JP2020151089A - 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム - Google Patents

眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム Download PDF

Info

Publication number
JP2020151089A
JP2020151089A JP2019051394A JP2019051394A JP2020151089A JP 2020151089 A JP2020151089 A JP 2020151089A JP 2019051394 A JP2019051394 A JP 2019051394A JP 2019051394 A JP2019051394 A JP 2019051394A JP 2020151089 A JP2020151089 A JP 2020151089A
Authority
JP
Japan
Prior art keywords
shape
eye
unit
inspected
shape data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019051394A
Other languages
English (en)
Other versions
JP7248467B2 (ja
Inventor
聡大 三野
Akihiro Mino
聡大 三野
リウ・ジョナサン
Liu Jonathan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2019051394A priority Critical patent/JP7248467B2/ja
Publication of JP2020151089A publication Critical patent/JP2020151089A/ja
Application granted granted Critical
Publication of JP7248467B2 publication Critical patent/JP7248467B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

【課題】被検眼の組織の形状を高い再現性で高精度に特定するための新たな技術を提供する。【解決手段】眼科情報処理装置は、取得部と、生成部とを含む。取得部は、被検眼に対して光コヒーレンストモグラフィを用いて少なくとも1つのスキャン位置が異なる複数のBスキャンを実行することにより得られた被検眼における組織の形状に対応した複数の形状データを取得する。生成部は、複数の形状データを補間することにより1以上の補間形状データを生成する。【選択図】図1

