JP2020142184A - Control device, control method and computer program - Google Patents

Control device, control method and computer program Download PDF

Info

Publication number
JP2020142184A
JP2020142184A JP2019040520A JP2019040520A JP2020142184A JP 2020142184 A JP2020142184 A JP 2020142184A JP 2019040520 A JP2019040520 A JP 2019040520A JP 2019040520 A JP2019040520 A JP 2019040520A JP 2020142184 A JP2020142184 A JP 2020142184A
Authority
JP
Japan
Prior art keywords
water
treatment
treated
activated carbon
powdered activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019040520A
Other languages
Japanese (ja)
Other versions
JP7258606B2 (en
Inventor
時本 寛幸
Hiroyuki Tokimoto
寛幸 時本
法光 阿部
Norimitsu Abe
法光 阿部
諒 難波
Ryo Nanba
諒 難波
理 山中
Satoru Yamanaka
理 山中
智 竹田
Satoshi Takeda
智 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019040520A priority Critical patent/JP7258606B2/en
Publication of JP2020142184A publication Critical patent/JP2020142184A/en
Application granted granted Critical
Publication of JP7258606B2 publication Critical patent/JP7258606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a control device, a control method and a computer program, possible to more appropriately control an amount of powdered activated carbon injected into water to be treated for the purpose of removing a soluble organic matter.SOLUTION: A control device of an embodiment includes a sodium hypochlorite injection control unit, a coagulant injection control unit, and a powdered activated carbon injection control unit. The sodium hypochlorite injection control unit determines an injection rate of sodium hypochlorite in a second treatment based on a quality of raw water that is water to be treated before a first treatment. The coagulant injection control unit determines a coagulant injection rate in a third treatment based on the water quality of the raw water. The powdered activated carbon injection control unit determines an injection rate of a powdered activated carbon in the first treatment based on an ultraviolet absorbance of the raw water and the injection rate of sodium hypochlorite determined by the sodium hypochlorite injection control unit, and the coagulant injection rate determined by the coagulant injection control unit.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、制御装置、制御方法及びコンピュータプログラムに関する。 Embodiments of the present invention relate to control devices, control methods and computer programs.

河川や湖沼、貯水池等から浄水場に流入する被処理水(以下「原水」ともいう。)には、フミン等の溶解性の天然有機物(以下「溶解性有機物」という。)が含まれている。一方、浄水場では、鉄やマンガン等の金属類の除去や消毒処理を目的として、被処理水に次亜塩素酸ナトリウム等の薬品剤が注入されるが、溶解性有機物を含む原水が浄水場に流入する場合、溶解性有機物と薬品剤との化学反応によってトリハロメタン類やハロ酢酸類等の消毒副生成物が生成される。これら消毒副生成物は発癌性物質であるため、上記化学反応による生成を抑制する必要がある。 The water to be treated (hereinafter also referred to as "raw water") that flows into the water purification plant from rivers, lakes, reservoirs, etc. contains soluble natural organic matter such as fumin (hereinafter referred to as "soluble organic matter"). .. On the other hand, at water purification plants, chemical agents such as sodium hypochlorite are injected into the water to be treated for the purpose of removing and disinfecting metals such as iron and manganese, but raw water containing soluble organic substances is used at the water purification plant. When it flows into the water, disinfection by-products such as trihalomethanes and haloacetic acids are produced by the chemical reaction between the soluble organic substance and the chemical agent. Since these disinfection by-products are carcinogens, it is necessary to suppress their formation by the above chemical reactions.

多くの浄水場では、この溶解性有機物の除去を目的として被処理水に粉末活性炭が注入される。この粉末活性炭を用いた溶解性有機物の除去方法では、被処理水の水質に応じて粉末活性炭の注入率が決定されるが、この決定方法にはジャーテスト(ビーカーテストともいう。)が用いられることが多い。ジャーテストとは、被処理水を複数のビーカーに採水し、その採水した複数の被処理水にそれぞれ異なる量の粉末活性炭を注入して、溶解性有機物の除去効果を評価する方法である。ジャーテストにおいて良好な効果を得られたビーカーの注入量に基づいて粉末活性炭の最低限の注入率が求められる。 In many water purification plants, powdered activated carbon is injected into the water to be treated for the purpose of removing this soluble organic matter. In this method for removing soluble organic matter using powdered activated carbon, the injection rate of powdered activated carbon is determined according to the water quality of the water to be treated, and a jar test (also referred to as a beaker test) is used for this determination method. Often. The jar test is a method in which water to be treated is sampled in a plurality of beakers, and different amounts of activated carbon powder are injected into the sampled water to be treated to evaluate the effect of removing soluble organic matter. .. The minimum injection rate of powdered activated carbon is determined based on the injection amount of the beaker that has obtained a good effect in the jar test.

しかしながら、ジャーテストによって粉末活性炭の注入率を決定する方法では、粉末活性炭の注入率を被処理水の水質の変化に追随して適切に管理することが非常に難しい。これは、ジャーテストによる注入率の決定には時間がかかるため、適切な注入率が得られたときには既に被処理水の水質が変化してしまっていることが多いためである。また、粉末活性炭の投入に用いられる実際の注入率は、ジャーテストによって求められた注入率に安全マージンを確保した値として決定されるのが一般的であり、粉末活性炭が過剰に注入されてしまいがちである。粉末活性炭は、凝集剤や硫酸、次亜塩素酸ナトリウム等の他の薬品に比べ単価が非常に高いため、粉末活性炭の過剰注入は薬品コストの高騰を招く可能性がある。このような背景により、粉末活性炭の過剰注入を抑制し、被処理水の水質の変化に応じて粉末活性炭の注入率を適切な注入率に制御することができる技術が望まれている。 However, in the method of determining the injection rate of powdered activated carbon by the jar test, it is very difficult to appropriately control the injection rate of powdered activated carbon in accordance with the change in the water quality of the water to be treated. This is because it takes time to determine the injection rate by the jar test, and the quality of the water to be treated has often already changed when an appropriate injection rate is obtained. In addition, the actual injection rate used for charging the powdered activated carbon is generally determined as a value that secures a safety margin for the injection rate obtained by the jar test, and the powdered activated carbon is excessively injected. It tends to be. Since powdered activated carbon has a much higher unit price than other chemicals such as flocculants, sulfuric acid, and sodium hypochlorite, excessive injection of powdered activated carbon may lead to an increase in chemical cost. Against this background, there is a demand for a technique capable of suppressing excessive injection of powdered activated carbon and controlling the injection rate of powdered activated carbon to an appropriate injection rate according to changes in the water quality of the water to be treated.

特開2012−213759号公報Japanese Unexamined Patent Publication No. 2012-213759

本発明が解決しようとする課題は、溶解性有機物の除去を目的として被処理水に注入される粉末活性炭の注入量をより適切に制御することができる制御装置、制御方法及びコンピュータプログラムを提供することである。 The problem to be solved by the present invention is to provide a control device, a control method and a computer program capable of more appropriately controlling the injection amount of powdered activated carbon injected into the water to be treated for the purpose of removing soluble organic substances. That is.

実施形態の制御装置は、粉末活性炭混和池において被処理水に含まれる溶解性有機物を粉末活性炭に吸着させる第1処理と、前塩素混和池において前記被処理水に含まれる金属類及びアンモニア態窒素を次亜塩素酸ナトリウムにより酸化させる第2処理と、凝集剤混和池において前記被処理水に含まれる懸濁物質を凝集剤により凝集及び沈降させる第3処理と、を順に行う水処理システムの制御装置であって、次亜塩素酸ナトリウム注入制御部と、凝集剤注入制御部と、粉末活性炭注入制御部と、を持つ。次亜塩素酸ナトリウム注入制御部は、前記第1処理前の被処理水である原水の水質に基づき、前記第2処理における次亜塩素酸ナトリウムの注入率を決定する。凝集剤注入制御部は、前記原水の水質に基づき、前記第3処理における凝集剤の注入率を決定する。粉末活性炭注入制御部は、前記原水の紫外線吸光度と、前記次亜塩素酸ナトリウム注入制御部によって決定された次亜塩素酸ナトリウムの注入率と、前記凝集剤注入制御部によって決定された凝集剤の注入率と、に基づき、前記第1処理における粉末活性炭の注入率を決定する。 The control device of the embodiment includes the first treatment of adsorbing the soluble organic matter contained in the water to be treated on the powdered activated carbon in the powdered activated carbon mixing pond, and the metals and ammonia nitrogen contained in the water to be treated in the prechlorination pond. Control of the water treatment system in which the second treatment of oxidizing the water with sodium hypochlorite and the third treatment of coagulating and sedimenting the suspended substance contained in the water to be treated with the coagulant in the coagulant mixing pond are performed in order. It is an apparatus having a sodium hypochlorite injection control unit, a coagulant injection control unit, and a powdered activated carbon injection control unit. The sodium hypochlorite injection control unit determines the injection rate of sodium hypochlorite in the second treatment based on the quality of the raw water which is the water to be treated before the first treatment. The coagulant injection control unit determines the coagulant injection rate in the third treatment based on the water quality of the raw water. The powdered activated carbon injection control unit includes the ultraviolet absorbance of the raw water, the injection rate of sodium hypochlorite determined by the sodium hypochlorite injection control unit, and the coagulant determined by the coagulant injection control unit. Based on the injection rate, the injection rate of the powdered activated carbon in the first treatment is determined.

第1の実施形態における水処理システムの構成例を示す図。The figure which shows the structural example of the water treatment system in 1st Embodiment. 第1の実施形態における粉末活性炭注入制御部の機能構成の具体例を示す図。The figure which shows the specific example of the functional structure of the powder activated carbon injection control part in 1st Embodiment. 第1の実施形態において、制御装置が粉末活性炭混和池における粉末活性炭の注入率を決定する処理の流れを示すフローチャート。In the first embodiment, a flowchart showing a flow of a process in which a control device determines an injection rate of powdered activated carbon in a powdered activated carbon mixing pond. 第1の実施形態において、原水のDOC濃度と原水の紫外線吸光度との相関について得られた知見を示す図。The figure which shows the knowledge obtained about the correlation between the DOC concentration of the raw water and the ultraviolet absorbance of the raw water in the 1st embodiment. 第1の実施形態において、濾過水のDOC濃度と濾過水の紫外線吸光度との相関について得られた知見を説明する図。The figure explaining the knowledge obtained about the correlation between the DOC concentration of the filtered water and the ultraviolet absorbance of the filtered water in the 1st embodiment. 第1の実施形態において、粉末活性炭の注入率と、溶解性有機物の処理率との相関について得られた知見を説明する図。The figure explaining the knowledge obtained about the correlation between the injection rate of powdered activated carbon and the treatment rate of a soluble organic matter in 1st Embodiment. 第1の実施形態において、粉末活性炭及び凝集剤による溶解性有機物の除去効果を示す実験結果を示す図。The figure which shows the experimental result which shows the effect of removing the soluble organic matter by powdered activated carbon and a flocculant in the 1st Embodiment. 第1の実施形態において、原水のpHと、溶解性有機物の処理率との相関について得られた知見を説明する図。The figure explaining the knowledge obtained about the correlation between the pH of raw water and the treatment rate of a soluble organic matter in 1st Embodiment. 第1の実施形態において、次亜塩素酸ナトリウムの注入率と、原水の紫外線吸光度と、溶解性有機物の処理率との相関について得られた知見を説明する図。The figure explaining the knowledge obtained about the correlation between the injection rate of sodium hypochlorite, the ultraviolet absorbance of raw water, and the treatment rate of a soluble organic substance in the first embodiment. 第2の実施形態における水処理システムの構成例を示す図。The figure which shows the structural example of the water treatment system in 2nd Embodiment. 第2の実施形態における粉末活性炭注入制御部の機能構成の具体例を示す図。The figure which shows the specific example of the functional structure of the powdered activated carbon injection control part in 2nd Embodiment. 第2の実施形態において、制御装置が粉末活性炭混和池における粉末活性炭の注入率を決定する処理の流れを示すフローチャート。In the second embodiment, a flowchart showing a flow of a process in which a control device determines an injection rate of powdered activated carbon in a powdered activated carbon mixing pond. 第3の実施形態における水処理システムの構成例を示す図。The figure which shows the structural example of the water treatment system in 3rd Embodiment. 第3の実施形態における粉末活性炭注入制御部の機能構成の具体例を示す図。The figure which shows the specific example of the functional structure of the powder activated carbon injection control part in 3rd Embodiment. 制御装置80bが粉末活性炭混和池における粉末活性炭の注入率を決定する処理の流れを示すフローチャート。The flowchart which shows the flow of the process which the control device 80b determines the injection rate of the powdered activated carbon in the powdered activated carbon mixing pond.

以下、実施形態の制御装置、制御方法及びコンピュータプログラムを、図面を参照して説明する。 Hereinafter, the control device, the control method, and the computer program of the embodiment will be described with reference to the drawings.

(第1の実施形態)
図1は、第1の実施形態における水処理システムの構成例を示す図である。図1は、第1の実施形態の水処理システムの一例として急速濾過方式の水処理システム100を示す。水処理システム100は、着水井10、粉末活性炭混和池20、前塩素混和池30、凝集剤混和池40、フロック形成池50、沈澱池60、及び濾過池70を備える。また、水処理システム100は、粉末活性炭混和池20において被処理水に粉末活性炭を注入する粉末活性炭注入装置21、前塩素混和池30において被処理水に次亜塩素酸ナトリウムを注入する次亜塩素酸ナトリウム注入装置31、及び凝集剤混和池40において被処理水に凝集剤を注入する凝集剤注入装置41を備える。さらに、水処理システム100は、粉末活性炭注入装置21による粉末活性炭の注入率、次亜塩素酸ナトリウム注入装置31による次亜塩素酸ナトリウムの注入率、及び凝集剤注入装置41による凝集剤の注入率を制御する制御装置80を備える。
(First Embodiment)
FIG. 1 is a diagram showing a configuration example of a water treatment system according to the first embodiment. FIG. 1 shows a rapid sand filter type water treatment system 100 as an example of the water treatment system of the first embodiment. The water treatment system 100 includes a landing well 10, a powdered activated carbon admixture 20, a prechlorine admixture 30, a flocculant admixture 40, a floc forming pond 50, a sedimentation pond 60, and a filtration pond 70. The water treatment system 100 includes a powdered activated carbon injection device 21 that injects powdered activated carbon into the water to be treated in the powdered activated carbon mixing pond 20, and a hypochlorite that injects sodium hypochlorite into the water to be treated in the prechlorite mixing pond 30. The sodium acid injection device 31 and the coagulant injection device 41 for injecting the coagulant into the water to be treated in the coagulant mixing pond 40 are provided. Further, in the water treatment system 100, the injection rate of powdered activated carbon by the powdered activated carbon injection device 21, the injection rate of sodium hypochlorite by the sodium hypochlorite injection device 31, and the injection rate of the coagulant by the coagulant injection device 41 A control device 80 for controlling the above is provided.

以下、被処理水に含まれる溶解性有機物を粉末活性炭により吸着・除去する処理を第1処理という。また、被処理水に含まれる鉄やマンガン等の金属類及びアンモニア態窒素を次亜塩素酸ナトリウムにより酸化する処理を第2処理という。また、被処理水に含まれる粘土質や細菌類、藻類等の懸濁物質を凝集剤により凝集・沈降させる処理を第3処理という。なお、第3処理では、粉末活性炭混和池20において注入された粉末活性炭も併せて除去される。 Hereinafter, the treatment of adsorbing and removing the soluble organic matter contained in the water to be treated with powdered activated carbon is referred to as the first treatment. Further, the treatment of oxidizing metals such as iron and manganese and ammonia nitrogen contained in the water to be treated with sodium hypochlorite is called the second treatment. The third treatment is a treatment in which suspended substances such as clay, bacteria, and algae contained in the water to be treated are aggregated and settled by a flocculant. In the third treatment, the powdered activated carbon injected in the powdered activated carbon mixing pond 20 is also removed.

