JP2004033846A - Control method of concentration of disinfection byproduct and apparatus therefor - Google Patents

Control method of concentration of disinfection byproduct and apparatus therefor Download PDF

Info

Publication number
JP2004033846A
JP2004033846A JP2002192087A JP2002192087A JP2004033846A JP 2004033846 A JP2004033846 A JP 2004033846A JP 2002192087 A JP2002192087 A JP 2002192087A JP 2002192087 A JP2002192087 A JP 2002192087A JP 2004033846 A JP2004033846 A JP 2004033846A
Authority
JP
Japan
Prior art keywords
concentration
activated carbon
disinfection
tap water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002192087A
Other languages
Japanese (ja)
Other versions
JP3969217B2 (en
Inventor
Koji Kawakami
川上 幸次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002192087A priority Critical patent/JP3969217B2/en
Publication of JP2004033846A publication Critical patent/JP2004033846A/en
Application granted granted Critical
Publication of JP3969217B2 publication Critical patent/JP3969217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of accurately estimating the concentration of a disinfection byproduct such as a trihalomethane or the like to control and reduce the concentration of the disinfection byproduct, and an apparatus therefor. <P>SOLUTION: In a water cleaning process for raw water for city water including at least an activated carbon treatment process for removing organic matter in the raw water for city water and a chlorine treatment process for disinfecting the raw water for city water with chlorine, the estimate concentration of the disinfection byproduct or the injection ratio of activated carbon is calculated by an operation means 75 on the basis of a measuring means 71 for measuring the generation capacity of trihalomethane in the raw water for city water, a pH measuring means 72 for the raw water for city water and a water temperature measuring means 73 for the raw water for city water, or a condition input means 74 for inputting a chlorine treatment time and the injection ratio of activated carbon, or the chlorine treatment time and the forming tolerant concentration of the disinfection byproduct. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、浄水場等における水道原水の浄水工程において、塩素消毒により生成する消毒副生成物の濃度を予測し、消毒副生成物の濃度管理を行なう方法及び装置に関する。
【0002】
【従来の技術】
近年、産業活動による工場廃水等により、河川や湖沼における富栄養化が進行し、水道原水の各種有機物による汚染が顕著となっている。このため、浄水場等で行なわれる塩素消毒によって、塩素と上記の有機物が反応し、発ガン性が疑われているトリハロメタン、ジクロロ酢酸等の消毒副生成物の生成が問題となっている。したがって、浄水場においては、いわゆる消毒副生成物前駆物質となる上記の有機物を反応前に除去することが行なわれている。
【0003】
図4には、上記の有機物除去を行なう従来の浄水場における浄水工程の一例が示されている。
【0004】
図4において、被処理水である河川や湖沼からの水道原水は、まず浄水場に入ってくる原水の量を調節するための着水井10に導入される。ここで、上記の消毒副生成物の生成を低減させるために粉末活性炭を数十mg/L注入する活性炭処理工程S1が行なわれている。これにより、水道原水中の有機物の一部を吸着・除去し、後に注入される塩素と有機物の反応量を抑え、消毒副生成物の生成濃度を低減させることができる。
【0005】
次に、前塩素処理工程S2によって、塩素注入機60から塩素を数mg/L程度となるように着水井10に注入する。なお、この塩素処理は、中間塩素素処理工程S4として、後述の凝集・沈殿工程S3とろ過工程S5との間に行なわれる場合もあり、塩素注入機60により、時期によって前塩素処理工程S2と中間塩素素処理工程S4とが切替え可能となっている。
【0006】
前塩素処理工程S2後の水道原水は、混和池20において原水に凝集剤を注入して迅速に混和を行ない、フロック形成池30において、ゆるやかな攪拌が行なわれて微小なフロック粒子同士が衝突して合体し、大きなフロックが形成される凝集・沈殿工程S3が行なわれる。その後、ろ過池40において、砂ろ過等を用いて凝集・沈殿物をろ過する、ろ過工程S5の後、浄水池50において一時貯水され、その後、使用量に応じた給水が行なわれる。なお、浄水池50においては、給水後の送配水管の末端における残留塩素濃度を確保するために、1〜2mg/L程度の低濃度の塩素を注入する、後塩素処理工程S6が行なわれている。
【0007】
しかしながら、上記の消毒副生成物の生成メカニズムは非常に複雑であり、浄水場出口や給水栓における消毒副生成物の生成濃度を、浄水工程の初期段階で予測、管理することは非常に困難である。このため、上記の従来の活性炭処理工程S1においては、活性炭の注入時期、注入量が明確でないために、活性炭注入は安全を見込んで過剰に注入されており、これによって処理コストが増大するという問題があった。
【0008】
また、上記のように、浄水場では、前塩素処理工程S2と中間塩素処理工程S4とを時期によって切替えることが行なわれている。この場合、通常時期は前塩素処理工程S2を行なうが、水温が上昇して有機物が増加する夏季には中間塩素処理工程S4に切替える。これによって、塩素処理時間を短縮するとともに、凝集・沈殿処理工程S3における有機物の凝集・沈殿効果によって消毒副生成物の生成を減少させることができる。しかし、上記の従来の方法では、浄水場出口における消毒副生成物の生成濃度が正確に予測できなかったので、前塩素処理から中間塩素処理への切替えによる消毒副生成物の低減効果を正確に把握できず、このため変更時期を正確に決定できないという問題点も生じていた。
【0009】
上記の問題に対して、代表的な消毒副生成物の一つであるトリハロメタンについて生成濃度を予測する式が知られており、例えば、浦野ら(水道協会雑誌、No.596、p.27−37、1984)は、トリハロメタンの生成速度式として、(II)式で示す実験式を提案している。
【0010】
【数3】