Description

本発明は、眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラムに関する。
近年、近視が進行する原因の1つとして、周辺視野の焦点が網膜面よりも奥側(強膜側)に存在することに起因して網膜が奥側に伸びようとして近視が進行する可能性が報告されている(例えば、非特許文献1)。
このような近視の進行を抑制するために、周辺視野の屈折力を高くすることで、中心視野の焦点位置を手前側(角膜側)に移動させる眼鏡やコンタクトレンズが開発されている。更に、事前に測定された波面収差に基づいて行われるwavefront−guided LASIKのような屈折矯正手術も行われている。従って、このような高機能な屈折矯正において、周辺視野の屈折力を正確に測定することが求められる。
Earl L. Smith et al., "Relative peripheral hyperoptic defocus alters central refractive development in infant monkeys", Vision Research, September 2009, 49(19), pp.2386−2392
一般的な眼科装置では、測定光軸上に固視標が投影されるため、網膜の中心窩の近傍の屈折度数が測定される。この場合、眼底等における組織の形状(眼球の形状)を考慮して、中心窩の近傍の屈折度数から周辺視野の屈折度数を求めることが考えられる。
しかしながら、眼底等における組織の形状を測定することを目的として光コヒーレンストモグラフィを用いて被検眼の断層像を取得する場合、眼のモーションによるアライメントのずれ量に起因して断層像を高い再現性で取得することが困難である。
本発明は、このような事情を鑑みてなされたものであり、その目的は、被検眼の組織の形状を高い再現性で高精度に特定するための新たな技術を提供することにある。
いくつかの実施形態の第1態様は、被検眼に対して 光コヒーレンストモグラフィを用いて少なくとも1つのスキャン位置が異なる複数のBスキャンを実行することにより得られた前記被検眼における組織の形状に対応した複数の形状データを取得する取得部と、前記複数の形状データを補間することにより1以上の補間形状データを生成する生成部と、を含む眼科情報処理装置である。
いくつかの実施形態の第2態様は、第1態様において、前記スキャンにより得られたスキャンデータに基づいて前記組織を含む部位の断層像を形成する画像形成部と、前記断層像における所定の層領域を特定する層領域特定部と、を含み、前記取得部は、前記所定の層領域の形状データを取得する。
いくつかの実施形態の第3態様では、第1態様又は第2態様において、前記生成部は、光コヒーレンストモグラフィを実行するための測定光の入射方向に交差する複数の平面のそれぞれにおける前記複数の形状データの位置を2次曲線近似することにより得られた複数の楕円面の輪郭又はその近傍の位置を結ぶように前記1以上の補間形状データを生成する。
いくつかの実施形態の第4態様は、第1態様〜第3態様のいずれかにおいて、前記複数の形状データと前記1以上の補間形状データとに基づいて前記組織の形状を特定する特定部を含む。
いくつかの実施形態の第5態様では、第4態様において、前記形状データは、眼底における所定の層領域の形状に対応した形状データであり、前記被検眼を他覚的に測定することにより得られた屈折度数と、前記特定部により特定された前記組織の形状とに基づいて、前記被検眼の中心窩を含む領域の周辺領域の屈折度数を算出する算出部を含む。
いくつかの実施形態の第6態様では、第5態様において、前記取得部は、前記被検眼の基準位置を中心とするラジアルスキャンを実行することにより得られた複数の形状データを取得する。
いくつかの実施形態の第7態様では、第6態様において、前記基準位置は、中心窩又はその近傍である。
いくつかの実施形態の第8態様は、光スキャナーを含み、前記被検眼に対して前記光スキャナーにより偏向された測定光を用いた光コヒーレンストモグラフィを実行することによりスキャンデータ又は前記形状データを取得するOCT部と、第1態様〜第4態様のいずれかに記載の眼科情報処理装置と、を含む眼科装置である。
いくつかの実施形態の第9態様は、光スキャナーを含み、前記被検眼に対して前記光スキャナーにより偏向された測定光を用いた光コヒーレンストモグラフィを実行することによりスキャンデータ又は前記形状データを取得するOCT部と、前記被検眼に光を投射し、その戻り光を検出する屈折測定部と、前記屈折測定部により検出された前記戻り光の検出結果に基づいて、前記被検眼の屈折度数を算出する屈折度数算出部と、第5態様〜第7態様のいずれかに記載の眼科情報処理装置と、を含む眼科装置である。
いくつかの実施形態の第10態様は、被検眼に対して光コヒーレンストモグラフィを用いて少なくとも1つのスキャン位置が異なる複数のBスキャンを実行することにより得られた前記被検眼における組織の形状に対応した複数の形状データを取得する取得ステップと、前記複数の形状データを補間することにより1以上の補間形状データを生成する生成ステップと、を含む眼科情報処理方法である。
いくつかの実施形態の第11態様は、第10態様において、前記スキャンにより得られたスキャンデータに基づいて前記組織を含む部位の断層像を形成する画像形成ステップと、前記断層像における所定の層領域を特定する層領域特定ステップと、を含み、前記取得ステップは、前記所定の層領域の形状データを取得する。
いくつかの実施形態の第12態様は、第10態様又は第11態様において、前記複数の形状データと前記1以上の補間形状データとに基づいて前記組織の形状を特定する特定ステップを含む。
いくつかの実施形態の第13態様では、第12態様において、前記形状データは、眼底における所定の層領域の形状に対応した形状データであり、前記被検眼を他覚的に測定することにより得られた屈折度数と、前記特定ステップにおいて特定された前記組織の形状とに基づいて、前記被検眼の中心窩を含む領域の周辺領域の屈折度数を算出する算出ステップを含む。
いくつかの実施形態の第14態様は、コンピュータに、第10態様〜第13態様のいずれかに記載の眼科情報処理方法の各ステップを実行させるプログラムである。
なお、上記した複数の態様に係る構成を任意に組み合わせることが可能である。
本発明によれば、被検眼の組織の形状を高い再現性で高精度に特定するための新たな技術を提供することができる。
実施形態に係る眼科装置の構成の一例を示す概略図である。 実施形態に係る眼科装置の構成の一例を示す概略図である。 実施形態に係る眼科装置の構成の一例を示す概略図である。 実施形態に係る眼科装置の構成の一例を示す概略図である。 実施形態に係る眼科装置の動作を説明するための概略図である。 実施形態に係る眼科装置の動作を説明するための概略図である。 実施形態に係る眼科装置の動作の一例を示すフローチャートである。 実施形態に係る眼科装置の動作を説明するための概略図である。 実施形態に係る眼科装置の動作を説明するための概略図である。
この発明に係る眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラムの実施形態の例について、図面を参照しながら詳細に説明する。なお、この明細書において引用された文献の記載内容や任意の公知技術を、以下の実施形態に援用することが可能である。
実施形態に係る眼科情報処理装置は、被検眼に対して光コヒーレンストモグラフィ(Optical Coherence Tomography:OCT)を実行することにより複数の断層像を取得し、取得された複数の断層像から被検眼の組織の形状(眼球形状)を求める(推定する)ことが可能である。いくつかの実施形態に係る眼科情報処理装置は、アライメント完了後に実行されたOCT計測によって取得された2以上の断層像を用いて補間処理(又はフィッティング処理)を行うことにより、断層像間の領域の形状(形態)を推定(予測)する。それにより、計測時間を短縮した場合であっても、OCTを実行するための光学系に対する被検眼のアライメントのずれ量(アライメントエラー量)の影響を低減し、被検眼の眼底等における組織の形状(眼球形状、眼底形状等)を高い再現性で高精度に特定することが可能になる。
以下、被検眼における組織の形状として、眼底の形状を例に説明する。しかしながら、眼底以外の眼球の任意の部位の形状について、以下の実施形態を適用することが可能である。
いくつかの実施形態に係る眼科情報処理装置は、上記のように特定された眼底の形状を用いて、眼底における中心窩を含む領域の外側の周辺領域の屈折度数を算出(推定)する。例えば、眼科情報処理装置は、被検眼の中心窩を含む領域の屈折度数と特定された眼底の形状とに基づいて、中心窩を含む領域の外側の周辺領域の屈折度数を算出する。
実施形態に係る眼科情報処理装置は、公知の模型眼等の眼球モデルのパラメータ(眼球の光学特性を表すパラメータ)を用いて上記の領域の屈折度数を算出することが可能である。パラメータには、眼軸長データ、前房深度データ、水晶体の形状を表す水晶体形状データ(水晶体曲率、水晶体厚など)、角膜の形状を表す角膜形状データ(角膜曲率半径、角膜厚など)などがある。眼科情報処理装置は、眼球モデルのパラメータの一部を被検眼の実測値に置き換えて新たな眼球モデルを構築し、構築された新たな眼球モデルを用いて上記の領域の屈折度数を算出することが可能である。いくつかの実施形態では、上記のパラメータは、電子カルテシステム、医用画像アーカイビングシステム、又は外部装置等から取得される。
実施形態に係る眼科情報処理方法は、実施形態に係る眼科情報処理装置においてプロセッサ(コンピュータ)により実行される処理を実現するための1以上のステップを含む。実施形態に係るプログラムは、プロセッサに実施形態に係る眼科情報処理方法の各ステップを実行させる。
本明細書において「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を意味する。プロセッサは、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。
この明細書では、OCTによって取得される画像をOCT画像と総称することがある。また、OCT画像を形成するための計測動作をOCT計測と呼び、OCT計測を行うためのスキャンをOCTスキャンと呼び、OCTスキャンにより得られたデータをスキャンデータと呼ぶことがある。
以下では、実施形態に係る眼科装置が、実施形態に係る眼科情報処理装置の機能を有する場合について説明する。しかしながら、実施形態に係る眼科情報処理装置が、外部の眼科装置からスキャンデータ(OCTデータ)、断層像、後述の形状データ(形状プロファイル)、被検眼の光学特性を表す各種のパラメータ等を取得するように構成されていてもよい。以下では、形状データとして、形状プロファイルと表記する場合がある。いくつかの実施形態では、形状プロファイルは、所定の1次元、2次元、又は3次元の方向における形状の変化を表すデータである。例えば、屈折度数は、他覚屈折測定装置による他覚屈折測定により取得される。いくつかの実施形態では、屈折度数は、電子カルテシステム等からの屈折度数データを受信することにより取得される。同様に、例えば、OCTデータは、OCT装置による計測(OCTスキャン及び画像データ構築)により取得される。いくつかの実施形態では、OCTデータは、電子カルテシステム、医用画像アーカイビングシステム、又は外部装置等から取得される。
いくつかの実施形態に係る眼科装置は、OCT装置を含む。いくつかの実施形態に係る眼科装置は、更に、他覚屈折測定装置を含む。いくつかの実施形態に係る眼科装置は、外部装置や記録媒体からデータを受信するデバイス(通信インターフェイス、入出力インターフェイス等)を含む。
すなわち、実施形態に係る眼科装置は、例えば、次のいずれかであってよい:(A)他覚屈折測定装置(屈折測定部)とOCT装置(OCT部)とを含む検査装置:(B)他覚屈折測定装置(屈折測定部)を含まず、OCT装置(OCT部)を含む検査装置;(C)他覚屈折測定装置(屈折測定部)及びOCT装置(OCT部)のいずれも含まない情報処理装置。
<構成>
図1〜図4に、実施形態に係る眼科装置の構成例を示す。図1は、実施形態に係る眼科装置1の構成例を表す機能ブロック図である。図2は、図1のデータ処理部70の構成例を表す機能ブロック図である。図3は、図2の形状プロファイル生成部71の構成例を表す機能ブロック図である。図4は、図2の算出部73の構成例を表す機能ブロック図である。
眼科装置1は、他覚屈折測定装置(屈折測定部)とOCT装置(OCT部)とを含む検査装置である。眼科装置1は、測定部10と、制御処理部50と、移動機構90とを含む。測定部10は、屈折測定部20と、OCT部30と、アライメント光投射部40と、ビームスプリッタBS1、BS2とを含む。制御処理部50は、画像形成部60と、データ処理部70と、制御部80とを含む。