着水井10は、水処理システム100に流入する被処理水(以下「原水」ともいう。)を貯留する貯水池である。着水井10に流入した原水は、所定時間の滞留の後、後段の粉末活性炭混和池20に送られる。なお、着水井10と粉末活性炭混和池20との間には、原水の各種水質を測定する水質測定器11と、原水の紫外線吸光度を測定するUV(Ultra Violet)測定器12と、粉末活性炭混和池20に流入する原水の流量(以下「流入流量」という。)を測定する流量計13と、が設置される。水質測定器11、UV測定器12及び流量計13の各装置は、制御装置80と通信可能に接続されており、測定データを制御装置80に送信する。 The landing well 10 is a reservoir for storing the water to be treated (hereinafter, also referred to as "raw water") flowing into the water treatment system 100. The raw water that has flowed into the landing well 10 is sent to the powdered activated carbon mixing pond 20 in the subsequent stage after staying for a predetermined time. Between the landing well 10 and the powdered activated carbon mixing pond 20, a water quality measuring device 11 for measuring various raw water qualities, a UV (Ultra Violet) measuring device 12 for measuring the ultraviolet absorbance of the raw water, and powdered activated carbon mixing are provided. A flow meter 13 for measuring the flow rate of raw water flowing into the pond 20 (hereinafter referred to as “inflow flow rate”) is installed. Each device of the water quality measuring device 11, the UV measuring device 12, and the flow meter 13 is communicably connected to the control device 80, and transmits the measurement data to the control device 80.

具体的には、水質測定器11は、原水の水質として、濁度、アルカリ度、水温、pH、塩素要求量、アンモニア濃度を測定する。水質測定器11は、これらの各水質の全てを測定可能な1台の装置として構成されてもよいし、各水質の一部を個別に測定可能な複数の装置の集合として構成されてもよい。 Specifically, the water quality measuring instrument 11 measures the turbidity, alkalinity, water temperature, pH, chlorine requirement, and ammonia concentration as the water quality of the raw water. The water quality measuring device 11 may be configured as one device capable of measuring all of these water qualities, or may be configured as a set of a plurality of devices capable of individually measuring a part of each water quality. ..

粉末活性炭混和池20は、着水井10から送られてくる被処理水に第1処理を施すための貯水槽である。具体的には、粉末活性炭混和池20では、粉末活性炭注入装置21によって被処理水に粉末活性炭が注入される。粉末活性炭注入装置21は、粉末活性炭の貯留タンクやポンプ等の駆動部を備え、駆動部の動作によって貯留タンク内の粉末活性炭を粉末活性炭混和池20に供給する。粉末活性炭の注入量は、制御装置80が粉末活性炭注入装置21の注入率を制御することによって調節される。 The powdered activated carbon mixing pond 20 is a water storage tank for first treating the water to be treated sent from the landing well 10. Specifically, in the powdered activated carbon mixing pond 20, the powdered activated carbon is injected into the water to be treated by the powdered activated carbon injection device 21. The powdered activated carbon injection device 21 includes a driving unit such as a powdered activated carbon storage tank and a pump, and supplies the powdered activated carbon in the storage tank to the powdered activated carbon mixing pond 20 by the operation of the driving unit. The injection amount of the powdered activated carbon is adjusted by the control device 80 controlling the injection rate of the powdered activated carbon injection device 21.

前塩素混和池30は、粉末活性炭混和池20から送られてくる被処理水に第2処理を施すための貯水槽である。具体的には、前塩素混和池30では、次亜塩素酸ナトリウム注入装置31によって被処理水に次亜塩素酸ナトリウムが注入される。次亜塩素酸ナトリウム注入装置31は、次亜塩素酸ナトリウムの貯留タンクやポンプ等の駆動部を備え、駆動部の動作によって貯留タンク内の次亜塩素酸ナトリウムを前塩素混和池30に供給する。次亜塩素酸ナトリウムの注入量は、制御装置80が次亜塩素酸ナトリウム注入装置31の注入率を制御することによって調節される。 The pre-chlorine mixing pond 30 is a water storage tank for performing a second treatment on the water to be treated sent from the powdered activated carbon mixing pond 20. Specifically, in the pre-chlorine mixing pond 30, sodium hypochlorite is injected into the water to be treated by the sodium hypochlorite injection device 31. The sodium hypochlorite injection device 31 includes a drive unit such as a storage tank for sodium hypochlorite and a pump, and supplies sodium hypochlorite in the storage tank to the prechlorite mixing pond 30 by the operation of the drive unit. .. The injection amount of sodium hypochlorite is adjusted by the control device 80 controlling the injection rate of the sodium hypochlorite injection device 31.

凝集剤混和池40、フロック形成池50及び沈澱池60は、前塩素混和池30から送られてくる被処理水に第3処理を施すための貯水槽である。具体的には、凝集剤混和池40では、凝集剤注入装置41によって被処理水に凝集剤が注入される。凝集剤注入装置41は、凝集剤の貯留タンクやポンプ等の駆動部を備え、駆動部の動作によって貯留タンク内の凝集剤を凝集剤混和池40に供給する。凝集剤の注入量は、制御装置80が凝集剤注入装置41の注入率を制御することによって調節される。 The coagulant mixing pond 40, the floc forming pond 50, and the settling pond 60 are water storage tanks for performing a third treatment on the water to be treated sent from the pre-chlorine mixing pond 30. Specifically, in the flocculant mixing pond 40, the flocculant is injected into the water to be treated by the flocculant injection device 41. The coagulant injection device 41 includes a drive unit such as a coagulant storage tank and a pump, and supplies the coagulant in the storage tank to the coagulant mixing pond 40 by the operation of the drive unit. The injection amount of the flocculant is adjusted by the control device 80 controlling the injection rate of the flocculant injection device 41.

なお、第3処理で用いられる凝集剤は、アルミニウム系凝集剤又は鉄系凝集剤であることが好ましい。例えば、アルミニウム系凝集剤としては、硫酸アルミニウム(硫酸バンド)やポリ塩化アルミニウム(PAC:Poly Aluminum Chloride)などの化合物が挙げられる。また、鉄系凝集剤としては、塩化鉄や硫酸鉄、ポリシリカ鉄などの化合物が挙げられる。本実施形態では、凝集剤としてPACを用いる場合を想定する。 The coagulant used in the third treatment is preferably an aluminum-based coagulant or an iron-based coagulant. For example, examples of the aluminum-based flocculant include compounds such as aluminum sulfate (sulfate band) and polyaluminum chloride (PAC: Poly Aluminum Chloride). Examples of the iron-based flocculant include compounds such as iron chloride, iron sulfate, and polysilica iron. In this embodiment, it is assumed that PAC is used as a flocculant.

また、凝集剤混和池40には、被処理水と凝集剤とを混和するための攪拌機(図示せず)が備えられる。例えば、この攪拌機にはフラッシュミキサ(急速攪拌機)を用いることができる。攪拌機によって被処理水が攪拌されることにより、被処理水中の懸濁物質や粉末活性炭が凝集して微細なフロックを形成する。また、凝集剤混和池40には、凝集剤が注入された被処理水(以下「混和水」ともいう。)のpHを測定するpH測定器42が備えられる。pH測定器42は、制御装置80と通信可能に接続されており、測定データを制御装置80に送信する。 Further, the coagulant mixing pond 40 is provided with a stirrer (not shown) for mixing the water to be treated and the coagulant. For example, a flash mixer (rapid stirrer) can be used for this stirrer. When the water to be treated is agitated by the stirrer, suspended substances and powdered activated carbon in the water to be treated are aggregated to form fine flocs. Further, the coagulant mixing pond 40 is provided with a pH measuring device 42 for measuring the pH of the water to be treated (hereinafter, also referred to as “mixed water”) into which the coagulant is injected. The pH measuring device 42 is communicably connected to the control device 80 and transmits measurement data to the control device 80.

フロック形成池50には、フロックの集塊化を促進するために被処理水を攪拌する攪拌機51が備えられる。例えば、攪拌機51にはフロキュレータ(緩速攪拌機)を用いることができる。凝集剤混和池40において形成された微細なフロックを含む被処理水がフロック形成池50に送られた後、攪拌機51によって攪拌されることにより、被処理水中の微細なフロックが集塊化してより大きなフロックを形成する。なお、図1は、フロック形成池50に3つの攪拌機51−1〜51−3が備えられた例を示しているが、攪拌機51の数は2つ以下であってもよいし、4つ以上であってもよい。 The floc forming pond 50 is provided with a stirrer 51 that agitates the water to be treated in order to promote the agglomeration of flocs. For example, a flocurator (slow speed stirrer) can be used for the stirrer 51. After the water to be treated containing the fine flocs formed in the coagulant mixing pond 40 is sent to the floc forming pond 50, the fine flocs in the water to be treated are agglomerated by being stirred by the stirrer 51. Form large flocs. Although FIG. 1 shows an example in which the floc forming pond 50 is provided with three stirrers 51-1 to 51-3, the number of stirrers 51 may be two or less, or four or more. It may be.

沈澱池60は、フロック形成池50から送られてくる被処理水を所定時間以上貯留する貯水池である。沈澱池60では、集塊化したフロックが重力沈降により底部に沈殿することで被処理水から分離される。沈澱池60の底部に沈殿した汚泥は、図示しない汚泥引き抜きポンプにより適宜引き抜かれる。一方、フロックが分離された上澄み水は後段の濾過池70に送られる。 The sedimentation reservoir 60 is a reservoir that stores the water to be treated sent from the floc forming reservoir 50 for a predetermined time or longer. In the settling basin 60, the agglomerated flocs settle to the bottom due to gravity settling and are separated from the water to be treated. The sludge settled at the bottom of the settling basin 60 is appropriately withdrawn by a sludge extraction pump (not shown). On the other hand, the supernatant water from which the flocs are separated is sent to the filtration pond 70 in the subsequent stage.

濾過池70は、沈澱池60から送られてくる被処理水を濾過する貯水池である。濾過池70では、沈澱池60で分離されずに残存する微小なフロックが濾過により被処理水から分離・除去される。濾過された被処理水(濾過水)は、浄化処理を終えた水(以下「処理水」という。)として放流又は再利用される。 The filtration reservoir 70 is a reservoir that filters the water to be treated sent from the sedimentation reservoir 60. In the filtration pond 70, minute flocs remaining without being separated in the settling pond 60 are separated and removed from the water to be treated by filtration. The filtered water to be treated (filtered water) is discharged or reused as water that has been purified (hereinafter referred to as "treated water").

制御装置80は、水質測定器11、UV測定器12、流量計13及びpH測定器42の測定データに基づいて、粉末活性炭注入装置21による粉末活性炭の注入率、次亜塩素酸ナトリウム注入装置31による次亜塩素酸ナトリウムの注入率、及び、凝集剤注入装置41による凝集剤の注入率を制御する。 The control device 80 is based on the measurement data of the water quality measuring device 11, the UV measuring device 12, the flow meter 13 and the pH measuring device 42, and the injection rate of the powdered activated charcoal by the powdered activated charcoal injection device 21 and the sodium hypochlorite injection device 31. The injection rate of sodium hypochlorite and the injection rate of the flocculant by the flocculant injection device 41 are controlled.

具体的には、制御装置80は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、プログラムを実行する。制御装置80は、プログラムの実行によって次亜塩素酸ナトリウム注入制御部81、凝集剤注入制御部82及び粉末活性炭注入制御部83を備える装置として機能する。なお、制御装置80の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されてもよい。 Specifically, the control device 80 includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus, and executes a program. The control device 80 functions as a device including a sodium hypochlorite injection control unit 81, a flocculant injection control unit 82, and a powdered activated carbon injection control unit 83 by executing a program. All or a part of each function of the control device 80 may be realized by using hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array). The program may be recorded on a computer-readable recording medium. The computer-readable recording medium is, for example, a flexible disk, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, or a storage device such as a hard disk built in a computer system. The program may be transmitted over a telecommunication line.

次亜塩素酸ナトリウム注入制御部81は、原水の水質に基づいて次亜塩素酸ナトリウムの注入率を決定する。具体的には、次亜塩素酸ナトリウム注入制御部81は、原水の塩素要求量又はアンモニア濃度に基づいて次亜塩素酸ナトリウムの注入率IClを決定する。次亜塩素酸ナトリウム注入制御部81は、次亜塩素酸ナトリウム注入装置31に対し、決定した注入率での注入動作を指示することにより、前塩素混和池30における次亜塩素酸ナトリウムの注入量を調節する。 The sodium hypochlorite injection control unit 81 determines the injection rate of sodium hypochlorite based on the quality of the raw water. Specifically, the sodium hypochlorite injection control unit 81 determines the injection rate I Cl of sodium hypochlorite based on the chlorine requirement of the raw water or the ammonia concentration. The sodium hypochlorite injection control unit 81 instructs the sodium hypochlorite injection device 31 to perform the injection operation at the determined injection rate, thereby instructing the injection amount of sodium hypochlorite in the prechlorite mixing pond 30. To adjust.

なお、次亜塩素酸ナトリウムの適切な注入量は被処理水の処理量に応じて異なるため、流入流量が短時間で大きく変動することが見込まれる場合には、次亜塩素酸ナトリウムの注入量も流入流量の変動に応じて調節されることが望ましい。この場合、次亜塩素酸ナトリウム注入制御部81は、決定した注入率を流入流量に応じて換算した注入量で次亜塩素酸ナトリウム注入装置31を制御するように構成されてもよい。具体的には、次亜塩素酸ナトリウム注入制御部81は、流量計13によって測定される原水の流入流量Qを取得し、決定した注入率IClと原水の流入流量Qとに基づいて次亜塩素酸ナトリウムの注入量を算出することができる。 Since the appropriate injection amount of sodium hypochlorite varies depending on the treatment amount of water to be treated, if the inflow flow rate is expected to fluctuate significantly in a short time, the injection amount of sodium hypochlorite is expected. It is also desirable to adjust according to the fluctuation of the inflow flow rate. In this case, the sodium hypochlorite injection control unit 81 may be configured to control the sodium hypochlorite injection device 31 with an injection amount obtained by converting the determined injection rate according to the inflow flow rate. Specifically, sodium hypochlorite injection control unit 81 obtains the flow rate Q R of the raw water that is measured by the flow meter 13, the determined infusion rate I Cl and on the basis of the inlet flow Q R of the raw water The injection amount of sodium hypochlorite can be calculated.

なお、上記方法は、次亜塩素酸ナトリウムの注入率を決定する方法の一例であり、次亜塩素酸ナトリウムの注入率の決定方法を上記方法に限定するものではない。次亜塩素酸ナトリウムの注入率の決定方法は、第2処理(金属類の酸化処理)に必要な次亜塩素酸ナトリウムの注入率又は注入量を原水の水質に応じて決定する方法であれば他のどのような方法であってもよく、水処理システム100の構成や性質又は用途等に応じて適切な方法が選択されるとよい。 The above method is an example of a method for determining the injection rate of sodium hypochlorite, and the method for determining the injection rate of sodium hypochlorite is not limited to the above method. The method for determining the injection rate of sodium hypochlorite is as long as the injection rate or amount of sodium hypochlorite required for the second treatment (oxidation treatment of metals) is determined according to the quality of the raw water. Any other method may be used, and an appropriate method may be selected according to the configuration, properties, application, etc. of the water treatment system 100.

凝集剤注入制御部82は、原水の水質に基づいて凝集剤混和池40における凝集剤の注入率を決定する。具体的には、凝集剤注入制御部82は、原水の濁度、アルカリ度又は水温と、凝集剤混和池40における混和水のpH(pH)と、に基づいて凝集剤の注入率IPACを決定する。凝集剤注入制御部82は、凝集剤注入装置41に対し、決定した注入率での注入動作を指示することにより、凝集剤混和池40における凝集剤の注入量を調節する。 The coagulant injection control unit 82 determines the coagulant injection rate in the coagulant mixing pond 40 based on the quality of the raw water. Specifically, the coagulant injection control unit 82 sets the coagulant injection rate IPAC based on the turbidity, alkalinity or water temperature of the raw water and the pH (pH C ) of the mixed water in the coagulant mixing pond 40. To determine. The coagulant injection control unit 82 adjusts the injection amount of the coagulant in the coagulant mixing pond 40 by instructing the coagulant injection device 41 to perform the injection operation at the determined injection rate.

