101520209B1 (ko) * 2003-11-06 2015-05-13 시애틀 지네틱스, 인크. 리간드에 접합될 수 있는 모노메틸발린 화합물
JP5064037B2 (ja) 2004-02-23 2012-10-31 ジェネンテック, インコーポレイテッド 複素環式自壊的リンカーおよび結合体
US7632497B2 (en) 2004-11-10 2009-12-15 Macrogenics, Inc. Engineering Fc Antibody regions to confer effector function
CA2616005C (en) * 2005-07-18 2015-09-22 Seattle Genetics, Inc. Beta-glucuronide-linker drug conjugates
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
EP1800695A1 (en) * 2005-12-21 2007-06-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Immuno-RNA-constructs
WO2007089149A2 (en) 2006-02-02 2007-08-09 Syntarga B.V. Water-soluble cc-1065 analogs and their conjugates
WO2009073445A2 (en) 2007-11-28 2009-06-11 Mersana Therapeutics, Inc. Biocompatible biodegradable fumagillin analog conjugates
US9029508B2 (en) 2008-04-29 2015-05-12 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US20100152725A1 (en) 2008-12-12 2010-06-17 Angiodynamics, Inc. Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation
JP2012528240A (ja) 2009-05-28 2012-11-12 メルサナ セラピューティックス, インコーポレイテッド 可変速度放出リンカーを含むポリアル−薬物コンジュゲート
EP2553019A1 (en) 2010-03-26 2013-02-06 Mersana Therapeutics, Inc. Modified polymers for delivery of polynucleotides, method of manufacture, and methods of use thereof
DE102010064282B4 (de) 2010-12-28 2012-09-06 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG Transistor mit eingebetteten sigma-förmigen sequenziell hergestellten Halbleiterlegierungen
ME02381B (me) * 2011-02-15 2016-06-20 Immunogen Inc Citotoksični benzodiazepinski derivati
CN103987711B (zh) * 2011-10-14 2016-08-24 艾伯维公司 作为用于治疗癌症和免疫性和自身免疫性疾病的凋亡诱导剂的8-氨基甲酰基-2-(2,3-二取代吡啶-6-基)-1,2,3,4-四氢异喹啉衍生物
EP2793585A4 (en) 2011-12-05 2015-12-09 Igenica Biotherapeutics Inc Antibody-Agent Conjugates and Related Compounds, Compositions and Methods
KR20140121827A (ko) 2011-12-23 2014-10-16 메르사나 테라퓨틱스, 인코포레이티드 퓨마질린 유도체-phf 결합체의 약제학적 제형
US9504756B2 (en) 2012-05-15 2016-11-29 Seattle Genetics, Inc. Self-stabilizing linker conjugates
WO2014008375A1 (en) 2012-07-05 2014-01-09 Mersana Therapeutics, Inc. Terminally modified polymers and conjugates thereof
US10226535B2 (en) 2012-12-10 2019-03-12 Mersana Therapeutics, Inc. Auristatin compounds and conjugates thereof
AU2013359506B2 (en) 2012-12-10 2018-05-24 Mersana Therapeutics, Inc. Protein-polymer-drug conjugates
US9872918B2 (en) 2012-12-12 2018-01-23 Mersana Therapeutics, Inc. Hydroxyl-polymer-drug-protein conjugates
MX2017007637A (es) * 2014-12-09 2017-09-05 Abbvie Inc Compuestos inhibidores de bcl-xl y conjugados de anticuerpo-farmaco que los incluyen.
SG11201704710PA (en) * 2014-12-09 2017-07-28 Abbvie Inc Bcl xl inhibitory compounds having low cell permeability and antibody drug conjugates including the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530238A (ja) * 2011-10-14 2014-11-17 アッヴィ・インコーポレイテッド 癌ならびに免疫疾患および自己免疫疾患の治療のためのアポトーシス誘発剤としての8−カルバモイル−2−(2,3−ジ置換ピリド−6−イル)−1,2,3,4−テトラヒドロイソキノリン誘導体

Also Published As

Publication number Publication date
JP2018506509A (ja) 2018-03-08
CN107249643A (zh) 2017-10-13
AU2015360609A1 (en) 2017-06-29
CN113209306A (zh) 2021-08-06
US20200246323A1 (en) 2020-08-06
CA2969908A1 (en) 2016-06-16
US20170182179A1 (en) 2017-06-29
AU2021205091A1 (en) 2021-08-12
EP3735990A1 (en) 2020-11-11
WO2016094505A1 (en) 2016-06-16
MX2017007641A (es) 2017-10-02
EP3229844A1 (en) 2017-10-18
EP3229844B1 (en) 2020-03-04
BR112017012377A2 (pt) 2018-04-24

Similar Documents

Publication Publication Date Title
JP2020152726A (ja) 細胞透過性Bcl−xL阻害剤との抗体薬物コンジュゲート
JP2020143062A (ja) 低細胞透過性を有するBcl−xL阻害性化合物およびこれを含む抗体薬物コンジュゲート
JP2020128378A (ja) Bcl−xL阻害性化合物およびこれを含む抗体薬物コンジュゲート
CN109963870B (zh) 抗b7-h3抗体和抗体药物偶联物
JP2022058351A (ja) 抗egfr抗体薬物コンジュゲート
TW202015739A (zh) 剪接調節抗體-藥物結合物及其使用方法
JP2019526529A (ja) 抗b7−h3抗体及び抗体薬物コンジュゲート
JP2019524651A (ja) 抗cd98抗体及び抗体薬物コンジュゲート
AU2016250537A1 (en) Calicheamicin constructs and methods of use

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220125