(屈折測定部20)
屈折測定部20は、制御部80からの制御を受け、被検眼Eの屈折度数を他覚的に測定する。屈折測定部20は、他覚屈折測定を行うための1以上の光学部材が設けられた光学系を含む。屈折測定部20は、例えば、公知のレフラクトメータと同様の構成を有する。図示は省略するが、典型的なレフラクトメータは、特開2016−077774号公報に開示されているように、投影系と、受光系とを含む。
屈折測定部20の投影系は、光源から出射した光を被検眼Eの眼底Efに投影する。投影系は、例えば、光源からの光を、コリメートレンズ、合焦レンズ、リレーレンズ、瞳レンズ、穴開きプリズム、偏心プリズム、対物レンズ等を通じて眼底Efに投影する。
屈折測定部20の受光系は、眼底Efからの反射光を、対物レンズ、偏心プリズム、穴開きプリズム、他の瞳レンズ、他のリレーレンズ、他の合焦レンズ、円錐プリズム、結像レンズ等を通じて、撮像素子に投影する。これにより、撮像素子の撮像面に結像したリングパターン像が検出される。
いくつかの実施形態では、屈折測定部20は、リング状の光を眼底Efに投影し、眼底Efからの反射光により形成されるリングパターン像を検出するように構成される。いくつかの実施形態では、屈折測定部20は、輝点を眼底Efに投影し、眼底Efからの反射光をリング状の光に変換し、変換されたリング状の光により形成されるリングパターン像を検出するように構成される。
(OCT部30)
OCT部30は、制御部80からの制御を受け、被検眼EにOCTスキャンを適用してOCTデータ(スキャンデータ)を取得する。OCTデータは、干渉信号データでもよいし、干渉信号データにフーリエ変換を適用して得られた反射強度プロファイルデータでもよいし、反射強度プロファイルデータを画像化して得られた画像データでもよい。
OCT部30が実施可能なOCT手法は、典型的にはフーリエドメインOCTであり、スペクトラルドメインOCT及びスウェプトソースOCTのいずれでもよい。スウェプトソースOCTは、波長可変光源からの光を測定光と参照光とに分割し、被検眼に投射された測定光の戻り光を参照光と重ね合わせて干渉光を生成し、この干渉光を光検出器で検出し、波長の掃引及び測定光のスキャンに応じて収集された検出データ(干渉信号データ)にフーリエ変換等を施して反射強度プロファイルデータを形成する手法である。一方、スペクトラルドメインOCTは、低コヒーレンス光源(広帯域光源)からの光を測定光と参照光とに分割し、被検眼に投射された測定光の戻り光を参照光と重ね合わせて干渉光を生成し、この干渉光のスペクトル分布を分光器で検出し、分光器による検出データ(干渉信号データ)にフーリエ変換等を施して反射強度プロファイルデータを形成する手法である。すなわち、スウェプトソースOCTはスペクトル分布を時分割で取得するOCT手法であり、スペクトラルドメインOCTはスペクトル分布を空間分割で取得するOCT手法である。
OCT部30は、OCT計測を行うための1以上の光学部材が設けられた光学系を含む。OCT部30は、例えば、公知のOCT装置と同様の構成を有する。図示は省略するが、典型的なOCT装置は、特開2016−077774号公報に開示されているように、光源と、干渉光学系と、スキャン系と、検出系とを含む。
光源から出力された光は、干渉光学系によって測定光と参照光とに分割される。参照光は、参照アームにより導かれる。測定光は、測定アームを通じて被検眼E(例えば、眼底Ef)に投射される。測定アームにはスキャン系が設けられている。スキャン系は、例えば光スキャナーを含み、測定光を1次元的又は2次元的に偏向可能である。光スキャナーは、1以上のガルバノスキャナを含む。スキャン系は、所定のスキャンモードにしたがって測定光を偏向する。
後述の制御部80は、スキャンモードにしたがってスキャン系を制御することが可能である。スキャンモードには、ラインスキャン、ラスタースキャン(3次元スキャン)、サークルスキャン、同心円スキャン、ラジアルスキャン、クロススキャン、マルチクロススキャン、スパイラルスキャンなどがある。ラインスキャンは、直線状の軌跡に沿ったスキャンパターンである。ラスタースキャンは、互いに平行に配列された複数のラインスキャンからなるスキャンパターンである。サークルスキャンは、円形状の軌跡に沿ったスキャンパターンである。同心円スキャンは、同心状に配列された複数のサークルスキャンからなるスキャンパターンである。ラジアルスキャンは、放射状に配列された複数のラインスキャンからなるスキャンパターンである。クロススキャンは、互いに直交に配列された2つのラインスキャンからなるスキャンパターンである。マルチクロススキャンは、互いに直交する2つのラインスキャン群(例えば、各群は、互いに平行な5本のラインを含む)からなるスキャンパターンである。スパイラルスキャンは、中心から渦巻状に伸びるスキャンパターンである。
眼底Efに投射された測定光は、眼底Efの様々な深さ位置(層境界等)において反射・散乱される。被検眼Eからの測定光の戻り光は、干渉光学系によって参照光に合成される。測定光の戻り光と参照光とは重ね合わせの原理にしたがって干渉光を生成する。この干渉光は検出系によって検出される。検出系は、典型的には、スペクトラルドメインOCTでは分光器を含み、スウェプトソースOCTではバランスドフォトダイオード及びデータ収集システム(DAQ)を含む。
(アライメント光投射部40)
アライメント光投射部40は、被検眼Eと測定部10(光学系)との位置合わせを行うためのアライメント光を被検眼Eに投射する。アライメント光投射部40は、アライメント光源と、コリメータレンズとを含む。アライメント光投射部40の光路は、ビームスプリッタBS2により屈折測定部20の光路に結合される。アライメント光源から出力された光は、コリメータレンズを経由し、ビームスプリッタBS2により反射され、屈折測定部20の光路を通じて被検眼Eに投射される。被検眼Eの角膜Ec(前眼部)による反射光は、屈折測定部20の光路を通じて、屈折測定部20の受光系に導かれる。
この反射光に基づく像(輝点像)は前眼部像に含まれる。制御処理部50は、輝点像を含む前眼部像とアライメントマークとを表示部(不図示)の表示画面に表示させる。手動でXYアライメント(上下左右方向のアライメント)を行う場合、ユーザは、アライメントマーク内に輝点像を誘導するように光学系の移動操作を行うことができる。手動でZアライメント(前後方向のアライメント)を行う場合、ユーザは、表示部の表示画面に表示された前眼部像を参照しながら光学系の移動操作を行うことができる。自動でアライメントを行う場合、制御部80は、被検眼Eの所定部位(例えば、瞳孔中心位置)の位置と輝点像の位置とに基づいて、所定のアライメント完了条件を満たすように移動機構90を制御することにより、被検眼Eに対して測定部10(光学系)を相対移動させる。
(ビームスプリッタBS1)
ビームスプリッタBS1は、屈折測定部20の光学系(投影系及び受光系)の光路に、OCT部30の光学系(干渉光学系など)の光路を同軸に結合する。例えば、ビームスプリッタBS1としてダイクロイックミラーが用いられる。
(ビームスプリッタBS2)
ビームスプリッタBS2は、屈折測定部20の光学系(投影系及び受光系)の光路に、アライメント光投射部40の光学系の光路を同軸に結合する。例えば、ビームスプリッタBS2としてハーフミラーが用いられる。
いくつかの実施形態では、眼科装置1は、制御部80からの制御を受け、被検眼Eの視線を誘導するための固視標を被検眼Eに提示する機能(固視投影系)を有する。固視標は、被検眼Eに提示される内部固視標でもよいし、僚眼に提示される外部固視標でもよい。いくつかの実施形態では、OCT部30とビームスプリッタBS1との間に配置された光路結合部材(例えば、ビームスプリッタ)により、固視投影系の光路がOCT部30の干渉光学系の光路に同軸に結合されるように構成される。
制御部80からの制御を受け、固視投影系による眼底Efにおける固視標の投影位置は変更可能である。いくつかの実施形態では、固視標は、同軸に結合された屈折測定部20の光学系、及びOCT部30の光学系の測定光軸上に投影される。いくつかの実施形態では、固視標は、眼底Efにおいて測定光軸から外れた位置に投影される。
(制御処理部50)
制御処理部50は、眼科装置1を動作させるための各種演算や各種制御を実行する。制御処理部50は、1以上のプロセッサと、1以上の記憶装置とを含む。記憶装置としては、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、ハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)などがある。記憶装置には各種のコンピュータプログラムが格納されており、それに基づきプロセッサが動作することによって本例に係る演算や制御が実現される。
(画像形成部60)
画像形成部60は、被検眼Eに対してOCTを実行することにより得られたスキャンデータに基づいて、被検眼Eの画像(断層像等)を形成する。画像形成部60は、OCT部30の検出系による検出データに基づいてOCTデータ(典型的には画像データ)を構築する。画像形成部60は、従来のOCTデータ処理と同様に、フィルター処理、高速フーリエ変換(FFT)などを検出データに適用することにより、各Aライン(被検眼E内における測定光の経路)における反射強度プロファイルデータを構築する。更に、画像形成部60は、この反射強度プロファイルデータに画像化処理(画像表現)を適用することにより、各Aラインの画像データ(Aスキャンデータ)を構築する。いくつかの実施形態では、画像形成部60の機能はプロセッサにより実現される。
いくつかの実施形態では、画像形成部60の機能の少なくとも一部がOCT部30に設けられる。
(データ処理部70)
データ処理部70は、各種のデータ処理を実行する。データ処理部70は、スキャン系によるスキャンモードにしたがって複数のAスキャンデータを配列することによりBスキャンデータを構築することができる。データ処理部70は、スキャン系によるスキャンモードにしたがって複数のBスキャンデータを配列することによりスタックデータを構築することができる。データ処理部70は、スタックデータからボリュームデータ(ボクセルデータ)を構築することができる。データ処理部70は、スタックデータ又はボリュームデータをレンダリングすることができる。レンダリング手法としては、ボリュームレンダリング、多断面再構成(MPR)、サーフェスレンダリング、プロジェクションなどがある。
また、データ処理部70は、形状プロファイル生成部71と、特定部72と、算出部73とを含む。
(形状プロファイル生成部71)
形状プロファイル生成部71は、画像形成部60により形成された断層像(又はOCT部30により得られたスキャンデータ)から眼底Efの形状を表す形状プロファイルを求める。形状プロファイル生成部71は、求められた複数の形状プロファイルを補間して1以上の補間形状プロファイルを生成する。補間形状プロファイルは、2以上の断層像間の領域の形状を表す。形状プロファイル及び補間形状プロファイルのそれぞれは、X方向、Y方向、及びZ方向の少なくとも1つの方向の眼底Efの形状の変化を表す1次元、2次元、又は3次元の形状データである。
形状プロファイル生成部71は、図3に示すように、層領域特定部71Aと、補間形状プロファイル生成部71Bとを含む。
(層領域特定部71A)
層領域特定部71Aは、画像形成部60により形成された断層像を解析することによって眼底Efの所定の層領域を特定する。眼底Efの層領域としては、内境界膜、神経繊維層、神経節細胞層、内網状層、内顆粒層、外網状層、外顆粒層、外境界膜、視細胞層、網膜色素上皮層、脈絡膜、強膜、各層領域の界面などがある。
断層像から所定の層領域を特定する処理は、典型的には、セグメンテーション処理を含む。セグメンテーション処理は、断層像中の部分領域を特定するための公知の処理である。層領域特定部71Aは、例えば、断層像における各画素の輝度値に基づきセグメンテーション処理を行う。すなわち、眼底Efのそれぞれの層領域は特徴的な反射率を有し、これら層領域に相当する画像領域もそれぞれ特徴的な輝度値を有する。層領域特定部71Aは、これら特徴的な輝度値に基づきセグメンテーション処理を実行することにより、目的の画像領域(層領域)を特定することができる。
層領域特定部71Aは、特定された所定の層領域の形状を表すデータを当該層領域の形状プロファイルとして出力する。いくつかの実施形態では、形状プロファイルは、OCT部30の測定光軸を基準とした測定光の入射方向に交差する方向(XY方向)の変位(スキャン位置の変位)に対する層領域の深さ方向(Z方向)の位置を表すプロファイル(データ)である。