なお、凝集剤の適切な注入量は被処理水の処理量に応じて異なるため、流入流量が短時間で大きく変動することが見込まれる場合には、凝集剤の注入量も流入流量の変動に応じて調節されることが望ましい。この場合、凝集剤注入制御部82は、決定した注入率を流入流量に応じて換算した注入量で凝集剤注入装置41を制御するように構成されてもよい。具体的には、凝集剤注入制御部82は、流量計13によって測定される原水の流入流量(Q)を取得し、決定した注入率IPACと原水の流入流量Qとに基づいて凝集剤の注入量を算出することができる。 Since the appropriate injection amount of the coagulant varies depending on the treatment amount of the water to be treated, if the inflow flow rate is expected to fluctuate significantly in a short time, the injection amount of the coagulant also changes in the inflow flow rate. It is desirable to adjust accordingly. In this case, the coagulant injection control unit 82 may be configured to control the coagulant injection device 41 with an injection amount obtained by converting the determined injection rate according to the inflow flow rate. Specifically, the coagulant injection control unit 82 obtains the flow meter 13 is the raw water inlet flow measured by (Q R), based on the determined infusion rate I PAC and inlet flow Q R of the raw water aggregate The injection amount of the agent can be calculated.

なお、上記方法は、凝集剤の注入率を決定する方法の一例であり、凝集剤の注入率の決定方法を上記方法に限定するものではない。凝集剤の注入率の決定方法は、第3処理(懸濁物質の凝集処理)に必要な凝集剤の注入率又は注入量を原水の水質に応じて決定する方法であれば他のどのような方法であってもよく、水処理システム100の構成や性質又は用途等に応じて適切な方法が選択されるとよい。 The above method is an example of a method for determining the injection rate of the coagulant, and the method for determining the injection rate of the coagulant is not limited to the above method. The method for determining the injection rate of the flocculant is any other method as long as the injection rate or the injection amount of the flocculant required for the third treatment (coagulation treatment of the suspended substance) is determined according to the quality of the raw water. It may be a method, and an appropriate method may be selected according to the configuration, properties, application, etc. of the water treatment system 100.

粉末活性炭注入制御部83は、原水の水質に基づいて粉末活性炭混和池20における粉末活性炭の注入率を決定する。具体的には、粉末活性炭注入制御部83は、原水のpH(pH)と、粉末活性炭混和池20における被処理水の滞留時間と、原水の紫外線吸光度UVと、次亜塩素酸ナトリウム注入制御部81によって決定された次亜塩素酸ナトリウムの注入率IClと、凝集剤注入制御部82によって決定された凝集剤の注入率IPACと、に基づいて粉末活性炭の注入率IACPを決定する。粉末活性炭注入制御部83は、粉末活性炭注入装置21に対し、決定した注入率での注入動作を指示することにより、粉末活性炭混和池20における粉末活性炭の注入量を調節する。 The powdered activated carbon injection control unit 83 determines the injection rate of powdered activated carbon in the powdered activated carbon mixing pond 20 based on the water quality of the raw water. Specifically, the powdered activated carbon injection control unit 83 injects the pH (pH R ) of the raw water, the residence time of the water to be treated in the powdered activated carbon mixing pond 20, the ultraviolet absorbance UV 0 of the raw water, and sodium hypochlorite. The injection rate I ACP of powdered activated carbon is determined based on the injection rate I Cl of sodium hypochlorite determined by the control unit 81 and the injection rate I PAC of the coagulant determined by the coagulant injection control unit 82. To do. The powdered activated carbon injection control unit 83 adjusts the injection amount of the powdered activated carbon in the powdered activated carbon mixing pond 20 by instructing the powdered activated carbon injection device 21 to perform the injection operation at the determined injection rate.

図2は、粉末活性炭注入制御部83の機能構成の具体例を示す図である。粉末活性炭注入制御部83は、目標吸光度決定部831、目標処理率算出部832及び粉末活性炭注入率算出部833を備える。 FIG. 2 is a diagram showing a specific example of the functional configuration of the powdered activated carbon injection control unit 83. The powdered activated carbon injection control unit 83 includes a target absorbance determining unit 831, a target processing rate calculation unit 832, and a powdered activated carbon injection rate calculation unit 833.

目標吸光度決定部831は、処理水(ここではすなわち濾過水)の水質目標値に対応する紫外線吸光度の目標値(以下「目標吸光度」という。)を決定する機能を有する。例えば、水質目標値は、被処理水に含まれる溶解性有機物の量の指標値であるDOC(Dissolved Organic Carbon:溶解性有機体炭素濃度)濃度によって表される。具体的には、目標吸光度決定部831は、後述する紫外線吸光度とDOC濃度との関係性に基づいて、DOC濃度の目標値(目標DOC)に対応する目標吸光度UVSVを決定する。なお、目標DOCを示す情報は、予め目標吸光度決定部831に記憶されていてもよいし、キーボード等の入力装置を介して目標吸光度決定部831に入力されてもよい。 The target absorbance determining unit 831 has a function of determining a target value of ultraviolet absorbance (hereinafter referred to as “target absorbance”) corresponding to a water quality target value of treated water (that is, filtered water). For example, the water quality target value is represented by the DOC (Dissolved Organic Carbon: concentration of soluble organic carbon) concentration, which is an index value of the amount of soluble organic matter contained in the water to be treated. Specifically, the target absorbance determining unit 831 determines the target absorbance UV SV corresponding to the target value (target DOC) of the DOC concentration based on the relationship between the ultraviolet absorbance and the DOC concentration described later. The information indicating the target DOC may be stored in the target absorbance determining unit 831 in advance, or may be input to the target absorbance determining unit 831 via an input device such as a keyboard.

目標処理率算出部832は、処理水の水質目標値に対応する処理率の目標値(以下「目標処理率」という。)を算出する機能を有する。ここでいう処理率とは、原水から除去されるDOCの量に関する指標値であり、例えば、原水の紫外線吸光度UVに対する目標吸光度UVSVの割合RUV(Remain Ultra Violet)として次の式(1)のように定義される。 The target treatment rate calculation unit 832 has a function of calculating a target value of the treatment rate (hereinafter referred to as “target treatment rate”) corresponding to the water quality target value of the treated water. The treatment rate referred to here is an index value relating to the amount of DOC removed from the raw water. For example, the ratio of the target absorbance UV SV to the ultraviolet absorbance UV 0 of the raw water RUV (Remain Ultra Violet) is expressed by the following formula (1). It is defined as.

Figure 2020142184
Figure 2020142184

粉末活性炭注入率算出部833は、前塩素混和池30における次亜塩素酸ナトリウムの注入量と、凝集剤混和池40における凝集剤の注入量と、原水の水質とに基づいて、処理水の水質目標値に応じた粉末活性炭の注入量を算出する機能を有する。 The powdered activated carbon injection rate calculation unit 833 determines the quality of the treated water based on the injection amount of sodium hypochlorite in the pre-chlorine mixing pond 30, the injection amount of the coagulant in the coagulant mixing pond 40, and the quality of the raw water. It has a function to calculate the injection amount of powdered activated carbon according to the target value.

例えば、粉末活性炭注入率算出部833は、前塩素混和池30における次亜塩素酸ナトリウムの注入率ICl、凝集剤混和池40における凝集剤の注入率IPAC、粉末活性炭混和池20における被処理水の滞留時間t、原水のpH(pH)、及び処理率RUVと、粉末活性炭混和池20における粉末活性炭の注入率IACPとの関係を定義した関数fに、次亜塩素酸ナトリウム注入制御部81によって決定された次亜塩素酸ナトリウムの注入率IClの値と、凝集剤注入制御部82によって決定された凝集剤の注入率IPACの値と、粉末活性炭混和池20における被処理水の滞留時間tの設定値と、原水のpH(pH)の測定値と、目標処理率算出部832によって決定された目標処理率RUVの値と、を与えることにより、粉末活性炭混和池20における粉末活性炭の注入率IACPを算出する。この場合、関数fを示す情報は予め粉末活性炭注入率算出部833に記憶されているものとする。 For example, the powdered activated carbon injection rate calculation unit 833 has an injection rate of sodium hypochlorite I Cl in the prechlorite mixing pond 30, an injection rate of the flocculant in the coagulant mixing pond 40 I PAC , and a treatment in the powdered activated carbon mixing pond 20. the residence time of the water t, pH of the raw water (pH R), and the processing rate RUV, the function f 1 that defines the relationship between the injection rate I ACP of powdered activated carbon in the powdered activated carbon mixing basin 20, sodium hypochlorite injection the value of the injection rate I Cl of sodium hypochlorite, which is determined by the control unit 81, the value of the injection rate I PAC coagulant determined by coagulant injection control unit 82, the processing in the powdered activated carbon mixing basin 20 By giving the set value of the residence time t of water, the measured value of pH (pH R ) of raw water, and the value of the target treatment rate RUV determined by the target treatment rate calculation unit 832, the powdered activated carbon mixing pond 20 The injection rate I ACP of the powdered activated carbon in the above is calculated. In this case, information indicating the function f 1 is assumed to be previously stored in the powdered activated carbon injection rate calculating section 833.

なお、粉末活性炭の適切な注入量は被処理水の処理量に応じて異なるため、流入流量が短時間で大きく変動することが見込まれる場合には、粉末活性炭の注入量も流入流量の変動に応じて調整されることが望ましい。この場合、粉末活性炭注入率算出部833は、決定した注入率を流入流量に応じて換算した注入量で粉末活性炭注入装置21を制御するように構成されてもよい。この場合、粉末活性炭注入率算出部833は、流量計13から原水の流入流量Qの測定値を取得し、決定した注入率IACPと原水の流入流量Qとに基づいて粉末活性炭の注入量を算出することができる。 Since the appropriate injection amount of powdered activated carbon varies depending on the treatment amount of water to be treated, if the inflow flow rate is expected to fluctuate significantly in a short time, the injection amount of powdered activated carbon also fluctuates in the inflow flow rate. It is desirable to adjust accordingly. In this case, the powdered activated carbon injection rate calculation unit 833 may be configured to control the powdered activated carbon injection device 21 with an injection amount obtained by converting the determined injection rate according to the inflow flow rate. In this case, powdered activated carbon injection rate calculating section 833 acquires from the flow meter 13 to measure the inlet flow Q R of the raw water, determined infusion rate based on the I ACP and inlet flow of raw water Q R implantation powdered activated carbon The amount can be calculated.

図3は、制御装置80が粉末活性炭混和池における粉末活性炭の注入率を決定する処理の流れを示すフローチャートである。まず、次亜塩素酸ナトリウム注入制御部81が、原水の水質に基づいて次亜塩素酸ナトリウムの注入率IClを決定する(ステップS101)。一般に、第2処理(金属類の酸化処理)に必要とされる次亜塩素酸ナトリウムの注入量は、原水の塩素要求量やアンモニア濃度等に影響される。そのため、次亜塩素酸ナトリウム注入制御部81は、注入量に影響するこれらの因子を観測し、観測値に応じた次亜塩素酸ナトリウムの注入量を決定する。以下では、一例として、次亜塩素酸ナトリウム注入制御部81が、原水の塩素要求量に応じて次亜塩素酸ナトリウムの注入量を決定する方法について説明する。 FIG. 3 is a flowchart showing a flow of processing in which the control device 80 determines the injection rate of the powdered activated carbon in the powdered activated carbon mixing pond. First, the sodium hypochlorite injection control unit 81 determines the injection rate I Cl of sodium hypochlorite based on the water quality of the raw water (step S101). Generally, the injection amount of sodium hypochlorite required for the second treatment (oxidation treatment of metals) is affected by the chlorine requirement of raw water, the ammonia concentration, and the like. Therefore, the sodium hypochlorite injection control unit 81 observes these factors that affect the injection amount, and determines the injection amount of sodium hypochlorite according to the observed value. In the following, as an example, a method in which the sodium hypochlorite injection control unit 81 determines the injection amount of sodium hypochlorite according to the chlorine requirement of the raw water will be described.

例えば、次亜塩素酸ナトリウム注入制御部81は、原水の塩素要求量Chlと、第2処理における次亜塩素酸ナトリウムの注入率IClと、の関係を定義した関数fに、原水の塩素要求量Chlの測定値を与えることにより、次亜塩素酸ナトリウムの注入率IClを算出する。この場合、関数fを示す情報は予め次亜塩素酸ナトリウム注入制御部81に記憶されているものとする。例えば関数fは次の式(2)のように表される。 For example, sodium hypochlorite injection control unit 81, the chlorine demand Chl d of the raw water, and the injection rate I Cl of sodium hypochlorite in the second process, related to the function f 2 that defines the raw water of by providing a measurement of the chlorine demand Chl d, calculates the injection rate I Cl of sodium hypochlorite. In this case, it is assumed that the information indicating the function f 2 is stored in advance in the sodium hypochlorite injection control unit 81. For example, the function f 2 is expressed by the following equation (2).

Figure 2020142184
Figure 2020142184

また、式(2)によって算出された注入率IClの値と、原水の流入流量Qの測定値とを次の式(3)に与えることにより、次亜塩素酸ナトリウムの注入量qClを算出することができる。なお、関数fは、必ずしも原水の塩素要求量Chlを変数に含む関数である必要はない。関数fは、原水の塩素要求量Chlと、原水のアンモニア濃度との少なくとも1つを変数に含む関数であればよい。 Further, by giving the value of the injection rate I Cl calculated by Equation (2), the measurement value of the inlet flow rate Q R of the raw water into the following equation (3), sodium hypochlorite injection amount q Cl Can be calculated. Incidentally, the function f 2 is not necessarily a function containing chlorine demand Chl d variable of the raw water. Function f 2 is a chlorine demand Chl d of the raw water, it may be a function including at least one variable of the ammonia concentration of the raw water.

Figure 2020142184
Figure 2020142184

続いて、凝集剤注入制御部82が、原水の水質に基づいて凝集剤の注入率IPACを決定する(ステップS102)。凝集剤の注入率を決定する際に用いられる原水の水質としては、例えば、濁度、アルカリ度、水温などが挙げられる。 Subsequently, the flocculant injection control unit 82 determines the flocculant injection rate IPAC based on the water quality of the raw water (step S102). Examples of the water quality of the raw water used when determining the injection rate of the flocculant include turbidity, alkalinity, and water temperature.

例えば、凝集剤注入制御部82は、原水の濁度、アルカリ度及び水温と、凝集剤混和池40における混和水のpHと、の関係を定義した関数fに、原水の濁度Tの測定値と、原水のアルカリ度Alkの測定値と、原水の水温Tの測定値と、混和水のpH(pH)の測定値と、を与えることにより、凝集剤の注入率IPACを算出する。この場合、関数fを示す情報を予め凝集剤注入制御部82に記憶されているものとする。例えば、関数fは次の式(4)のように表される。 For example, coagulant injection control unit 82, the turbidity of the raw water, the alkalinity and temperature, the function f 3 that defines the pH of the mixed water, the relationship in the flocculant mixing basin 40, the raw water turbidity T b the measured values, the measured value of alkalinity Alk of raw water, the measurement value of the water temperature T R of the raw water, the measured value of the pH of the mixed water (pH C), by providing the injection rate I PAC coagulant calculate. In this case, it is assumed that stores information indicating a function f 3 in advance in the coagulant injection control unit 82. For example, the function f 3 is expressed by the following equation (4).