Figure 2004033846
【0011】
ここで、THMは塩素添加後t時間におけるトリハロメタン生成濃度、pHは試料水の水素イオン濃度指数、TOCは試料水の全有機炭素濃度、Clは塩素添加濃度、tは塩素処理時間(塩素接触時間とも呼ぶ)、k,a,m,nは定数である。
【0012】
また、トリハロメタンの生成濃度予測方法として、複数の水質指標の重回帰式を用いる方法も知られている。例えば、(III)式に示す通り、試料水のpH、試料水の水温、塩素処理時間の、3種類の水質指標の重回帰式を用いたTHMの生成予測式が提案されている。
【0013】
【数4】
Figure 2004033846
【0014】
ここで、THMは塩素添加後t時間でのトリハロメタン生成濃度、pHは試料水の水素イオン濃度指数、Tは試料水の水温、tは塩素処理時間、a,bc,dは定数である。
【0015】
【発明が解決しようとする課題】
しかしながら、上記の浦野らの実験式(II)を用いる方法においては、TOCは試料水中の全有機炭素濃度である。しかし、塩素処理時には全て反応してトリハロメタンを生成することはなく、通常はTOCの一部の有機物成分が塩素と反応してトリハロメタンが生成するので、上記(II)式を用いてトリハロメタン生成量を予測する場合は、試料水の水質によってトリハロメタン生成の予測精度が大きく低下する可能性があるという問題があった。
【0016】
また、トリハロメタンの生成濃度予測方法として(III)式を用いた場合、通常、(III)式の定数は、3種類の水質指標、及びトリハロメタンの実測値のデータ組を多数取得し、統計的な手法により求められる。したがって、データ取得した試料水の水質によって、予測濃度が大きく変動しやすく、上記の浦野らの実験式(II)と同様に、試料水である水道原水の水質変動が激しい場合は、トリハロメタン生成の予測精度が大きく低下するという問題があった。
【0017】
更に、上記の(II)式、(III)式を用いた方法は、いずれもトリハロメタン以外の消毒副生成物には適用できない可能性があるという問題もある。消毒副生成物としては、例えばジクロロ酢酸等も生成するが、これらのトリハロメタン以外の消毒副生成物については、生成のメカニズムが未だ不明な点が多く、生成濃度の予測式の検討はほとんど行なわれていない。
【0018】
本発明は、上記従来技術の問題点を鑑みてなされたもので、浄水場等の浄水施設において、水道原水の塩素消毒により生成するトリハロメタン等の消毒副生成物の濃度を、浄水工程の初期段階で精度良く予測し、その消毒副生成物の濃度を管理、低減化するための方法および装置を提供することを目的とする。
【0019】
【課題を解決するための手段】
すなわち、本発明の消毒副生成物の濃度管理方法の一つは、水道原水中の有機物を除去するための活性炭処理工程と、前記水道原水を塩素消毒するための塩素処理工程とを少なくとも含む水道原水の浄水工程における消毒副生成物の濃度管理方法において、
前記水道原水のトリハロメタン生成能と、前記水道原水のpHと、前記水道原水の水温と、前記塩素処理工程における塩素処理時間と、前記活性炭処理工程における活性炭注入率とに基づいて、前記浄水工程により生成する消毒副生成物の予測濃度を算出することを特徴とする。
【0020】
この方法によれば、浄水場等の浄水施設において、水道原水の塩素消毒により生成するトリハロメタン等の消毒副生成物の濃度を、浄水工程の初期段階で精度良く予測できる。したがって、浄水工程後の消毒副生成物の濃度を実測する必要が少なくなるので、浄水工程の管理を効率的に行なうことができる。
【0021】
また、前塩素処理から中間塩素処理への切替えを行なう場合にも、消毒副生成物の低減効果を正確に予測できるので、切替え時期を正確に決定することができる。
【0022】
更に、ジクロロ酢酸のような、トリハロメタン以外の消毒副生成物についても生成濃度を予測することができる。
【0023】
また、本発明の消毒副生成物の濃度管理方法の他の一つは、水道原水中の有機物を除去するための活性炭処理工程と、前記水道原水を塩素消毒するための塩素処理工程とを少なくとも含む水道原水の浄水工程における消毒副生成物の濃度管理方法において、
前記水道原水のトリハロメタン生成能と、前記水道原水のpHと、前記水道原水の水温と、前記塩素処理工程における塩素処理時間と、前記浄水工程により生成する消毒副生成物の生成許容濃度とに基づいて、前記活性炭処理工程における活性炭注入率を算出することを特徴とする。
【0024】
これによれば、消毒副生成物の生成許容濃度に基づいて、あらかじめ活性炭注入率を調整することができるので、浄水工程における消毒副生成物の生成を常時所定の濃度以下に容易に制御することができる。また、最適な活性炭注入量を決定できるので、活性炭処理工程において過剰に活性炭を注入することを防止し、活性炭のコストを低減することができる。
【0025】
本発明の方法においては、前記消毒副生成物の予測濃度の算出、又は前記活性炭処理工程における活性炭注入率の算出を、以下の数式(I)によって行なうことが好ましい。
【0026】
【数5】
Figure 2004033846
【0027】
上記の数式(I)を用いることにより、消毒副生成物の予測濃度、又は活性炭注入率を定量的に予測することができるので、より精度の高い予測が可能となる。
【0028】
一方、本発明の消毒副生成物の濃度管理装置の一つは、水道原水中の有機物を除去するための活性炭処理手段と、前記水道原水を塩素消毒するための塩素処理手段とを少なくとも備える水道原水の浄水施設によって生成する消毒副生成物の濃度管理装置であって、
前記水道原水のトリハロメタン生成能を測定するトリハロメタン生成能測定手段と、
前記水道原水のpHを測定するpH測定手段と、
前記水道原水の水温を測定する水温測定手段と、
前記塩素処理手段における塩素処理時間、前記活性炭処理手段における活性炭注入率を入力する条件入力手段と、
前記トリハロメタン生成能測定手段、前記pH測定手段、前記水温測定手段、前記条件入力手段からのデータに基づいて前記消毒副生成物の予測濃度を算出する演算手段と、
前記演算手段によって求められた前記消毒副生成物の予測濃度を出力する出力手段とを備えることを特徴とする。
【0029】
本発明の濃度管理装置によれば、浄水場等の浄水施設において、水道原水の塩素消毒により生成するトリハロメタン等の消毒副生成物の濃度を、浄水工程の初期段階で精度良く予測できる。したがって、浄水工程後の消毒副生成物の濃度を実測する必要が少なくなるので、工程管理を効率的に行なうことができる。
【0030】
また、前塩素処理から中間塩素処理への切替えによる消毒副生成物の低減効果を正確に予測できるので、切替え時期を正確に決定することができる。
【0031】
更に、ジクロロ酢酸のような、トリハロメタン以外の消毒副生成物についても生成濃度を予測することができる。
【0032】
また、本発明の消毒副生成物の濃度管理装置の他の一つは、水道原水中の有機物を除去するための活性炭処理手段と、前記水道原水を塩素消毒するための塩素処理手段とを少なくとも備える水道原水の浄水施設によって生成する消毒副生成物の濃度管理装置であって、
前記水道原水のトリハロメタン生成能を測定するトリハロメタン生成能測定手段と、
前記水道原水のpHを測定するpH測定手段と、
前記水道原水の水温を測定する水温測定手段と、
前記塩素処理手段における塩素処理時間、前記浄水装置によって生成する消毒副生成物の生成許容濃度を入力する条件入力手段と、
前記トリハロメタン生成能測定手段、前記pH測定手段、前記水温測定手段、前記条件入力手段からのデータに基づいて前記活性炭処理手段における活性炭注入率を算出する演算手段と、
前記演算手段によって求められた前記活性炭処理手段における活性炭注入率を出力する出力手段とを備えることを特徴とする。
【0033】
これによれば、消毒副生成物の生成許容濃度に基づいて、あらかじめ活性炭注入率を調整することができるので、浄水工程における消毒副生成物の生成を常時所定の濃度以下に容易に制御することができる。また、最適な活性炭注入量を決定できるので、活性炭処理工程において過剰に活性炭を注入することを防止し、活性炭のコストを低減することができる。
【0034】
本発明の濃度管理装置においては、前記消毒副生成物の予測濃度の算出、又は前記活性炭処理工程における活性炭注入率の算出を、以下の数式(I)によって行なうことが好ましい。
【0035】
【数6】
Figure 2004033846
【0036】
上記の数式(I)を用いることにより、消毒副生成物の予測濃度、又は活性炭注入率を定量的に予測することができるので、より精度の高い予測が可能となる。
【0037】
【発明の実施の形態】
以下、本発明の消毒副生成物の濃度管理方法及び装置に係る一実施形態について説明する。
【0038】
まず、本発明の消毒副生成物の濃度管理方法について説明すると、本発明においては、水道原水のトリハロメタン生成能と、水道原水のpHと、水道原水の水温と、塩素処理工程における塩素処理時間と、活性炭処理工程における活性炭注入率という、5種類の指標に基づいて、浄水工程により生成する消毒副生成物の濃度を予測することを特徴としている。
【0039】
第1の指標であるトリハロメタン生成能とは、水が持つトリハロメタンの潜在的な生成量、即ち、一定の条件下で試料水の塩素処理を行なったときに生成するトリハロメタン量のことを意味し、水中の有機物量を予測する指標となるものである。日本の公定試験法である上水試験方法では、試料水に塩素注入し、水温20℃、pH7の条件で24時間後の残留塩素が1〜2mg/Lとなるサンプルのトリハロメタン生成量を測定することにより得られる。
【0040】
しかしながら、このトリハロメタン生成能はあくまで、上記のような一定条件下での生成量レベルを示すものであり、浄水場においては、水温、pH、塩素処理時間等の要因があるため、実際の消毒副生成物の生成量も大きく変化してしまう。
【0041】
したがって、本発明においては、第1の指標であるトリハロメタン生成能に加えて、第2〜5の指標を組み合わせることによって、予測の精度を向上させるものである。このような第2〜5の指標としては、水道原水のpH、水道原水の水温、塩素処理工程における塩素処理時間、活性炭処理工程における活性炭注入率を用いる。これらは、いずれもトリハロメタンなど消毒副生成物の生成に大きく影響を与える指標である。
【0042】
第2の指標である水道原水のpHは従来公知の水素イオン濃度指数であり、pH上昇により、個々の消毒副生成物の生成量は、増加、減少、極大値あるいは極小値を持つなど、様々な傾向を示す。また、第3の指標である水道原水の水温が上昇すると、水中の有機物と塩素の反応速度も上昇するので、消毒副生成物の生成量が増大する。
【0043】
第4の指標である塩素処理工程における塩素処理時間とは、塩素処理工程における塩素注入時から、浄水施設出口あるいは給水栓などの管理地点まで、浄水が流達するのに要する時間を意味し、この塩素処理時間が長い程、有機物と塩素との反応時間が長くなるので消毒副生成物の生成量が増大する。
【0044】
第5の指標となる活性炭処理工程における活性炭注入率とは、水1L当たりに投入される粉末活性炭の質量を意味し、通常mg/Lで表わされる。この活性炭注入率が増加すると、水道原水中の有機物の除去率が増加するので、消毒副生成物の生成量が低下する。
【0045】
本発明においては、上記の第1〜5の指標に基づいて、個々の指標と消毒副生成物の生成の関係を予め実験等により関数として求め、これら5種類の指標の関数で表される計算式で算出することが好ましい。これにより、消毒副生成物の濃度を数値化して、精度良く予測することができる。
このような計算式としては、例えば、以下の(I)式が好ましく用いられる。
【0046】
【数7】
Figure 2004033846
【0047】
具体的には、上記の(I)式において、例えば、消毒副生成物がトリハロメタン(THM)、及びジクロロ酢酸(DCA)の場合は、各々以下の(IV)式、(V)式を用いることが好ましい。これにより、個別の消毒副生成物の生成量を定量的に予測することができる。
【0048】
【数8】
Figure 2004033846
【0049】
【数9】
Figure 2004033846
【0050】
ここで、補正係数k,k’ は、前記5種類の指標、及びTHM又はDCAの実測値を上記予測式に代入することで求められるパラメータであり、浄水施設における浄水処理の特徴、差異を補正するものである。
【0051】
また、THMFPを除く4種類の指標の各関数における定数は、実験等により導き出される各指標と消毒副生成物の生成濃度との関係から決定される。
【0052】
なお、THM、DCA以外の他の消毒副生成物の予測式も、上記予測式と同様に、5種類の指標との関係から導き出せる関数の積で表される。このような消毒副生成物としては、トリクロロ酢酸、ジクロロアセトニトリル、泡水クロラール等が挙げられる。
【0053】
ここで、本発明においては、THM以外の消毒副生成物の生成濃度の予測式にもトリハロメタン生成能を指標として用いることができる。これは、トリハロメタン生成能が、塩素処理により消毒副生成物が生成する潜在的な有機物量と近似できるためであり、この潜在的な有機物量は個々の消毒副生成物に共通するからである。そして、実際の個々の消毒副生成物の生成濃度は、トリハロメタン生成能以外の4種類の指標との関係で決定される。
【0054】
したがって、ある水道原水において、トリハロメタン生成能(すなわち塩素処理により消毒副生成物が生成する有機物量)が同じであっても、例えばTHMについては水温とpHの影響を受けやすいのに比べ、DCAについては受けにくい。このため、実際に生成してくる濃度への水温とpHの影響は、THMよりDCAの方が小さくなることになる。
【0055】
このような考え方によって、例えば、上記(IV)式および(V)式の予測式を用いることにより、THMやDCAについての個別の消毒副生成物の濃度を、簡単に、かつ定量的に予測することが可能となる。
【0056】
本発明においては、更に、上記5種類以外の指標を用いることもできる。これにより、消毒副生成物の濃度を、更に高精度に予測することができる。このような指標としては、例えば、浄水処理における凝集・沈澱工程における凝集・沈澱効果を表わす係数が挙げられる。この場合、上記の(I)式に凝集・沈澱係数(FL)を加えた以下の(VI)式を用いることができる。
【0057】
【数10】
Figure 2004033846
【0058】
これにより、原水の凝集・沈殿工程におけるトリハロメタン生成能の低減効果が加わるので、更に正確に消毒副生成物濃度を予測することができる。この(VI)式は、特に、前塩素処理から中間塩素処理に切替える際の消毒副生成物濃度の予測に好適に用いることができる。
【0059】
また、本発明においては、上記の予測濃度式に基づいて、逆に必要な活性炭注入率を算出し、これによって、消毒副生成物の濃度を適正に制御することも好ましい。このような算出は、例えば上記の(I)式において目標となる消毒副生成物の濃度を設定し、ここから逆算して活性炭注入率(AC)を算出することにより決定することができる。
【0060】
図1には、上記の濃度管理方法を実施するための装置の一実施態様を示す概略構成図が示されている。
【0061】
この濃度管理装置70は、水道原水のトリハロメタン生成能を測定するトリハロメタン生成能測定手段71と、水道原水のpHを測定するpH測定手段72と、水道原水の水温を測定する水温測定手段73と、塩素処理手段における塩素処理時間、活性炭処理手段における活性炭注入率、消毒副生成物の生成許容濃度を入力する条件入力手段74とを備えている。なお、条件入力手段74においては、必要に応じて、塩素処理時間及び活性炭注入率、又は、塩素処理時間及び消毒副生成物の生成許容濃度の2種類の入力データが選択される。
【0062】
更に、上記のトリハロメタン生成能測定手段71、pH測定手段72、水温測定手段73、条件入力手段74から合計5種類のデータを取得して消毒副生成物の予測濃度の算出を行なう演算手段75と、演算手段75によって求められた予測濃度を出力する出力手段76とを備えている。
【0063】
ここで、トリハロメタン生成能測定手段71としては特に限定されず、上記の公定法による、ガスクロマトグラフ(GC)法を用いた測定装置でもよいが、測定時間や手間の点から、例えば、特開平8−105878号公報や、特開平11−352066号公報に開示されているようなトリハロメタン生成能自動分析計を用いて測定することが好ましい。また、pH測定手段72としては従来公知のpH測定計が使用でき、水温測定手段73としても従来公知の温度計が利用でき特に限定されない。
【0064】
また、条件入力手段74としては従来公知の入出力手段が利用できる。これらの入力データとしては、塩素処理時間及び活性炭注入率、又は、塩素処理時間及び消毒副生成物の生成許容濃度をあらかじめ入力しておくことができる。
【0065】
更に、演算手段75、及び出力手段76としては、例えばバーソナルコンピューター等が利用でき特に限定されない。
【0066】
図2には、この濃度管理装置70を用いた、浄水場における消毒副生成物の管理・制御システムの一例が示されている。なお、図2においては、上記の従来技術において説明した図4と同一部分には同符合を付して、その説明を省略することにする。
【0067】
図2に示すように、水道原水は、着水井10において、サンプリング工程S7によって試料水としてサンプリングされ、上記のトリハロメタン生成能測定手段71、pH測定手段72、水温測定手段73によって、トリハロメタン生成能、pH、水温が測定される。また、あらかじめ設定されている浄水条件から、塩素処理時間及び活性炭注入率が、条件入力手段74に入力されている。
【0068】
したがって、この濃度管理装置70の出力手段76によって上記の演算手段75による算出結果が出力され、その結果、水道原水が、前塩素処理工程S2、凝集・沈殿工程S3、ろ過工程S5を経た後の消毒副生成物の濃度を予測できるので、浄水工程の管理を容易に行なうことができる。また、この生成濃度の予測は、トリハロメタンやジクロロ酢酸のように、各物質毎に表示させることができる。
【0069】
また、上記の生成濃度の予測によって、前塩素処理工程S2から中間塩素処理工程S4への切替えを行なう場合には、切替えによる消毒副生成物の生成濃度低減効果を事前に予測でき、この予測結果に基づいて、所望のタイミングで塩素切替え制御手段90によって切替えを行なうことができる。これによって、切替え時期を正確に決定することができる。
【0070】
更に、この濃度管理装置70においては、目標とする消毒副生成物の濃度をあらかじめ入力することにより、活性炭注入率を逆算することもできる。この場合、条件入力手段74に、塩素処理時間及び消毒副生成物の生成許容濃度を入力し、濃度管理装置70の出力手段76から、必要な活性炭注入率を出力する。この出力結果に基づいて、活性炭濃度制御手段80を用いて、活性炭の注入量を制御する。これによって、消毒副生成物の生成濃度を目標濃度に制御することができる。
【0071】
【実施例】
以下、実施例を用いて、本発明の消毒副生成物の濃度管理方法及び装置について更に詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
【0072】
<実施例>
図1に示した構成の濃度管理装置を用い、図2に示すような浄水工程で水道原水の処理を行ない、上記の(IV)式を用いて、トリハロメタン生成濃度の予測を行なった。
【0073】
【数11】
Figure 2004033846
【0074】
ここで、定数であるa,b,cは、a=0.009、b=4.5×10、c=0.35とした。なお、Tは絶対温度である。
【0075】
次に、実測値として、THMFP計値=150μg/L、T=298K(25℃)、pH=7、t=6時間(前塩素処理)、AC=0mg/L(活性炭注入なし)を得た。この実測値を用いて(IV)式に代入し、補正係数k=82758を得た。
【0076】
ここで、水道原水のTHMFP値は、上記の特開平11―352066号公報に開示されているトリハロメタン生成能計(THMFP計)により測定した値であり、公定値との関係は、およそTHMFP値(公定法値)=(1/3)THMFP計値であるので、実際のTHMFPとしては50μg/Lである。
【0077】
<予測THMと実測THMの相関性>
上記のa=0.009、b=4.5×10、c=0.35、k=82758である(IV)式を用い、水道原水の水温、pH、THMFP、活性炭注入率など処理条件の異なる浄水工程において、予測THM濃度と、実際に公定法などによって求めた実測値との相関性を求めた。その結果を図3に示す。
【0078】
図3からわかるように、実施例における予測値と実測値との間には相関係数R=0.964と高い相関性があり、実施例の予測式の予測精度が高いことがわかる。
【0079】
<活性炭注入率の試算>
上記の(IV)式を変形して導かれる下記(IV’)式によって、以下のように活性炭注入率(AC)を計算した。
【0080】
【数12】
Figure 2004033846
【0081】