例えば、層領域特定部71Aは、網膜色素上皮層(又は、OS−RPE界面)を特定することができる。
(補間形状プロファイル生成部71B)
補間形状プロファイル生成部71Bは、層領域特定部71Aにより得られた複数の形状プロファイルから1以上の補間形状プロファイルを生成する。
図5及び図6に、実施形態に係る補間形状プロファイル生成部71Bの動作説明図を示す。図5は、層領域特定部71Aによるセグメンテーション処理が施される複数の断層像の取得例を表す。図6は、補間形状プロファイル生成部71Bによる補間処理の説明図を表す。
制御部80は、スキャン系の光スキャナーを制御することにより、例えば、被検眼Eの中心窩又はその近傍を中心とするラジアルスキャンを実行させる。それにより、眼底Efに対して中心窩又はその近傍を基準にラインスキャンSC1〜SC3を含む複数のラインスキャンが順次に実行される。画像形成部60は、例えば、ラインスキャンSC1〜SC3により取得されたスキャンデータのそれぞれに基づいて断層像IMG11〜IMG13(図示せず)を形成する。
層領域特定部71Aは、断層像IMG11〜IMG13のそれぞれに対してセグメンテーション処理を施すことにより網膜色素上皮層の形状プロファイルFP1〜FP3を求める(図6)。
補間形状プロファイル生成部71Bは、複数の形状プロファイルがなめらかに繋がるように補間形状プロファイルを生成する。いくつかの実施形態では、補間形状プロファイル生成部71Bは、測定光の入射方向に交差する複数の平面のそれぞれに交差する形状プロファイルFP1〜FP3の位置を2次曲線近似することにより複数の楕円面を特定し、特定された複数の楕円面の輪郭又はその近傍の位置を結ぶように1以上の補間形状プロファイルを生成する。いくつかの実施形態では、補間形状プロファイル生成部71Bは、ラジアルスキャンの中心位置(例えば、中心窩)から同一距離の位置を楕円近似する(又はフィッティングする)ことにより複数の楕円面を特定し、特定された複数の楕円面の輪郭又はその近傍の位置を結ぶように1以上の補間形状プロファイルを生成する。いくつかの実施形態では、補間形状プロファイル生成部71Bは、ラジアルスキャンに直交する同心円スキャンの中心位置(例えば、中心窩)を基準とした双曲線近似する(又はフィッティングする)ことにより複数の曲面を特定し、特定された複数の曲面の輪郭又はその近傍の位置を結ぶように1以上の補間形状プロファイルを生成する。
また、補間形状プロファイル生成部71Bは、複数の形状プロファイルに対して公知の補間処理を施すことにより、1以上の補間形状プロファイルを生成することが可能である。公知の補間処理には、ニアレストネイバー法、バイリニア法、トライリニア法、スプライン補間法などがある。例えば、補間形状プロファイル生成部71Bは、2つの形状プロファイルに対して公知の補間処理を行うことにより当該2つの形状プロファイルの間の補間形状プロファイルを生成する。また、例えば、補間形状プロファイル生成部71Bは、3以上の形状プロファイルに対して公知の補間処理を行うことにより当該3以上の形状プロファイルのいずれか2つの間の補間形状プロファイルを生成する。いくつかの実施形態では、補間形状プロファイル生成部71Bは、複数の形状プロファイルに対して直線フィッティング処理、曲線フィッティング処理又は曲面フィッティング処理を行い、得られた直線、曲線、又は曲面との相関値が最大(又は誤差が最小)になるように複数の形状プロファイルの間の補間形状プロファイルを生成する。
(特定部72)
特定部72は、層領域特定部71Aにより得られた複数の形状プロファイルと、補間形状プロファイル生成部71Bにより生成された1以上の補間形状プロファイルとから眼底Efの形状を特定する。
特定部72は、複数の形状プロファイルとその間の補間形状プロファイルとがなめらかに繋がるように眼底Efの形状を特定する。いくつかの実施形態では、特定部72は、複数の形状プロファイルとその間の補間形状プロファイルについて、同一の深さ位置(Z位置)同士を公知の直線近似、曲線近似、又は曲面近似することにより眼底Efの形状を特定する。いくつかの実施形態では、特定部72は、複数の形状プロファイルとその間の補間形状プロファイルとから、2次元又は3次元で眼底の形状を表す形状データを生成する。いくつかの実施形態では、特定部72は、複数の形状プロファイルとその間の補間形状プロファイルとから、2次元又は3次元で眼底の形状を表す新たな形状プロファイルを生成する。新たな形状プロファイルは、例えば、眼底の曲率や傾き等の新たなパラメータにより眼底の形状を特定することが可能な形状データである。
(算出部73)
算出部73は、被検眼Eを他覚的に測定することにより得られた屈折度数を求め、求められた屈折度数と特定部72により特定された眼底Efの形状とに基づいて、被検眼の中心窩を含む領域の周辺領域の屈折度数を算出する。いくつかの実施形態では、算出部73は、求められた屈折度数と、特定部72により特定された眼底Efの形状に対応した被検眼の光学特性を表すパラメータとに基づいて、被検眼の中心窩を含む領域の周辺領域の屈折度数を算出する。算出部73は、特定部72により特定された眼底Efの形状に対応した被検眼の光学特性を表すパラメータに基づいて眼球モデルを構築し、構築された眼球モデルと求められた屈折度数とから、上記の周辺領域の屈折度数を算出することが可能である。
算出部73は、図4に示すように、屈折度数算出部73Aと、眼球モデル構築部73Bと、周辺屈折度数算出部73Cとを含む。
(屈折度数算出部73A)
屈折度数算出部73Aは、屈折測定部20の受光系の撮像素子からの出力を処理して屈折度数を算出する。
いくつかの実施形態では、屈折度数算出部73Aは、撮像素子によって取得されたリングパターン像を楕円近似することにより楕円形状を特定する処理と、特定された楕円形状と合焦レンズ等に対するフォーカス調整分のディオプタとに基づいて屈折度数(測定データ)を求める処理とを実行する。
いくつかの実施形態では、屈折度数算出部73Aは、撮像素子によって取得されたリングパターン像が描出された画像における輝度分布を求める処理と、求められた輝度分布からリングパターン像の重心位置を求める処理と、求められた重心位置から放射状に延びる複数の走査方向に沿った輝度分布を求める処理と、求められた複数の走査方向に沿った輝度分布からリングパターン像を特定する処理と、特定されたリングパターン像の近似楕円を求める処理と、求められた近似楕円の長径及び短径を公知の式に代入することによって屈折度数を算出する処理とを実行する。
いくつかの実施形態では、屈折度数算出部73Aは、撮像素子によって取得されたリングパターン像の基準パターンからの偏位(位置ずれ、変形等)を求める処理と、この偏位から屈折度数を求める処理とを実行する。
いくつかの実施形態では、屈折度数として球面度数S、乱視度数C及び乱視軸角度Aが算出される。いくつかの実施形態では、屈折度数として等価球面度数SE(=S+C/2)が算出される。
(眼球モデル構築部73B)
眼球モデル構築部73Bは、眼球モデルを構築する。眼球モデル構築部73Bは、公知の模型眼等の眼球モデルに対して、別途に取得されたパラメータを適用することにより新たな眼球モデルを構築することが可能である。
眼球モデル構築部73Bは、公知の模型眼等の眼球モデルに対して、OCT計測等により得られた被検眼Eの眼内距離を実測パラメータとして適用することにより新たな眼球モデルを構築することが可能である。この場合、データ処理部70は、組織のサイズ(層厚、体積等)や所定の部位間の距離を求めるための算出処理などを実行することが可能である。例えば、データ処理部70は、スキャンデータ又は断層像を解析することにより眼内の所定部位に相当する干渉光の検出結果(干渉信号)のピーク位置を特定し、特定されたピーク位置間の距離に基づいて眼内距離を求める。いくつかの実施形態では、データ処理部70は、セグメンテーション処理によって得られた2つの層領域の間に存在するピクセルの個数と、所定のピクセルスペーシング補正値とに基づいて眼内距離(層間距離)求める。眼内距離の計測は、所定の方向に沿って行われる。眼内距離の計測方向は、例えば、OCTスキャンによって決定される方向(例えば、測定光の進行方向)でもよいし、スキャンデータに基づき決定される方向(例えば、層に直交する方向)でもよい。また、距離データは、2つの層領域間の距離分布データでもよいし、この距離分布データから算出された統計値(例えば、平均、最大値、最小値、中央値、最頻値、分散、標準偏差)でもよいし、各層領域の代表点の間の距離データでもよい。データ処理部70により算出可能な眼内距離には、眼軸長、角膜厚、前房深度、水晶体厚、硝子体腔長、網膜厚、脈絡膜厚などがある。更に、データ処理部70は、求められた眼内距離を用いて、眼球の光学特性を表す各種のパラメータを算出することが可能である。
特定部72(又は眼球モデル構築部73B)は、構築された眼球モデルを用いて眼底Efの形状を特定することが可能である。例えば、特定部72は、眼底Efにおける中心領域と周辺領域との深さ位置の差分を求めることにより、眼底Efの形状を特定する。
(周辺屈折度数算出部73C)
周辺屈折度数算出部73Cは、眼底Efにおける中心窩を含む中心領域の外側の周辺領域の屈折度数を算出する。このとき、周辺屈折度数算出部73Cは、屈折測定部20により得られた中心領域の屈折度数と、特定された眼底Efの形状とに基づいて、周辺領域の屈折度数を算出する。周辺屈折度数算出部73Cは、眼球モデル構築部73Bにより構築された眼球モデルのパラメータを用いて周辺領域の屈折度数を算出することが可能である。
いくつかの実施形態では、データ処理部70の機能は1以上のプロセッサにより実現される。いくつかの実施形態では、形状プロファイル生成部71、特定部72、及び算出部73のそれぞれの機能は単独のプロセッサにより実現される。いくつかの実施形態では、形状プロファイル生成部71の各部の機能は単独のプロセッサにより実現される。いくつかの実施形態では、算出部73の各部の機能は単独のプロセッサにより実現される。いくつかの実施形態では、データ処理部70の少なくとも一部が屈折測定部20又はOCT部30に設けられる。
(制御部80)
制御部80は、眼科装置1の各部を制御する。制御部80は、記憶部(不図示)を含み、各種の情報を保存することが可能である。記憶部に保存される情報には、眼科装置1の各部を制御するためのプログラム、被検者の情報、被検眼の情報、測定部10により得られた測定データ、データ処理部70による処理結果などがある。制御部80の機能は、プロセッサにより実現される。
制御部80は、図示しない表示デバイスを制御可能である。表示デバイスは、ユーザインターフェイスの一部として機能し、制御部80による制御を受けて情報を表示する。表示デバイスは、例えば、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイであってよい。
制御部80は、図示しない操作デバイスからの信号にしたがって眼科装置1を制御可能である。操作デバイスは、ユーザインターフェイス部の一部として機能する。操作デバイスは、眼科装置1に設けられた各種のハードウェアキー(ジョイスティック、ボタン、スイッチなど)を含んでいてよい。また、操作デバイスは、眼科装置1に接続された各種の周辺機器(キーボード、マウス、ジョイスティック、操作パネルなど)を含んでいてよい。また、操作デバイスは、タッチパネルに表示される各種のソフトウェアキー(ボタン、アイコン、メニューなど)を含んでよい。
(移動機構90)
移動機構90は、屈折測定部20、OCT部30、アライメント光投射部40、ビームスプリッタBS1、BS2等の光学系(装置光学系)が収納されたヘッド部を上左右方向及び前後方向に移動させるための機構である。移動機構90は、制御部80からの制御を受け、被検眼Eに対して測定部10を相対移動させることが可能である。例えば、移動機構90には、ヘッド部を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。アクチュエータは、例えばパルスモータにより構成される。伝達機構は、例えば歯車の組み合わせやラック・アンド・ピニオンなどによって構成される。制御部80は、アクチュエータに対して制御信号を送ることにより移動機構90に対する制御を行う。
移動機構90に対する制御は、アライメントやトラッキングにおいて用いられる。トラッキングとは、被検眼Eの眼球運動に合わせて装置光学系を移動させるものである。トラッキングを行う場合には、事前にアライメントとフォーカス調整が実行される。トラッキングは、装置光学系の位置を眼球運動に追従させることにより、アライメントとピントが合った好適な位置関係を維持する機能である。