Figure 2020142184
Figure 2020142184

また、式(4)によって算出された注入率IPACの値と、原水の流入流量Qの測定値とを次の式(5)に与えることにより、凝集剤の注入量qPACを算出することができる。なお、関数fは、必ずしも原水の濁度Tと、原水のアルカリ度Alkと、原水の水温Tと、の全てを変数に含む関数である必要はない。関数fは、これらのうちの少なくとも1を変数に含む関数であればよい。 Moreover, to calculate the value of the injection rate I PAC calculated by Equation (4), by providing a measure of the inlet flow Q R of the raw water into the following equation (5), the injection quantity q PAC coagulant be able to. Note that the function f 3 is not necessarily a turbidity T b of the raw water, the alkalinity Alk raw water, the water temperature T R of the raw water, need not be the function that contains all the variables. The function f 3 may be a function that includes at least one of these in a variable.

Figure 2020142184
Figure 2020142184

次に、粉末活性炭注入制御部83が、次亜塩素酸ナトリウム注入制御部81によって決定された次亜塩素酸ナトリウムの注入率IClと、凝集剤注入制御部82によって決定された凝集剤の注入率IPACと、に基づいて粉末活性炭混和池20における粉末活性炭の注入率IACPを決定する。 Then, powdered activated carbon injection control unit 83, injection rate and I Cl of sodium hypochlorite, which is determined by sodium hypochlorite injection control unit 81, injection of the coagulant, which is determined by the coagulant injection controller 82 The injection rate I ACP of the powdered activated carbon in the powdered activated carbon mixing pond 20 is determined based on the rate I PAC .

具体的には、まず、粉末活性炭注入制御部83が目標DOCの値を目標吸光度決定部831に出力するとともに、UV測定器12から取得される原水の紫外線吸光度UVの測定値を目標処理率算出部832に出力する(ステップS103)。第1の実施形態では、原水の紫外線吸光度UVの測定に波長が約260nmの紫外線が用いられる。ここで、当該波長の紫外線を用いる理由は、原水のDOC濃度に関して以下の新たな知見が得られたことによる。 Specifically, first, the powdered activated carbon injection control unit 83 outputs the target DOC value to the target absorbance determining unit 831, and the measured value of the ultraviolet absorbance UV 0 of the raw water acquired from the UV measuring device 12 is the target processing rate. Output to the calculation unit 832 (step S103). In the first embodiment, ultraviolet rays having a wavelength of about 260 nm are used for measuring the ultraviolet absorbance UV 0 of raw water. Here, the reason for using ultraviolet rays of the wavelength is that the following new findings regarding the DOC concentration of raw water have been obtained.

図4は、原水のDOC濃度と原水の紫外線吸光度との相関について得られた知見を示す図である。また、図5は、濾過水のDOC濃度と濾過水の紫外線吸光度との相関について得られた知見を説明する図である。図4及び図5は、ともに、260nm波長の紫外線に関して得られた相関を示している。図4に示すように、原水のDOC濃度と紫外線吸光度との間には波長260nmの紫外線に関して強い相関があり、この場合、原水のDOC濃度と紫外線吸光度との間の相関性を直線で近似できるとの知見が得られた。 FIG. 4 is a diagram showing the findings obtained regarding the correlation between the DOC concentration of raw water and the ultraviolet absorbance of raw water. Further, FIG. 5 is a diagram for explaining the findings obtained regarding the correlation between the DOC concentration of the filtered water and the ultraviolet absorbance of the filtered water. Both FIGS. 4 and 5 show the correlations obtained for UV light with a wavelength of 260 nm. As shown in FIG. 4, there is a strong correlation between the DOC concentration of raw water and the ultraviolet absorbance with respect to ultraviolet rays having a wavelength of 260 nm, and in this case, the correlation between the DOC concentration of raw water and the ultraviolet absorbance can be approximated by a straight line. Was obtained.

また、図5に示すように、濾過水のDOC濃度と紫外線吸光度との間にも波長260nmの紫外線に関して強い相関があり、この場合、濾過水のDOC濃度と紫外線吸光度との間の相関性を直線で近似できるとの知見を得た。このように直線で近似できる相関性に基づけば、紫外線吸光度の測定値から原水又は濾過水のDOC濃度を精度良く推定することができると考えられる。 Further, as shown in FIG. 5, there is a strong correlation between the DOC concentration of the filtered water and the ultraviolet absorbance with respect to ultraviolet rays having a wavelength of 260 nm. In this case, the correlation between the DOC concentration of the filtered water and the ultraviolet absorbance is determined. We obtained the finding that it can be approximated by a straight line. Based on the correlation that can be approximated by a straight line in this way, it is considered that the DOC concentration of raw water or filtered water can be accurately estimated from the measured value of ultraviolet absorbance.

このような新たな知見に基づき、本実施形態における目標吸光度決定部831は、260nm波長の紫外線に関して得られた濾過水のDOC濃度と紫外線吸光度との関係を示す相関情報を予め記憶しておき、この相関情報と、目標DOCの値とに基づいて目標吸光度を決定する(ステップS104)。例えば、図5に示す関係性に対し目標DOCの値1が与えられた場合、目標吸光度決定部831は、目標DOCの値1に対応する紫外線吸光度の値約0.014[abs/cm]を目標吸光度UVSVとして決定する。目標吸光度決定部831は、決定した目標吸光度の値UVSVを目標処理率算出部832に出力する。 Based on such a new finding, the target absorbance determining unit 831 in the present embodiment stores in advance the correlation information showing the relationship between the DOC concentration of the filtered water obtained with respect to the ultraviolet rays having a wavelength of 260 nm and the ultraviolet absorbance. The target absorbance is determined based on this correlation information and the value of the target DOC (step S104). For example, when the target DOC value 1 is given to the relationship shown in FIG. 5, the target absorbance determining unit 831 sets the ultraviolet absorbance value of about 0.014 [abs / cm] corresponding to the target DOC value 1. Target Absorbance Determined as UV SV . The target absorbance determining unit 831 outputs the determined target absorbance value UV SV to the target processing rate calculation unit 832.

図3の説明に戻る。続いて、目標処理率算出部832が、ステップS103において測定された原水の紫外線吸光度UVの値と、ステップS104において決定された目標吸光度UVSVの値とに基づいて、目標処理率RUVを算出する(ステップS105)。目標処理率算出部832は、算出した目標処理率RUVの値を粉末活性炭注入率算出部833に出力する。 Returning to the description of FIG. Subsequently, the target processing rate calculation unit 832 calculates the target processing rate RUV based on the value of the ultraviolet absorbance UV 0 of the raw water measured in step S103 and the value of the target absorbance UV SV determined in step S104. (Step S105). The target processing rate calculation unit 832 outputs the calculated target processing rate RUV value to the powdered activated carbon injection rate calculation unit 833.

続いて、粉末活性炭注入率算出部833が、ステップS101において算出された次亜塩素酸ナトリウムの注入率IClの値と、ステップS102において算出された凝集剤の注入率IPACの値と、ステップS103において測定された原水のpH(pH)の値と、ステップS105において算出された目標処理率RUVの値と、粉末活性炭混和池20における被処理水の滞留時間tの設定値と、に基づいて、粉末活性炭混和池20における粉末活性炭の注入率IACPを算出する(ステップS106)。 Subsequently, powdered activated carbon injection rate calculating section 833, the value of the injection rate I Cl of sodium hypochlorite, which is calculated in step S101, the value of the injection rate I PAC of the calculated flocculant in step S102, step Based on the value of the pH (pH R ) of the raw water measured in S103, the value of the target treatment rate RUV calculated in step S105, and the set value of the residence time t of the water to be treated in the powdered activated carbon mixing pond 20. Then, the injection rate I ACP of the powdered activated carbon in the powdered activated carbon mixing pond 20 is calculated (step S106).

具体的には、粉末活性炭注入率算出部833は、次亜塩素酸ナトリウムの注入率IClの値と、凝集剤の注入率IPACの値と、滞留時間tの設定値と、原水のpH(pH)の測定値と、目標処理率RUVの値と、を次の式(6)で表される関数fに与えることにより、粉末活性炭の注入率IACPを算出する。 Specifically, the powdered activated carbon injection rate calculation unit 833 determines the value of the injection rate I Cl of sodium hypochlorite, the value of the injection rate I PAC of the flocculant, the set value of the residence time t, and the pH of the raw water. the measured values of (pH R), the value of the target processing rate RUV, by providing the function f 1 of the following formula (6), to calculate the infusion rate I ACP of powdered activated carbon.

Figure 2020142184
Figure 2020142184

この関数fは、溶解性有機物の処理率に関して得られた以下の新たな知見に基づいて導入したものである。 This function f 1 was introduced based on the following new findings regarding the treatment rate of soluble organic matter.

[第1の知見]
図6は、粉末活性炭の注入率と、溶解性有機物の処理率との相関について得られた知見を説明する図である。従来、粉末活性炭による溶解性有機物の処理率には、原水の水質や第1処理における活性炭の注入率等の因子が大きく影響すると考えられており、第1処理の後段の第2処理や第3処理に係る因子がどのような影響を与えるかは未知であった。これに対して、図6に示すように、第1処理における粉末活性炭の注入率が同じであっても、後段の第3処理で注入される凝集剤の注入率が変化すると、それに応じて溶解性有機物の処理率も変化するとの知見を得た。
[First finding]
FIG. 6 is a diagram for explaining the findings obtained regarding the correlation between the injection rate of powdered activated carbon and the treatment rate of soluble organic matter. Conventionally, it has been considered that factors such as the quality of raw water and the injection rate of activated carbon in the first treatment have a great influence on the treatment rate of soluble organic matter by powdered activated carbon, and the second treatment and the third treatment after the first treatment It was unknown how the factors involved in the treatment would affect it. On the other hand, as shown in FIG. 6, even if the injection rate of the powdered activated carbon in the first treatment is the same, if the injection rate of the coagulant injected in the third treatment in the subsequent stage changes, it dissolves accordingly. It was found that the treatment rate of sex organic substances also changes.

すなわち、溶解性有機物を粉末活性炭により吸着・除去する第1処理と、第1処理の後段で懸濁物質を凝集剤により凝集・沈降させる第3処理と、を行う水処理方法では、第1処理における粉末活性炭の注入量に加えて、その後段の第3処理における凝集剤の注入量も溶解性有機物の除去性能に影響を及ぼすことが分かった。換言すれば、従来、粉末活性炭によってのみ溶解性有機物が除去されると考えられていたところ、凝集剤による懸濁物質の凝集・沈降によっても溶解性有機物が除去できることが分かった。 That is, in the water treatment method in which the first treatment of adsorbing and removing the soluble organic substance with powdered activated carbon and the third treatment of coagulating and precipitating the suspended substance with a coagulant after the first treatment, the first treatment is performed. In addition to the injection amount of powdered activated carbon in the above, it was found that the injection amount of the coagulant in the third treatment in the subsequent stage also affects the removal performance of the soluble organic matter. In other words, it was conventionally thought that soluble organic matter was removed only by powdered activated carbon, but it was found that soluble organic matter can also be removed by agglomeration and sedimentation of suspended substances by a flocculant.

具体的には、図6に示すように、凝集剤の注入率が高くなるほど溶解性有機物の処理率が低下し、除去性能が向上することが分かる。これは、溶解性有機物が粉末活性炭の存在下において粉末活性炭の表面に濃化して存在し、凝集剤による凝集・沈降において粉末活性炭とともに除去されることによるものと推測される。 Specifically, as shown in FIG. 6, it can be seen that the higher the injection rate of the coagulant, the lower the treatment rate of the soluble organic matter and the better the removal performance. It is presumed that this is because the soluble organic matter is concentrated on the surface of the powdered activated carbon in the presence of the powdered activated carbon and is removed together with the powdered activated carbon in the coagulation / sedimentation by the coagulant.

図7は、粉末活性炭及び凝集剤による溶解性有機物の除去に関する実験結果を示す図である。図7は、粉末活性炭処理のみを行うケース(CASE−1)と、凝集剤処理のみを行うケース(CASE−2)と、粉末活性炭処理の後に凝集剤処理を行うケース(CASE−3)と、の各ケースで得られたDOCの除去率(=1−処理率)の結果を示す。CASE−1では、原水に粉末活性炭を5mg/Lの注入率で1時間注入した結果、約10%の除去率が得られた。また、CASE−2では、原水に凝集剤を10mg/Lの注入率で1時間注入した結果、約3%の除去率が得られた。一方、CASE−3では、以下の手順1〜5を行った結果、約26%の除去率が得られた。 FIG. 7 is a diagram showing the experimental results regarding the removal of soluble organic matter by powdered activated carbon and a flocculant. FIG. 7 shows a case where only the powdered activated carbon treatment is performed (CASE-1), a case where only the coagulant treatment is performed (CASE-2), and a case where the coagulant treatment is performed after the powdered activated carbon treatment (CASE-3). The result of the removal rate (= 1-processing rate) of DOC obtained in each case of is shown. In CASE-1, as a result of injecting powdered activated carbon into raw water at an injection rate of 5 mg / L for 1 hour, a removal rate of about 10% was obtained. Further, in CASE-2, as a result of injecting the flocculant into the raw water at an injection rate of 10 mg / L for 1 hour, a removal rate of about 3% was obtained. On the other hand, in CASE-3, as a result of performing the following steps 1 to 5, a removal rate of about 26% was obtained.

[手順1]原水にCASE−1と同様の条件で粉末活性炭を注入(5mg/L)
[手順2]手順1を行った被処理水を急速攪拌(5分間)
[手順3]手順2を行った被処理水にCASE−2と同様の条件で凝集剤を注入(10mg/L)
[手順4]手順3を行った被処理水を緩速攪拌(25分)
[手順5]手順4を行った被処理水を静置(30分)
[Procedure 1] Inject powdered activated carbon into raw water under the same conditions as CASE-1 (5 mg / L).
[Procedure 2] Rapid stirring (5 minutes) of the water to be treated in which step 1 was performed.
[Procedure 3] A flocculant is injected into the water to be treated in step 2 under the same conditions as CASE-2 (10 mg / L).
[Procedure 4] Slowly agitate the water to be treated in step 3 (25 minutes).
[Procedure 5] Let the water to be treated that has undergone step 4 stand still (30 minutes).

これらの結果から、粉末活性炭処理と凝集剤処理とを併用した場合、各処理を単独で行った場合よりも、DOCの除去率が大幅に向上することが分かった。一般に、凝集剤の注入は、被処理水中の懸濁物質の除去を目的としたものであり、溶解性有機物の除去を目的としたものではない。しかしながら、上記知見によれば、被処理水中の溶解性有機物の一部は凝集剤によっても除去されるため、その除去分を考慮して粉末活性炭の注入率を決定することで、粉末活性炭の注入量を従来量から削減することができると考えられる。 From these results, it was found that when the powdered activated carbon treatment and the coagulant treatment were used in combination, the DOC removal rate was significantly improved as compared with the case where each treatment was performed alone. In general, the injection of the flocculant is intended to remove suspended substances in the water to be treated, not to remove soluble organic matter. However, according to the above findings, since a part of the soluble organic matter in the water to be treated is also removed by the coagulant, the powdered activated carbon is injected by determining the injection rate of the powdered activated carbon in consideration of the removed amount. It is considered that the amount can be reduced from the conventional amount.

[第2の知見]
図8は、原水のpHと、溶解性有機物の処理率との相関について得られた知見を説明する図である。図8に示すように、原水のpHが高くなるほど溶解性有機物の処理率も増加し、除去性能が低下することが分かった。
[Second finding]
FIG. 8 is a diagram for explaining the findings obtained regarding the correlation between the pH of raw water and the treatment rate of soluble organic matter. As shown in FIG. 8, it was found that the higher the pH of the raw water, the higher the treatment rate of the soluble organic matter, and the lower the removal performance.