浄水工程後の目標THM=25μg/Lに設定した。また、浄水工程の一例として、THMFP計値=100μg/L、T=298K(25℃)、pH=7、t=6時間(前塩素処理)を上記の(IV’)式に代入した結果、AC=20mg/Lを得た。
【0082】
したがって、この浄水工程においては、粉末活性炭を20mg/Lを注入すれば、THM濃度を25μg/Lに制御できると試算できた。
【0083】
<前塩素処理から中間塩素処理への切替効果の試算>
中間塩素処理時原水の凝集・沈澱によるTHMFP低減効果係数、すなわち、凝集沈殿係数(FL)を加えた以下の(VII)式を用いて、前塩素処理工程S2から中間塩素処理S4への切替効果の試算を行なった。
【0084】
【数13】
Figure 2004033846
【0085】
(ここで、THMFPはトリハロメタン生成能、ACは活性炭注入率、Tは水温、tは塩素処理時間、FLは凝集沈殿係数、kは補正係数、a,b,cは定数を表わす)
ここで、凝集沈澱後のTHMFP残存率であるFLを0.8とすると、例えば、THMFP計値=100μg/L、T=298K(25℃)、pH=7、AC=0、t=6時間(前塩素処理)の処理条件で、前塩素処理時の生成THM濃度が30μg/Lであるとすると、これを中間塩素処理に切り替えてt=2時間とすると、上記の(VII)式よりTHM=16μg/Lと算出された。
【0086】
したがって、前塩素処理から中間塩素処理への切替えによって、THMは30μg/Lから16μg/L、すなわち、THM低減効果は約47%になると試算できた。
【0087】
【発明の効果】
以上説明したように、本発明によれば、浄水場等の浄水施設において、水道原水の塩素消毒により生成するトリハロメタン等の消毒副生成物の濃度を、浄水工程の初期段階で精度良く予測し、その消毒副生成物の濃度を管理、低減化するための方法および装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の消毒副生成物の濃度管理装置の一実施形態を示す概略構成図である。
【図2】本発明の消毒副生成物の濃度管理装置を用いた、浄水場における消毒副生成物の管理・制御システムの一実施形態を示す概略構成図である。
【図3】本発明の実施例におけるTHM濃度の予測値と実測値との相関を示す図表である。
【図4】従来の浄水工程を示す概略構成図である。
【符号の説明】
10:着水井
20:混和池
30:フロック形成池
40:ろ過池
50:浄水池
60:塩素注入機
70:濃度管理装置
71:トリハロメタン生成能測定手段
72:pH測定手段
73:水温測定手段
74:条件入力手段
75:演算手段
76:出力手段
80:活性炭濃度制御手段
90:塩素切替え制御手段
S1:活性炭処理工程
S2:前塩素処理工程
S3:凝集・沈殿工程
S4:中間塩素処理工程
S5:ろ過工程
S6:後塩素処理工程
S7:サンプリング工程[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for predicting the concentration of a disinfection by-product generated by chlorination and controlling the concentration of a disinfection by-product in a water purification process of tap water at a water purification plant or the like.
[0002]
[Prior art]
In recent years, eutrophication of rivers and lakes has progressed due to industrial wastewater and the like due to industrial activities, and pollution of various raw materials of tap water has become remarkable. For this reason, chlorine and the above-mentioned organic substances react by chlorine disinfection performed in a water purification plant or the like, and the generation of disinfection by-products such as trihalomethane and dichloroacetic acid, which are suspected to be carcinogenic, has become a problem. Therefore, in the water purification plant, the above-mentioned organic substances, which are so-called disinfection by-product precursors, are removed before the reaction.
[0003]
FIG. 4 shows an example of a water purification process in a conventional water purification plant that performs the above-described organic matter removal.
[0004]
In FIG. 4, raw water from a river or a lake, which is water to be treated, is first introduced into a landing well 10 for adjusting the amount of raw water entering a water purification plant. Here, an activated carbon treatment step S1 of injecting several tens of mg / L of powdered activated carbon is performed to reduce the generation of the disinfection by-product. As a result, a part of the organic matter in the tap water can be adsorbed and removed, the reaction amount of chlorine and the organic matter to be injected later can be suppressed, and the concentration of disinfection by-products can be reduced.
[0005]
Next, in the pre-chlorination step S2, chlorine is injected from the chlorine injector 60 into the landing well 10 at a concentration of about several mg / L. This chlorination may be performed as an intermediate chlorination treatment step S4 between an agglomeration / precipitation step S3 and a filtration step S5, which will be described later. It is possible to switch between the intermediate chlorinating step S4.
[0006]
The raw tap water after the pre-chlorination step S2 is rapidly mixed by injecting a flocculant into the raw water in the mixing pond 20, and the floc forming pond 30 is gently stirred to collide with fine floc particles. To form a large floc. Thereafter, in the filtration pond 40, the flocculation / sediment is filtered using sand filtration or the like. After the filtration step S5, the water is temporarily stored in the water purification pond 50, and then water is supplied in accordance with the usage amount. In addition, in the water purification tank 50, in order to secure the residual chlorine concentration at the end of the water supply and distribution pipe after the water supply, a post-chlorination treatment step S6 of injecting a low-concentration chlorine of about 1 to 2 mg / L is performed. I have.
[0007]
However, the generation mechanism of the above-mentioned disinfection by-products is very complicated, and it is very difficult to predict and control the concentration of disinfection by-products generated at the outlet of a water treatment plant or at a water tap in an early stage of the water purification process. is there. For this reason, in the above-mentioned conventional activated carbon treatment process S1, since the injection timing and the injection amount of the activated carbon are not clear, the activated carbon injection is excessively injected in consideration of safety, thereby increasing the processing cost. was there.
[0008]
Further, as described above, in the water purification plant, the pre-chlorination step S2 and the intermediate chlorination step S4 are switched depending on the time. In this case, the pre-chlorination step S2 is performed at a normal time, but the operation is switched to the intermediate chlorination step S4 in summer when the water temperature rises and the organic matter increases. As a result, the chlorine treatment time can be shortened, and the generation of disinfection by-products can be reduced due to the effect of coagulation / precipitation of organic substances in the coagulation / precipitation treatment step S3. However, in the above-mentioned conventional method, the concentration of generated disinfection by-products at the outlet of the water treatment plant could not be accurately predicted, so that the reduction effect of disinfection by-products by switching from pre-chlorination to intermediate chlorination was accurately determined. There was also a problem that it was not possible to ascertain, and therefore, it was not possible to accurately determine the change time.
[0009]
With respect to the above problem, a formula for predicting the production concentration of trihalomethane, which is one of the representative disinfection by-products, is known. For example, Urano et al. (Journal of Water Works Association, No. 596, p. 27- 37, 1984) proposes an empirical formula represented by the formula (II) as a formula for the production rate of trihalomethane.
[0010]
[Equation 3]
Figure 2004033846
[0011]
Here, THM is the concentration of trihalomethane generated at time t after chlorine addition, pH is the hydrogen ion concentration index of the sample water, TOC is the total organic carbon concentration of the sample water, Cl 2 Is the chlorine addition concentration, t is the chlorination time (also called chlorine contact time), and k, a, m, and n are constants.
[0012]
As a method for predicting the production concentration of trihalomethane, a method using a multiple regression equation of a plurality of water quality indices is also known. For example, as shown in equation (III), a THM generation prediction equation using a multiple regression equation of three kinds of water quality indices of sample water pH, sample water temperature, and chlorination time has been proposed.
[0013]
(Equation 4)
Figure 2004033846
[0014]
Here, THM is the concentration of trihalomethane formation at time t after chlorine addition, pH is the hydrogen ion concentration index of the sample water, T is the water temperature of the sample water, t is the chlorination time, and a, bc and d are constants.
[0015]
[Problems to be solved by the invention]
However, in the method using the empirical formula (II) of Urano et al., TOC is the total organic carbon concentration in the sample water. However, during the chlorination, all of the trihalomethane does not react to generate trihalomethane. Usually, some organic components of the TOC react with chlorine to generate trihalomethane. In the case of prediction, there is a problem that the prediction accuracy of trihalomethane generation may be significantly reduced depending on the quality of the sample water.
[0016]
In addition, when the formula (III) is used as a method for predicting the production concentration of trihalomethane, usually, the constant of the formula (III) is obtained by acquiring a large number of data sets of three types of water quality indices and actually measured values of trihalomethane. It is determined by the method. Therefore, the predicted concentration tends to fluctuate greatly depending on the water quality of the sampled water from which the data is obtained. As in the case of the empirical formula (II) described above by Urano et al. There is a problem that the prediction accuracy is greatly reduced.
[0017]
Further, there is a problem that any of the methods using the above formulas (II) and (III) may not be applicable to disinfection by-products other than trihalomethane. As disinfection by-products, for example, dichloroacetic acid and the like are also produced, but for these disinfection by-products other than trihalomethane, the mechanism of their production is still largely unknown, and the prediction formulas for the production concentration are rarely studied. Not.
[0018]