データ処理部70は、実施形態に係る「眼科情報処理装置」の一例である。上記のユーザインターフェイス、外部装置等からデータを受信するデバイス、又は測定部10は、実施形態に係る「取得部」の一例である。形状プロファイル生成部71は、実施形態に係る「生成部」の一例である。
<動作例>
実施形態に係る眼科装置1の動作について説明する。
図7に、眼科装置1の動作の一例を示す。図7は、眼科装置1の動作例のフロー図を表す。制御部80の記憶部には、図7に示す処理を実現するためのコンピュータプログラムが記憶されている。制御部80は、このコンピュータプログラムに従って動作することにより、図7に示す処理を実行する。
(S1:アライメント)
まず、制御部80は、アライメントを実行する。
例えば、制御部80は、アライメント光投射部40を制御して、被検眼Eにアライメント光を投射させる。このとき、被検眼Eには、図示しない固視投影系により所定の投射位置(例えば、測定光軸上の投射位置)に固視光束が投射される。制御部80は、屈折測定部20の受光系により取得された受光像に基づきアライメントマークに対する輝点像の変位から測定部10の移動量及び移動方向を特定し、特定された移動量及び移動方向に基づいて移動機構90を制御し、被検眼Eに対する測定部10の位置合わせを行う。制御部80は、所定のアライメント完了条件を満足するまでこの処理を繰り返し実行する。
(S2:他覚屈折測定)
次に、制御部80は、図示しない固視投影系を制御して、眼底Efにおける屈折測定部20の光学系の測定光軸上に固視標を投影させる(中心固視)。その後、制御部80は、屈折測定部20の光学系の測定光軸上に固視標が投影された状態で、屈折測定部20を制御することにより他覚屈折測定を実行する。
屈折度数算出部73Aは、被検眼Eの眼底Efに投射された光の反射光により形成されたリングパターン像を解析することにより被検眼Eの中心窩を含む中心領域の屈折度数を算出する。
(S3:OCT計測)
続いて、制御部80は、屈折測定部20(OCT部30)の光学系の測定光軸上に固視標が投影された状態で、OCT部30を制御することによりOCT計測(OCTスキャン)を実行する。ステップS3では、例えば、図5に示すように、中心窩又はその近傍を中心とするラジアルスキャンが実行される。これにより、眼底Efの中心窩を含む中心領域の断層像が取得される。
(S4:セグメンテーション処理)
次に、制御部80は、ステップS3において取得された断層像に対してセグメンテーション処理を施すことにより所定の層領域(例えば、網膜色素上皮層)を層領域特定部71Aに特定させる。それにより、所定の層領域の形状プロファイルが取得される。
(S5:補間形状プロファイルを生成)
続いて、制御部80は、ステップS4において取得された複数の形状プロファイルから1以上の補間形状プロファイルを補間形状プロファイル生成部71Bに生成させる。
(S6:眼底の形状を特定)
制御部80は、ステップS4において得られた複数の形状プロファイルとステップS5において得られた1以上の補間形状プロファイルとから被検眼Eの眼底Efの形状を特定部72に特定させる。
(S7:周辺屈折度数を算出)
続いて、制御部80は、ステップS2において得られた中心窩を含む中心領域の外側の周辺領域の屈折度数を周辺屈折度数算出部73Cに算出させる。そのため、制御部80は、眼球モデルを眼球モデル構築部73Bに構築させる。
具体的には、眼球モデル構築部73Bは、ステップS4において得られた形状プロファイルから所定の層領域のHeightデータ[pixel]を取得する。Heightデータは、断層像において所定の基準位置からの深さ方向の距離に対応する。眼球モデル構築部73Bは、光学系で規定される装置固有のピクセルスペーシング補正値[mm/pixel]を用いて、Heightデータの距離[mm]を取得する。更に、眼球モデル構築部73Bは、取得されたHeightデータを眼底形状データとして眼球モデルを構築する。
図8に、実施形態に係る眼球モデル構築部73Bの動作説明図を示す。図8は、眼球モデルのパラメータの一部を模式的に表す。
眼球モデル構築部73Bは、Gullstrand模型眼等の眼球モデルのパラメータを用いて、所定の角膜曲率半径(例えば、7.7mm)、所定の眼軸長(例えば、24.2mm)で構成される眼球モデルを構築する。
眼球モデル構築部73Bは、図8に示すように、眼球モデルにおいて角膜Ecと眼底Efとの間に装置固有のピボット点Pvを設定する。典型的には、スキャン系を構成する光スキャナーと光学的に共役な位置に配置される瞳孔位置に相当する位置(例えば角膜Ecに対して後方側に3mmの位置)がピボット点Pvとして設定される。ピボット点Pvを中心として、等距離(等光路長)の位置(ELS)が、OCT計測により得られる断層像中の平坦な位置に相当する。
眼球モデルにおいて、眼軸長ALと、角膜前面(後面)からピボット点Pvまでの距離Lpとが既知であるため、ピボット点Pvから眼底Efまでの距離(AL−Lp)が既知となる。眼底Efの曲率半径が距離(AL−Lp)と等しいときに上記のように断層像中の平坦な位置に相当するため、眼球モデル構築部73Bは、得られたHeightデータの距離[mm]から眼底Efの形状(例えば、曲率半径)を特定することが可能である。
そこで、眼球モデル構築部73Bは、中心領域(中心窩)に対する周辺領域の高さの差分(眼底形状差分データ)Δh[mm]を求める。差分Δhは、断層像におけるAライン毎に求めてもよいし、多項式や非球面式(コーニック定数を含む多項式)等の任意の関数でフィッティングしてもよい。
次に、周辺屈折度数算出部73Cは、眼底形状と屈折度数とを関係付けるため、全眼系の眼球屈折力を定義する。典型的な眼球モデル(Gullstrand模型眼(精密模型眼、調節休止状態))では、全眼系の眼球屈折力は58.64[ディオプタ]である。空気換算長では、全眼系の焦点距離は「1000/58.64=17.05」[mm]となる。ピクセルスペーシング補正値を用いて得られる単位[mm]の情報は、通常は生体組織内(in tissue)における距離を表すため、屈折率を乗算して生体組織内における全眼系の焦点距離が算出される。全眼系の等価屈折率をn=1.38とすると、生体組織内における全眼系の焦点距離ftは、「1000/58.64×1.38=23.53」[mm]となる。
周辺屈折度数算出部73Cは、中心領域(中心窩)に対する周辺領域の高さの差分Δhの位置における眼球屈折力の差分ΔDを式(1)に従って算出する。差分ΔDは、中心窩を含む中心領域に対する相対的な眼球屈折力の差分に相当する。
Figure 2020151089
例えば、Δh=0.1[mm](in tissue)としたとき、ΔD=0.18[ディオプタ]となる。
周辺屈折度数算出部73Cは、式(2)に示すように、中心領域の等価球面度数SEに対して式(1)の差分ΔDを適用することにより、周辺領域の屈折度数SEpを求める。
Figure 2020151089
周辺屈折度数算出部73Cは、断層像における周辺領域の屈折度数をAライン毎に求めてもよいし、任意の関数でフィッティングしてもよい。
以上で、眼科装置1の動作は終了である(エンド)。
<変形例>
実施形態に係る眼科装置の構成及び動作は、上記したものに限定されるものではない。
[第1変形例]
ステップS7において、眼球モデル構築部73Bは、Gullstrand模型眼等の眼球モデルのパラメータのうち、被検眼Eの実測データ(例えば、眼軸長、角膜形状、前房深度、水晶体曲率、水晶体厚の測定値)の少なくとも1つを置き換えて新たな眼球モデルを構築してもよい。いくつかの実施形態では、実測データは、外部の測定装置又は電子カルテシステムから取得される。いくつかの実施形態では、眼軸長、前房深度、水晶体曲率、及び水晶体厚は、OCT部30により得られたスキャンデータから求められる。
例えば、周辺屈折度数算出部73C(又はデータ処理部70)は、構築された新たな眼球モデルを用いて、角膜Ecから入射して瞳孔を通過して眼底Efに到達する光線について光線追跡処理を行う(例えば、瞳孔径=φ4)。光線追跡処理では、物点の位置を、ステップS2で取得された中心領域における屈折度数(等価球面度数SE)から求まる遠点に相当する位置とする。角膜Ecから遠点に相当する位置までの遠点距離Lは、「−1000/SE」[mm]である。
まず、周辺屈折度数算出部73Cは、中心領域について光線追跡処理を行う。上記のように眼球モデルに実測データを適用するため、中心領域においても眼底Efで光線が収束しない可能性がある。この場合、周辺屈折度数算出部73Cは、中心領域において光線が収束するように(眼底Efの面が最良像面)となるように眼球モデルのパラメータを微調整する。
次に、周辺屈折度数算出部73Cは、パラメータが微調整された眼球モデルを用いて、周辺領域について光線追跡処理を行う(すなわち、眼の回旋点を通る測定光軸に対して入射角を設けた光線を追跡する)。周辺屈折度数算出部73Cは、物点までの距離を変更しつつ光線追跡処理を行うことで、周辺領域において眼底Efで光線が収束するような物点までの距離を求める。求められた物点までの距離が、周辺領域における遠点距離Lpに対応する。周辺屈折度数算出部73Cは、式(3)を用いて周辺領域の屈折度数SEp[ディオプタ]を求めることができる。
Figure 2020151089
周辺屈折度数算出部73Cは、所定の入射角範囲で入射角を変更しつつ光線追跡処理を行い、入射角(画角)ごとの周辺領域の屈折度数SEpを求める。周辺領域の屈折度数は、入射角ごとの離散値であってもよいし、入射角範囲で任意の関数でフィッティングしてもよい。
本変形例では、中心領域において眼底Ef状で光線が収束するように眼球モデルを微調整するため、求められた周辺領域の屈折度数は、中心領域に対する相対屈折度数を求めることに相当する。
[第2変形例]
上記の実施形態において、眼底Efの中心領域の形状として、上記の形状プロファイル及び補間形状プロファイルから、水平方向(所定の基準方向)に対する眼底の所定の層領域(例えば、網膜色素上皮層、OS−RPE界面)のチルト角度が特定されてもよい。
第2変形例に係る眼科装置の構成は眼球モデル構築部73Bが省略された点を除いて実施形態に係る眼科装置1の構成と同様であるため、説明を省略する。
本変形例では、ステップS6において、特定部72(又は周辺屈折度数算出部73C)は、ステップS4において取得された断層像から求められたHeightデータを用いて、水平方向の断層像(Bスキャン画像)について眼底面のチルト角度θhと、垂直方向のBスキャン画像について眼底面のチルト角度θvを算出する。
チルト角度θh、θvは、以下のように、チルト角度g1と同様の手法で算出可能である。
図9に、水平方向の断層像を模式的に示す。
図9において、断層像IMGのフレーム左端LTにおいて、フレーム上端UTから眼底Efにおける所定の層領域(層領域特定部71Aにより特定された層領域。例えば、網膜色素上皮層、OS−RPE界面、又は神経線維層)に相当する部位の画像領域との垂直方向の距離をL1とする。同様に、断層像IMGのフレーム右端RTにおいて、フレーム上端UTから当該層領域に相当する部位の画像領域との垂直方向の距離をR1とする。距離L1は、フレーム左端LTにおけるHeightデータより求められる。距離R1は、フレーム右端RTにおけるHeightデータより求められる。特定部72は、断層像IMGにおけるフレーム左端LTとフレーム右端RTにおける当該部位の画像領域の垂直方向の差分(|R1−L1|)について実寸法に相当する値|d|を求める。
次に、特定部72は、OCT計測範囲に相当する断層像IMGのフレームの水平方向の距離H1について実寸法に相当する値cを求める。例えば、水平方向のスキャン範囲の長さをピクセルスペーシング補正値[mm/pixel]を用いて値cが特定される。
特定部72は、傾斜角度g0[degree]を式(4)に従って求める。
Figure 2020151089
いくつかの実施形態では、特定部72は、測定光軸と眼球光軸とのずれ量に応じて傾斜角度g0を補正することにより眼底面のチルト角度を求める。
(測定光軸と眼球光軸とが略一致しているとき)
測定光軸と眼球光軸(視軸)とが略一致しているとき、特定部72は、式(5)に示すように、断層像の傾斜角度g0を補正することなく眼底面のチルト角度g1として出力する。
Figure 2020151089
(測定光軸に対して眼球光軸がシフトしているとき)
測定光軸に対して眼球光軸がシフトしているとき、特定部72は、シフト量に基づいて断層像の傾斜角度g0を補正することにより眼底面のチルト角度g1を求める。
例えば、特定部72は、式(6)に示すシフト量dsを変数とする一次式に従って補正角度φ1を求め、式(7)に示すように、求められた補正角度φ1を用いて傾斜角度g0を補正することで眼底面のチルト角度g1を求める。式(6)において、α1及びc1は定数である。例えば、模型眼データを用いてα1及びc1を求めることができる。