[第3の知見]
図9は、次亜塩素酸ナトリウムの注入率と、原水の紫外線吸光度と、溶解性有機物の処理率との相関について得られた知見を説明する図である。図9に示すように、次亜塩素酸ナトリウムの注入率が高くなるほど処理率が低下し、除去性能が向上することが分かった。一般に、次亜塩素酸ナトリウムによる前塩素処理(第2処理)は、主として鉄やマンガンなどの金属類の酸化を目的としたものであり、溶解性有機物の除去を目的としたものではない。しかしながら、上記知見によれば、被処理水中の溶解性有機物の一部は次亜塩素酸ナトリウムを注入する前塩素処理によって副次的に除去されると考えられるため、その除去分を考慮して粉末活性炭の注入率を決定することで、粉末活性炭の注入量を従来量から削減することができると考えられる。
[Third finding]
FIG. 9 is a diagram for explaining the findings obtained regarding the correlation between the injection rate of sodium hypochlorite, the ultraviolet absorbance of raw water, and the treatment rate of soluble organic substances. As shown in FIG. 9, it was found that the higher the injection rate of sodium hypochlorite, the lower the treatment rate and the better the removal performance. In general, the pre-chlorination treatment with sodium hypochlorite (second treatment) is mainly for the purpose of oxidizing metals such as iron and manganese, not for removing soluble organic substances. However, according to the above findings, it is considered that a part of the soluble organic matter in the water to be treated is secondarily removed by the pre-chlorination treatment in which sodium hypochlorite is injected. By determining the injection rate of powdered activated carbon, it is considered that the injection amount of powdered activated carbon can be reduced from the conventional amount.

上述した各知見によれば、原水中の溶解性有機物の処理率RUVは、粉末活性炭の注入率IACPと、次亜塩素酸ナトリウムの注入率IClと、凝集剤の注入率IPACと、原水のpH(pH)と、を変数として次の式(7)のように表されると考えられる。 According to the findings described above, the processing rate RUV of soluble organic substances in the raw water is an injection rate I ACP of powdered activated carbon, infusion rate and I Cl of sodium hypochlorite, the injection rate I PAC flocculant, It is considered that the pH (pH R ) of the raw water is expressed as the following equation (7) with the variables.

Figure 2020142184
Figure 2020142184

この関数gは、例えば、RUV及び各パラメータの測定値に基づく数学的推定手法によって導出されてもよいし、RUVと各パラメータとの相関性の組み合わせによって導出されてもよい。そして、得られた関数gを、IACPを求める関数に変換することにより、上記の式(6)を得ることができる。 This function g may be derived, for example, by a mathematical estimation method based on the RUV and the measured value of each parameter, or may be derived by a combination of the correlation between the RUV and each parameter. Then, by converting the obtained function g into a function for obtaining IACP , the above equation (6) can be obtained.

また、式(6)によって算出された注入率IACPの値と、原水の流入流量Qの測定値とを次の式(8)に与えることにより、粉末活性炭の注入量qACPを算出することができる。 Moreover, to calculate the value of the injection rate I ACP calculated by equation (6), by providing a measure of the inlet flow Q R of the raw water to the following equation (8), the injection quantity q ACP of powdered activated carbon be able to.

Figure 2020142184
Figure 2020142184

このように構成された第1の実施形態の制御装置80は、原水の水質に応じて決定された次亜塩素酸ナトリウムの注入率と凝集剤の注入率とに基づいて、粉末活性炭の注入率を決定することにより、溶解性有機物の除去を目的として被処理水に注入される粉末活性炭の注入量をより適切に制御することができる。 The control device 80 of the first embodiment configured in this way has an injection rate of powdered activated carbon based on the injection rate of sodium hypochlorite and the injection rate of the flocculant, which are determined according to the water quality of the raw water. By determining the above, the injection amount of powdered activated carbon injected into the water to be treated for the purpose of removing soluble organic substances can be controlled more appropriately.

具体的には、溶解性有機物の処理率は、次亜塩素酸ナトリウム及び凝集剤の注入率に相関するとの知見を得たことにより、まず次亜塩素酸ナトリウム及び凝集剤の注入率を原水の水質に応じて決定し、決定した次亜塩素酸ナトリウム及び凝集剤の注入率の注入率に基づいて粉末活性炭の注入率を決定することにした。これにより、次亜塩素酸ナトリウム及び凝集剤によって副次的に除去される溶解性有機物の分だけ粉末活性炭の注入量を抑えることができる。 Specifically, based on the finding that the treatment rate of soluble organic substances correlates with the injection rate of sodium hypochlorite and coagulant, the injection rate of sodium hypochlorite and coagulant is first determined as the injection rate of raw water. It was decided according to the water quality, and the injection rate of powdered activated carbon was decided based on the injection rate of the determined sodium hypochlorite and coagulant injection rates. As a result, the injection amount of the powdered activated carbon can be suppressed by the amount of the soluble organic matter secondarily removed by the sodium hypochlorite and the flocculant.

また、原水のDOC濃度と紫外線吸光度との相関が波長260nmの紫外線に関して強く表れるとの知見を得たことにより、原水中の溶解性有機物の量を判断する指標として当該波長の紫外線吸光度を用いることにした。これにより、原水に含まれる溶解性有機物の量を精度良く推定できるようになり、粉末活性炭の注入率を原水の水質変動に応じてより精度良く制御することが可能となる。 In addition, based on the finding that the correlation between the DOC concentration of raw water and the absorbance of ultraviolet rays appears strongly with respect to ultraviolet rays having a wavelength of 260 nm, the ultraviolet absorbance of the wavelength should be used as an index for determining the amount of soluble organic matter in the raw water. I made it. As a result, the amount of soluble organic matter contained in the raw water can be estimated accurately, and the injection rate of the powdered activated carbon can be controlled more accurately according to the fluctuation of the water quality of the raw water.

なお、第1の実施形態で説明した粉末活性炭の注入率の制御方法は、水処理システム100のように沈澱池60又は濾過池70によって固液分離を行う水処理システムに限らず、次亜塩素酸ナトリウム又は凝集剤を粉末活性炭の注入工程の後工程で注入する水処理システムであれば、どのような水処理システムにも適用可能である。例えば、第1の実施形態の制御方法は、膜濾過方式又は砂濾過方式で固液分離を行う水処理システムにも適用可能である。この場合、膜のファウリングの原因物質の1つとされている溶解性有機物が適切な量の粉末活性炭で除去されることで、膜のファウリングを抑制する効果も期待できる。 The method for controlling the injection rate of powdered activated carbon described in the first embodiment is not limited to a water treatment system such as the water treatment system 100 in which solid-liquid separation is performed by a sedimentation pond 60 or a filtration pond 70, and hypochlorite. It can be applied to any water treatment system as long as it is a water treatment system in which sodium acid or a flocculant is injected after the injection step of powdered activated carbon. For example, the control method of the first embodiment can be applied to a water treatment system in which solid-liquid separation is performed by a membrane filtration method or a sand filtration method. In this case, the effect of suppressing the fouling of the membrane can be expected by removing the soluble organic substance, which is one of the causative substances of the fouling of the membrane, with an appropriate amount of powdered activated carbon.

なお、次亜塩素酸ナトリウムの注入率の決定には、濾過水の残留塩素濃度を用いてもよい。このようにすれば、濾過水の残留塩素濃度を所定の目標値に維持しつつ適切な粉末活性炭の注入率を決定することも可能である。 The residual chlorine concentration of the filtered water may be used to determine the injection rate of sodium hypochlorite. In this way, it is possible to determine an appropriate injection rate of powdered activated carbon while maintaining the residual chlorine concentration of the filtered water at a predetermined target value.

また、次亜塩素酸ナトリウムの注入率の決定には、次亜塩素酸ナトリウムを注入してから濾過水に至るまでに消費された塩素量(以下「塩素消費量」という。)を用いてもよい。このようにすれば、塩素消費量を所定の目標値に維持しつつ適切な粉末活性炭の注入率を決定することも可能である。 In addition, the amount of chlorine consumed from the injection of sodium hypochlorite to the filtered water (hereinafter referred to as "chlorine consumption") can also be used to determine the injection rate of sodium hypochlorite. Good. In this way, it is possible to determine an appropriate injection rate of powdered activated carbon while maintaining the chlorine consumption at a predetermined target value.

また、ここでは濾過水を処理水とする場合について説明したが、処理水は必ずしも濾過水である必要はない。例えば、濾過池を備えない水処理システムでは沈澱池の上澄み水が処理水とされる場合もある。 Further, although the case where the filtered water is used as the treated water has been described here, the treated water does not necessarily have to be the filtered water. For example, in a water treatment system that does not have a filtration pond, the supernatant water of the sedimentation pond may be used as the treated water.

(第2の実施形態)
図10は、第2の実施形態における水処理システムの構成例を示す図である。第2の実施形態の水処理システム100aは、制御装置80に代えて制御装置80aを備える点、残留塩素濃度計71をさらに備える点で第1の実施形態の水処理システム100と異なる。また、制御装置80aは、粉末活性炭注入制御部83に代えて粉末活性炭注入制御部83aを備える点で第1の実施形態における制御装置80と異なる。その他の構成は第1の実施形態と同様のため、図10における第1の実施形態と同様の構成には図1と同じ符号を付すことにより説明を省略する。
(Second Embodiment)
FIG. 10 is a diagram showing a configuration example of the water treatment system according to the second embodiment. The water treatment system 100a of the second embodiment is different from the water treatment system 100 of the first embodiment in that the control device 80a is provided in place of the control device 80 and the residual chlorine concentration meter 71 is further provided. Further, the control device 80a is different from the control device 80 in the first embodiment in that the powder activated carbon injection control unit 83a is provided in place of the powder activated carbon injection control unit 83. Since other configurations are the same as those of the first embodiment, the same reference numerals as those of FIG. 1 will be given to the same configurations as those of the first embodiment in FIG.

残留塩素濃度計71は、濾過水の残留塩素濃度RCClを測定する。残留塩素濃度計71は、制御装置80aと通信可能に接続されており、測定データを制御装置80aに送信する。 The residual chlorine concentration meter 71 measures the residual chlorine concentration RC Cl of the filtered water. The residual chlorine concentration meter 71 is communicably connected to the control device 80a, and transmits measurement data to the control device 80a.

粉末活性炭注入制御部83aは、残留塩素濃度計71によって測定された濾過水の残留塩素濃度RCClと、凝集剤注入制御部82によって決定された凝集剤の注入率IPACと、原水の紫外線吸光度UVと、粉末活性炭混和池20における被処理水の滞留時間tと、原水のpH(pH)と、に基づいて粉末活性炭の注入率IACPを決定する。粉末活性炭注入制御部83aは、粉末活性炭の注入率IACPの決定に、次亜塩素酸ナトリウムの注入率IClに代えて濾過水の残留塩素濃度RCClを用いる点で第1の実施形態における粉末活性炭注入制御部83と異なる。 The powdered activated carbon injection control unit 83a includes the residual chlorine concentration RC Cl of the filtered water measured by the residual chlorine concentration meter 71, the coagulant injection rate IPAC determined by the coagulant injection control unit 82, and the ultraviolet absorbance of the raw water. The injection rate IACP of the powdered activated carbon is determined based on UV 0 , the residence time t of the water to be treated in the powdered activated carbon mixing pond 20, and the pH (pH R ) of the raw water. In the first embodiment, the powdered activated carbon injection control unit 83a uses the residual chlorine concentration RC Cl of the filtered water instead of the sodium hypochlorite injection rate I Cl to determine the injection rate I ACP of the powdered activated carbon. It is different from the powdered activated carbon injection control unit 83.

図11は、粉末活性炭注入制御部83aの機能構成の具体例を示す図である。粉末活性炭注入制御部83aは、粉末活性炭注入率算出部833に代えて粉末活性炭注入率算出部833aを備える点で第1の実施形態における粉末活性炭注入制御部83と異なる。その他の構成は第1の実施形態と同様のため、図11における第1の実施形態と同様の構成には図2と同じ符号を付すことにより説明を省略する。 FIG. 11 is a diagram showing a specific example of the functional configuration of the powdered activated carbon injection control unit 83a. The powdered activated carbon injection control unit 83a is different from the powdered activated carbon injection control unit 83 in the first embodiment in that the powdered activated carbon injection rate calculation unit 833a is provided in place of the powdered activated carbon injection rate calculation unit 833. Since other configurations are the same as those of the first embodiment, the same reference numerals as those in FIG. 2 will be given to the same configurations as those of the first embodiment in FIG.

粉末活性炭注入率算出部833aは、濾過水の残留塩素濃度と、凝集剤混和池40における凝集剤の注入量と、原水の水質とに基づいて、処理水の水質目標値に応じた粉末活性炭の注入量を算出する機能を有する。 The powdered activated carbon injection rate calculation unit 833a is based on the residual chlorine concentration of the filtered water, the injection amount of the coagulant in the coagulant mixing pond 40, and the water quality of the raw water, and the powdered activated carbon according to the water quality target value of the treated water. It has a function to calculate the injection amount.

具体的には、粉末活性炭注入率算出部833aは、濾過水の残留塩素濃度RCClの測定値と、凝集剤の注入率IPACの値と、粉末活性炭混和池20における被処理水の滞留時間tの設定値と、原水のpHであるpHの測定値と、目標処理率RUVの値と、を次の式(9)で表される関数f’に与えることにより、粉末活性炭の注入率IACPを算出する。ここで関数f’は、第1の実施形態と同様に、濾過水の残留塩素濃度RCCl、凝集剤の注入率IPAC、滞留時間tの設定値、及び原水のpH(pH)の測定値と、目標処理率RUVの値と関係を定義した関数g’(式(10))から求められ、関数f’を示す情報は予め粉末活性炭注入率算出部833aに記憶されているものとする。 Specifically, the powdered activated carbon injection rate calculation unit 833a determines the measured value of the residual chlorine concentration RC Cl of the filtered water, the value of the coagulant injection rate IPAC , and the residence time of the water to be treated in the powdered activated carbon mixing pond 20. t and settings, the measured value of the pH R is the pH of the raw water, the value of the target processing rate RUV, by providing the function f '1, represented by the following formula (9), the injection of powdered activated carbon Calculate the rate I ACP . Where the function f '1, like the first embodiment, the residual chlorine concentration RC Cl of filtered water, injection rate I PAC flocculant, the set value of the dwell time t, and the raw water in the pH of the (pH R) the measured values, 'calculated from (equation (10)), the function f' function defines the values and relationships of the target process rate RUV g information indicating 1 is what is stored in advance powdered activated carbon injection rate calculating section 833a And.

Figure 2020142184
Figure 2020142184

Figure 2020142184
Figure 2020142184

図12は、制御装置80aが粉末活性炭混和池20における粉末活性炭の注入率を決定する処理の流れを示すフローチャートである。なお、図12において、第1の実施形態と同様の処理には図3と同じ符号を付すことにより説明を省略する。まず、制御装置80aは、第1の実施形態と同様にステップS101〜S105を実行する。 FIG. 12 is a flowchart showing a flow of processing in which the control device 80a determines the injection rate of the powdered activated carbon in the powdered activated carbon mixing pond 20. In FIG. 12, the same processing as in the first embodiment is designated by the same reference numerals as those in FIG. 3, and the description thereof will be omitted. First, the control device 80a executes steps S101 to S105 in the same manner as in the first embodiment.

続いて、制御装置80aが残留塩素濃度計71から濾過水の残留塩素濃度RCClの測定値を取得する(S201)。制御装置80aは、取得した残留塩素濃度の測定値を粉末活性炭注入率算出部833aに出力する。 Subsequently, the control device 80a acquires the measured value of the residual chlorine concentration RC Cl of the filtered water from the residual chlorine concentration meter 71 (S201). The control device 80a outputs the acquired measured value of the residual chlorine concentration to the powdered activated carbon injection rate calculation unit 833a.

続いて、粉末活性炭注入率算出部833aが、ステップS102において算出された凝集剤の注入率IPACの値と、ステップS103において測定された原水のpH(pH)の値と、ステップS105において算出された目標処理率RUVの値と、ステップS201において測定された濾過水の残留塩素濃度RCCLの値と、粉末活性炭混和池20における被処理水の滞留時間tの設定値と、に基づいて、粉末活性炭混和池20における粉末活性炭の注入率IACPを算出する(ステップS202)。 Then calculated, powdered activated carbon injection rate calculating section 833a is, the value of the injection rate I PAC of the calculated flocculant in step S102, the value of the measured raw water pH (pH R) in step S103, in step S105 Based on the value of the target treatment rate RUV, the value of the residual chlorine concentration RC CL of the filtered water measured in step S201, and the set value of the residence time t of the water to be treated in the powdered activated carbon mixing pond 20. The injection rate I ACP of the powdered activated carbon in the powdered activated carbon mixing pond 20 is calculated (step S202).