The present invention has been made in view of the above-mentioned problems of the prior art, and in a water purification facility such as a water purification plant, the concentration of a disinfection by-product such as trihalomethane generated by chlorination of tap water is determined in an initial stage of the water purification process. It is an object of the present invention to provide a method and apparatus for accurately predicting and controlling and reducing the concentration of the disinfection by-product.
[0019]
[Means for Solving the Problems]
That is, one of the methods for controlling the concentration of disinfection by-products of the present invention is a tap water that includes at least an activated carbon treatment step for removing organic substances in tap water and a chlorination step for chlorinating the tap water. In the method of controlling the concentration of disinfection by-products in the raw water purification process,
Trihalomethane producing ability of the tap water, pH of the tap water, water temperature of the tap water, chlorination time in the chlorination step, and activated carbon injection rate in the activated carbon treatment step, The method is characterized in that a predicted concentration of the generated disinfection by-product is calculated.
[0020]
According to this method, in a water purification plant such as a water purification plant, the concentration of a disinfection by-product such as trihalomethane generated by chlorine disinfection of tap water can be accurately predicted at an initial stage of the water purification process. Therefore, since it is not necessary to actually measure the concentration of the disinfection by-product after the water purification step, the water purification step can be efficiently managed.
[0021]
Also, when switching from pre-chlorination to intermediate chlorination, the effect of reducing disinfection by-products can be accurately predicted, so that the timing of switching can be determined accurately.
[0022]
Furthermore, the concentration of products generated by disinfection by-products other than trihalomethane, such as dichloroacetic acid, can be predicted.
[0023]
Further, another one of the concentration control methods for disinfecting by-products of the present invention includes at least an activated carbon treatment step for removing organic matter in tap water and a chlorination step for chlorinating the tap water. In the method of controlling the concentration of disinfection by-products in the water purification process of
Based on the trihalomethane generating ability of the tap water, the pH of the tap water, the temperature of the tap water, the chlorination time in the chlorination step, and the allowable concentration of disinfection by-products generated in the water purification step. Then, the activated carbon injection rate in the activated carbon treatment step is calculated.
[0024]
According to this, since the activated carbon injection rate can be adjusted in advance based on the allowable concentration of disinfection by-products, the generation of disinfection by-products in the water purification process can always be easily controlled to a predetermined concentration or less. Can be. In addition, since the optimum amount of activated carbon to be injected can be determined, excessive injection of activated carbon in the activated carbon treatment step can be prevented, and the cost of activated carbon can be reduced.
[0025]
In the method of the present invention, the calculation of the predicted concentration of the disinfection by-product or the calculation of the activated carbon injection rate in the activated carbon treatment step is preferably performed by the following formula (I).
[0026]
(Equation 5)
Figure 2004033846
[0027]
By using the above formula (I), the predicted concentration of the disinfection by-product or the activated carbon injection rate can be quantitatively predicted, so that more accurate prediction is possible.
[0028]
On the other hand, one of the concentration control apparatuses for disinfecting by-products of the present invention is a tap water having at least a activated carbon treatment means for removing organic substances in tap water and a chlorination means for chlorinating the tap water. A concentration control device for disinfection by-products generated by a raw water purification facility,
Trihalomethane-forming ability measuring means for measuring the trihalomethane-forming ability of the tap water,
PH measuring means for measuring the pH of the tap water,
Water temperature measuring means for measuring the temperature of the tap water,
Chlorination time in the chlorination means, condition input means for inputting the activated carbon injection rate in the activated carbon treatment means,
The trihalomethane generating ability measuring means, the pH measuring means, the water temperature measuring means, a calculating means for calculating a predicted concentration of the disinfection by-product based on data from the condition input means,
Output means for outputting the predicted concentration of the disinfection by-product obtained by the calculation means.
[0029]
ADVANTAGE OF THE INVENTION According to the concentration management apparatus of this invention, the concentration of the disinfection by-products, such as a trihalomethane produced | generated by chlorine disinfection of tap water, in a water purification plant, such as a water purification plant, can be accurately predicted at the initial stage of a water purification process. Therefore, it is not necessary to actually measure the concentration of the disinfection by-product after the water purification step, so that the step management can be performed efficiently.
[0030]
In addition, since the effect of reducing disinfection by-products by switching from the pre-chlorination to the intermediate chlorination can be accurately predicted, the switching timing can be accurately determined.
[0031]
Furthermore, the concentration of products generated by disinfection by-products other than trihalomethane, such as dichloroacetic acid, can be predicted.
[0032]
Another one of the concentration control devices for disinfection by-products of the present invention includes at least activated carbon treatment means for removing organic matter in tap water and chlorination means for chlorinating the tap water. A concentration control device for disinfection by-products generated by a water purification facility for providing tap water,
Trihalomethane-forming ability measuring means for measuring the trihalomethane-forming ability of the tap water,
PH measuring means for measuring the pH of the tap water,
Water temperature measuring means for measuring the temperature of the tap water,
Chlorination time in the chlorination means, condition input means for inputting the allowable concentration of disinfection by-products generated by the water purification device,
The trihalomethane generating ability measuring means, the pH measuring means, the water temperature measuring means, a calculating means for calculating the activated carbon injection rate in the activated carbon processing means based on data from the condition input means,
Output means for outputting the activated carbon injection rate in the activated carbon processing means determined by the arithmetic means.
[0033]
According to this, since the activated carbon injection rate can be adjusted in advance based on the allowable concentration of disinfection by-products, the generation of disinfection by-products in the water purification process can always be easily controlled to a predetermined concentration or less. Can be. In addition, since the optimum amount of activated carbon to be injected can be determined, excessive injection of activated carbon in the activated carbon treatment step can be prevented, and the cost of activated carbon can be reduced.
[0034]
In the concentration control device of the present invention, it is preferable that the calculation of the predicted concentration of the disinfection by-product or the calculation of the activated carbon injection rate in the activated carbon treatment step is performed by the following formula (I).
[0035]
(Equation 6)
Figure 2004033846
[0036]
By using the above formula (I), the predicted concentration of the disinfection by-product or the activated carbon injection rate can be quantitatively predicted, so that more accurate prediction is possible.
[0037]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method and an apparatus for controlling the concentration of a disinfection by-product of the present invention will be described.
[0038]
First, the method for controlling the concentration of disinfection by-products of the present invention will be described.In the present invention, the ability to produce trihalomethane in tap water, the pH of tap water, the temperature of tap water, the chlorination time in the chlorination step, and The method is characterized in that the concentration of the disinfection by-product generated in the water purification step is predicted based on five types of indexes, that is, the activated carbon injection rate in the activated carbon treatment step.