Figure 2020151089
Figure 2020151089
(測定光軸に対して眼球光軸がチルトしているとき)
測定光軸に対して眼球光軸がチルトしているとき、特定部72は、チルト量に基づいて断層像の傾斜角度g0を補正することにより眼底面のチルト角度g1を求める。
例えば、特定部72は、式(8)に示すようなチルト量dtを変数とする一次式に従って補正角度φ2を求め、式(9)に示すように、求められた補正角度φ2を用いて傾斜角度g0を補正することで眼底面のチルト角度g1を求める。式(8)において、α2及びc2は定数である。例えば、模型眼データを用いてα2及びc2を求めることができる。
Figure 2020151089
Figure 2020151089
(測定光軸に対して眼球光軸がシフトし、且つチルトしているとき)
測定光軸に対して眼球光軸がシフトし、且つチルトしているとき、特定部72は、シフト量及びチルト量に基づいてBスキャン画像の傾斜角度g0を補正することにより眼底面のチルト角度g1を求める。
例えば、シフト量ds及びチルト量dtが小さい範囲において、特定部72は、式(10)に示すようなシフト量ds及びチルト量dtを変数とする式に従って補正角度φ3を求め、式(11)に示すように、求められた補正角度φ3を用いて傾斜角度g0を補正することで眼底面のチルト角度g1を求める。いくつかの実施形態では、式(10)は、シフト量の補正角度を求める式と、チルト量の補正角度を求める式とを線形結合することにより得られる結合式である。式(10)において、α3、α4及びc3は定数である。例えば、模型眼データを用いてα3、α4及びc3を求めることができる。
Figure 2020151089
Figure 2020151089
本変形例では、屈折度数算出部73Aは、水平方向及び垂直方向それぞれについて、上記のように特定された眼底面のチルト角度θh、θvに応じて、ステップS2において取得されたリングパターン像を補正する。屈折度数算出部73Aは、補正されたリングパターン像に対して楕円近似を行い、得られた楕円形状を用いて公知の手法で屈折度数を求める。求められた屈折度数が、中心領域の屈折度数として算出される。
例えば、眼底面のチルト角度が0度のときに取得されたリングパターン像の長径をLAとし、短径をLBとする。長径方向に眼底面が傾斜してチルト角度がθ度であるとき、取得されたリングパターン像から近似される楕円の長径はLA/cosθとなり、短径はLBとなる。従って、屈折度数算出部73Aは、ステップS2において取得されたリングパターン像を楕円近似して得られた楕円の長径方向にcosθを乗算することで、リングパターン像を補正することができる。短径方向にチルトしている場合も同様である。例えば、屈折度数算出部73Aは、水平方向及び垂直方向それぞれのチルト角度から、楕円の長径方向のチルト角度及び短径方向のチルト角度を求めることで、リングパターン像を補正することができる。
周辺屈折度数算出部73Cは、上記の実施形態と同様に、式(2)に示すように、中心領域の等価球面度数SEに対して式(1)の差分ΔDを適用することにより、周辺領域の屈折度数SEpを求めることが可能である。
[効果]
実施形態に係る眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラムについて説明する。
いくつかの実施形態に係る眼科情報処理装置(データ処理部70)は、取得部(上記のユーザインターフェイス、外部装置等からデータを受信するデバイス、又は測定部10)と、生成部(形状プロファイル生成部71)とを含む。取得部は、被検眼(E)に対して光コヒーレンストモグラフィを用いて少なくとも1つのスキャン位置が異なる複数のBスキャンを実行することにより得られた被検眼における組織の形状に対応した複数の形状データ(形状プロファイル)を取得する。生成部は、複数の形状データを補間することにより1以上の補間形状データ(補間形状プロファイル)を生成する。
このような構成によれば、被検眼の組織の形状に対応した複数の形状データから1以上の補間形状データを生成するようにしたので、形状データ間の領域の形状を特定することが可能になる。それにより、OCTを実行するための光学系に対する被検眼のアライメントのずれ量(アライメントエラー量)の影響を低減しつつ、被検眼の組織の形状を高い再現性で高精度に特定するための形状データを取得することができるようになる。
いくつかの実施形態に係る眼科情報処理装置は、スキャンにより得られたスキャンデータに基づいて組織を含む部位の断層像を形成する画像形成部(60)と、断層像における所定の層領域を特定する層領域特定部(71A)と、を含み、取得部は、所定の層領域の形状データを取得する。
このような構成によれば、断層像を解析して所定の層領域を特定することにより形状データを取得することが可能になるため、簡素な処理で、被検眼の組織の形状を高い再現性で高精度に特定することができるようになる。
いくつかの実施形態に係る眼科情報処理装置では、生成部は、光コヒーレンストモグラフィを実行するための測定光の入射方向に交差する複数の平面のそれぞれにおける複数の形状データの位置を2次曲線近似することにより得られた複数の楕円面の輪郭又はその近傍の位置を結ぶように1以上の補間形状データを生成する。
このような構成によれば、2次曲線近似処理を施すことにより補間形状データを生成するようにしたので、簡素な処理で高精度な被検眼の組織の形状を特定することが可能になる。
いくつかの実施形態に係る眼科情報処理装置は、複数の形状データと1以上の補間形状データとに基づいて組織の形状を特定する特定部(72)を含む。
このような構成によれば、複数の形状データとこれらを補間することにより得られた補間形状データとに基づいて被検眼の組織の形状を特定するようにしたので、光学系に対する被検眼のアライメントのずれ量の影響を低減し、被検眼の組織の形状を高い再現性で高精度に特定することができるようになる。
いくつかの実施形態に係る眼科情報処理装置では、形状データは、眼底における所定の層領域の形状に対応した形状データであり、被検眼を他覚的に測定することにより得られた屈折度数と、特定部により特定された組織の形状とに基づいて、被検眼の中心窩を含む領域の周辺領域の屈折度数を算出する算出部(73)を含む。
このような構成によれば、被検眼の眼底の形状に対応して中心窩を含む領域の周辺領域の屈折度数を高精度に取得することが可能になる。
いくつかの実施形態に係る眼科情報処理装置では、取得部は、被検眼の基準位置を中心とするラジアルスキャンを実行することにより得られた複数の形状データを取得する。
このような構成によれば、光学系に対する被検眼のアライメントのずれ量の影響を低減し、被検眼の基準位置の近傍の組織の形状を高い再現性で高精度に特定することができるようになる。
いくつかの実施形態に係る眼科情報処理装置では、基準位置は、中心窩又はその近傍である。
このような構成によれば、光学系に対する被検眼のアライメントのずれ量の影響を低減し、被検眼の中心窩の近傍の組織の形状を高い再現性で高精度に特定することができるようになる。
いくつかの実施形態に係る眼科装置(1)は、光スキャナーを含み、被検眼に対して光スキャナーにより偏向された測定光を用いた光コヒーレンストモグラフィを実行することによりスキャンデータ又は形状データを取得するOCT部(30)と、上記のいずれかに記載の眼科情報処理装置と、を含む。
このような構成によれば、光学系に対する被検眼のアライメントのずれ量の影響を低減し、被検眼の組織の形状を高い再現性で高精度に特定することが可能な眼科装置を提供することができるようになる。
いくつかの実施形態に係る眼科装置(1)は、光スキャナーを含み、被検眼に対して光スキャナーにより偏向された測定光を用いた光コヒーレンストモグラフィを実行することによりスキャンデータ又は形状データを取得するOCT部(30)と、被検眼に光を投射し、その戻り光を検出する屈折測定部(20)と、屈折測定部により検出された戻り光の検出結果に基づいて、被検眼の屈折度数を算出する屈折度数算出部(73A)と、上記のいずれかに記載の眼科情報処理装置と、を含む。
このような構成によれば、光学系に対する被検眼のアライメントのずれ量の影響を低減しつつ、被検眼の組織の形状を高い再現性で高精度に特定し、特定された組織の形状に対応して中心窩等を含む領域の周辺領域の屈折度数を取得することが可能な眼科装置を提供することができるようになる。
いくつかの実施形態に係る眼科情報処理方法は、被検眼(E)に対して光コヒーレンストモグラフィを用いて少なくとも1つのスキャン位置が異なる複数のBスキャンを実行することにより得られた被検眼における組織の形状に対応した複数の形状データ(形状プロファイル)を取得する取得ステップと、複数の形状データを補間することにより1以上の補間形状データ(補間形状プロファイル)を生成する生成ステップと、を含む。
このような方法によれば、被検眼の組織の形状に対応した複数の形状データから1以上の補間形状データを生成するようにしたので、形状データ間の領域の形状を特定することが可能になる。それにより、OCTを実行するための光学系に対する被検眼のアライメントのずれ量(アライメントエラー量)の影響を低減しつつ、被検眼の組織の形状を高い再現性で高精度に特定するための形状データを取得することができるようになる。
いくつかの実施形態に係る眼科情報処理装置は、スキャンにより得られたスキャンデータに基づいて組織を含む部位の断層像を形成する画像形成ステップと、断層像における所定の層領域を特定する層領域特定ステップと、を含み、取得ステップは、所定の層領域の形状データを取得する。
このような方法によれば、断層像を解析して所定の層領域を特定することにより形状データを取得することが可能になるため、簡素な処理で、被検眼の組織の形状を高い再現性で高精度に特定することができるようになる。
いくつかの実施形態に係る眼科情報処理装置は、複数の形状データと1以上の補間形状データとに基づいて組織の形状を特定する特定ステップを含む。
このような方法によれば、複数の形状データとこれらを補間することにより得られた補間形状データとに基づいて被検眼の組織の形状を特定するようにしたので、
光学系に対する被検眼のアライメントのずれ量の影響を低減し、被検眼の組織の形状を高い再現性で高精度に特定することができるようになる。
いくつかの実施形態に係る眼科情報処理方法では、形状データは、眼底における所定の層領域の形状に対応した形状データであり、被検眼を他覚的に測定することにより得られた屈折度数と、特定ステップにおいて特定された組織の形状とに基づいて、被検眼の中心窩を含む領域の周辺領域の屈折度数を算出する算出ステップを含む。
このような方法によれば、被検眼の眼底の形状に対応して中心窩を含む領域の周辺領域の屈折度数を高精度に取得することが可能になる。
いくつかの実施形態に係るプログラムは、コンピュータに、上記のいずれかに記載の眼科情報処理方法の各ステップを実行させる。
このようなプログラムによれば、被検眼の組織の形状に対応した複数の形状データから1以上の補間形状データを生成するようにしたので、形状データ間の領域の形状を特定することが可能になる。それにより、OCTを実行するための光学系に対する被検眼のアライメントのずれ量(アライメントエラー量)の影響を低減しつつ、被検眼の組織の形状を高い再現性で高精度に特定するための形状データを取得することができるようになる。
<その他>
以上に示された実施形態は、この発明を実施するための一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内において任意の変形、省略、追加等を施すことが可能である。
いくつかの実施形態では、上記の眼科装置を制御する制御方法をコンピュータに実行させるためのプログラムが提供される。このようなプログラムを、コンピュータによって読み取り可能な任意の記録媒体に記憶させることができる。この記録媒体としては、たとえば、半導体メモリ、光ディスク、光磁気ディスク(CD−ROM/DVD−RAM/DVD−ROM/MO等)、磁気記憶媒体(ハードディスク/フロッピー(登録商標)ディスク/ZIP等)などを用いることが可能である。また、インターネットやLAN等のネットワークを通じてこのプログラムを送受信することも可能である。
1 眼科装置
10 測定部
20 屈折測定部
30 OCT部
40 アライメント光投射部
50 制御処理部
60 画像形成部
70 データ処理部
71 形状プロファイル生成部
72 特定部
73 算出部
80 制御部
90 移動機構
BS1、BS2 ビームスプリッタ
E 被検眼
Ec 角膜
Ef 眼底