このように構成された第2の実施形態の制御装置80aは、原水の水質に応じて決定された凝集剤の注入率と、濾過水の残留塩素濃度とに基づいて、粉末活性炭の注入率を決定することにより、溶解性有機物の除去を目的として被処理水に注入される粉末活性炭の注入量をより適切に制御することができる。 The control device 80a of the second embodiment configured in this way determines the injection rate of the powdered activated carbon based on the injection rate of the coagulant determined according to the water quality of the raw water and the residual chlorine concentration of the filtered water. By determining, the injection amount of powdered activated carbon injected into the water to be treated for the purpose of removing soluble organic matter can be controlled more appropriately.

第1の実施形態でも述べたように、溶解性有機物の処理率は被処理水に対する次亜塩素酸ナトリウムの注入量に相関する。一方で、次亜塩素酸ナトリウムの注入量は濾過水の残留塩素濃度に相関すると考えられる。本実施形態は、このような相関性に基づき、粉末活性炭の注入量を決定する際の指標として濾過水の残留塩素濃度を用いたものである。これはすなわち、第1の実施形態において原水水質に応じてフィードフォワードで決定された次亜塩素酸ナトリウムの注入率を、残留塩素濃度に基づいてフィードバックで補正することに相当する。これにより、第1の実施形態と同様に、次亜塩素酸ナトリウム及び凝集剤による溶解性有機物の除去効果を考慮した粉末活性炭の注入率を決定することができる。 As described in the first embodiment, the treatment rate of the soluble organic matter correlates with the injection amount of sodium hypochlorite into the water to be treated. On the other hand, the injection amount of sodium hypochlorite is considered to correlate with the residual chlorine concentration of the filtered water. In this embodiment, the residual chlorine concentration of the filtered water is used as an index when determining the injection amount of the powdered activated carbon based on such a correlation. That is, this corresponds to correcting the injection rate of sodium hypochlorite determined by feedforward according to the raw water quality in the first embodiment by feedback based on the residual chlorine concentration. Thereby, as in the first embodiment, the injection rate of the powdered activated carbon can be determined in consideration of the effect of removing the soluble organic matter by the sodium hypochlorite and the flocculant.

なお、粉末活性炭の注入率の決定に用いられる濾過水の残留塩素濃度を次亜塩素酸ナトリウムの注入率の決定に用いてもよい。このようにすれば、濾過水の残留塩素濃度を所定の目標値に維持しつつ適切な粉末活性炭の注入率を決定することも可能である。 The residual chlorine concentration of the filtered water used for determining the injection rate of powdered activated carbon may be used for determining the injection rate of sodium hypochlorite. In this way, it is possible to determine an appropriate injection rate of powdered activated carbon while maintaining the residual chlorine concentration of the filtered water at a predetermined target value.

また、ここでは濾過水を処理水とする場合について説明したが、処理水は必ずしも濾過水である必要はない。例えば、濾過池を備えない水処理システムでは沈澱池の上澄み水が処理水とされる場合もある。 Further, although the case where the filtered water is used as the treated water has been described here, the treated water does not necessarily have to be the filtered water. For example, in a water treatment system that does not have a filtration pond, the supernatant water of the sedimentation pond may be used as the treated water.

(第3の実施形態)
図13は、第3の実施形態における水処理システムの構成例を示す図である。第3の実施形態の水処理システム100bは、制御装置80に代えて制御装置80bを備える点で第2の実施形態の水処理システム100aと異なる。また、制御装置80bは、粉末活性炭注入制御部83aに代えて粉末活性炭注入制御部83bを備える点、塩素消費量算出部84をさらに備える点で第2の実施形態における制御装置80aと異なる。その他の構成は第2の実施形態と同様のため、図13における第2の実施形態と同様の構成には図10と同じ符号を付すことにより説明を省略する。
(Third Embodiment)
FIG. 13 is a diagram showing a configuration example of the water treatment system according to the third embodiment. The water treatment system 100b of the third embodiment is different from the water treatment system 100a of the second embodiment in that the control device 80b is provided in place of the control device 80. Further, the control device 80b is different from the control device 80a in the second embodiment in that the powder activated carbon injection control unit 83b is provided in place of the powder activated carbon injection control unit 83a and the chlorine consumption calculation unit 84 is further provided. Since other configurations are the same as those of the second embodiment, the same reference numerals as those in FIG. 10 will be given to the same configurations as those of the second embodiment in FIG. 13, and the description thereof will be omitted.

塩素消費量算出部84は、残留塩素濃度計71によって測定される濾過水の残留塩素濃度RCClと、次亜塩素酸ナトリウム注入制御部81によって決定される次亜塩素酸ナトリウムの注入率IClと、に基づいて塩素消費量DCLClを算出する。塩素消費量算出部84は、算出した塩素消費量を粉末活性炭注入制御部83bに出力する。例えば、塩素消費量算出部84は、次亜塩素酸ナトリウム注入制御部81によって決定された次亜塩素酸ナトリウムの注入率IClの値と、残留塩素濃度計71によって測定された濾過水の残留塩素濃度RCClの値と、を次の式(11)に与えることにより、塩素消費量DCLClを算出する。 The chlorine consumption calculation unit 84 has the residual chlorine concentration RC Cl of the filtered water measured by the residual chlorine concentration meter 71 and the injection rate I Cl of sodium hypochlorite determined by the sodium hypochlorite injection control unit 81. And, the chlorine consumption DCL Cl is calculated based on. The chlorine consumption calculation unit 84 outputs the calculated chlorine consumption to the powdered activated carbon injection control unit 83b. For example, the chlorine consumption calculation unit 84 determines the value of the injection rate I Cl of sodium hypochlorite determined by the sodium hypochlorite injection control unit 81, and the residual filtered water measured by the residual chlorine concentration meter 71. The chlorine consumption DCL Cl is calculated by giving the value of the chlorine concentration RC Cl to the following formula (11).

Figure 2020142184
Figure 2020142184

粉末活性炭注入制御部83bは、塩素消費量算出部84によって算出された塩素消費量DCLClと、凝集剤注入制御部82によって決定された凝集剤の注入率IPACと、原水の紫外線吸光度UVと、粉末活性炭混和池20における被処理水の滞留時間tと、原水のpH(pH)と、に基づいて粉末活性炭の注入率IACPを決定する。粉末活性炭注入制御部83bは、粉末活性炭の注入率の決定に、濾過水の残留塩素濃度RCClに代えて塩素消費量DCLClを用いる点で第2の実施形態における粉末活性炭注入制御部83aと異なる。 The powdered activated carbon injection control unit 83b has a chlorine consumption DCL Cl calculated by the chlorine consumption calculation unit 84, an injection rate IPAC of the coagulant determined by the coagulant injection control unit 82, and an ultraviolet absorbance UV 0 of raw water. The injection rate I ACP of the powdered activated carbon is determined based on the residence time t of the water to be treated in the powdered activated carbon mixing pond 20 and the pH (pH R ) of the raw water. The powdered activated carbon injection control unit 83b and the powdered activated carbon injection control unit 83a in the second embodiment use the chlorine consumption DCL Cl instead of the residual chlorine concentration RC Cl of the filtered water to determine the injection rate of the powdered activated carbon. different.

図14は、第3の実施形態における粉末活性炭注入制御部の機能構成の具体例を示す図である。粉末活性炭注入制御部83bは、粉末活性炭注入率算出部833aに代えて粉末活性炭注入率算出部833bを備える点で第2の実施形態における粉末活性炭注入制御部83aと異なる。その他の構成は第2の実施形態と同様のため、図14における第2の実施形態と同様の構成には図11と同じ符号を付すことにより説明を省略する。 FIG. 14 is a diagram showing a specific example of the functional configuration of the powdered activated carbon injection control unit according to the third embodiment. The powdered activated carbon injection control unit 83b is different from the powdered activated carbon injection control unit 83a in the second embodiment in that the powdered activated carbon injection rate calculation unit 833b is provided in place of the powdered activated carbon injection rate calculation unit 833a. Since other configurations are the same as those of the second embodiment, the same reference numerals as those of FIG. 11 will be given to the same configurations as those of the second embodiment in FIG. 14, and the description thereof will be omitted.

粉末活性炭注入率算出部833bは、塩素消費量と、凝集剤混和池40における凝集剤の注入量と、原水の水質とに基づいて、処理水の水質目標値に応じた粉末活性炭の注入量を算出する機能を有する。 The powdered activated carbon injection rate calculation unit 833b determines the injection amount of powdered activated carbon according to the water quality target value of the treated water based on the chlorine consumption amount, the injection amount of the coagulant in the coagulant mixing pond 40, and the water quality of the raw water. It has a function to calculate.

具体的には、粉末活性炭注入率算出部833bは、塩素消費量算出部84によって算出された塩素消費量DCLClの値と、凝集剤の注入率IPACの値と、粉末活性炭混和池20における被処理水の滞留時間tの設定値と、原水のpH(pH)の測定値と、目標処理率RUVの値と、を次の式(12)で表される関数f”に与えることにより、粉末活性炭の注入率IACPを算出する。ここで関数f”は、第2の実施形態と同様に、塩素消費量DCLCl、凝集剤の注入率IPAC、滞留時間tの設定値、及び原水のpH(pH)の測定値と、目標処理率RUVの値との関係を定義した関数g”(式(13))から求められ、関数f”を示す情報は予め粉末活性炭注入率算出部833bに記憶されているものとする。 Specifically, powdered activated carbon injection rate calculating section 833b compares the value of the chlorine consumption DCL Cl calculated by chlorine consumption calculation unit 84, the value of the injection rate I PAC flocculant, in powdered activated mixing basin 20 The set value of the residence time t of the water to be treated, the measured value of the pH (pH R ) of the raw water, and the value of the target treatment rate RUV are given to the function f " 1 represented by the following formula (12). The injection rate I ACP of the powdered activated carbon is calculated by the above method. Here, the function f " 1 is a set value of the chlorine consumption DCL Cl , the coagulant injection rate I PAC , and the residence time t, as in the second embodiment. , And the function g "(formula (13)) that defines the relationship between the measured value of the pH (pH R ) of the raw water and the value of the target treatment rate RUV, and the information indicating the function f" 1 is obtained in advance from the powdered activated carbon. It is assumed that it is stored in the injection rate calculation unit 833b.

Figure 2020142184
Figure 2020142184

Figure 2020142184
Figure 2020142184

図15は、制御装置80bが粉末活性炭混和池20における粉末活性炭の注入率を決定する処理の流れを示すフローチャートである。なお、図15において、第2の実施形態と同様の処理には図12と同じ符号を付すことにより説明を省略する。まず、制御装置80bは、第2の実施形態と同様にステップS101〜S201を実行する。制御装置80bは、ステップS201において取得した残留塩素濃度の測定値を塩素消費量算出部84に出力する。 FIG. 15 is a flowchart showing a flow of processing in which the control device 80b determines the injection rate of the powdered activated carbon in the powdered activated carbon mixing pond 20. In FIG. 15, the same processing as in the second embodiment is designated by the same reference numerals as those in FIG. 12, and the description thereof will be omitted. First, the control device 80b executes steps S101 to S201 in the same manner as in the second embodiment. The control device 80b outputs the measured value of the residual chlorine concentration acquired in step S201 to the chlorine consumption calculation unit 84.

続いて、塩素消費量算出部84が、ステップS101において算出された次亜塩素酸ナトリウムの注入率IClの値と、ステップS201において測定された濾過水の残留塩素濃度RCClの値と、に基づいて、塩素消費量DCLClの値を算出する(ステップS301)。塩素消費量算出部84は、算出した塩素消費量DCLClの値を粉末活性炭注入率算出部833bに出力する。 Subsequently, the chlorine consumption calculation unit 84 determines the value of the sodium hypochlorite injection rate I Cl calculated in step S101 and the value of the residual chlorine concentration RC Cl of the filtered water measured in step S201. Based on this, the value of chlorine consumption DCL Cl is calculated (step S301). The chlorine consumption calculation unit 84 outputs the calculated chlorine consumption DCL Cl value to the powdered activated carbon injection rate calculation unit 833b.

続いて、粉末活性炭注入率算出部833bは、ステップS102において算出された凝集剤の注入率IPACの値と、ステップS103において測定された原水のpH(pH)の値と、ステップS105において算出された目標処理率RUVの値と、ステップS301において算出された塩素消費量DCLClの値と、粉末活性炭混和池20における被処理水の滞留時間tの設定値と、に基づいて、粉末活性炭注入装置21に注入させる粉末活性炭の注入率IACPを算出する(ステップS302)。 Then calculated, powdered activated carbon injection rate calculating section 833b compares the value of the injection rate I PAC of the calculated flocculant in step S102, the value of the measured raw water pH (pH R) in step S103, in step S105 Powdered activated carbon injection based on the determined target treatment rate RUV value, the chlorine consumption DCL Cl value calculated in step S301, and the set value of the residence time t of the water to be treated in the powdered activated carbon mixing pond 20. The injection rate IACP of the powdered activated carbon to be injected into the device 21 is calculated (step S302).

このように構成された第3の実施形態の制御装置80bは、原水の水質に応じて決定された凝集剤の注入率と、塩素消費量と、に基づいて、粉末活性炭の注入率を決定することにより、溶解性有機物の除去を目的として被処理水に注入される粉末活性炭の注入量をより適切に制御することができる。 The control device 80b of the third embodiment configured in this way determines the injection rate of the powdered activated carbon based on the injection rate of the flocculant and the chlorine consumption determined according to the water quality of the raw water. Thereby, the injection amount of the powdered activated carbon injected into the water to be treated for the purpose of removing the soluble organic matter can be controlled more appropriately.

第1の実施形態でも述べたように、溶解性有機物の処理率は被処理水に対する次亜塩素酸ナトリウムの注入量に相関する。一方で、次亜塩素酸ナトリウムの注入量は濾過水の残留塩素濃度に相関すると考えられる。本実施形態は、このような相関性に基づき、粉末活性炭の注入量を決定する際の指標として、次亜塩素酸ナトリウムの注入量と濾過水の残留塩素濃度とに基づいて算出される塩素消費量を用いたものである。これにより、第2の実施形態と同様に、次亜塩素酸ナトリウム及び凝集剤による溶解性有機物の除去効果を考慮した粉末活性炭の注入率を決定することができる。 As described in the first embodiment, the treatment rate of the soluble organic matter correlates with the injection amount of sodium hypochlorite into the water to be treated. On the other hand, the injection amount of sodium hypochlorite is considered to correlate with the residual chlorine concentration of the filtered water. In this embodiment, chlorine consumption calculated based on the injection amount of sodium hypochlorite and the residual chlorine concentration of the filtered water is used as an index for determining the injection amount of powdered activated carbon based on such a correlation. The amount is used. Thereby, as in the second embodiment, the injection rate of the powdered activated carbon can be determined in consideration of the effect of removing the soluble organic matter by the sodium hypochlorite and the flocculant.

なお、粉末活性炭の注入率の決定に用いられる濾過水の残留塩素濃度を次亜塩素酸ナトリウムの注入率の決定に用いてもよい。このようにすれば、濾過水の残留塩素濃度を所定の目標値に維持しつつ適切な粉末活性炭の注入率を決定することも可能である。 The residual chlorine concentration of the filtered water used for determining the injection rate of powdered activated carbon may be used for determining the injection rate of sodium hypochlorite. In this way, it is possible to determine an appropriate injection rate of powdered activated carbon while maintaining the residual chlorine concentration of the filtered water at a predetermined target value.