[0039]
The trihalomethane-producing ability, which is the first index, means the potential production amount of trihalomethane that water has, that is, the amount of trihalomethane produced when chlorination of sample water is performed under certain conditions. It is an index for predicting the amount of organic matter in water. In the clean water test method, which is the official test method in Japan, chlorine is injected into a sample water, and the amount of trihalomethane generated in a sample having a residual chlorine of 1-2 mg / L after 24 hours at a water temperature of 20 ° C. and a pH of 7 is measured. It can be obtained by:
[0040]
However, this trihalomethane production ability only indicates the production level under the above-mentioned constant conditions. In a water purification plant, there are factors such as water temperature, pH, chlorination time, etc. The production amount of the product also changes greatly.
[0041]
Therefore, in the present invention, the accuracy of prediction is improved by combining the second to fifth indices in addition to the trihalomethane-producing ability as the first index. As such second to fifth indices, the pH of tap water, the temperature of tap water, the chlorination time in the chlorination step, and the activated carbon injection rate in the activated carbon treatment step are used. These are indices that greatly affect the generation of disinfection by-products such as trihalomethane.
[0042]
The pH of tap water, which is the second index, is a conventionally known hydrogen ion concentration index. Due to the increase in pH, the amount of individual disinfection by-products increases, decreases, has a maximum value or a minimum value. Shows a tendency. In addition, when the temperature of raw tap water, which is the third index, increases, the reaction rate between organic matter and chlorine in the water also increases, so that the amount of disinfection by-products increases.
[0043]
The chlorination time in the chlorination step, which is the fourth indicator, refers to the time required for purified water to flow from the time of chlorination in the chlorination step to a control point such as a water purification facility outlet or a water tap. The longer the chlorination time, the longer the reaction time between the organic matter and chlorine, so that the amount of disinfection by-products increases.
[0044]
The activated carbon injection rate in the activated carbon treatment step, which is the fifth indicator, means the mass of powdered activated carbon charged per liter of water, and is usually expressed in mg / L. When the activated carbon injection rate increases, the removal rate of organic matter in tap water increases, so that the amount of disinfection by-products decreases.
[0045]
In the present invention, based on the above-described first to fifth indices, the relationship between each of the indices and the generation of disinfection by-products is obtained as a function in advance by experiments or the like, and a calculation represented by a function of these five types of indices It is preferable to calculate with an equation. Thereby, the concentration of the disinfection by-product can be quantified and accurately predicted.
As such a calculation formula, for example, the following formula (I) is preferably used.
[0046]
(Equation 7)
Figure 2004033846
[0047]
Specifically, in the above formula (I), for example, when the disinfection by-product is trihalomethane (THM) and dichloroacetic acid (DCA), the following formulas (IV) and (V) are used, respectively. Is preferred. This makes it possible to quantitatively predict the amount of each individual disinfection by-product.
[0048]
(Equation 8)
Figure 2004033846
[0049]
(Equation 9)
Figure 2004033846
[0050]
Here, the correction coefficients k and k ′ are parameters obtained by substituting the five types of indices and the measured value of THM or DCA into the above-described prediction formula, and correct the characteristics and differences of the water purification treatment in the water purification facility. Is what you do.
[0051]
In addition, constants in each function of the four types of indices except for the THMFP are determined from the relationship between each of the indices derived from experiments and the like and the concentration of disinfection by-products generated.
[0052]
In addition, the prediction formula of the disinfection by-product other than THM and DCA is also represented by the product of the functions that can be derived from the relationship with the five types of indices, similarly to the above prediction formula. Examples of such disinfection by-products include trichloroacetic acid, dichloroacetonitrile, foamed water chloral, and the like.
[0053]
Here, in the present invention, the trihalomethane-producing ability can be used as an index in the prediction formula for the concentration of generated disinfection by-products other than THM. This is because the ability to generate trihalomethane can be approximated to the amount of potential organic substances generated by disinfection by-products due to chlorination, and this potential organic substance is common to individual disinfection by-products. The actual production concentration of each disinfection by-product is determined in relation to the four types of indices other than the trihalomethane production ability.
[0054]
Therefore, even if the raw water has the same trihalomethane generating ability (that is, the amount of organic substances generated by disinfection by-products due to chlorination), for example, THM is more susceptible to the effects of water temperature and pH. Is difficult to receive. For this reason, the influence of water temperature and pH on the actually generated concentration is smaller for DCA than for THM.
[0055]
With this concept, for example, the concentration of individual disinfection by-products for THM and DCA can be easily and quantitatively predicted by using the prediction formulas (IV) and (V). It becomes possible.
[0056]
In the present invention, indices other than the above five types can also be used. Thereby, the concentration of the disinfection by-product can be predicted with higher accuracy. As such an index, for example, a coefficient representing the coagulation / precipitation effect in the coagulation / precipitation step in the water purification treatment may be mentioned. In this case, the following formula (VI) obtained by adding the aggregation / precipitation coefficient (FL) to the above formula (I) can be used.
[0057]
(Equation 10)
Figure 2004033846
[0058]
Thereby, the effect of reducing the trihalomethane generation ability in the coagulation / precipitation step of the raw water is added, so that the concentration of the disinfection by-product can be more accurately predicted. This formula (VI) can be suitably used particularly for predicting the concentration of disinfection by-products when switching from pre-chlorination to intermediate chlorination.
[0059]
In the present invention, it is also preferable to calculate the required activated carbon injection rate on the contrary based on the above-mentioned predicted concentration formula, and thereby appropriately control the concentration of the disinfection by-product. Such calculation can be determined, for example, by setting the concentration of the target disinfection by-product in the above formula (I), and calculating the activated carbon injection rate (AC) by calculating backward from this.
[0060]
FIG. 1 is a schematic configuration diagram showing an embodiment of an apparatus for performing the above-described concentration management method.
[0061]
The concentration management device 70 includes a trihalomethane generating ability measuring unit 71 that measures the trihalomethane generating ability of tap water, a pH measuring unit 72 that measures the pH of tap water, a water temperature measuring unit 73 that measures the temperature of tap water, A condition input means 74 is provided for inputting the chlorination time in the chlorination means, the activated carbon injection rate in the activated carbon treatment means, and the allowable concentration of disinfection by-products. In the condition input means 74, two types of input data of the chlorination time and the activated carbon injection rate, or the chlorination time and the allowable concentration of disinfection by-products are selected as necessary.
[0062]
Further, a calculating means 75 for acquiring a total of five types of data from the above-mentioned trihalomethane generating ability measuring means 71, pH measuring means 72, water temperature measuring means 73, and condition inputting means 74 and calculating a predicted concentration of disinfection by-products; And output means 76 for outputting the predicted density obtained by the calculating means 75.
[0063]
Here, the trihalomethane-forming ability measuring means 71 is not particularly limited, and may be a measuring apparatus using a gas chromatograph (GC) method according to the official method described above. It is preferable to perform measurement using an automatic analyzer for trihalomethane generation ability as disclosed in JP-A-105878 and JP-A-11-352066. A conventionally known pH meter can be used as the pH measuring means 72, and a conventionally known thermometer can be used as the water temperature measuring means 73, and is not particularly limited.