Claims (14)

  1. 被検眼に対して光コヒーレンストモグラフィを用いて少なくとも1つのスキャン位置が異なる複数のBスキャンを実行することにより得られた前記被検眼における組織の形状に対応した複数の形状データを取得する取得部と、
    前記複数の形状データを補間することにより1以上の補間形状データを生成する生成部と、
    を含む眼科情報処理装置。
  2. 前記スキャンにより得られたスキャンデータに基づいて前記組織を含む部位の断層像を形成する画像形成部と、
    前記断層像における所定の層領域を特定する層領域特定部と、
    を含み、
    前記取得部は、前記所定の層領域の形状データを取得する
    ことを特徴とする請求項1に記載の眼科情報処理装置。
  3. 前記生成部は、光コヒーレンストモグラフィを実行するための測定光の入射方向に交差する複数の平面のそれぞれにおける前記複数の形状データの位置を2次曲線近似することにより得られた複数の楕円面の輪郭又はその近傍の位置を結ぶように前記1以上の補間形状データを生成する
    ことを特徴とする請求項1又は請求項2に記載の眼科情報処理装置。
  4. 前記複数の形状データと前記1以上の補間形状データとに基づいて前記組織の形状を特定する特定部を含む
    ことを特徴とする請求項1〜請求項3のいずれか一項に記載の眼科情報処理装置。
  5. 前記形状データは、眼底における所定の層領域の形状に対応した形状データであり、
    前記被検眼を他覚的に測定することにより得られた屈折度数と、前記特定部により特定された前記組織の形状とに基づいて、前記被検眼の中心窩を含む領域の周辺領域の屈折度数を算出する算出部を含む
    ことを特徴とする請求項4に記載の眼科情報処理装置。
  6. 前記取得部は、前記被検眼の基準位置を中心とするラジアルスキャンを実行することにより得られた複数の形状データを取得する
    ことを特徴とする請求項5に記載の眼科情報処理装置。
  7. 前記基準位置は、中心窩又はその近傍である
    ことを特徴とする請求項6に記載の眼科情報処理装置。
  8. 光スキャナーを含み、前記被検眼に対して前記光スキャナーにより偏向された測定光を用いた光コヒーレンストモグラフィを実行することによりスキャンデータ又は前記形状データを取得するOCT部と、
    請求項1〜請求項4のいずれか一項に記載の眼科情報処理装置と、
    を含む眼科装置。
  9. 光スキャナーを含み、前記被検眼に対して前記光スキャナーにより偏向された測定光を用いた光コヒーレンストモグラフィを実行することによりスキャンデータ又は前記形状データを取得するOCT部と、
    前記被検眼に光を投射し、その戻り光を検出する屈折測定部と、
    前記屈折測定部により検出された前記戻り光の検出結果に基づいて、前記被検眼の屈折度数を算出する屈折度数算出部と、
    請求項5〜請求項7のいずれか一項に記載の眼科情報処理装置と、
    を含む眼科装置。
  10. 被検眼に対して光コヒーレンストモグラフィを用いて少なくとも1つのスキャン位置が異なる複数のBスキャンを実行することにより得られた前記被検眼における組織の形状に対応した複数の形状データを取得する取得ステップと、
    前記複数の形状データを補間することにより1以上の補間形状データを生成する生成ステップと、
    を含む眼科情報処理方法。
  11. 前記スキャンにより得られたスキャンデータに基づいて前記組織を含む部位の断層像を形成する画像形成ステップと、
    前記断層像における所定の層領域を特定する層領域特定ステップと、
    を含み、
    前記取得ステップは、前記所定の層領域の形状データを取得する
    ことを特徴とする請求項10に記載の眼科情報処理方法。
  12. 前記複数の形状データと前記1以上の補間形状データとに基づいて前記組織の形状を特定する特定ステップを含む
    ことを特徴とする請求項10又は請求項11に記載の眼科情報処理方法。
  13. 前記形状データは、眼底における所定の層領域の形状に対応した形状データであり、
    前記被検眼を他覚的に測定することにより得られた屈折度数と、前記特定ステップにおいて特定された前記組織の形状とに基づいて、前記被検眼の中心窩を含む領域の周辺領域の屈折度数を算出する算出ステップを含む
    ことを特徴とする請求項12に記載の眼科情報処理方法。
  14. コンピュータに、請求項10〜請求項13のいずれか一項に記載の眼科情報処理方法の各ステップを実行させることを特徴とするプログラム。
JP2019051394A 2019-03-19 2019-03-19 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム Active JP7248467B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019051394A JP7248467B2 (ja) 2019-03-19 2019-03-19 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019051394A JP7248467B2 (ja) 2019-03-19 2019-03-19 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2020151089A true JP2020151089A (ja) 2020-09-24
JP7248467B2 JP7248467B2 (ja) 2023-03-29