また、ここでは濾過水を処理水とする場合について説明したが、処理水は必ずしも濾過水である必要はない。例えば、濾過池を備えない水処理システムでは沈澱池の上澄み水が処理水とされる場合もある。 Further, although the case where the filtered water is used as the treated water has been described here, the treated water does not necessarily have to be the filtered water. For example, in a water treatment system that does not have a filtration pond, the supernatant water of the sedimentation pond may be used as the treated water.

上述した実施形態における制御装置の機能をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 The function of the control device in the above-described embodiment may be realized by a computer. In that case, the program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or a client in that case. Further, the above-mentioned program may be a program for realizing a part of the above-mentioned functions, and may be a program for realizing the above-mentioned functions in combination with a program already recorded in the computer system.

以上説明した少なくともひとつの実施形態によれば、前塩素混和池における次亜塩素酸ナトリウムの注入率と、凝集剤混和池における凝集剤の注入率とに基づいて、粉末活性炭混和池における粉末活性炭の注入率を決定する粉末活性炭注入制御部、又は凝集剤混和池における凝集剤の注入率に基づいて、粉末活性炭混和池における粉末活性炭の注入率を決定する粉末活性炭注入制御部、を持つことにより、溶解性有機物の除去を目的として被処理水に注入される粉末活性炭の注入量をより適切に制御することができる制御装置、制御方法及びコンピュータプログラムを提供することができる。 According to at least one embodiment described above, the powdered activated carbon in the powdered activated carbon mixed pond is based on the injection rate of sodium hypochlorite in the prechlorinated pond and the coagulant injection rate in the coagulant mixed pond. By having a powdered activated carbon injection control unit that determines the injection rate, or a powdered activated carbon injection control unit that determines the powdered activated carbon injection rate in the powdered activated carbon mixed pond based on the coagulant injection rate in the coagulant mixed pond. It is possible to provide a control device, a control method and a computer program capable of more appropriately controlling the injection amount of powdered activated carbon injected into the water to be treated for the purpose of removing soluble organic substances.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention as well as the invention described in the claims and the equivalent scope thereof.

100,100a,100b…実施形態の水処理システム、10…着水井、11…水質測定器、12…UV(Ultra Violet)測定器、13…流量計、20…粉末活性炭混和池、21…粉末活性炭注入装置、30…前塩素混和池、31…次亜塩素酸ナトリウム注入装置、40…凝集剤混和池、41…凝集剤注入装置、42…pH測定器、50…フロック形成池、51,51−1〜51−3…攪拌機、60…沈澱池、70…濾過池、71…残留塩素濃度計、80,80a,80b…制御装置、81…次亜塩素酸ナトリウム注入制御部、82…凝集剤注入制御部、83,83a,83b…粉末活性炭注入制御部、831…目標吸光度算出部、832…目標処理率算出部、833,833a,833b…粉末活性炭注入率算出部、84…塩素消費量算出部 100, 100a, 100b ... Water treatment system of the embodiment, 10 ... Water well, 11 ... Water quality measuring instrument, 12 ... UV (Ultra Violet) measuring instrument, 13 ... Flow meter, 20 ... Powdered activated carbon mixture pond, 21 ... Powdered activated carbon Injection device, 30 ... pre-chlorine mixing pond, 31 ... sodium hypochlorite injection device, 40 ... coagulant mixing pond, 41 ... coagulant injection device, 42 ... pH measuring device, 50 ... floc forming pond, 51, 51- 1-51-3 ... Stirrer, 60 ... Precipitation pond, 70 ... Filtration pond, 71 ... Residual chlorine concentration meter, 80, 80a, 80b ... Control device, 81 ... Sodium hypochlorite injection control unit, 82 ... Aggregator injection Control unit, 83, 83a, 83b ... Powdered activated carbon injection control unit, 831 ... Target absorbance calculation unit, 832 ... Target processing rate calculation unit, 833, 833a, 833b ... Powdered activated carbon injection rate calculation unit, 84 ... Chlorine consumption calculation unit

Claims (15)