[0064]
As the condition input means 74, conventionally known input / output means can be used. As these input data, the chlorination time and the activated carbon injection rate, or the chlorination time and the allowable concentration of disinfection by-products can be input in advance.
[0065]
Further, as the calculation means 75 and the output means 76, for example, a personal computer or the like can be used, and there is no particular limitation.
[0066]
FIG. 2 shows an example of a system for managing and controlling disinfection by-products in a water purification plant using the concentration management device 70. In FIG. 2, the same parts as those in FIG. 4 described in the above prior art are denoted by the same reference numerals, and description thereof will be omitted.
[0067]
As shown in FIG. 2, the tap water is sampled in the landing well 10 as a sample water in a sampling step S7, and the trihalomethane generating ability is measured by the trihalomethane generating ability measuring means 71, the pH measuring means 72, and the water temperature measuring means 73. pH and water temperature are measured. Further, the chlorination time and the activated carbon injection rate are input to the condition input means 74 from the preset water purification conditions.
[0068]
Therefore, the calculation result by the calculation means 75 is output by the output means 76 of the concentration management device 70, and as a result, the raw tap water is subjected to the pre-chlorination step S2, the coagulation / precipitation step S3, and the filtration step S5. Since the concentration of the disinfection by-product can be predicted, the water purification process can be easily managed. In addition, the prediction of the generated concentration can be displayed for each substance such as trihalomethane or dichloroacetic acid.
[0069]
In addition, when switching from the pre-chlorination step S2 to the intermediate chlorination step S4 is performed by the above-described prediction of the production concentration, the effect of reducing the concentration of the generated disinfection by-products due to the switching can be predicted in advance. , The switching can be performed by the chlorine switching control means 90 at a desired timing. Thus, the switching time can be accurately determined.
[0070]
Further, in the concentration management device 70, the activated carbon injection rate can be calculated backward by inputting a target concentration of the target disinfection by-product in advance. In this case, the chlorination time and the allowable concentration of disinfection by-products are input to the condition input means 74, and the required activated carbon injection rate is output from the output means 76 of the concentration management device 70. Based on the output result, the injection amount of the activated carbon is controlled using the activated carbon concentration control means 80. This makes it possible to control the generated concentration of the disinfection by-product to the target concentration.
[0071]
【Example】
Hereinafter, the method and apparatus for controlling the concentration of disinfection by-products of the present invention will be described in more detail using examples. Note that the present invention is not limited to the following examples.
[0072]
<Example>
Using the concentration management device having the configuration shown in FIG. 1, raw water treatment was performed in the water purification process as shown in FIG. 2, and the trihalomethane formation concentration was predicted using the above formula (IV).
[0073]
[Equation 11]
Figure 2004033846
[0074]
Here, constants a, b, and c are a = 0.09, b = 4.5 × 10 3 , C = 0.35. Note that T is an absolute temperature.
[0075]
Next, measured values of THMFP = 150 μg / L, T = 298 K (25 ° C.), pH = 7, t = 6 hours (pre-chlorination), and AC = 0 mg / L (no activated carbon injection) were obtained. . The measured value was substituted into the equation (IV) to obtain a correction coefficient k = 82758.
[0076]
Here, the THMFP value of tap water is a value measured by a trihalomethane generation ability meter (THMFP meter) disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 11-352066, and the relationship with the official value is approximately the THMFP value ( (Official method value) = (1 /) THMFP measurement value, so that the actual THMFP is 50 μg / L.
[0077]
<Correlation between predicted THM and measured THM>
The above a = 0.09, b = 4.5 × 10 3 , C = 0.35, k = 82758, in the water purification process having different treatment conditions such as raw water temperature, pH, THMFP, activated carbon injection rate, etc., using the estimated THM concentration and the actual official method. The correlation with the measured value obtained by the above was obtained. The result is shown in FIG.
[0078]
As can be seen from FIG. 3, the correlation coefficient R between the predicted value and the actually measured value in the embodiment. 2 = 0.964, which indicates that the prediction formula of the embodiment has high prediction accuracy.
[0079]
<Calculation of activated carbon injection rate>
The activated carbon injection rate (AC) was calculated as follows by the following formula (IV ′) derived by modifying the above formula (IV).
[0080]
(Equation 12)
Figure 2004033846
[0081]
The target THM after the water purification step was set to 25 μg / L. In addition, as an example of the water purification process, the result of substituting the THMFP measured value = 100 μg / L, T = 298 K (25 ° C.), pH = 7, t = 6 hours (pre-chlorination) into the above equation (IV ′), AC = 20 mg / L was obtained.
[0082]
Therefore, in this water purification step, it was estimated that if the activated carbon powder was injected at 20 mg / L, the THM concentration could be controlled at 25 μg / L.
[0083]
<Estimation of the effect of switching from pre-chlorination to intermediate chlorination>
The effect of switching from the pre-chlorination step S2 to the intermediate chlorination step S4 using the following equation (VII) to which the THMFP reduction effect coefficient due to coagulation / precipitation of the raw water during the intermediate chlorination is added, that is, the coagulation-sedimentation coefficient (FL) Was calculated.
[0084]
(Equation 13)
Figure 2004033846
[0085]
(Where THMFP is trihalomethane generating ability, AC is activated carbon injection rate, T is water temperature, t is chlorination time, FL is coagulation sedimentation coefficient, k is correction coefficient, and a, b, and c are constants)
Here, assuming that the FL, which is the THMFP residual rate after coagulation sedimentation, is 0.8, for example, THMFP measured value = 100 μg / L, T = 298 K (25 ° C.), pH = 7, AC = 0, t = 6 hours Assuming that the generated THM concentration at the time of the pre-chlorination is 30 μg / L under the processing conditions of (pre-chlorination), if this is switched to the intermediate chlorination and t = 2 hours, the THM is calculated from the above formula (VII). = 16 μg / L.
[0086]
Therefore, by switching from the pre-chlorination treatment to the intermediate chlorination treatment, it was possible to estimate that the THM was 30 μg / L to 16 μg / L, that is, the THM reduction effect was about 47%.
[0087]
【The invention's effect】
As described above, according to the present invention, in a water purification facility such as a water purification plant, the concentration of a disinfection by-product such as trihalomethane generated by chlorine disinfection of tap water is accurately predicted at an initial stage of a water purification process, A method and apparatus for managing and reducing the concentration of the disinfection by-product can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a concentration control device for disinfection by-products of the present invention.
FIG. 2 is a schematic configuration diagram showing an embodiment of a system for managing and controlling disinfection by-products in a water purification plant using the apparatus for managing concentration of disinfection by-products of the present invention.
FIG. 3 is a table showing a correlation between a predicted value and a measured value of the THM concentration in an example of the present invention.
FIG. 4 is a schematic configuration diagram showing a conventional water purification process.
[Explanation of symbols]
10: Water well
20: mixing pond
30: Flock formation pond
40: Filtration pond
50: Purification pond
60: Chlorine injection machine
70: Concentration control device
71: Trihalomethane generating ability measuring means
72: pH measuring means
73: Water temperature measuring means
74: condition input means
75: arithmetic means
76: output means
80: activated carbon concentration control means
90: chlorine switching control means
S1: Activated carbon treatment process
S2: Pre-chlorination process
S3: Coagulation / precipitation step
S4: Intermediate chlorination process
S5: Filtration step
S6: Post-chlorination process
S7: Sampling process