Family

ID=72556607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051394A Active JP7248467B2 (ja) 2019-03-19 2019-03-19 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP7248467B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004455A1 (ja) * 2022-06-27 2024-01-04 株式会社トプコン 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289579A (ja) * 2007-05-23 2008-12-04 Topcon Corp 眼底観察装置及びそれを制御するプログラム
JP2015047427A (ja) * 2013-09-04 2015-03-16 アルプス電気株式会社 視線検出装置
JP2016054854A (ja) * 2014-09-08 2016-04-21 株式会社トプコン 眼科撮影装置および眼科情報処理装置
JP2018020192A (ja) * 2017-10-06 2018-02-08 キヤノン株式会社 画像処理システム、処理方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289579A (ja) * 2007-05-23 2008-12-04 Topcon Corp 眼底観察装置及びそれを制御するプログラム
JP2015047427A (ja) * 2013-09-04 2015-03-16 アルプス電気株式会社 視線検出装置
JP2016054854A (ja) * 2014-09-08 2016-04-21 株式会社トプコン 眼科撮影装置および眼科情報処理装置
JP2018020192A (ja) * 2017-10-06 2018-02-08 キヤノン株式会社 画像処理システム、処理方法及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004455A1 (ja) * 2022-06-27 2024-01-04 株式会社トプコン 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム

Also Published As

Publication number Publication date
JP7248467B2 (ja) 2023-03-29

Similar Documents

Publication Publication Date Title
US11185221B2 (en) Ophthalmologic information processing apparatus, ophthalmologic apparatus, and ophthalmologic information processing method
JP6444666B2 (ja) 眼科撮影装置および眼科情報処理装置
JP7359675B2 (ja) 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム
US10743762B2 (en) Ophthalmologic apparatus
JP2018149449A (ja) 眼科撮影装置および眼科情報処理装置
US20210038071A1 (en) Ophthalmic apparatus, method of controlling the same, and recording medium
JP7286422B2 (ja) 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム
JP7248467B2 (ja) 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム
EP3683766B1 (en) Ophthalmologic information processing apparatus, ophthalmologic apparatus, ophthalmologic information processing method, and program
JP7236927B2 (ja) 眼科装置、その制御方法、眼科情報処理装置、その制御方法、プログラム、及び記録媒体
JP6699956B1 (ja) 眼科装置
JP7306977B2 (ja) 眼科装置、及びその制御方法
JP2022075732A (ja) 眼科装置、及び眼科情報処理プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230316

R150 Certificate of patent or registration of utility model

Ref document number: 7248467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150