粉末活性炭混和池において被処理水に含まれる溶解性有機物を粉末活性炭に吸着させる第1処理と、前塩素混和池において前記被処理水に含まれる金属類及びアンモニア態窒素を次亜塩素酸ナトリウムにより酸化させる第2処理と、凝集剤混和池において前記被処理水に含まれる懸濁物質を凝集剤により凝集及び沈降させる第3処理と、を順に行う水処理システムの制御装置であって、
前記第1処理前の被処理水である原水の水質に基づき、前記第2処理における次亜塩素酸ナトリウムの注入率を決定する次亜塩素酸ナトリウム注入制御部と、
前記原水の水質に基づき、前記第3処理における凝集剤の注入率を決定する凝集剤注入制御部と、
前記原水の紫外線吸光度と、前記次亜塩素酸ナトリウム注入制御部によって決定された次亜塩素酸ナトリウムの注入率と、前記凝集剤注入制御部によって決定された凝集剤の注入率と、に基づき、前記第1処理における粉末活性炭の注入率を決定する粉末活性炭注入制御部と、
を備える制御装置。
In the powdered activated carbon mixing pond, the first treatment of adsorbing the soluble organic matter contained in the water to be treated to the powdered activated carbon, and in the prechlorination pond, the metals and ammonia nitrogen contained in the water to be treated are treated with sodium hypochlorite. A control device for a water treatment system that sequentially performs a second treatment of oxidizing and a third treatment of coagulating and sedimenting suspended substances contained in the water to be treated with a coagulant in a coagulant mixing pond.
A sodium hypochlorite injection control unit that determines the injection rate of sodium hypochlorite in the second treatment based on the quality of the raw water that is the water to be treated before the first treatment.
A coagulant injection control unit that determines the coagulant injection rate in the third treatment based on the quality of the raw water,
Based on the ultraviolet absorbance of the raw water, the injection rate of sodium hypochlorite determined by the sodium hypochlorite injection control unit, and the injection rate of the coagulant determined by the coagulant injection control unit. A powdered activated carbon injection control unit that determines the injection rate of powdered activated carbon in the first treatment,
A control device comprising.
粉末活性炭混和池において被処理水に含まれる溶解性有機物を粉末活性炭に吸着させる第1処理と、前塩素混和池において前記被処理水に含まれる金属類及びアンモニア態窒素を次亜塩素酸ナトリウムにより酸化させる第2処理と、凝集剤混和池において前記被処理水に含まれる懸濁物質を凝集剤により凝集及び沈降させる第3処理と、を順に行う水処理システムの制御装置であって、
前記第1処理前の被処理水である原水の水質に基づき、前記第2処理における次亜塩素酸ナトリウムの注入率を決定する次亜塩素酸ナトリウム注入制御部と、
前記原水の水質に基づき、前記第3処理における凝集剤の注入率を決定する凝集剤注入制御部と、
前記原水の紫外線吸光度と、処理水の残留塩素濃度と、前記凝集剤注入制御部によって決定された凝集剤の注入率と、に基づき、前記第1処理における粉末活性炭の注入率を決定する粉末活性炭注入制御部と、
を備える制御装置。
In the powdered activated carbon mixing pond, the first treatment of adsorbing the soluble organic matter contained in the water to be treated to the powdered activated carbon, and in the prechlorination pond, the metals and ammonia nitrogen contained in the water to be treated are treated with sodium hypochlorite. A control device for a water treatment system that sequentially performs a second treatment of oxidizing and a third treatment of coagulating and sedimenting suspended substances contained in the water to be treated with a coagulant in a coagulant mixing pond.
A sodium hypochlorite injection control unit that determines the injection rate of sodium hypochlorite in the second treatment based on the quality of the raw water that is the water to be treated before the first treatment.
A coagulant injection control unit that determines the coagulant injection rate in the third treatment based on the quality of the raw water,
Powdered activated carbon that determines the injection rate of powdered activated carbon in the first treatment based on the ultraviolet absorbance of the raw water, the residual chlorine concentration of the treated water, and the injection rate of the coagulant determined by the coagulant injection control unit. Injection control unit and
A control device comprising.
粉末活性炭混和池において被処理水に含まれる溶解性有機物を粉末活性炭に吸着させる第1処理と、前塩素混和池において前記被処理水に含まれる金属類及びアンモニア態窒素を次亜塩素酸ナトリウムにより酸化させる第2処理と、凝集剤混和池において前記被処理水に含まれる懸濁物質を凝集剤により凝集及び沈降させる第3処理と、を順に行う水処理システムの制御装置であって、
前記第1処理前の被処理水である原水の水質に基づき、前記第2処理における次亜塩素酸ナトリウムの注入率を決定する次亜塩素酸ナトリウム注入制御部と、
前記原水の水質に基づき、前記第3処理における凝集剤の注入率を決定する凝集剤注入制御部と、
処理水の残留塩素濃度と、前記次亜塩素酸ナトリウム注入制御部によって決定された次亜塩素酸ナトリウムの注入率と、に基づき、次亜塩素酸ナトリウムを注入してから処理水に至るまでに消費された塩素消費量を算出する塩素消費量算出部と、
前記原水の紫外線吸光度と、前記塩素消費量算出部によって算出された塩素消費量と、前記凝集剤注入制御部によって決定された凝集剤の注入率と、に基づき、前記第1処理における粉末活性炭の注入率を決定する粉末活性炭注入制御部と、
を備える制御装置。
In the powdered activated carbon mixing pond, the first treatment of adsorbing the soluble organic matter contained in the water to be treated to the powdered activated carbon, and in the prechlorination pond, the metals and ammonia nitrogen contained in the water to be treated are treated with sodium hypochlorite. A control device for a water treatment system that sequentially performs a second treatment of oxidizing and a third treatment of coagulating and sedimenting suspended substances contained in the water to be treated with a coagulant in a coagulant mixing pond.
A sodium hypochlorite injection control unit that determines the injection rate of sodium hypochlorite in the second treatment based on the quality of the raw water that is the water to be treated before the first treatment.
A coagulant injection control unit that determines the coagulant injection rate in the third treatment based on the quality of the raw water,
From the injection of sodium hypochlorite to the treated water based on the residual chlorine concentration of the treated water and the injection rate of sodium hypochlorite determined by the sodium hypochlorite injection control unit. Chlorine consumption calculation unit that calculates the consumed chlorine consumption,
Based on the ultraviolet absorbance of the raw water, the chlorine consumption calculated by the chlorine consumption calculation unit, and the injection rate of the coagulant determined by the coagulant injection control unit, the powdered activated carbon in the first treatment Powdered activated carbon injection control unit that determines the injection rate,
A control device comprising.
前記粉末活性炭注入制御部は、
処理水の水質目標値に対応する、前記被処理水の紫外線吸光度の目標値である目標吸光度を決定する目標吸光度決定部と、
前記原水の紫外線吸光度に対する前記目標吸光度の割合で表される目標処理率を算出する目標処理率算出部と、
前記目標処理率と、前記次亜塩素酸ナトリウム注入制御部によって決定された次亜塩素酸ナトリウムの注入率と、前記凝集剤注入制御部によって決定された凝集剤の注入率と、前記粉末活性炭混和池における被処理水の滞留時間と、前記原水のpHと、に基づき、前記第1処理における粉末活性炭の注入率を決定する粉末活性炭注入率算出部と、
を備える、
請求項1に記載の制御装置。
The powdered activated carbon injection control unit
A target absorbance determining unit that determines the target absorbance, which is the target value of the ultraviolet absorbance of the water to be treated, corresponding to the water quality target value of the treated water.
A target processing rate calculation unit that calculates a target processing rate represented by the ratio of the target absorbance to the ultraviolet absorbance of the raw water,
The target treatment rate, the injection rate of sodium hypochlorite determined by the sodium hypochlorite injection control unit, the injection rate of the coagulant determined by the coagulant injection control unit, and the powdered activated carbon mixture. A powdered activated carbon injection rate calculation unit that determines the injection rate of powdered activated carbon in the first treatment based on the residence time of the water to be treated in the pond and the pH of the raw water.
To prepare
The control device according to claim 1.
前記粉末活性炭注入制御部は、
処理水の水質目標値に対応する、前記被処理水の紫外線吸光度の目標値である目標吸光度を決定する目標吸光度決定部と、
前記原水の紫外線吸光度に対する前記目標吸光度の割合で表される目標処理率を算出する目標処理率算出部と、
前記目標処理率と、前記処理水の残留塩素濃度と、前記凝集剤注入制御部によって決定された凝集剤の注入率と、前記粉末活性炭混和池における被処理水の滞留時間と、前記原水のpHと、に基づき、前記第1処理における粉末活性炭の注入率を決定する粉末活性炭注入率算出部と、
を備える、
請求項2に記載の制御装置。
The powdered activated carbon injection control unit
A target absorbance determining unit that determines the target absorbance, which is the target value of the ultraviolet absorbance of the water to be treated, corresponding to the water quality target value of the treated water.
A target processing rate calculation unit that calculates a target processing rate represented by the ratio of the target absorbance to the ultraviolet absorbance of the raw water,
The target treatment rate, the residual chlorine concentration of the treated water, the injection rate of the coagulant determined by the coagulant injection control unit, the residence time of the water to be treated in the powdered activated carbon mixing pond, and the pH of the raw water. Based on the above, the powdered activated carbon injection rate calculation unit that determines the powdered activated carbon injection rate in the first treatment, and
To prepare
The control device according to claim 2.
前記粉末活性炭注入制御部は、
処理水の水質目標値に対応する、前記被処理水の紫外線吸光度の目標値である目標吸光度を決定する目標吸光度決定部と、
前記原水の紫外線吸光度に対する前記目標吸光度の割合で表される目標処理率を算出する目標処理率算出部と、
前記目標処理率と、前記塩素消費量と、前記凝集剤注入制御部によって決定された凝集剤の注入率と、前記粉末活性炭混和池における被処理水の滞留時間と、前記原水のpHと、に基づき、前記第1処理における粉末活性炭の注入率を決定する粉末活性炭注入率算出部と、
を備える、
請求項3に記載の制御装置。
The powdered activated carbon injection control unit
A target absorbance determining unit that determines the target absorbance, which is the target value of the ultraviolet absorbance of the water to be treated, corresponding to the water quality target value of the treated water.
A target processing rate calculation unit that calculates a target processing rate represented by the ratio of the target absorbance to the ultraviolet absorbance of the raw water,
The target treatment rate, the chlorine consumption, the injection rate of the coagulant determined by the coagulant injection control unit, the residence time of the water to be treated in the powdered activated carbon mixing pond, and the pH of the raw water. Based on the powdered activated carbon injection rate calculation unit that determines the powdered activated carbon injection rate in the first treatment,
To prepare
The control device according to claim 3.
前記処理水の水質目標値は、前記被処理水中の溶解性有機体炭素濃度の目標値である、
請求項4から6のいずれか一項に記載の制御装置。
The water quality target value of the treated water is a target value of the soluble organic carbon concentration in the treated water.
The control device according to any one of claims 4 to 6.
前記凝集剤注入制御部は、前記原水の水質として、濁度、アルカリ度又は水温の少なくとも1つと、前記凝集剤混和池における混和水のpHと、に基づき、前記第3処理における凝集剤の注入率を決定する、
請求項1から7のいずれか一項に記載の制御装置。
The coagulant injection control unit injects the coagulant in the third treatment based on at least one of turbidity, alkalinity or water temperature as the water quality of the raw water and the pH of the miscible water in the coagulant mixing pond. Determine the rate,
The control device according to any one of claims 1 to 7.
前記次亜塩素酸ナトリウム注入制御部は、前記原水の水質として、塩素要求量又はアンモニア濃度の少なくとも1つに基づき、前記第2処理における次亜塩素酸ナトリウムの注入率を決定する、
請求項1から8のいずれか一項に記載の制御装置。
The sodium hypochlorite injection control unit determines the injection rate of sodium hypochlorite in the second treatment based on at least one of the required chlorine amount or the ammonia concentration as the water quality of the raw water.
The control device according to any one of claims 1 to 8.
粉末活性炭混和池において被処理水に含まれる溶解性有機物を粉末活性炭に吸着させる第1処理と、前塩素混和池において前記被処理水に含まれる金属類及びアンモニア態窒素を次亜塩素酸ナトリウムにより酸化させる第2処理と、凝集剤混和池において前記被処理水に含まれる懸濁物質を凝集剤により凝集及び沈降させる第3処理と、を順に行う水処理システムの制御方法であって、
前記第1処理前の被処理水である原水の水質に基づき、前記第2処理における次亜塩素酸ナトリウムの注入率を決定する第1のステップと、
前記原水の水質に基づき、前記第3処理における凝集剤の注入率を決定する第2のステップと、
前記原水の紫外線吸光度と、前記第1のステップにおいて決定された次亜塩素酸ナトリウムの注入率と、前記第2のステップにおいて決定された凝集剤の注入率と、に基づき、前記第1処理における粉末活性炭の注入率を決定する第3のステップと、
を有する制御方法。
In the powdered activated carbon mixing pond, the first treatment of adsorbing the soluble organic matter contained in the water to be treated to the powdered activated carbon, and in the prechlorination pond, the metals and ammonia nitrogen contained in the water to be treated are treated with sodium hypochlorite. It is a control method of a water treatment system that sequentially performs a second treatment of oxidizing and a third treatment of coagulating and sedimenting a suspended substance contained in the water to be treated with a coagulant in a coagulant mixing pond.
The first step of determining the injection rate of sodium hypochlorite in the second treatment based on the quality of the raw water which is the water to be treated before the first treatment, and
The second step of determining the injection rate of the flocculant in the third treatment based on the water quality of the raw water, and
In the first treatment, based on the ultraviolet absorbance of the raw water, the injection rate of sodium hypochlorite determined in the first step, and the injection rate of the flocculant determined in the second step. The third step of determining the injection rate of powdered activated carbon,
Control method having.
粉末活性炭混和池において被処理水に含まれる溶解性有機物を粉末活性炭に吸着させる第1処理と、前塩素混和池において前記被処理水に含まれる金属類及びアンモニア態窒素を次亜塩素酸ナトリウムにより酸化させる第2処理と、凝集剤混和池において前記被処理水に含まれる懸濁物質を凝集剤により凝集及び沈降させる第3処理と、を順に行う水処理システムの制御装置であって、
前記第1処理前の被処理水である原水の水質に基づき、前記第2処理における次亜塩素酸ナトリウムの注入率を決定する第1のステップと、
前記原水の水質に基づき、前記第3処理における凝集剤の注入率を決定する第2のステップと、
前記原水の紫外線吸光度と、処理水の残留塩素濃度と、前記第2のステップにおいて決定された凝集剤の注入率と、に基づき、前記第1処理における粉末活性炭の注入率を決定する第3のステップと、
を有する制御方法。
In the powdered activated carbon mixing pond, the first treatment of adsorbing the soluble organic matter contained in the water to be treated to the powdered activated carbon, and in the prechlorination pond, the metals and ammonia nitrogen contained in the water to be treated are separated by sodium hypochlorite. A control device for a water treatment system that sequentially performs a second treatment for oxidation and a third treatment for aggregating and sedimenting suspended substances contained in the water to be treated with a coagulant in a coagulant mixing pond.
The first step of determining the injection rate of sodium hypochlorite in the second treatment based on the quality of the raw water which is the water to be treated before the first treatment, and
The second step of determining the injection rate of the flocculant in the third treatment based on the water quality of the raw water, and
A third method for determining the injection rate of powdered activated carbon in the first treatment based on the ultraviolet absorbance of the raw water, the residual chlorine concentration of the treated water, and the injection rate of the flocculant determined in the second step. Steps and
Control method having.
粉末活性炭混和池において被処理水に含まれる溶解性有機物を粉末活性炭に吸着させる第1処理と、前塩素混和池において前記被処理水に含まれる金属類及びアンモニア態窒素を次亜塩素酸ナトリウムにより酸化させる第2処理と、凝集剤混和池において前記被処理水に含まれる懸濁物質を凝集剤により凝集及び沈降させる第3処理と、を順に行う水処理システムの制御方法であって、
前記第1処理前の被処理水である原水の水質に基づき、前記第2処理における次亜塩素酸ナトリウムの注入率を決定する第1のステップと、
前記原水の水質に基づき、前記第3処理における凝集剤の注入率を決定する第2のステップと、
処理水の残留塩素濃度と、前記第1のステップにおいて決定された次亜塩素酸ナトリウムの注入率と、に基づき、次亜塩素酸ナトリウムを注入してから濾過水に至るまでに消費された塩素消費量を算出する第3のステップと、
前記原水の紫外線吸光度と、前記第3のステップにおいて算出された塩素消費量と、前記第2のステップにおいて決定された凝集剤の注入率と、に基づき、前記第1処理における粉末活性炭の注入率を決定する第4のステップと、
を有する制御方法。
In the powdered activated carbon mixing pond, the first treatment of adsorbing the soluble organic matter contained in the water to be treated to the powdered activated carbon, and in the prechlorination pond, the metals and ammonia nitrogen contained in the water to be treated are treated with sodium hypochlorite. It is a control method of a water treatment system that sequentially performs a second treatment of oxidizing and a third treatment of coagulating and sedimenting a suspended substance contained in the water to be treated with a coagulant in a coagulant mixing pond.
The first step of determining the injection rate of sodium hypochlorite in the second treatment based on the quality of the raw water which is the water to be treated before the first treatment, and
The second step of determining the injection rate of the flocculant in the third treatment based on the water quality of the raw water, and
Chlorine consumed from the injection of sodium hypochlorite to the filtered water based on the residual chlorine concentration of the treated water and the injection rate of sodium hypochlorite determined in the first step. The third step in calculating consumption and
The injection rate of powdered activated carbon in the first treatment is based on the ultraviolet absorbance of the raw water, the chlorine consumption calculated in the third step, and the injection rate of the flocculant determined in the second step. The fourth step to determine and
Control method having.
粉末活性炭混和池において被処理水に含まれる溶解性有機物を粉末活性炭に吸着させる第1処理と、前塩素混和池において前記被処理水に含まれる金属類及びアンモニア態窒素を次亜塩素酸ナトリウムにより酸化させる第2処理と、凝集剤混和池において前記被処理水に含まれる懸濁物質を凝集剤により凝集及び沈降させる第3処理と、を順に行う水処理システムの制御装置として機能するコンピュータに、
前記第1処理前の被処理水である原水の水質に基づき、前記第2処理における次亜塩素酸ナトリウムの注入率を決定する第1のステップと、
前記原水の水質に基づき、前記第3処理における凝集剤の注入率を決定する第2のステップと、
前記原水の紫外線吸光度と、前記第1のステップにおいて決定された次亜塩素酸ナトリウムの注入率と、前記第2のステップにおいて決定された凝集剤の注入率と、に基づき、前記第1処理における粉末活性炭の注入率を決定する第3のステップと、
を実行させるためのコンピュータプログラム。
In the powdered activated carbon mixing pond, the first treatment of adsorbing the soluble organic matter contained in the water to be treated to the powdered activated carbon, and in the prechlorination pond, the metals and ammonia nitrogen contained in the water to be treated are treated with sodium hypochlorite. A computer that functions as a control device for a water treatment system that sequentially performs a second treatment for oxidation and a third treatment for aggregating and sedimenting suspended substances contained in the water to be treated with a coagulant in a coagulant mixing pond.
The first step of determining the injection rate of sodium hypochlorite in the second treatment based on the quality of the raw water which is the water to be treated before the first treatment, and
The second step of determining the injection rate of the flocculant in the third treatment based on the water quality of the raw water, and
In the first treatment, based on the ultraviolet absorbance of the raw water, the injection rate of sodium hypochlorite determined in the first step, and the injection rate of the flocculant determined in the second step. The third step of determining the injection rate of powdered activated carbon,
A computer program to run.
粉末活性炭混和池において被処理水に含まれる溶解性有機物を粉末活性炭に吸着させる第1処理と、前塩素混和池において前記被処理水に含まれる金属類及びアンモニア態窒素を次亜塩素酸ナトリウムにより酸化させる第2処理と、凝集剤混和池において前記被処理水に含まれる懸濁物質を凝集剤により凝集及び沈降させる第3処理と、を順に行う水処理システムの制御装置として機能するコンピュータに、
前記第1処理前の被処理水である原水の水質に基づき、前記第2処理における次亜塩素酸ナトリウムの注入率を決定する第1のステップと、
前記原水の水質に基づき、前記第3処理における凝集剤の注入率を決定する第2のステップと、
前記原水の紫外線吸光度と、処理水の残留塩素濃度と、前記第2のステップにおいて決定された凝集剤の注入率と、に基づき、前記第1処理における粉末活性炭の注入率を決定する第3のステップと、
を実行させるためのコンピュータプログラム。
In the powdered activated carbon mixing pond, the first treatment of adsorbing the soluble organic matter contained in the water to be treated to the powdered activated carbon, and in the prechlorination pond, the metals and ammonia nitrogen contained in the water to be treated are treated with sodium hypochlorite. A computer that functions as a control device for a water treatment system that sequentially performs a second treatment for oxidation and a third treatment for aggregating and sedimenting suspended substances contained in the water to be treated with a coagulant in a coagulant mixing pond.
The first step of determining the injection rate of sodium hypochlorite in the second treatment based on the quality of the raw water which is the water to be treated before the first treatment, and
The second step of determining the injection rate of the flocculant in the third treatment based on the water quality of the raw water, and
A third method for determining the injection rate of powdered activated carbon in the first treatment based on the ultraviolet absorbance of the raw water, the residual chlorine concentration of the treated water, and the injection rate of the flocculant determined in the second step. Steps and
A computer program to run.
粉末活性炭混和池において被処理水に含まれる溶解性有機物を粉末活性炭に吸着させる第1処理と、前塩素混和池において前記被処理水に含まれる金属類及びアンモニア態窒素を次亜塩素酸ナトリウムにより酸化させる第2処理と、凝集剤混和池において前記被処理水に含まれる懸濁物質を凝集剤により凝集及び沈降させる第3処理と、を順に行う水処理システムの制御装置として機能するコンピュータに、
前記第1処理前の被処理水である原水の水質に基づき、前記第2処理における次亜塩素酸ナトリウムの注入率を決定する第1のステップと、
前記原水の水質に基づき、前記第3処理における凝集剤の注入率を決定する第2のステップと、
処理水の残留塩素濃度と、前記第1のステップにおいて決定された次亜塩素酸ナトリウムの注入率と、に基づき、次亜塩素酸ナトリウムを注入してから濾過水に至るまでに消費された塩素消費量を算出する第3のステップと、
前記原水の紫外線吸光度と、前記第3のステップにおいて算出された塩素消費量と、前記第2のステップにおいて決定された凝集剤の注入率と、に基づき、前記第1処理における粉末活性炭の注入率を決定する第4のステップと、
を実行させるためのコンピュータプログラム。
In the powdered activated carbon mixing pond, the first treatment of adsorbing the soluble organic matter contained in the water to be treated to the powdered activated carbon, and in the prechlorination pond, the metals and ammonia nitrogen contained in the water to be treated are treated with sodium hypochlorite. A computer that functions as a control device for a water treatment system that sequentially performs a second treatment for oxidation and a third treatment for aggregating and sedimenting suspended substances contained in the water to be treated with a coagulant in a coagulant mixing pond.
The first step of determining the injection rate of sodium hypochlorite in the second treatment based on the quality of the raw water which is the water to be treated before the first treatment, and
The second step of determining the injection rate of the flocculant in the third treatment based on the water quality of the raw water, and
Chlorine consumed from the injection of sodium hypochlorite to the filtered water based on the residual chlorine concentration of the treated water and the injection rate of sodium hypochlorite determined in the first step. The third step in calculating consumption and
The injection rate of powdered activated carbon in the first treatment is based on the ultraviolet absorbance of the raw water, the chlorine consumption calculated in the third step, and the injection rate of the flocculant determined in the second step. The fourth step to determine and
A computer program to run.
JP2019040520A 2019-03-06 2019-03-06 Control device, control method and computer program Active JP7258606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019040520A JP7258606B2 (en) 2019-03-06 2019-03-06 Control device, control method and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019040520A JP7258606B2 (en) 2019-03-06 2019-03-06 Control device, control method and computer program

Publications (2)

Publication Number Publication Date
JP2020142184A true JP2020142184A (en) 2020-09-10
JP7258606B2 JP7258606B2 (en) 2023-04-17

Family

ID=72355261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019040520A Active JP7258606B2 (en) 2019-03-06 2019-03-06 Control device, control method and computer program

Country Status (1)

Country Link
JP (1) JP7258606B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166265A (en) * 2000-11-30 2002-06-11 Toshiba Corp Water treatment control system using fluorometric analyzer
JP2004033846A (en) * 2002-07-01 2004-02-05 Fuji Electric Holdings Co Ltd Control method of concentration of disinfection byproduct and apparatus therefor
JP2004351326A (en) * 2003-05-29 2004-12-16 Toshiba Corp Water quality monitoring system
JP2012213759A (en) * 2011-03-30 2012-11-08 Metawater Co Ltd Method of controlling chemical injection and device for controlling chemical injection
JP2013094686A (en) * 2011-10-28 2013-05-20 Meidensha Corp Chemical injection control method and chemical injection controller
CN107522314A (en) * 2016-06-21 2017-12-29 韩国科学技术研究院 Water purifying treating method
JP2019162583A (en) * 2018-03-19 2019-09-26 東芝インフラシステムズ株式会社 Water treatment system and water treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166265A (en) * 2000-11-30 2002-06-11 Toshiba Corp Water treatment control system using fluorometric analyzer
JP2004033846A (en) * 2002-07-01 2004-02-05 Fuji Electric Holdings Co Ltd Control method of concentration of disinfection byproduct and apparatus therefor
JP2004351326A (en) * 2003-05-29 2004-12-16 Toshiba Corp Water quality monitoring system
JP2012213759A (en) * 2011-03-30 2012-11-08 Metawater Co Ltd Method of controlling chemical injection and device for controlling chemical injection
JP2013094686A (en) * 2011-10-28 2013-05-20 Meidensha Corp Chemical injection control method and chemical injection controller
CN107522314A (en) * 2016-06-21 2017-12-29 韩国科学技术研究院 Water purifying treating method
JP2019162583A (en) * 2018-03-19 2019-09-26 東芝インフラシステムズ株式会社 Water treatment system and water treatment method

Also Published As

Publication number Publication date
JP7258606B2 (en) 2023-04-17

Similar Documents

Publication Publication Date Title
JP5951423B2 (en) Flocculant injection control method and flocculant injection control system
JP6422901B2 (en) Management support system, management support method, and management support program
JP4492473B2 (en) Flocculant injection control device and method
JP2008161809A (en) Coagulant injection control system
JP2008055299A (en) Flocculating sedimentation treating equipment
JP5145311B2 (en) Water purification chemical injection control system
JP7086658B2 (en) Water treatment system and water treatment method
JP6633342B2 (en) Coagulant injection support device and control method
JP2002159805A (en) Flocculant injection control method of water purification plant
JP2020142184A (en) Control device, control method and computer program
JP2012101171A (en) Coagulant injection control system
JP6662558B2 (en) Water treatment method and water treatment device
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
JP2017056418A (en) Flocculant injection rate determination method and flocculant injection rate determination device
JP5711692B2 (en) Water treatment method by stirring control
JP2014121690A (en) Flocculated and precipitated activated sludge treatment system and method for operating the same
JP2004141782A (en) Water quality control method
JPH10118411A (en) Method and device for controlling injection of flocculant in water purification plant
JP2023097172A (en) Teaching data selection device, prediction model construction device, and teaching data selection method
JP2007014955A (en) Water-quality control system
JP2011115738A (en) Flocculant injection control method of purification plant
JP2010137224A (en) Method for cleaning water
JP2022026969A (en) Water treatment system and water treatment method
JP6330085B1 (en) Setting method of coagulant injection rate
JPH11207366A (en) Chlorine treatment and chlorine treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7258606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150