Claims (6)

水道原水中の有機物を除去するための活性炭処理工程と、前記水道原水を塩素消毒するための塩素処理工程とを少なくとも含む水道原水の浄水工程における消毒副生成物の濃度管理方法において、
前記水道原水のトリハロメタン生成能と、前記水道原水のpHと、前記水道原水の水温と、前記塩素処理工程における塩素処理時間と、前記活性炭処理工程における活性炭注入率とに基づいて、前記浄水工程により生成する消毒副生成物の予測濃度を算出することを特徴とする消毒副生成物の濃度管理方法。
Activated carbon treatment step for removing organic matter in tap water, and a chlorination step for chlorinating the tap water, a method for controlling the concentration of disinfection by-products in a water purification step of tap water at least including a chlorination step.
Trihalomethane producing ability of the tap water, pH of the tap water, water temperature of the tap water, chlorination time in the chlorination step, and activated carbon injection rate in the activated carbon treatment step, A method for controlling the concentration of a disinfection by-product, comprising calculating a predicted concentration of the generated disinfection by-product.
水道原水中の有機物を除去するための活性炭処理工程と、前記水道原水を塩素消毒するための塩素処理工程とを少なくとも含む水道原水の浄水工程における消毒副生成物の濃度管理方法において、
前記水道原水のトリハロメタン生成能と、前記水道原水のpHと、前記水道原水の水温と、前記塩素処理工程における塩素処理時間と、前記浄水工程により生成する消毒副生成物の生成許容濃度とに基づいて、前記活性炭処理工程における活性炭注入率を算出することを特徴とする消毒副生成物の濃度管理方法。
Activated carbon treatment step for removing organic matter in tap water, and a chlorination step for chlorinating the tap water, a method for controlling the concentration of disinfection by-products in a water purification step of tap water at least including a chlorination step.
Based on the trihalomethane generating ability of the tap water, the pH of the tap water, the temperature of the tap water, the chlorination time in the chlorination step, and the allowable concentration of disinfection by-products generated in the water purification step. And calculating the activated carbon injection rate in the activated carbon treatment step.
前記消毒副生成物の予測濃度の算出、又は前記活性炭処理工程における活性炭注入率の算出を、以下の数式(I)によって行なう請求項1又は2記載の消毒副生成物の濃度管理方法。
Figure 2004033846
The method for controlling the concentration of a disinfection by-product according to claim 1 or 2, wherein the calculation of the predicted concentration of the disinfection by-product or the calculation of the activated carbon injection rate in the activated carbon treatment step is performed by the following formula (I).
Figure 2004033846
水道原水中の有機物を除去するための活性炭処理手段と、前記水道原水を塩素消毒するための塩素処理手段とを少なくとも備える水道原水の浄水施設によって生成する消毒副生成物の濃度管理装置であって、
前記水道原水のトリハロメタン生成能を測定するトリハロメタン生成能測定手段と、
前記水道原水のpHを測定するpH測定手段と、
前記水道原水の水温を測定する水温測定手段と、
前記塩素処理手段における塩素処理時間、前記活性炭処理手段における活性炭注入率を入力する条件入力手段と、
前記トリハロメタン生成能測定手段、前記pH測定手段、前記水温測定手段、前記条件入力手段からのデータに基づいて前記消毒副生成物の予測濃度を算出する演算手段と、
前記演算手段によって求められた前記消毒副生成物の予測濃度を出力する出力手段とを備えることを特徴とする消毒副生成物の濃度管理装置。
Activated carbon treatment means for removing organic matter in tap water, and a concentration control device for disinfecting by-products generated by a tap water purification facility comprising at least chlorination means for chlorinating the tap water. ,
Trihalomethane-forming ability measuring means for measuring the trihalomethane-forming ability of the tap water,
PH measuring means for measuring the pH of the tap water,
Water temperature measuring means for measuring the temperature of the tap water,
Chlorination time in the chlorination means, condition input means for inputting the activated carbon injection rate in the activated carbon treatment means,
The trihalomethane generating ability measuring means, the pH measuring means, the water temperature measuring means, a calculating means for calculating a predicted concentration of the disinfection by-product based on data from the condition input means,
Output means for outputting a predicted concentration of the disinfection by-product determined by the calculation means.
水道原水中の有機物を除去するための活性炭処理手段と、前記水道原水を塩素消毒するための塩素処理手段とを少なくとも備える水道原水の浄水施設によって生成する消毒副生成物の濃度管理装置であって、
前記水道原水のトリハロメタン生成能を測定するトリハロメタン生成能測定手段と、
前記水道原水のpHを測定するpH測定手段と、
前記水道原水の水温を測定する水温測定手段と、
前記塩素処理手段における塩素処理時間、前記浄水装置によって生成する消毒副生成物の生成許容濃度を入力する条件入力手段と、
前記トリハロメタン生成能測定手段、前記pH測定手段、前記水温測定手段、前記条件入力手段からのデータに基づいて前記活性炭処理手段における活性炭注入率を算出する演算手段と、
前記演算手段によって求められた前記活性炭処理手段における活性炭注入率を出力する出力手段とを備えることを特徴とする消毒副生成物の濃度管理装置。
Activated carbon treatment means for removing organic matter in tap water, and a concentration control device for disinfecting by-products generated by a tap water purification facility comprising at least chlorination means for chlorinating the tap water. ,
Trihalomethane-forming ability measuring means for measuring the trihalomethane-forming ability of the tap water,
PH measuring means for measuring the pH of the tap water,
Water temperature measuring means for measuring the temperature of the tap water,
Chlorination time in the chlorination means, condition input means for inputting the allowable concentration of disinfection by-products generated by the water purification device,
The trihalomethane generating ability measuring means, the pH measuring means, the water temperature measuring means, a calculating means for calculating the activated carbon injection rate in the activated carbon processing means based on data from the condition input means,
Output means for outputting the activated carbon injection rate in the activated carbon processing means determined by the arithmetic means.
前記消毒副生成物の予測濃度の算出、又は前記活性炭処理工程における活性炭注入率の算出を、以下の数式(I)によって行なう請求項4又は5記載の消毒副生成物の濃度管理装置。
Figure 2004033846
The disinfection by-product concentration management device according to claim 4 or 5, wherein the calculation of the predicted concentration of the disinfection by-product or the calculation of the activated carbon injection rate in the activated carbon treatment step is performed by the following formula (I).
Figure 2004033846
JP2002192087A 2002-07-01 2002-07-01 Disinfection by-product concentration control method and apparatus Expired - Fee Related JP3969217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002192087A JP3969217B2 (en) 2002-07-01 2002-07-01 Disinfection by-product concentration control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002192087A JP3969217B2 (en) 2002-07-01 2002-07-01 Disinfection by-product concentration control method and apparatus

Publications (2)

Publication Number Publication Date
JP2004033846A true JP2004033846A (en) 2004-02-05
JP3969217B2 JP3969217B2 (en) 2007-09-05

Family

ID=31701476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002192087A Expired - Fee Related JP3969217B2 (en) 2002-07-01 2002-07-01 Disinfection by-product concentration control method and apparatus

Country Status (1)

Country Link
JP (1) JP3969217B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152264A (en) * 2005-12-07 2007-06-21 Jfe Engineering Kk Apparatus and method for treating ballast water
JP2007326047A (en) * 2006-06-08 2007-12-20 Toshiba Corp Water treatment control device
KR100919919B1 (en) * 2007-09-10 2009-10-07 한국건설기술연구원 Monitoring Method and System of Trihalomethane Formation Potential and Haloacetic acids Formation Potential in drinking water treatment
JP2020142184A (en) * 2019-03-06 2020-09-10 株式会社東芝 Control device, control method and computer program
CN111807558A (en) * 2020-07-23 2020-10-23 上海城市水资源开发利用国家工程中心有限公司 Multi-point chlorination process for drinking water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152264A (en) * 2005-12-07 2007-06-21 Jfe Engineering Kk Apparatus and method for treating ballast water
JP2007326047A (en) * 2006-06-08 2007-12-20 Toshiba Corp Water treatment control device
KR100919919B1 (en) * 2007-09-10 2009-10-07 한국건설기술연구원 Monitoring Method and System of Trihalomethane Formation Potential and Haloacetic acids Formation Potential in drinking water treatment
JP2020142184A (en) * 2019-03-06 2020-09-10 株式会社東芝 Control device, control method and computer program
JP7258606B2 (en) 2019-03-06 2023-04-17 株式会社東芝 Control device, control method and computer program
CN111807558A (en) * 2020-07-23 2020-10-23 上海城市水资源开发利用国家工程中心有限公司 Multi-point chlorination process for drinking water

Also Published As

Publication number Publication date
JP3969217B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP4230787B2 (en) Flocculant injection control device
CA2989452C (en) Process and device for the treatment of a fluid containing a contaminant
JP2008161809A (en) Coagulant injection control system
US20130213895A1 (en) Wastewater treatment system
WO2014006129A1 (en) Determination of a conversion factor relating the conductivity and the hardness of water
JP4492473B2 (en) Flocculant injection control device and method
US11866348B2 (en) System, apparatus, and method for treating wastewater in real time
Gatti et al. Wastewater COD characterization: analysis of respirometric and physical‐chemical methods for determining biodegradable organic matter fractions
JP5072382B2 (en) Flocculant injection control device
JP4145717B2 (en) Water quality monitoring and control system
JP2004033846A (en) Control method of concentration of disinfection byproduct and apparatus therefor
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
JP4922214B2 (en) Water treatment method and water treatment apparatus
JP7086658B2 (en) Water treatment system and water treatment method
JP2010155189A (en) Water treatment method and apparatus
JP2003284904A (en) Control device for injection of flocculant of water purification plant
KR101334693B1 (en) Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same
JP7431041B2 (en) Information processing device, information processing method and program
US5531905A (en) System and method to control laundry waste water treatment
JP2017056418A (en) Flocculant injection rate determination method and flocculant injection rate determination device
JP2021524588A (en) How to determine the dose of coagulant to treat raw water
JP2003290789A (en) Anaerobic treatment equipment and its monitoring method
JP2007326047A (en) Water treatment control device
JPH11319797A (en) Mixed treatment water quality controller and its control
JP2005230629A (en) Powdered activated carbon controller

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3969217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees